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Introduction

Let M be a closed connected smooth manifold of dimension n and R™ the
m-dimensional Euclidean space. Denote by [M < R™] the set of regular homo-
topy classes of immersions of M in R™ and by [M < R™] the set of isotopy classes
of embeddings of M in R™, and consider the commutative diagram

[Mc Rm+1] Jav, [M< R™']

E.,] 1.[

[M< R"] —I=, [M < R],

where E,, and I,, are the maps induced from the natural inclusion R™c< Rm+!
and J, is the one defined by regarding embeddings as immersions.

The set [M = R™] for 2m>3n+1 is an abelian group by taking 0 arbitrarily
if it is not empty, and the map I, is a homomorphism by taking I,(0)=0; while
so are the set [M < R™] and the maps E,, and J,, for 2m>3(n+1)(see J. C. Becker
2D.

The purpose of this paper is to study the above commutative diagram when
m=2n—1:

[Mc R¥] Ju_, [Mc R
*) £ 1| (E= Ezpesy I=p01),
[MC RZn—l] J:n-l [ME RZn—I]

(here we assume that the sets in consideration are not empty).

When n=4, the upper groups are determined by A. Haefliger and M. W.
Hirsch [3], [5], [6] and so is the group [M = R?"~'] by D. R. Bausum [1, Th. 37
and Prop. 41], L. L. Larmore and E. Thomas [10, Th. 5.1] and R. D. Rigdon
(11, Th. 10.4], and moreover it is proved by R. D. Rigdon [11, Th. 10.4] that I
is trivial for even n and is surjective for odd n, respectively. When n=6, [M <
R2-1] is an abelian group and Im E is determined by R. D. Rigdon [11, Th. 11.11
and Th. 11.26]. Together with these results, we have the following

MAIN THEOREM. Let M be a closed connected smooth manifold of dimension
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n with the i-th Stiefel-Whitney class wye H(M; Z,), and let
Sq': H""'(M; Z,) — H"(M; Z,),
By: H¥M; Z,) — H"\(M; Z)

be the squaring operation and the Bockstein operator, respectively, and H(M ;
Z[w,]) be the integral cohomology twisted by w,. Then in the diagram (*)

there hold the following properties (i)'s,..., (iv)’s, respectively, when
(i) niseven and w,=0, (ii) n is even and w, #0,
(iii) n is odd and w,=0, (iv) nis odd and w,#0.
(1) Assume that n=4. Then
(i) [McR*] =H"'(M;Z2,), [MSR*] =2, J,,=0,
H"\(M; Z,) if n=0@4),
H(M; Z)+Z, if n=24),
(ii) [McR*]=2Z + KerSq', [McSR**] =2, J,(a, b)=2a,
H™'M;Z;) if n=004),
[McR?*" 1] = { - I=0
KerSq' +Z, if n=24),
(iii) [McR*]=H"\M;Z), [MSR*]=2Z,, J,,=0,

[McR¥1] =

[MsR?1] = {

(ivy [McR>*]=H"YM;Z,), [McR*]=2Z,, J,,=0,
[McR? 1] = H"\(M; Z[w,))+Z,, I(a, b) = b.
(2) Assume that n26. Then
(i) ImE =[McR?],
[ H"\(M; Z,) if n=24) and wy(Ker8,) =0,
ImJy-; = .
; [McR2"1] otherwise;
(ii) ImE = Ker Sq',
Ker Sq'+Z, if n=2(4) and w}+w,#0,

Im Jz -1 = [
" Ker Sq! otherwise;

(iii) ImE = ImB,,

H*~Y(M;Z)+Z,+2,, Ia,b,c)=b if n=1(4),
H"Y(M; Z)+Z,, I(a, 5)=b(2) if n=3(4);
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ImB,+0+2Z,  if n=1(4) and wy(KerB,) # 0,
ImJ,y,oy =¢{ImpB,+2Z, “if n=3(4) and wy(Kerf,) # 0,
Im B, otherwise;

(iv) ImE = [McR2?7], ImJ,,., = H"Y(M; Z[w,]).
The group [M = R?"~'] will be studied in the forthcoming paper [14].

In §1, the group structures and the filtrations on [M < R™] and [M cR™]
are recalled according to [1], [2], [8], [11] and [13], and the methods for com-
puting I,,, E,, and J,, are stated. The groups [M < R?"], [McR?"] and [M<
R2"=17 are restated in §2 and the results on J,, and I are proved. The map
J 3,1 is investigated in §§3-4, by using the results on the cohomology of (A2M,
AM) due to L. L. Larmore [7] together with the remarks given in §5. In §5,
the twisted integral cohomology groups H(A2M, AM; Z[v]) for i=2n-3
(ve HY(AM?2—AM; Z,)) are treated.

§1. Preliminaries

Let M be a closed connected smooth manifold of dimension n. Then there
is a fixed point free involution on the tangent sphere bundle SM over M, which
is the antipodal map on each fibre S"~'. Thus, for an immersion f: M < R™,
we have the Z,-equivariant map

2S(f): SM SU), Rm  gm-1 =, gm-1,

where S(f) is the Z,-equivariant map induced from the derivation of f and = is
the projection.

THeOREM (Haefliger-Hirsch [4]). If 2m>3n+1, then the correspondence
which associates the Z,-equivariant homotopy class of nS(f) with a regular
homotopy class of an immersion f is a bijection between [M = R™] and the set
of Z,-equivariant homotopy classes of Z,-equivariant maps of SM to S™'.

On the other hand, let AM be the diagonal of M x M. Then there is a fixed
point free involution on M x M —AM defined by the interchange of factors.
Thus, for an embedding f :M < R™, we have the Z,-equivariant map

[ M x M =AM —s S™1,
S p) = (f)=fOINfX) =D (x, yeM, x#y).

Tueorem (Haefliger [3]). If 2m>3(n+1), then the correspondence which
associates the Z,-equivariant homotopy class of f' with an isotopy class of an
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embedding f is a bijection between [M<R™] and the set of Z,-equivariant
homotopy classes of Z,-equivariant maps of M x M —AM to S™!.

Let PM=SM/|Z, and M*=(M xM—A4M)|Z, be the tangent projective
bundle over M and the reduced symmetric product of M, respectively. Moreover,
let

n: PM— P* and &: M* — P~
be the classifying maps of the double coverings SM—PM and M x M —AM—M*,
respectively. Now, S®—P® is the universal double covering and S* x ;, §™~!—

P=* is homotopically equivaleni to the natural inclusion Pm~1c P®. Therefore
the above theorems are restated as follows, where

[X, P a] = [X, S®x 2,8 !; ] for a: X — P”
denotes the homotopy sets of liftings of a to S® x ,, S™!:
THEOREM 1.1. There exist bijections
A: [M=R™] = [PM, P '; n] if 2m>3n+1,
B: [M cR™] =~ [M*, P!, £] if 2m > 3(n+1).

Each set of the right hand sides has the structure of an abelian group by [2]
if it is not empty, which induces those of [M < R™] and [M =R™].

Now PM is a manifold of dimension 2n—1 and M* has the homotopy type
of a CW-complex of dimension less than 2n.

PROPOSITION 1.2 (Bausum [1, Prop.5 and Prop. 6], Larmore-Rigdon [8,
Prop. 4.1], Yasui [13, Prop. 1.1]). Assume that X has the homotopy type of a
CW-complex of dimension less than 2n (n=4). Then for a map a: X—P>,
there exist decreasing filtrations

[X, P2r~15 a] = Go(@) @ Gy(@) =0, Go(w) = H* (X Z);
[X, P2"=2%; a] = Fo(a) @ Fy(0) > Fa(e) =0,

Fo(@)/Fy(®) = H*%(X; Z[v]),

F,(«) = Coker(©: H*3(X; Z[v]) — H?*""1(X; Z,)),

where HY(X; Z[v]) is the integral cohomology of X twisted by v=a*u -(ue
H\(P®; Z,) is the generator) and

0 = spp + (¥ s

(Py: H(X; Z[v])»H(X; Z,) is the reduction mod 2).
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By the definitions of the maps I, E, and J,, in the introduction and the
bijections A and B in Theorem 1.1, we have the commutative diagram

[Mc R*'] En [McR"] —J=, [Mc R"] L=, [Mc R™!]
BlE Bls Als , Als
[M*, Pm; E] L2 [M*, Preis €] L5 [PM, P45 n] L5 [PM, P75 1]
for 2m>3(n+1) (cf. [8], [11]), where i: P"~!<P™ is the natural inclusion and
j: PM — M* is the embedding with &j =y
induced from the Z,-equivariant map j: SM—>M x M —AM defined by j(u)=
(exp (u), exp(—u)). -

ProrostTiON 1.3 (Larmore-Rigdon [8, Prop.5.1 and Prop. 6.1]). Let
(X, ) represent (PM, n) or (M*, &), and consider the filtrations of [X, P™!; o]
for m=2n—1,2n given in Proposition 1.2. Then

(1) ig: [X, P-2; a]—[X, P?""'; o] preserves the filtrations and the in-
duced homomorphism

is: Fo(@)/Fy(@) = H¥(X; Z[v]) — Go(®) = H>""(X; Z)

is just the multiplication by V=p,(1)e H\(X; Z[v]) (B,: H(X; Z;)»H"\(X;
Z[v]) is the twisted Bockstein operator);

Q) j*: [M*, Pm1; £]-[PM, P""'; n] preserves the filtrations and j*:
Go(E)=Go(n) and ji: FE)F . (§)=F{n)/Fis1(n) are j* on the cohomology
groups and moreover j* for m=2n—1 induces the map

J§: Ker (j*: Fo(&)/F (&) — Fo(n)/F(m)) — Coker (j*: F(§) — F,(m),
which is equal to the functional operation
0;: Ker j*(c H2*"3(M*; Z[v])) — H**~'(PM; Z,)[(Im @ +Im j*)
given by 6-'@i*~! in the commutative diagram
%, 23 PM; Z[ j*0])-Ss H2n-2(M*, PM; Z[v])-5 H2=2(M*; Z[v])Ls -
ol 0| ol
e I 2 V(PM; Z,) -5 HEM(M*, PM; Z,) -2 H2"(M*; Z,)(=0)
of the exact sequences of the pair (M*, PM), where v=C_{*u and i: M* c(M*,PM).

Furthermore, let A2M =(M x M)/Z, be the 2-fold symmetric product of M,
the set of unordered pairs of M. Then A2M —AM =M* and PM = j(PM) bounds
a tubular neighborhood N of 4M in A2M, and the natural inclusions
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(M*, PM) < (A2M, N) o (A2M, AM)

induce isomorphisms of cohomology groups (cf. [8, §5]). Thus we have the
following

LemMA 1.4. The cohomology exact sequence of (M*, PM) with any coeffi-
cients (e.g., the one in the diagram in Proposition 1.3) can be replaced by the
exact sequence

. — HiW(M*) 25, HiW(PM) 5, HY(A2M, AM)
A, H(M*) L Hi(PM) —,

Our study is based on these results. Moreover the cohomology of (A42M,
AM) is investigated by L. L. Larmore[7]. The notations Ax and A(x, y) and
the results stated in [7, pp. 908-915] are freely quoted hereafter. We also use
the following lemma and the results remarked in §5.

Lemma LS. (1) pfAx)=A(p,x) and pA(x, y)=4(px, p,y) for x, ye
H*(M; Z,), where r|s, sS oo and p,, p, are the reductions mod r.

(2) A(x, y) = AxAy + A(xy) for x,yeH*(M; Z,).
(3) dwix)=v*'Ax for xe H¥M; Z,), where vix =j*vi-n*x (n: PM
—M is the projection).

ProoF. The relations (1) and (2) are easily obtained by chasing the con-
structions of Ax and A(x, y) given in [7]. The relation (3) follows from the
equality dx=vAx(5: H-'(M)=H'"'(AM)- HYA*M, AM)) in [7, Lemma 6],
by noticing that the restriction of the projection N—=M on PM is equal to n and
the one on AM is the identity AM— M. g.e.d.

§2. J,, I, E and [Mc R>"1]

The following results are well-known:

(2.1) Let ve H(PM; Z,) be the first Stiefel-Whitney class of the double
covering SM—PM. Then 1, v,...,v""! form a base of the H¥(M; Z,)-module
H*(PM; Z,) with the relation

ot = YU v hey (w = wi(M)).

" (22) [McR?]=H?"~YPM; Z) in Theorem |.1 and Proposition 1.2 is iso-
morphic to Z if n is even and Z, if n is odd.

(2.3) ([31, [5] and [11]) [McR2"}= Hz”"’(M* Z) in Theorem 1.1 and
Proposition 1.2 is isomorphic to
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H"™\(M; Z) if n is odd and w; =0,
Z+K (K=Ker(Sq': HY(M; Z,)»H"(M; Z,))) if n is even and w,+#0,
H"\M; Z,) otherwise.

PROOF OF MAIN THEOREM ON J,,. By the results stated in §1, we have a
commutative diagram

[Mc R»] =, [Mc R

U |

H2=\(M*; Z) 22, H2-\(PM; Z) -2, H™(A2M, AM; Z) — 0,
where the lower sequence is exact by Lemma 1.4, while by Proposition 5.2(2),

Z if n is even and w, =0,
H2"(A2M, AM ; Z) = )
Z, otherwise.

Thus if n is even and w,#0 then Im(j*: Z+ K—Z)=2Z, and if it is not then
Jj*=0. q.e.d.

We now recall that the filtration
[McR?*" '] =[PM, P?""%;q] =F,> F, 20 (F; = Fn)
satisfies
FolF, = H*2(PM; Z[v]),
F, = Coker (@: H>"~3PM; Z[v]) — H?*"~\(PM; Z,))

where @=Sq25,+(n—1)v?p,.
The twisted integral cohomology of PM is investigated by R. D. Rigdon and
is given as follows:

ProposiTION 2.4 (Rigdon [11, Prop. 9.2 and 9.13]). Let MeH"(M; Z,)
be the generator. Then
(1) if n is even, there exist isomorphisms

H2=Y(PM; Z[v]) = Z,,
0: H\(M; Z,) = H>%(PM; Z[v]), O(x) = B,(v"2x) (xe H""}(M; Z,)) ;
(2) if nis odd, there exist isomorphisms
H2"=Y(PM; Z[v]) = Z,
0: H""'(M; Z[w,]) + H"(M; Z,) = H*""*(PM; Z[v]),
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O(M) = By (v"=3M), 5;0(y) = (0! +0""2w,)f,y (y € H"\(M; Z[p]).*

Let M’ e H*"Y(M; Z,) be the element with Sq'!M’=M when w,#0 and let
K=XKer(Sq': H""Y(M; Z,)»H"(M; Z,)). Then H2"2(PM; Z[v]) is the fol-
lowing form by Proposition 2.4, (Z,{a) denotes the cyclic group of order r
generated by a):

(2.5) Fo/F, = 6H"Y(M; Z,) if n is even and w, = 0,
=0K + Z,(6M") if n is even and w, # 0,
= 0H"Y(M; Z[w,]) + Z,{OM)  if n is odd.

Further, by studying @, we have

H>\PM;Z,)=2Z, ifnisoddand w, =0,
(2.6) F; = Coker® = orn=24),
0 otherwise.

In case of F,=Z,, the group extension ¢, of 0—F,—Fy—Fy/F,—0 is
given by
$2 = S¢*B3' + (n—1)v2B3! + Sq'j,: {z€ Fo| F1|2:=0} = B,H*"~3(PM; Z,)
— Fy = H*"\(PM; Z,),
which is proved by using [10, Th. 4.1] (cf. [9, Cor. 3.7]), and so we have the
following:
(2.7) The group extension ¢, is trivial except for
¢,(0M’) = v"~ M if n=24) and w, #0,
¢,(0M) = v 'M if n=34) and w,=0.
THEOREM 2.8 (Bausum [1, Th. 37 and Prop. 41], Larmore-Thomas [10,

Th. 5.1, Rigdon [11, Th. 10.4]). Let n24. Then the group [M<R?**']=
[PM, P?"~2; ] is as follows:

[MSR?*~1] = §H"\(M; Z,) if n=04),
=0H"'\(M;2,) + Z, if n=24) and w, =0,
- 0K + Z, . if n=24) and w, #0,
=0H""\M;Z)+ Z, + Z, if n=14) and w, =0,
=0H""'\(M;2)+ Z, if n=34) and w, =0,
= 0H""Y(M; Z[w,]) + Z, if n=12) and w, #0.

*) This relation is different from that of Rigdon [I1], but his relation can be modified as
stated in the proposition by chasing his construction of #.
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PROOF OF MAIN THEOREM ON I AND E. By (2.2), (2.4) and Proposition
1.3(1), we see that

(2.9) ([11, Th. 10.4]) 1 is trivial if n is even.
Assume that n is odd and consider the homomorphism
P2iz0: H"Y(M; Z[w\]) + H"(M; Z,) = H*"2(PM; Z[v])(=Fy/F,)
L2, 2V (PM; Z)(= Z,) Lo H™\(PM; Z,).

Then the relation p,i;6(x, y)=v""'y follows from Propositions 2.4, 1.3(1) and
(2.1). Therefore, by (2.6-8), we have the equalities

I(a,b,c)=b if n=14) and w, =0,
I(a, b) = b(2) if n=34) _and w, =0,
Ha, b)=15 if n=1Q2) and w, 0.

These and (2.9) show the desired results on I. The results on E is proved by
R. D. Ridgon [11, Th. 11.11 and Th. 11.26]. q.e.d.

§3. j*: FLO[F;,(&)—Fi(n)/F;(n) in Proposition 1.3

In this and next sections, we investigate the homomorphism
Jan-1=j*: [McR¥~1]=[M*, P2n-2; {] — [MSR>"~']=[PM, P?"~2; ]
in Proposition 1.3(2), which preserves the filtrations
[M*, P2n=2; E1=Fo(§)=> F1(§)=0, [PM, P2""2; n]=Fy(n)>F()=>0
given in Proposition 1.2.

Lemma 3.1, jF=j*: F (&)= H?>"~Y(M*; Z,)> F,(n) = H*» Y (PM; Z,) is
trivial.

Proor. This is an immediate consequence of E. Thomas [12, Prop. 2.9(c)].
q.e.d.

Next, we study the homomorphism
JE=j*: Fo(&)[F (&)= H?""¥(M*; Z[v])
— Fo(n)[F(n)=H?*""%(PM; Z[v]),

where the range H2"-%(PM; Z[v]) is given in Proposition 2.4. Hereafter, we
use essentially Propositions 5.2-3 given in §5 below.



466 Tsutomu YAsul

LeMMA 3.2. (1) If n is even and w, =0, then j* is surjective.
(2) If nis even and w,#0, then Im j*=0p,H""'(M; Z)=0K.
(3) Ifnisodd and w,=0, then Im j*=08,H""*(M; Z,).

(4) If nisodd and w, 0, then Im j*=0H""'(M; Z[w,]).

Proor. We prove the lemma by using the exact sequence

(3.3) - — HP2(M*; Z[v]) L H2-2(PM; Z[v])
9, g-1(A2M, AM; Z[v]) 5 HE Y (M*; Z[v])
22, Hmv(PM; Z[v]) = H2(A2M, AM; Z[v]) — 0

in Lemma 1.4. In this sequence, the following is given by R. D. Rigdon [11,
Prop. 11.9 and Prop. 11.19]:

(3.4) H2Y(M*; Z[v]) ~ H"'\(M; Z) if n is even and w, =0,
=Z+K if nis odd and w,#0,
~ H""Y(M; Z,) otherwise.

(1) Assume that n is even and w,=0. Then for any ze H*!(M; Z),
we have 68,(v"22")= B,0(v"22') = (1" 1 Az") = (A2’ Az’ + v""2A(Sq'2")) =
B25,4(z, 2)=0(p,z=2") by Lemma 1.5 and [7, Lemma 10]. Therefore the first
0 in (3.3) is trivial by Proposition 2.4 (1) and so (1) is shown.

(2) Assume that n is even and w,#0. Then the exact sequence (3.3) is
equal to '

H2=2(M*; Z[v]) 25 0K +Z, 8 K+Zy — K+Zy—Zy —Zy — 0

by Pfopdsition 2.4(1), (3.4) and Propositions 5.2-3, and so Imdé=Z,. Now
60K =0 is proved in the above case. Thus Im j*=Kerd=0K.
(3) Assume that n is odd and w, =0. Then (3.3) induces an exact sequence

(3.5) H>2(M*; Z[v]) L5 6G + Z,(B,(v"3M))
2, G + Z,(B(v"2AM)Y 5 K = p,G, (G2 H™(M; Z)),
by Proposition 2.4(2), (3.4) and Propositions 5.2-3. Here the relation
8B(0"3M) = B, (v"-2AM)
holds by Lemma 1.5(3), and the relation
(3.6) - 66 =G

holds, because j,f,(v"2AM)=v""'AM in H?>"~\(A2M, AM; Z,) by [7, Lemma
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10] and $,60G=065,0G=0 by Lemma 1.5 and Proposition 2.4(2). Therefore
the sequence (3.5) induces an exact sequence

(3.5 H@ A M* Z[b) -2 6 LG £, K0, (f=60,g=i%).

Here K=p,G=G/2G. Hence g(2G)=0 and g induces an epimorphism g’: G/2G
—K, which is isomorphism because G/2G is finite. Therefore 2G=Kerg=
Imf. Since rank G=rank 2G and 2G=Imf, we see that

Kerf< T and f(T)=2T (T is the torsion subgroup of G)

by noticing that the torsion subgroup of 2G is equal to 27. Thus f determines
an epimorphism

fIT: T—2T.

If we can prove
(3.7) 26 (={xeG|2x=0}) = f,H""3(M; Z,) = Kerf in (3.5)',

then ,T(={xeT|2x=0})=,GcKer(f|T) an f|T induces an epimorphism
T[,T-2T, which is isomorphic because the orders of the two groups are finite
and coincident with each other. Hence Kerf=,G and Lemma 3.2(3) is proved.

To show (3.7), we notice that &(B,H"*(M; Z,))< f,H>"-3(PM; Z,). For
any element X €f(Im f,), there is an element Ye H2"~3(PM; Z,) such that
B,Y=X and

Y= "3M + 0" 2x 4+ (v""1y + 0""3Sq%y)

for some ieZ,, xeH""'(M; Z,) and ye H*"*(M; Z,) by (2.1). For xe H""{(M;
Z,), there is a relation j,f8,(v"3x)=v""2x and so B,(v""2x)=0. Further the
relation 88 ,(v"~'y+v"-3Sq2y)=0 for ye H*%M; Z,) follows from Lemma 1.5
and [7, Th. 11]. Thus 6X=06B,Y=AB,(v""2AM) and so §,0X=Av""'AM.
This and (3.6) imply A=0and so X =0. This completes the proof of (3.7).

(4) Assume that »n is odd and w; 0. Then g,: H>*"Y(A2M, 4M; Z[v])—
H2"~Y(A2M, AM; Z,) is monomorphic by Proposition 5.3(iv). Further, by
Lemma 1.5 and Proposition 2.4, we see that

§20B5(0"3M) = v" ' AM, $,00(x) =0  for xeH"'(M; Z[w,)).
Therefore Im j*=Ker §=0H""Y(M; Z[w,]). q.e.d.

§4. J,,_,: [McR2"1]-[M < R2-1]

This section is a continuation of §3 and we will determine ImJ,,_, by
using Proposition 1.3(2).
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If F\(n)=0, then ImJ,,_,=Im (j*: Fo(&)/F(§)—Fo(n)/F,(n)) and so by
Proposition 1.3(2), (2.6) and Lemma 3.2, we have the following

PROPOSITION 4.1. (1) If n=0(4) and w,=0, then ImJ,,_,=[M < R?""'].
(2) If n=0(4) and w,#0, then ImJ,,_,=0p,H""'(M; Z)=0K.
() If n=1(2) and w,#0, then Im J,,_, =0H""'(M; Z[w,]).

In the rest of this section, we study J,,_, in case when n=1(2) and w, =0,
or n=2(4). In these cases, F,(n)=H?*""(PM; Z,) and we have to study the
homomorphism

J§: Ker (j#: Fo(&)/F (&) — Fo(n)/F1(n)) —> Coker (j*: Fy(§) — Fy(n))
induced from j¢: (Fo(&), F(&))=(Fo(n), Fi(n)). By Lemma 3.1,
Coker (j*: Fy(§) — Fy(n)) = Fy(n) = H**"'(PM; Z,) = Z,
Further by the second half of Prpposition 1.3(2), .
4.2) Imj§ =Imé-'O
where
O = 8q%5, + (n—1)v?p,: H’"‘z(AéM, AM; Z[v]) — H*(A*M, AM; Z,).
Because H2"(A2M, AM; Z,) =2Z,,

(4.3) the homomorphism 6: Hz""(PM; Z,)-»H?*"(A2M, AM; Z,) in (4.2) is
an isomorphism. '

We now assume that the integral cohomology groups H!(M; Zj for i=n,
n—1 are given as in (5.1). Let K, (i=1,..., 4) be the subgroups of H2"~2(A2M,
AM; Z,) defined as follows:

= {Ap,xAp,y|x, ye H""'(M; Z)},
K, = {Ap,xAM|xe H**(M; Z)}, (M = p,M if w, = 0),
Ky = Zp<o"2AMY,
Ky = Theas1 Zo{AM APy +(r()2)AM Apyx;y if wy #0.

LemMA 4.4. With the above notation, p,H?*"~ 2(AZM 4AM; Z[v)) is
1) ¥, K if n is even and w, =0,
2 It K if n is even and w, #0,
3) K,+K, if n is odd and w,=0.

PrROOF. (1) Assume thatniseven'and w,=0. Then H2""%(A2M, AM; Z,)
is given by [7, Th. 11] as follows: o
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H2mY(A2M, AM; Z,) = K, + K, + K5 + K,
where
Ks = Yleas1 Zo{ApayiAM) .
By Lemma 1.5 and the relation j,f,=Sq' + v, we have the relations

P2d(x, y) = Ap,xApyy for x,veH"\(M; Z2),

p2d(x, M) = Ap,xAp,M = Ap,xAM for xeH" )M, Z),

P2B ("2 AM) = v"2AM,

B ApryiAM) = ﬂzﬁzd(}’h PriyM) = (r(i)/z)/}r(i)A(yl’ PriyM),
and so

K, + K, + Ky c pH?>"2(A2M, AM; Z[v])).

On the other hand, (r(i)/2)B,(,,A(y,, pryM) for a<i<f form a base of
B,H*"2(A2M, AM ; Z,) by Proposition 5.3(i). This completes the proof of (1).

(2) Assume that n is even and w,;#0. Then we have, in the same way as
the above proof,

H2"2(A2M, AM; Z,) = Y4, K, + K¢, K¢ = {AM'Ax|xe H"™Y(M; Z,)},
and
K, + K53 < g,H*"2(A2M, AM ; Z[v]).

Moreover, we have the relations

PaB(AprxAM’) = Ap,xAM,

P2BAAM Apyy) = AMAp,y;+(r(D/2)AM Ap,x;  for a < i< B,
- and so K,+K,c=f,H*"">(A2M, A4M; Z[v]). On the other hand, we see that
dim 2, B,H*""%(A2M, AM; Z,)=B+1 by Proposition 5.3(ii) and dimz, K¢=

B+1. This implies (2).
(3) is obtained by the method similar to those of the above cases. q.e.d.

LEMMA 4.5. Imji(<H?*""Y(PM; Z,)=1,) is given as follows:

(1) When n=2(4) and w,=0, Imj§=0 if and only if wop,H""2(M; Z)=0.
(2) When n=2(4) and w,#0, Im j§=0 if and only if w,+w?=0.

(3) When n=1(2) and w,=0, Im j5=0 if and only if w,p,H""2(M; Z)=0.

ProOF. The (Sq%+(n—1)v?)-image of K; (i=1,...,4) are easily obtained
by using [7, Lemmas 7 and 10] as follows:
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(Sg2+(n—1)?) (K, +Kj3) =0,
(Sq2+(n— 1)K, ={ASq¢?*p,xAM | xe H*"3(M ; Z)},
(Sq2 +v2) (AMAp,y;+(r()2)AM' Ap,x) = AMASG?p,y; (a<iZP).

Using these relations and the well-known fact that Sg2x=(w,+w?)x for xe
H"*(M; Z,), we have

OH2"2(A2M, AM ; Z[v]) = {Aw,p,xAM | xe H* (M ; Z)}
in cases (1) and (3),
= {A(wy+wd)xAM | x e H**(M ; Z,)} in case (2).
This and (4.3) show the lemma. q.e.d.
We are now ready to determine ImJ,, ., for n=1(2) and w, =0, or n=2(4).
PROPOSITION 4.6. (1) Assume that n=2(4) and w,=0. Then
[McR1] if wapH""3(M; Z) # 0,

Im ']Zn— 1=
- 0H"\(M; Z,) otherwise.
(2) Assume that n=2(4) and w,#0. Then

0K + Z, if wy+w?s#0,

ImJy,-, = .
6K otherwise.

(3) Assume that n=1(2) and w,=0. Then

ImJy,-y = 0B,H"%(M; Z,) if wypH"3(M; Z)=0,
= 0B,H"*M; Z,)+0+2Z, if n=1(4) and wyp,H""2(M;Z)#0,
= 0B,H"*(M; Z,)+2, otherwise.

Proor. This is an immediate consequence of Lemmas 3.1, 3.2, 4.5 and
2.7). q.e.d.

Propositions 4.1 and 4.6 give the results on J,,_, in Main Theorem. Thus
Main Theorem in the introduction is proved.

§5. Appendix on H!(A2M, AM; Z[v]) for i=2n-3

In the previous sections, the cohomology of (A2M, AM) plays an important
part. L. L. Larmore [7] investigated it but the author can not understand the
proof of [7, Th. 20]. Therefore we should like to try to describe the cohomology
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groups H2"(A*M, AM; Z) and HYA*M, AM; Z[v]) for i22n—3 by using the
notations and the results stated in [7, pp. 908-915]. We note that Propositions
5.4-5 for i=2n-2, 2n—3 are not used in this paper and are prepared for the
forthcoming paper [14].

Let M be a closed connected n-manifold and assume that
(5.1 H"(M; Z) = Z{M) if wy =0, =Z,{(f,M') (S¢'M'=M) if w, #0,
H™(M; Z) = 31 Z, ., 5 Xm:> (direct sum) for m<n—1,
Xmi = BrimiyYmi (Ymi€ H" (M3 Z,,5) for a(m)<i=<y(m),

where the order r(m, i) is infinite for 1 £i<a(m), a power of 2 for a(m)<i< B(m)
and a power of an odd prime for f(m)<i<y(m), and if a(m)<i< j then either
(r(m, i), r(m, j))=1 or r(m, i)| r(m, j) holds.

Furthermore, for the simplicity,
(5.1 denote a(m), B(m), y(m), r(m, i), x,,; and y,,; in (5.1) respectively by

o, B, v, r(i), x; and y; when m=n—1,

o, By, r'(i), x; and y;  when m=n-2.

Then we have the following propositions, where (i)’s,..., (iv)’s hold re-
spectively when

(i) nisevenand w,=0, (ii) niseven and w,#0,

(iii) nis odd and w, =0, (iv) nisodd and w, #0.
PROPOSITION 5.2. (1) H2M(A*M, AM; Z[v]) is

(i) Zy(Ba(vm ' Ap M)y, (i) Z (B0 ' AM)),

(i) Z{4(M, M)}, (iv) Z(BA(AM'AM)) .
(2) H?Y(A2M, AM; Z) is
(i) Z{AMAM), (i) Zy{B(AM’AM)),

(iii) Z,{B(v""'Ap M)y,  (iv) Z,(By(v"'AM)).

PROPOSITION 5.3. H2?*""YA2M, AM; Z[v]) is

(i) G, (i)  ZyK(1/2)B,(v" ' AM")) + K,

(i) Z,{B(v""2Ap,M)) +G,

(iv) Zz([}z(v"‘zAM))-l-K, and p,: HZ"“(AzM, 4AM; Z[v]) = H*"~Y(A2M,

AM; Z,) is monomorphic,
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where

G=T4u) Z{AGx MY+ Dheess ZryBrndin pryM)) (= H-(M; 2)),
K=, Z,{B,AM’, pyx)) (2Im(p,: H(M; 2) — H*"\(M; Z,))).
PROPOSITION 5.4. H2""2 (A2M, AM; Z[v]) is
(1) Zy{B(v"3Ap;M)) + G, + G, + G5 + G4 + G,
(ii) Zy{B,("3AM)> + G, + G, + G5 + G4 + G,
(i) G, + G, + G5 + Ge,
(iv) Z,(B,(v"2AM")) + G, + G + G4 + G4,

where

Gy = Yisi<jsa Z{A(xy, X)), Gy = X4y Z{A(x;, X)),

Gy = (X1 siga<jsy T Za<j<l§7)zr(j)<ﬂr(j)d(yj’ Priy®) »

Gy = Tleat1 ZuylBrydis pr%dds  Gs = iy Zo(Ba(v"24p,x)),

Ge = fu1 ZA(xi, MY + Zliw+1 ZoglBradVis prwM)) (XH"™2(M; 2)),
Gy = The1 Zo(BAM, p2x0)> + Thasir ZoKB2AM, pay)) (= HXM; Z,)).

PROPOSITION 5.5. §,H?""3(A2M, AM; Z[v])/6H?*"~4(PM; Z,) is isomor-
phic to

() H, (i) H+H, (i) H+Hs, (ivv H+ H,+ Hs,
where
H=H, + H, + H,,
{ApsxAp;M|xe H"3M; Z)}  if w; =0,
{Ap2xAM | x € H""3(M; Z)} if w #0,
Hy = {Ap,xAp,y|xe H""¥(M; Z), ye H""\(M; Z)},
Hy = ¥ icicjsp Z2{Ap2xiApry;+(r()NINi) ApayiApax;) ,
Hy = Thew 11 Zo{Ap2YiAM +(r'(k)[2)Ap o xiAM")
Hs = 3041 Zo{ApayiApax) .

To prove these propositions, we use the following results frequently:

1 =

(5.6) ([7, p. 914]) For any cyclic group G, there is an exact sequence
e — H-Y(A2M, AM; G) X H(A2M, AM; G[v])
2%, H(M?, AM; G) — H{A2M, AM ; G) —s ---

9
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where n: (M2, AM)—(A2M, AM) is the natural projection, v is the first Stiefel-
Whitney class of the double covering M2—AM—~A2M —AM=M* and V=
BV e H\(M*; Z[v]). -
(5.7) For any positive integer p, there is the Bockstein exact sequence
co — HIEWAM, AM; Z,[0]) P2y HY(A2M, AM ; Z[v])
B, H(A2M, AM; Z[v]) -£2. HI(A2M, AM; Z,[0]) P2, ...

(5.8) ([7, Remark 13]) For any odd prime p, n*: H*(A2M, 4AM Z,[v])-
H*(M?2, AM; Z,) is monomorphic and

Imn* = {x|xe HYM?, AM; Z,), t*x = —x},
where t: (M2, AM)—(M?2, AM) is a map defined by (x, y)=(y, x).
(5.9 (cf. [7, p. 914]) For xeH'(M; Z,) and ye H(M; Z,) (t£ ),
A, ) =xQ@y—(—1)y®x and m*Ax=x®1 —1® x,

and moreover the order of A(x, y) for x#y is the greatest common factor of those
of x and y, and the order of Ax is equal to that of x.

We now sketch the proofs of Propositions 5.2-5.
By (5.6), the following relation holds:

rank H{(A*M, 4AM; Z[v]) + rank H(A2M, AM ; Z) = rank H/(M2, 4M; Z).

By using (5.9) and Lemma 1.5(1), we can choose generators (mod torsions) of
HY(A2M, AM; Z[v]) and H{(A2M, AM; Z). In particular we have

LeMMA 5.10. There hold the following congruences mod torsions:

{ Z{AMAM) if n is even and w; =0,

otherwise.

(1) H2(A2M, AM; Z) =

Z{AM, M if n is odd and =0,
@ HZ"(A=M,AM;Z[UJ).E{ CAM, M) if mis odd and w,

otherwise.
251 Z{A(x;, M)) if wy=0,
H2=Y(A2M, AM ; Z =
3 ( []) [ . w0

(4) H2""2(A2M, AM; Z[v]) is congruent mod torsion to the direct sum of
G, and

G, if nis even,
2i=1 ZA(x, M) if w; =0,
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To determine the odd torsion subgroup of H(A2M, AM; Z[v]), let p be an
odd prime. Then the Z,-base of H(A*M, AM; Z,[v]) can be determined by
(5.8-9). Thus the p-primary component and its generators of H'(A*M, 4M;
Z[v]) are determined by the exact sequence (5.7) for odd prime p and [7, Remark
16]. In particular we have

LEMMA 5.11. Denote by T} the odd torsion subgroup of H(A*M, AM;
Z[v]). Then
1) T =0;
2) T ! = (G)o=21=p+1 Zr(i)(Br(i)A(yh PrM)) if w =0,
° 0 if w, #0;
(3) T3?m2 s the direct sum of

(G3)o = (Zisisap<isyt Zﬂ<j<igy)zr(j)<ﬁr(j)A(yj’ Pr(iy%1)
and
(Ga)o = Zlap+1 Z, i\ Brydss PrtyX)? if n is even,
(Ge)o = Zi=p+1 Zr‘(k)(Br'(k)A(y;cs PrayM)> if w =0
The proof of (1) of Proposition 5.2 is given by using Lemmas 5.10-11,

(5.7) for p=2 and [7, Th. 11], and that of (2) is given by using the ordinary
Bockstein exact sequence instead of (5.7).

In the rest of this section, we study the 2-primary components of H{(A%M,
AM; Z[v]) for 2n—3=<i<2n—1. First we consider the case (ii) n is even and
w,#0. By (5.7) for p=2, Lemmas 5.10-11 and [7, Th. 11], we have

H2=Y(A2M, AM; Z[v]) = K + Z, (K = 2.1 Z,(B,4M", p,x)))),
P22, = Z,{v" 'AM + AM'AM), for some integer s = 2.

In the exact sequence (3.3), both groups H2"~%(PM; Z[v]) and H2"~\(M*; Z[v])
are isomorphic to H"~'(M; Z,) by Proposition 2.4 and (3.4) and so s<4. On

the other hand,
paB2H2 " 2(A2M, AM; Z,) 0" ' AM + AM'AM

follows briefly. Thus s=4 and so s=4. Moreover by (5.7) for p=2, (5.9) and
Lemmas 1.5 and 5.10, we see that

Z, = Z,(1/2)B (0" AM))
and
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H2"Y(A2M, AM; Z[v]) = Z,{B,(v""3AM)) + G, + G, + G,
+(Z1sisa<jzpt La<j<ispZop{A(x; X)) + Z§=a+l Zy ;< A(x;, X))
mod odd torsion,

where s(j) is the order of A(x;, x;). As for the element A(x;, x,), if is/ then
*Bu Ay, PrgyX)=n*4A(x;, x;) by (5.9) and hence

f)‘,mA(yj, PejyX) = A(x;, x;) + VX ; for some X; ;e H2""3(A*M, AM; Z)
by (5.6). Further we see easily that

BBy Ay js priyd) = Ap2x;jAprx; + vprX;; # 0

by Lemma 1.5. Therefore we can replace A(x;, x;) by B,;,d(y, pupyx)- If
i=j and r(j)=2, then

ﬁszA(.Vp P2X;) = Apyx;Ap,x; = prA(xy, x;)
by Lemma 1.5, and so s(j)=2 and 4(x;, x;) can be replaced by BZA(yj, P2X;).
If i=j and r(j)=4, then we see easily that

Brnd(vps LupX)) = Axps X)) + VY, (Y;€ H3(A2M, AM; Z))
by (5.6) and (5.9), and that
l}z(Apz,VJAPsz) #0

by (5.7) for p=2. Using Lemma L.5 and the relation f,5,=(r/2)B,:
H=Y(A2M, AM; Z,[v])- H{(A*M, AM; Z[v]), we see that

(r(j)/z)ﬁr(j)d(yj’ pr(j)xj) = ﬂZﬁZA(.Vj’ pr(j)xj)~

The above three relations imply that s(j)=r(j) and 4(x;, x;) can be replaced by
BryA(y;, prjyxy)- This completes the proofs of (ii)’s of Propositions 5.3-4.
The proof of Proposition 5.5(ii) is given by Lemma 1.5(3) and (5.7) for p=2
immediately.

The proofs of (i)’s, (iii)’s and (iv)’s of Propositions 5.3-5 are similar to, but
simpler than, those of (ii)’s except the results concerning Hs of Proposition 5.5
for odd n.

Let n be odd. By simple calculations, using Lemma 1.5, Proposition 5.4
and (5.9), we see that

Bx(Apay;Aprx)eKern*  (cH™ %(A2M, AM; Z[v]))
and
Ker n* = {f,(v""2Ax)| xe H'(M; Z,)}.
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This implies that there is an element X;e H""'(M; Z,) such that

Ap,y;Aprx; + v"2AX ;e lm §,.

Using this result, Lemma 1.5(3) and (5.7) for p=2, we have Proposition 5.5(iii)~
(iv) completely.
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