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Introduction

Let M be a closed connected smooth manifold of dimension n and Rm the

m-dimensional Euclidean space. Denote by [McK"1] the set of regular homo
topy classes of immersions of M in Rm and by [M <= /?'"] the set of isotopy classes
of embeddings of M in Rm, and consider the commutative diagram

[Mcz /*"»+»] y"*' , [M£ tfm+1]

*! '4
[Mc Rm~] J" >[Af c /?«],

where £m and 7m are the maps induced from the natural inclusion RmczRm+l
and Jk is the one defined by regarding embeddings as immersions.

The set [M£Pm] for 2m>3« + l is an abelian group by taking 0 arbitrarily
if it is not empty, and the map lm is a homomorphism by taking 7m(0) = 0; while
so are the set [M c Rm~\ and the maps Em and Jm for 2m > 3(n +1) (see J. C. Becker

[2]).
The purpose of this paper is to study the above commutative diagram when

m=2n-l:

[M <= Pv2"] Ji* >[M£ P2n]

(*) e\ /} (E=E2n.u /=/,„_,),
[Af c P2"->] ya"- >[Af c /?2n-l]

(here we assume that the sets in consideration are not empty).
When «^4, the upper groups are determined by A. Haefliger and M. W.

Hirsch [3], [5], [6] and so is the group [Mc/?2""1] by D. R. Bausum [1, Th. 37
and Prop. 41], L. L. Larmore and E. Thomas [10, Th. 5.1] and R. D. Rigdon
[11, Th. 10.4], and moreover it is proved by R. D. Rigdon [11, Th. 10.4] that 7
is trivial for even n and is surjective for odd n, respectively. When n^6, [Mc
R2"-1] is an abelian group and lm E is determined by R. D. Rigdon [11, Th. 11.11
and Th. 11.26]. Together with these results, we have the following

Main Theorem. Let M be a closed connected smooth manifold of dimension
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n with the i-th Stiefel-Whitney class w,e77'(M; Z2), and let

Sql:H»-W, Zi)—>H«{M; Z2),

/j2: H"-\M\ Z2) —• H--»(Af; Z)

be the squaring operation and the Bockstein operator, respectively, and H\M;
Z[wx~\) be the integral cohomology twisted by wx. Then in the diagram (*)
there hold thefollowing properties (i)'s,..., (iv)'s, respectively, when

(i ) n is even and wx =0, (ii) n is even and w, ^0,

(iii) n is odd and wt =0, (iv) n is odd and w, ^0.

(1) Assume that n*z4. Then

(i) [McR2"] = H"~\M',Z2), [MsR2n] = Z, J2n = 0,

f 77»-'(M; Z2) if n = 0(4),
/ = 0;

. 77»-1(M; Z2) + Z2 i/ n = 2(4),

(ii) [McR2»] = Z + KerSg>, [McR2«] = Z, J2n(a,b) = 2a,

H»-\M;Z2) if « = 0(4),

Ker S^+Z* i/ n = 2(4),

(iii) [MczR2»] = H"-\M;Z), [MsR2n] = Z2, J2n = 0,

77n-«(M;Z) + Z2+Z2, 7(a, b,c) = fc // n = l(4),

H»-l(M;Z)+Zt, I(a,b) = b(2) if w=e3(4);

(iv) [McR2«] = 77«-1(M;Z2), [M£R2«]=Z2, J2„ = 0,

[McPv2"-1] = 77"-'(M; Z[»Vl])+ Z2, I(a, b) = b.

(2) Assume that n^ 6. Tfte«

[McR^-i] =

[MsR2""1]

[McR2n-l] =

(i) Im£ = [AfcR2"],

7/»-1(M;Z2)

(ii) Im£ = KerS^1,

Ktr Sql+Z2

. KerSq1

(iii) lm E = lm /j2,

ImJ2it-i =

ImJ2«-i =

/ = 0;

if n = 2(4) am/ w2(Ker/?2) = 0,

of/iervWse;

f/* «=2(4) and w2 + w2^0,

otherwise;
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' lm j32+0+Z2 '/ " = 1(4) and w2(Ker/J2) # 0,

lm J2n_, =| lmp2 +Z2 if n=3(4) and w2(Ker fi2) #0,
[lm/?2 otherwise;

(iv) Im£ = [Mc/?2»], ImJ2„-i = 77"~1(M; Z[w,]).

The group [McrR2"-1] will be studied in the forthcoming paper [14].

In §1, the group structures and the filtrations on [Af£Rm] and [McRm]
are recalled according to [1], [2], [8], [11] and [13], and the methods for com
puting 7M, Em and Jm are stated. The groups [Af£R2n], [AfcR2"] and [Af cz
R2"-1] are restated in §2 and the results on J2„ and 7 are proved. The map
y2„-i is investigated in §§3-4, by using the results on the cohomology of (A2M,
AM) due to L. L. Larmore [7] together with the remarks given in §5. In §5,
the twisted integral cohomology groups H'(A2M, AM; Z[u]) for i^2n —3
(veHi(AM2-AM; Z2)) are treated.

§ 1. Preliminaries

Let Af be a closed connected smooth manifold of dimension n. Then there

is a fixed point free involution on the tangent sphere bundle SAf over M, which
is the antipodal map on each fibre S"~l. Thus, for an immersion /iA/sR"1,
we have the Z2-equivariant map

nS(f): SM sif) >Rm x Sm~l -5-» Sm~l,

where S(f) is the Z2-equivariant map induced from the derivation of/and n is
the projection.

Theorem (Haefliger-Hirsch [4]). // 2m>3n + l, then the correspondence
which associates the Z2-equivariant homotopy class of nS(f) with a regular
homotopy class of an immersion f is a bijection between [AfcR1"] and the set
of Z2-equivariant homotopy classes of Z2-equivariant maps of SM to Sm~K

On the other hand, let AM be the diagonal of Af x Af. Then there is a fixed
point free involution on MxM —AM defined by the interchange of factors.
Thus, for an embedding f'.MczRm, we have the Z2-equivariant map

/': M x M - AM • Sm~\

f'(x,y) = (f(x)-f(y))l\\f(x)-f(y)\\ {x,ysM,x*y).

Theorem (Haefliger [3]). 7/2m>3(n + l), then the correspondence which
associates the Z2-equivariant homotopy class of f with an isotopy class of an
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embedding f is a bijection between [AfczR"'] and the set of Z2-equivariant
homotopy classes of Z2-equivariant maps of MxM —AM to Sm~K

Let PM= SM/Z2 and Af*=(Afx M-AM)\Z2 be the tangent projective
bundle over Af and the reduced symmetric product of Af, respectively. Moreover,
let

n: PM—• P00 and f: Af* » P*

be the classifyingmaps of the double coverings SM-+PM and Afx Af—AM-*M*,
respectively. Now, Sv>-*Pro is the universal double covering and S*xZ2Sm-1->
P00 is homotopically equivalent to the natural inclusion Pm-lczPao. Therefore
the above theorems are restated as follows, where

IX, P1""1; a] = IX, S°° xZ2Sm~l; a] for a: X • P°°

denotes the homotopy sets of liftings of a to S°° x ZlSm~l:

Theorem 1.1. There exist bijections

A: [AfsR'»] s [PAf, Pm-X;r\] if 2m > 3n + 1,

B: [AfcR*] s [Af*, Pm~x;Q if 2m > 3(n + l).

Each set of the right hand sides has the structure of an abelian group by [2]
if it is not empty, which induces those of [Af sRm] and [Af cRm].

Now PAf is a manifold of dimension 2n —1 and Af* has the homotopy type
of a CW-complex of dimension less than 2n.

Proposition 1.2 (Bausum [1, Prop. 5 and Prop. 6], Larmore-Rigdon [8,
Prop. 4.1], Yasui [13, Prop. 1.1]). Assume that X has the homotopy type of a
CW-complex of dimension less than 2n (n^4). Then for a map a: AT-+P*,
there exist decreasing filiations

IX, P2"-1; a] = G0(a) 3 Gt(a) = 0, G0(a) = H2«~\X; Z) ;

[X, P2"-2; a] = F0(«) =» *"i(«) => Fa(a) = 0,

FMIFii*) = H2»~2(X; ZM),

Pt(a) = Coker(<9: H2n~\X; Z[t>]) • H2n~\X; Z2)),

vv/iere Hl(X; Z[vJ) is the integral cohomology of X twisted by v=a*u (ue
H^P00; Z2) is the generator) and

G=Sq2p2 +Qn-l)v2p2
(p2: H\X; Z[y])->77«(X; Z2) is the reduction mod 2).
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By the definitions of the maps lm, Em and Jm in the introduction and the
bijections A and B in Theorem 1.1, we have the commutative diagram

[Af c fl*+i] < E" [Af c Rm] /[- >[Af £ P"1] /w >[Af £ i^+i]

*I* *Ia 4s 4a
[Af*, Pm; £] J*- [Af*, P"1"1; £J -ii* [PAf, P™"1; n] -^-> [PAf, Pm; r(]

for 2m>3(n + l)(cf. [8], [11]), where /: P">-^czPm is the natural inclusion and

j: PM *M* is the embedding with cj = n

induced from the Z2-equivariant map j: SAf->Afx Af—AM defined by j(u) —
(exp(w), exp(-u)).

Proposition 1.3 (Larmore-Rigdon [8, Prop. 5.1 and Prop. 6.1]). Let
(X, a) represent (PM, n) or (Af*, f), and consider thefiltrations of [X, Pm~l; a]
for m= 2n—\,2n given in Proposition 1.2. Then

(1) /,: [X, P2""2; a]->[X, P2»->; a] preserves the filiations and the in
duced homomorphism

/,: P0(a)/P,(a) = H2"~2(X; Z[p]) —> G0(a) = H2"~\X; Z)

is just the multiplication by V=fi2(l)eHl(X; Z[o]) (f2: H\X; Z2)^Hi+\X;
Z[y]) is-the twisted Bockstein operator);

(2) j*: [M*, P™"1; £]-+[PAf, P*"1; if] preserves the filtrations and j*:
G0(£)-G0(w) and j*: Fi(£)/F,+ 1(S)-F((>/)/Fi+1(;/) are j* on the cohomology
groups and moreoverjs for m=2n —i induces the map

j*0: Ker(/•: F0«)/fi(0 — FoWifa)) — Coker(/•: F,(0 —> F^iy)),

wrtic/i is eflwa/ fo the functional operation

0y. Kerj*(czH2"-2(M*; Z[t>])) —•> 772n"1(PM; Z2)/(Im 0 + Im;*)

^iyen by <5_,<9i*-1 in fne commutative diagram

••i!»/72"-3(PAf; Z[y*y])-i>/72"-2(Af*, PAf; Z[t;])-^/7r2»-2(Af*; Z[p])A-

*I *I *I
..•Jl+H2n-X{PM; Z2)-£-+H2"(M*, PM; Z2)^H2»(M*; Z2)(=0)

o/fhe exactsequences of thepair (Af*, PAf), w/iere u=£*m and i: Af*c(Af*,PAf).

Furthermore, let /l2Af=(Af x Af)/Z2 be the 2-fold symmetric product of Af,
the set of unordered pairs of Af. Then A2M-AM = M* and PAf =j(PM) bounds
a tubular neighborhood TV of AM in A2M, and the natural inclusions



462 Tsutomu Yasui

(Af*, PAf) <= (A2M, N) => (A2M, AM)

induce isomorphisms of cohomology groups (cf. [8, §5]). Thus we have the
following

Lemma 1.4. The cohomology exact sequence of (Af*, PAf) with any coeffi
cients (e.g., the one in the diagram in Proposition 1.3) can be replaced by the
exact sequence

••• >H'-l(M*) -il> Hl-{(PM) -J-+ W(A2M, AM)

JL> Hl(M*) JL, Hl(PM)

Our study is based on these results. Moreover the cohomology of (A2M,
AM) is investigated by L. L. Larmore[7]. The notations Ax and A(x, y) and
the results stated in [7, pp. 908-915] are freely quoted hereafter. We also use
the following lemma and the results remarked in §5.

Lemma 1.5. (1) pr(Ax) = A(prx) and pr(A(x, y)) = A(prx, pry) for x,ye
H*(M; Zs), where r\s, s^oo and pr, pr are the reductions mod r.

(2) A(x, y) = AxAy + A(xy) for x, y e H*(M; Z2).
(3) S(vix) = vi+iAx for xeH*(M;Z2), where vix=j*vi-n*x (n\ PM

-•Af is the projection).

Proof. The relations (1) and (2) are easily obtained by chasing the con
structions of Ax and A(x, y) given in [7]. The relation (3) follows from the
equality 5x=vAx(S: Hl-1(M) = Hi~i(AM)->Hi(A2M, AM)) in [7, Lemma 6],
by noticing that the restriction of the projection N-+M on PAf is equal to n and
the one on AM is the identity JAf->M. q. e. d.

§2. J2m 7, FaodrAfsR2"-1]

The following results are well-known:

(2.1) Let veHl(PM;Z2) be the first Stiefel-Whitney class of the double
covering SM^PM. Then 1, u,..., v"~l form a base of the H*(M; Z2)-module
H*(PM; Z2) with the relation

vn = Z"=i v"~lwl (wt = vVi(Af)).

(2.2) [AfcR2»] = H2"-1(PAf;Z) in Theorem IA and Proposition 1.2 is iso
morphic to Z if n is even and Z2 if n is odd.

(2.3) ([3], [5] and [11]) [AfcR2"] = H2"-1(Af*; Z) in Theorem 1.1 and
Proposition 1.2 is isomorphic to
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77n_1(Af; Z) if n is odd and wt =0,

Z + K (K = Ker(Sa«: H"~l(M; Z2)-+H"(M; Z2))) if n is even and w^O,

Hn~l(M; Z2) otherwise.

Proof of Main Theorem on J2„. By the results stated in §1, we have a
commutative diagram

[Af c P2«] Jln > [Af £ P2"]

H2"-l(M*; Z) -^-> H2n~x(PM; Z) -i-> H2"(A2M, AM; Z) >0,

where the lower sequence is exact by Lemma 1.4, while by Proposition 5.2(2),

Z if n is even and w, =0,
H2n(A2M, AM;Z) =

Z2 otherwise.

Thus if n is even and w,^0 then \m(j*: Z+ 7<->Z) = 2Z, and if it is not then
j*=0. q.e.d.

We now recall that the filtration

[Af<=R2„-i-j = r/>M> P2„-2. „] = f0 zd F, => 0 (Ft = F,(w))

satisfies

F0IFx = H2n-2(PM;Zlv\),

Ft = Coker(<9: 772"-3(PA7; Z[u]) >H2«~i(PM; Z2))

where 0 = Sq2p2+(n-l)v2p2.
The twisted integral cohomology of PAf is investigated by R. D. Rigdon and

is given as follows:

Proposition 2.4 (Rigdon [11, Prop. 9.2 and 9.13]). Let MeH"(M;Z2)
be the generator. Then

(1) if n is even, there exist isomorphisms

772"-1(PAf;Z[y]) = Z2,

0: H»-\M; Z2) s H2»~2(PM; Z[»]), 0(x) = p2(v»~2x) (xeH'^M; Z2));

(2) if n is odd, there exist isomorphisms

H2"~l(PM; Z[y]) = Z,

0: H«~\M; Z[w,]) + 77»(Af; Z2) £ H2"~2(PM; Z[»]),
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0(Af) = fi2(v»-3M), p29(y) = («»-' +v"-2w1)p2y (yeH"~*(M; Z[y])).*>

Let M'eH"-l(M; Z2) be the element with SqxM' = M when w,^0 and let
X = Ker(Sa1:77"-,(Af;Z2)-^/7»(Af;Z2)). Then H2"~2(PM; Z{v]) is the fol
lowing form by Proposition 2.4, (Zr(a} denotes the cyclic group of order r
generated by a):

(2.5) F0/Fl = 0H»-\M; Z2) if n is even and wx = 0,

= OK + Z2(0M'y ifnisevenandw^Q,

= 9Hn~\M; Zlw{]) + Z2<0A7> if n is odd.

Further, by studying 0, we have

(2.6) F1 = Coker 0
H2»-i(PM; Z2) = Z2 // n is odd and wt = 0,

or n = 2(4),
0 otherwise.

In case of Fi=Z2, the group extension <f>2 of 0-*Fi-»Fo-»Fo/F,->0 is
given by

02 = Sq2fc + (n-l)v2fcl + Sq*p2: {zeF0/F,|2z=0} = ^2H2"~3(PM; Z2)
—> P, = H2»~l(PM; Z2),

which is proved by using [10, Th. 4.1] (cf. [9, Cor. 3.7]), and so we have the
following:

(2.7) The group extension <f>2 is trivial except for

<p2(9M') = y-'Af if n = 2(4) and wx * 0,

<p2(9M) = o»-»M if n = 3(4) and wt = 0.

Theorem 2.8 (Bausum [1, Th. 37 and Prop. 41], Larmore-Thomas [10,
Th. 5.1], Rigdon [11, Th. 10.4]). Let n^4. Then the group [Af£R2"-1] =
[PAf, P2""2; n] is as follows:

[MczR2n-i-] = 0H"-\M; Z2) if „ = 0(4),

= 0H»-\M; Z2) + Z2 if n = 2(4) and w, = 0,

= 9K + Z4 if n = 2(4) and \v, * 0,

= 9Hn~l(M; Z) + Z2+Z2 if n = 1(4) ana" w, = 0,

= 9H"~l(M; Z) + Z4 if n = 3(4) and w, = 0,

= 9H»-\M; Z[w,]) + Z2 i/ n = 1(2) and w, ^ 0.

*) This relation is different from that of Rigdon [II], but his relation can be modified as
stated in the proposition by chasing his construction of 0.
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Proof of Main Theorem on 7 and £. By (2.2), (2.4) and Proposition
1.3(1), we see that

(2.9) ([11, Th. 10.4]) 7 is trivial if n is even.

Assume that n is odd and consider the homomorphism

p2is9: H»-l(M; Z[w{]) + H"(M; Z2) * H2"~2(PM; Z[y])( = P0/P,)

-iU H2»-'(PM; Z)(=Z2) J±> H2"-l(PM; Z2).

Then the relation p2i99(x, y)= vn~ly follows from Propositions 2.4, 1.3(1) and
(2.1). Therefore, by (2.6-8), we have the equalities

7(a, b, c) = b if n = 1(4) and wt = 0,

7(a, b) = b(2) if n = 3(4) and wt = 0,

7(a, b) = b if n = 1(2) and w, ^ 0.

These and (2.9) show the desired results on 7. The results on E is proved by
R. D. Ridgon [11, Th. 11.11 and Th. 11.26]. q.e.d.

§3. ./*: Ftf)lFi+ j^-FM^i(») in Proposition 1.3

In this and next sections, we investigate the homomorphism

J2n-i=f- [Afc:R2»-»]= [A/*, P2""2; £] >[Af£R2"-1] = [PAf, P2""2; n] .

in Proposition 1.3(2), which preserves the filiations

[Af*, P2""2; a = Fo(O=>F1(O30, 1PM, P2»~2; ^] = F0(l)^,(l) = 0

given in Proposition 1.2.

Lemma 3.1. ;*=;*: F,(c) = 7/2"-1(A7*; Z2)-F,(n) = 772"-1(PA7; Z2) is
trivial.

Proof. This is an immediate consequence of E. Thomas [12, Prop. 2.9(c)].
q.e.d.

Next, we study the homomorphism

/=./*: Fo(^)/F1^) = /72«-2(M*; Z[y])

—- FotofF^n) = H2»~2(PM; Z[v]),

where the range H2"~2(PM; Z[u]) is given in Proposition 2.4. Hereafter, we
use essentially Propositions 5.2-3 given in §5 below.
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Lemma 3.2. (1) If n is even and w, =0, then j* is surjective.
(2) If n is even and w, #0, then \mj* = 9p2H"-l(M; Z)=9K.
(3) If n is odd and w, =0, then lm j* = 0p2H"~2(M; Z2).
(4) 7/n is odd and w, ^0, then lm j* = 0H»-l(M; Z[wx~]).

Proof. We prove the lemma by using the exact sequence

(3.3) ... >H2"-2(M*; Z[y]) -i*- H2"~2(PM; Z[u])

-2- H2"~l(A2M, AM; Z[y]) -i*- H2n~'(M*; Z[u])

-£l> H2n-l(PM; Z[y]) -£- 7J2"(/l2Af, JAf; Z[u]) • 0

in Lemma 1.4. In this sequence, the following is given by R. D. Rigdon [11,
Prop. 11.9 and Prop. 11.19]:

(3.4) 772»-1(Af*;Z[t;])s77n-1(M;Z) if n is even and w^O,

^ Z + K if n is odd and w, #0,

S Hn~l(M; Z2) otherwise.

(1) Assume that n is even and w,=0. Then for any zeHn~1(M;Z),
we have 5p2(v"-2z') = fi28(v"-2z') = fi2(v"-lAz') = p2(Az'Az' + vn~2A(Sq'z')) =
ft2p2A(z, z)=0 (p2z = z') by Lemma 1.5 and [7, Lemma 10]. Therefore the first
<5 in (3.3) is trivial by Proposition 2.4 (1) and so (1) is shown.

(2) Assume that n is even and w,^0. Then the exact sequence (3.3) is
equal to

H2»~2(M*; Z[v\) J!L>9K + Z2-°-+ K+ Z4 —• K+Z2 >Z2 • Z2 >0

by Proposition 2.4(1), (3.4) and Propositions 5.2-3, and so Im<5=Z2. Now
<507<=O is proved in the above case. Thus Im./* = Ker<5 = 07<.

(3) Assume that n is odd and tv, =0. Then (3.3) induces an exact sequence

(3.5) H2"~2(M*; Z[y]) -i*- 0G + Z202(v"-3M)y

-£-• G + Z202(V'-2AM)> -¥->K= p2G, (G^H"-'(M; Z)),

by Proposition 2.4(2), (3.4) and Propositions 5.2-3. Here the relation

<5/?2(u"-3M) = $2(v"-2AM)

holds by Lemma 1.5(3), and the relation

(3.6) 8(9G)czG

holds, because p2ji2(v"-2AM) = v"-iAM in H2n~\A2M, AM; Z2) by [7, Lemma
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10] and p289G = dp29G=0 by Lemma 1.5 and Proposition 2.4(2). Therefore
the sequence (3.5) induces an exact sequence

(3.5)' H2»-2(M*;Z[v])J^L>gJ-+G-^K •0, (f=89,g=i*).

Here K= p2G= G/2G. Hence g(2G)= Qand g induces an epimorphism g': G/2G
->7C, which is isomorphism because G/2G is finite. Therefore 2G= Kera =
lm/. Since rank G= rank 2G and 2G= lm/, we see that

Ker/c T and f(T) = 2T (7 is the torsion subgroup of G)

by noticing that the torsion subgroup of 2G is equal to 27. Thus / determines
an epimorphism

/| 7: 7—>27.

If we can prove

(3.7) 2G ( = {xeG|2x = 0}) = p2H"~2(M; Z2) c Ker/ in (3.5)',

then 2F( = {xe 7|2x=0}) = 2GcKer(/| 7) an /| 7 induces an epimorphism
7/27->27, which is isomorphic because the orders of the two groups are finite
and coincident with each other. Hence Ker/=2G and Lemma 3.2(3) is proved.

To show (3.7), we notice that 9(P2Hn~2(M; Z2))czp2H2»-3(PM; Z2). For
any element X e0(lm/j2), there is an element YeH2n~3(PM; Z2) such that
fl2Y=X and

Y= kvn~3M + vn~2x + (vn~ly + v"-3Sq2y)

for some AeZ2, xeHn~x(M; Z2) and yeHn~2(M; Z2) by (2.1). For xeH"~*(M;
Z2), there is a relation p2^2(v"~3x) = vn~2x and so fi2(vn~2x) = 0. Further the
relation 8p2(v"~ly + vn-3Sq2y) = 0 for yeHn~2(M; Z2) follows from Lemma 1.5
and [7, Th. 11]. Thus 5X= S^2Y=X$2(v"-2AM) and so p25X = Xv"-lAM.
This and (3.6) imply A= 0 and so 5X=0. This completes the proof of (3.7).

(4) Assume that n is odd and w, #0. Then p2: H2n~x(A2M, AM; Z[v})^>
H2n~l(A2M, AM; Z2) is monomorphic by Proposition 5.3(iv). Further, by
Lemma 1.5 and Proposition 2.4, we see that

p2dji2(v"-3M) = v"-lAM, p2S9(x) = 0 for xe H"~l(M; Z[»v,]).

Therefore Im./* = Ker<5 = 077n-I(M; Z[w,]). q.e.d.

§4. ^-^[Mc^-'^fMc^-i]

This section is a continuation of §3 and we will determine ImJ2ii-i by
using Proposition 1.3(2).
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If F,(n)=0, then lmJ2„-i = lm(r: FQ(^)IF,(£)->Fo(ij)/F, fa)) and so by
Proposition 1.3(2), (2.6) and Lemma 3.2, we have the following

Proposition 4.1. (1) 7/n=0(4) and w,=0, then lm J2n-i = lM^R2n~1'\-
(2) 7/n=0(4) and w,^0, then lm J2n.,=9p2H"-l(M; Z)= 9K.
(3) 7/nsl(2) and w,#0, then lm J2n.i=9H"-1(M; Z[wx~\).

In the rest of this section, we study J2n-\ m case wnen n= l(2) and wl=0,
or n = 2(4). In these cases, F,(n) = 772n-1(PAf; Z2) and we have to study the
homomorphism

,$: Ker(/: Fo^/F.t^) >F0(w)/F,(n)) —• CokerO': F,(fl • F,fa))

induced from 7s: (F0(£), F,(£))-»(F0fa), Fjfa)). By Lemma 3.1,

Coker(/: Ftf) — F,(if)) = F.fa) = 772»-'(PM; Z2) = Z2.

Further by the second half of Proposition 1.3(2),

(4.2) \mjl = lmd-l0

where

0 = Sg2p2 + (n-l)y2p2: H2n~2(A2M, AM; Z\v\) • H2"(A2M, AM; Z2).

Because H2n(A2M, AM; Z2) =Z2,

(4.3) the homomorphism S: H2n~\PM; Z2)-*H2n(A2M, AM; Z2) in (4.2) is
an isomorphism.

We now assume that the integral cohomology groups Hl(M;Z) for i = n,
n —1 are given as in (5.1). Let 7Cf (i = l,..., 4) be the subgroups of H2n~2(A2M,
AM; Z2) defined as follows:

Kx = {Ap2xAp2y\x,yeH"-l(M;Z)},

K2 = {Ap2xAM\xeH"-2(M;Z)},(M = p2M if wx =0),

7C3 = Z2<y-2/lM>,

K4 = Sf-«+i Z^AMAp^+CHWAM'Ap^y if w, #0.

Lemma 4.4. With the above notation, p2H2"~2(A2M, AM; Z[u]) is

(1) £?=i ^i '/n ,s even and wt=0,
(2) Zf=i Ki 1/ n is even and wx #0,
(3) T^+Kz ifnisoddandwl=0.

Proof. (1) Assume that n is even and u>, =0. Then H2"~2(A2M, AM; Z2)
is given by [7, Th. 11] as follows:
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H2»-\A2M, AM; Z2) = Kt + K2 + 7C3 + K5,

where

^5 = Z?=a+,Z2<^P2v//lA7>.

By Lemma 1.5 and the relation p2$2 = Sqx +v, we have the relations

p2A(x, y) = Ap2xAp2y for x, yeH"~l(M; Z),

p2A(x, M) = Ap2xAp2M = Ap2xAM for x e Hn~2(M; Z),

p2h(»n~zAM) = v"~2AM,

fi2(Ap2yiAM) = P2p2A(yh prU)M) = (r(i)l2)fir(i)A(y„ pr(i)M),

and so

K, + K2 + 7C3 cz p2H2"-2(A2M, AM; Z[u]).

On the other hand, (r(i)l2)fir(i)A(yt, pr(i)M) for oc-o'̂ /j form a base of
ft2H2n~2(A2M, AM; Z2) by Proposition 5.3(i). This completes the proof of (1).

(2) Assume that n is even and wl^0. Then we have, in the same way as

the above proof,

H2n~2(A2M, AM; Z2) = £f-i K, + K6, K6 = {AM'Ax\xe H"~X(M; Z2)},

and

K{ + K3cz p2H2"-2(A2M, AM; Z[y]).

Moreover, we have the relations

p2$2(Ap2xAM') = Ap2xAM,

pJ2(AM'Ap2yi) = AMAp2yi+(r(i)l2)AM'Ap2Xi for a < i £ 0,

and so K2+ KAczp2H2"-2(A2M, AM; Z[v~\). On the other hand, we see that
dimZ2p2H2"-2(A2M, AM; Z2)=/?+l by Proposition 5.3(H) and dimZ2K6 =
P+l. This implies (2).

(3) is obtained by the method similar to those of the above cases. q. e. d.

Lemma 4.5. \mj*0(czH2n~x(PM; Z2)= Z2) is given as follows:
(1) When n = 2(4) and w, =0, lmj*o=0 if and only if w2p2H"~2(M; Z)=0.
(2) When n = 2(4) and w, ^0, lmj%=0 if and only if w2+ w\=0.
(3) When n = 1(2) and w, =0, lmjg=0 if and only if w2p2Hn~2(M; Z)=0.

Proof. The (Sq2+(n —l)u2)-image of K{ (/ = 1,...,4) are easily obtained
by using [7, Lemmas 7 and 10] as follows:



470 Tsutomu Yasui

(Sq2+(n-l)v2)(Ki+K3) = 0,

(Sq2+(n- l)v2)K2= {ASq2p2xAM \xeH"~2(M; Z)},

(Sq2+ v2) (AMAp2yi+(r(i)l2)AM'Ap2xl) = AMASq2p2y! (a<ig/i).

Using these relations and the well-known fact that Sq2x=(w2 + w^)x for xe
Htt~2(M; Z2), we have

0H2"-2(A2M, AM; Z[t?]) = {Aw2p2xAM\xeH»-2(M; Z)}

in cases (1) and (3),

= {A(w2+ w2)xAM\xeH"-2(M; Z2)} in case (2).

This and (4.3) show the lemma. q. e. d.

We are now ready to determine lm J2n-i f°r n = l(2) and w, =0, or n=2(4).

Proposition 4.6. (1) Assume that n=2(4) and u>, =0. Then

[AfcR2""1] // w2p2H"-2(M;Z)^0,
ImJ2n-L

9Hn~x(M; Z2) otherwise.

(2) Assume that n = 2(4) and w, #0. Then

9K + Z2 // w2 + w2 ^ 0,
ImJ2n-i = . n„

9K otherwise.

(3) Assume that n= 1(2) and vv, =0. Then

lm J2„-i = 9P2H»~2(M; Z2) if w2p2H»~2(M; Z)=0,

= 9p2H»~2(M;Z2)+ 0+Z2 if n= l(4) and w2p2H"~2(M;Z)^0,

= 9fi2H"-2(M; Z2)+ Z2 otherwise.

Proof. This is an immediate consequence of Lemmas 3.1, 3.2, 4.5 and
(2.7). q.e.d.

Propositions 4.1 and 4.6 give the results on J2n-i in Main Theorem. Thus
Main Theorem in the introduction is proved.

§5. Appendix on W(A2M, AM; Z[u]) for /^2n-3

In the previous sections, the cohomology of (A2M, AM) plays an important
part. L. L. Larmore [7] investigated it but the author can not understand the
proof of [7, Th. 20]. Therefore we should like to try to describe the cohomology
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groups H2"(A2M, AM;Z) and H'(A2M, AM; Z[v\) for /^2n-3 by using the
notations and the results stated in [7, pp. 908-915]. We note that Propositions
5.4-5 for i=2n —2, 2n —3 are not used in this paper and are prepared for the
forthcoming paper [14].

Let M be a closed connected n-manifold and assume that

(5.1) H"(M; Z) = Z(M> if u>, =0, = Z2(P2M,S> (SqxM' = M) if w, *0,

77m(Af; Z) = EJitf Zr(Mi0<xm>,-> (direct sum) for m£n- 1,

xm.i = P«m,i)ym.i (ymtieHm-x(M; Zr(mJ)) for a(m)<i£y(m),

where the order r(m, i) is infinite for 1^i^a(m), a power of 2 for a(m)<i^/i(w)
and a power of an odd prime for p(m) < i ^y(m), and if <x(m)<i<j then either
(r(m, i), r(m, j))= 1 or r(m, i) \ r(m, j) holds.

Furthermore, for the simplicity,

(5.1)' denote oc(m), /?(m), y(m), r(m, i), xm>i and ymJ in (5.1) respectively by

a, ft, y, r(i), x, and y-, when m = n —1,

a', /?', y', r'(i), x'( and yj when m = n —2.

Then we have the following propositions, where (i)'s,..., (iv)'s hold re
spectively when

(i) n is even and u>, =0, (ii) n is even and w, ^0,

(iii) n is odd and w, =0, (iv) n is odd and iv, ^0.

Proposition 5.2. (1) H2n(A2M, AM; Z[u]) is

(i) Z2($2(v"-xAp2M)>, (ii) Z2<^2fa"-MAf)>,

(iii) Z<A(M,M)y, (iv) Z2^2(AM'AM)}.

(2) H2n(A2M,AM;Z)is

(i) ZiAMAMy, (ii) Z2<^M'/iM)>,

(iii) Z2<p2(V-xAp2M)}, (iv) z2</?2(",,-,/iA0>.

Proposition 5.3. H2n~x(A2M, AM; Z[y]) is

(i) G, (ii) Z4<(l/2)£2fa"-,/1Af')> + K:,

(iii) Z2<^2fan"2/lP2^)> + G,

(iv) Z2<p2(v"-2AM)> + K, and p2: H2n~x(A2M, AM; Z[»]) -+ H2"~l(A2M,

AM; Z2) is monomorphic,
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where

G= I?=i Z(A(xh Af)> + ir-+i Zr0)^mA(yh pr(i)A/)> (stf-»(M; Z)),

/C = Zf=i Z2(hW, P2xt)> (= Im(p2: ff»-»(M; Z)—>H»~X(M; Z2))).

Proposition 5.4. 772"-2 (/l2Af, JAf; Z[v]) is

( i) Z202(v»-3Ap2M)> + Gl + G2 + G3 + Gt + G6,

(ii) Z2<^2fan"3/1M)> + G, + G2 + G3•+ G4'+ G7,

(iii) G, + G3 + G5 -f- G6,

(iv) Z2<p\fan-2/lM')> + G, + G3 + G5 + G7,

wnere

C, = Z,g/<ygaZ<J(xf, xy)>, G2 = If., Z<J(xf, x,)>,

^3 = (2-lgISa<ygy + zLa<j<i^y)Zr(j)\Pr(j)A(yp Pr(/)Xj)> ,

G4 = £?=«+1 Zf(0<^r(0J(>'l, pr(0x,)>, G5 = £f=i Z2(fi2(vn-2Ap2xtf>,

G6 = LfL, Z<J(xi, Af)> + U'-*'+i Zr.m{^.{k)A(y'k, prWA/)> (^H«~2(M; Z)),

G7 = Sfci Z2<^2^(M', p2x'k)> + If=a+1 Z2<$2A(M', p2y{)> (*H«~2(M; Z2)).

Proposition 5.5. p2H2n~3(A2M, AM; Z[y])/<5H2n-4(PAf; Z2) is isomor
phic to

(i) 77, (ii) H + H4, (iii) 77 + 775, (iv) H + H4 + H5,

where

H = Hl + H2 + 773,

{Ap2xAp2MIx 6 77»-3(Af; Z)} if vv, = 0,
77, =

{Ap2xAMI x e T7"-3(Af; Z)} if wt * 0,

772 = {Ap2xAp2y\xeH"-2(M; Z), ysH"~x(M; Z)},

#3 = 2Z*<i<j*{iZ2<Ap2x{Ap2yj+(r(j)lr(i))Ap2y(Ap2Xj>,

#4 = I,l'=,.+lZ2<Ap2ykAM+(r'(k)l2)Ap2xkAM'>,

Hs = Ef=«+i Z2</lp23'i/lp2^> •

To prove these propositions, we use the following results frequently:

(5.6) ([7, p. 914]) For any cyclic group G, there is an exact sequence

»W-\A2M, AM; G) 4U Hl(A2M, AM; G[»])

-£l> T7'(Af2, AM; G) •H\A2M, AM;G) >-,
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where n: (Af2, AM)^(A2M, AM) is the natural projection, v is the first Stiefel-
Whitney class of the double covering M2-AM->A2M-AM = M* and V=
t2(l)eH*{M*;Z[p)).

(5.7) For any positive integer p, there is the Bockstein exact sequence

>Hl~x(A2M, AM; Zp[»]) -A* W(A2M, AM; Z[v\)
m* W(A2M, AM; Z[o]) -£u W(A2M, AM; Zp[»]) A> ....

(5.8) ([7, Remark 13]) For any odd prime p, n*: H*(A2M, AM; Zp[u])->
H*(M2, AM; Zp) is monomorphic and

lm 7i* = {x| x e77*(M2, AM; Zp), t*x = -x},

where t: (Af2, AM)^(M2, AM) is a map defined by t(x, y)=(y, x).

(5.9) (cf. [7, p. 914]) For x e Hr(M; Z,) and y e H*(M; Zt) (fg oo),

n*A(x, y) = x <g> y - (-l)rsy ® x and tc*Ax = x ® 1 - 1 ® x,

and moreover the order of A(x,y) for xjty is the greatest common factor of those
of x and y, and the order of Ax is equal to that of x.

We now sketch the proofs of Propositions 5.2-5.
By (5.6), the following relation holds:

rank Hl(A2M, AM; Z[y]) + rank W(A2M, AM;Z) = rank W(M2, AM;Z).

By using (5.9) and Lemma 1.5(1), we can choose generators (mod torsions) of
W(A2M, AM; Z[u]) and Hl(A2M, AM; Z). In particular we have

Lemma 5.10. There hold the following congruences mod torsions:

Z(AMAM) if n is even and wx = 0,
(1) H2»(A2M, AM; Z) = .

0 otherwise.

\ Z(A(M, Af)> if n is odd and w. = 0,
(2) H2"(A2M, M;Z[o]) =

[ 0 otherwise.

f E?=i Z(A(xh Af)> if w, = 0,
(3) H2"~X(A2M, JA7;Z[y]) =

[ 0 if w, ± 0.

(4) H2"~2(A2M, AM; Z[v\) is congruent mod torsion to the direct sum of
Gt and

G2 if n is even,

2Zf=iZ<A(xk,M)> if wt=0.
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To determine the odd torsion subgroup of Hi(A2M, AM; Z[v\), let p be an
odd prime. Then the Zp-base of Hl(A2M, AM; Zp[t>]) can be determined by
(5.8-9). Thus the p-primary component and its generators of Hl(A2M, AM;
Z[u]) are determined by the exact sequence (5.7) for odd prime p and [7, Remark
16]. In particular we have

Lemma 5.11. Denote by fl0 the odd torsion subgroup of W(A2M, AM;
Z[t>]). Then

(1) T2» = 0;

(G)0 = 2ZUp+1 Zr(i)0r(i)A(yh pr(0Af)> if w, = 0,
(2) 72""1 = ,

0 // w, * 0;

(3) 72"-2 is the direct sum of

(G3)0 = (Hl£i£ot,p<jgy+llp<j<i£y)Zr(j)(pr(j)A(yj, Pr(;)X/)>

and

(G4)0 = Zi=/j+i Zr(0<^r(0J(vf, pr(0x,)> if n is even,

(G6)o = Ik=/r+i Zr.(k)0r.(k)A(y'k, pr.(k)Af)> if w, = 0.

The proof of (1) of Proposition 5.2 is given by using Lemmas 5.10-11,
(5.7) for p = 2 and [7, Th. 11], and that of (2) is given by using the ordinary
Bockstein exact sequence instead of (5.7).

In the rest of this section, we study the 2-primary components of H'(A2M,
AM; Z[vJ) for 2n —3^/^2n —1. First we consider the case (ii) n is even and
Wj^O. By (5.7) for p=2, Lemmas 5.10-11 and [7, Th. 11], we have

H2"~X(A2M, AM; Z\v\) = K + ZS(K = £?=1 Z2<$2A(M\ p2x,)»,

p2Zs = Z2(v"-XAM + AM'AMy, for some integer 5^2.

In the exact sequence (3.3), both groups H2n~2(PM; Z[y]) and 772"-»(M*; Z[y])
are isomorphic to Hn~x(M; Z2) by Proposition 2.4 and (3.4) and so s^4. On

the other hand,

pJ2H2"~2(A2M, AM; Z2)^vn~xAM + AM'AM

follows briefly. Thus s^4 and so s=4. Moreover by (5.7) for p=2, (5.9) and
Lemmas 1.5 and 5.10, we see that

Zs = Z4<(l/2)p>»-MM')>,

and
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H2"~2(A2M, AM; Z[o]) = Z202(v«~3AM)} + G, + G2 + G7

+ (Zis,s«<yg/j+Z«<y<,s/j)2rU)<J(x/, X,)> + Xy=a+ i Zs(J){A(xp X,)>

mod odd torsion,

where s(j) is the order of A(xp xy). As for the element A(xp x,), if ij±j then
n*flrU)A(yj, prU)Xi) = n*A(Xj, x,) by (5.9) and hence

PruAyp PrU)xi) = a(xp *.) + vxj.i for some X;,,e772"-3(/12Af, AM; Z)

by (5.6). Further we see easily that

PiPruAyp PrU)Xi) = Ap2XjAp2Xi + vp2XJti # 0

by Lemma 1.5. Therefore we can replace A(xp x,) by firU)A(yj, pr(J)x,). If
/ =j and r(j) = 2, then

p2ft2A(yj, p2Xj) = Ap2XjAp2Xj = p2A(xp xy)

by Lemma 1.5, and so s(j) =2 and A(xp xj) can be replaced by $2A(y}, p2xj).
If i=j and r(j)^4, then we see easily that

PruAyp PrU)xj) = A(XP xj) + VYJ (Yj€H2»-3(A2M, AM; Z))

by (5.6) and (5.9), and that

li2(Ap2yjAp2Xj) ^ 0

by (5.7) for p=2. Using Lemma 1.5 and the relation ft2p2=(rl2)fir:
Hi~x(A2M, AM; Zr{v])-^Hi(A2M, AM; Z[u]), we see that

(r(j)l2)pr(j)A(y}, pr{j)xj) = hPiMyp PrU)xj)-

The above three relations imply that s(j)= r(j) and A(xp xj) can be replaced by
ftrU)A(yj, Pru)xj)- Tms completes the proofs of (ii)'s of Propositions 5.3-4.
The proof of Proposition 5.5(ii) is given by Lemma 1.5(3) and (5.7) for p = 2
immediately.

The proofs of (i)'s, (iii)'s and (iv)'s of Propositions 5.3-5 are similar to, but
simpler than, those of (ii)'s except the results concerning 775 of Proposition 5.5
for odd n.

Let n be odd. By simple calculations, using Lemma 1.5, Proposition 5.4
and (5.9), we see that

h(ApiyjAp2xj)eKer n* (czH2"~2(A2M, AM; Z[u]))

and

KerTr* = {p%(vn"2/Lv)|xe77n-,(Af; Z2)}.
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This implies that there is an element XjeHn~x(M; Z2) such that

Ap2yiAp2xi + vn~2AXjelmp2.

Using this result, Lemma 1.5(3) and (5.7) for p=2, we have Proposition 5.5(iii)-
(iv) completely.
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