On the map defined by regarding embeddings as immersions

Tsutomu YASUI (Received December 20, 1982)

Introduction

Let *M* be a closed connected smooth manifold of dimension *n* and \mathbb{R}^m the *m*-dimensional Euclidean space. Denote by $[M \subseteq \mathbb{R}^m]$ the set of regular homotopy classes of immersions of *M* in \mathbb{R}^m and by $[M \subset \mathbb{R}^m]$ the set of isotopy classes of embeddings of *M* in \mathbb{R}^m , and consider the commutative diagram

where E_m and I_m are the maps induced from the natural inclusion $R^m \subset R^{m+1}$ and J_k is the one defined by regarding embeddings as immersions.

The set $[M \subseteq R^m]$ for 2m > 3n+1 is an abelian group by taking 0 arbitrarily if it is not empty, and the map I_m is a homomorphism by taking $I_m(0)=0$; while so are the set $[M \subset R^m]$ and the maps E_m and J_m for 2m > 3(n+1) (see J. C. Becker [2]).

The purpose of this paper is to study the above commutative diagram when m=2n-1:

$$[M \subset R^{2n}] \xrightarrow{J_{2n}} [M \subseteq R^{2n}]$$

$$(*) \qquad E \uparrow \qquad I \uparrow \qquad (E = E_{2n-1}, I = I_{2n-1}),$$

$$[M \subset R^{2n-1}] \xrightarrow{J_{2n-1}} [M \subseteq R^{2n-1}]$$

(here we assume that the sets in consideration are not empty).

When $n \ge 4$, the upper groups are determined by A. Haefliger and M. W. Hirsch [3], [5], [6] and so is the group $[M \subseteq R^{2n-1}]$ by D. R. Bausum [1, Th. 37 and Prop. 41], L. L. Larmore and E. Thomas [10, Th. 5.1] and R. D. Rigdon [11, Th. 10.4], and moreover it is proved by R. D. Rigdon [11, Th. 10.4] that *I* is trivial for even *n* and is surjective for odd *n*, respectively. When $n \ge 6$, $[M \subset R^{2n-1}]$ is an abelian group and Im *E* is determined by R. D. Rigdon [11, Th. 11.11 and Th. 11.26]. Together with these results, we have the following

MAIN THEOREM. Let M be a closed connected smooth manifold of dimension

n with the i-th Stiefel-Whitney class $w_i \in H^1(M; \mathbb{Z}_2)$, and let

$$Sq^{1}: H^{n-1}(M; Z_{2}) \longrightarrow H^{n}(M; Z_{2}),$$

$$\beta_{2}: H^{n-2}(M; Z_{2}) \longrightarrow H^{n-1}(M; Z)$$

be the squaring operation and the Bockstein operator, respectively, and $H^i(M; Z[w_1])$ be the integral cohomology twisted by w_1 . Then in the diagram (*) there hold the following properties (i)'s,..., (iv)'s, respectively, when

- (i) n is even and $w_1 = 0$, (ii) n is even and $w_1 \neq 0$,
- (iii) *n* is odd and $w_1 = 0$, (iv) *n* is odd and $w_1 \neq 0$.
- (1) Assume that $n \ge 4$. Then

(i)
$$[M \subset R^{2n}] = H^{n-1}(M; Z_2), \quad [M \subseteq R^{2n}] = Z, \quad J_{2n} = 0,$$

 $[M \subseteq R^{2n-1}] = \begin{cases} H^{n-1}(M; Z_2) & \text{if } n \equiv 0(4), \\ H^{n-1}(M; Z_2) + Z_2 & \text{if } n \equiv 2(4), \end{cases}$
 $I = 0;$

(ii)
$$[M \subset R^{2n}] = Z + \text{Ker } Sq^1$$
, $[M \subseteq R^{2n}] = Z$, $J_{2n}(a, b) = 2a$,
 $[M \subseteq R^{2n-1}] = \begin{cases} H^{n-1}(M; Z_2) & \text{if } n \equiv 0(4), \\ \text{Ker } Sq^1 + Z_4 & \text{if } n \equiv 2(4), \end{cases}$ $I = 0;$

(iii)
$$[M \subset R^{2n}] = H^{n-1}(M; Z), \quad [M \subseteq R^{2n}] = Z_2, \quad J_{2n} = 0,$$

 $[M \subseteq R^{2n-1}] = \begin{cases} H^{n-1}(M; Z) + Z_2 + Z_2, \quad l(a, b, c) = b \quad \text{if} \quad n \equiv 1(4), \\ H^{n-1}(M; Z) + Z_4, \qquad l(a, b) \equiv b(2) \quad \text{if} \quad n \equiv 3(4); \end{cases}$

(iv)
$$[M \subset R^{2n}] = H^{n-1}(M; Z_2), \quad [M \subseteq R^{2n}] = Z_2, \quad J_{2n} = 0,$$

 $[M \subseteq R^{2n-1}] = H^{n-1}(M; Z[w_1]) + Z_2, \quad I(a, b) = b.$

(2) Assume that $n \ge 6$. Then

(i) Im $E = [M \subset \mathbb{R}^{2n}]$,

$$\operatorname{Im} J_{2n-1} = \begin{cases} H^{n-1}(M; Z_2) & \text{if } n \equiv 2(4) \text{ and } w_2(\operatorname{Ker} \beta_2) = 0, \\ [M \subseteq R^{2n-1}] & \text{otherwise}; \end{cases}$$

(ii)
$$\operatorname{Im} E = \operatorname{Ker} Sq^1$$
,

$$\operatorname{Im} J_{2n-1} = \begin{cases} \operatorname{Ker} Sq^1 + Z_2 & \text{if } n \equiv 2(4) \text{ and } w_1^2 + w_2 \neq 0, \\ \\ \operatorname{Ker} Sq^1 & \text{otherwise}; \end{cases}$$

(iii) $\operatorname{Im} E = \operatorname{Im} \beta_2$,

$$\operatorname{Im} J_{2n-1} = \begin{cases} \operatorname{Im} \beta_2 + 0 + Z_2 & \text{if } n \equiv 1(4) \text{ and } w_2(\operatorname{Ker} \beta_2) \neq 0, \\ \operatorname{Im} \beta_2 + Z_2 & \text{if } n \equiv 3(4) \text{ and } w_2(\operatorname{Ker} \beta_2) \neq 0, \\ \operatorname{Im} \beta_2 & \text{otherwise}; \end{cases}$$

(iv)
$$\operatorname{Im} E = [M \subset \mathbb{R}^{2n}], \qquad \operatorname{Im} J_{2n-1} = H^{n-1}(M; \mathbb{Z}[w_1]).$$

The group $[M \subset R^{2n-1}]$ will be studied in the forthcoming paper [14].

In §1, the group structures and the filtrations on $[M \subseteq R^m]$ and $[M \subset R^m]$ are recalled according to [1], [2], [8], [11] and [13], and the methods for computing I_m , E_m and J_m are stated. The groups $[M \subseteq R^{2n}]$, $[M \subset R^{2n}]$ and $[M \subseteq R^{2n-1}]$ are restated in §2 and the results on J_{2n} and I are proved. The map J_{2n-1} is investigated in §§3-4, by using the results on the cohomology of $(\Lambda^2 M, \Delta M)$ due to L. L. Larmore [7] together with the remarks given in §5. In §5, the twisted integral cohomology groups $H^i(\Lambda^2 M, \Delta M; Z[v])$ for $i \ge 2n-3$ $(v \in H^1(\Lambda M^2 - \Delta M; Z_2))$ are treated.

§1. Preliminaries

Let *M* be a closed connected smooth manifold of dimension *n*. Then there is a fixed point free involution on the tangent sphere bundle *SM* over *M*, which is the antipodal map on each fibre S^{n-1} . Thus, for an immersion $f: M \subseteq R^m$, we have the Z_2 -equivariant map

$$\pi S(f) \colon SM \xrightarrow{S(f)} R^m \times S^{m-1} \xrightarrow{\pi} S^{m-1},$$

where S(f) is the Z_2 -equivariant map induced from the derivation of f and π is the projection.

THEOREM (Haefliger-Hirsch [4]). If 2m > 3n+1, then the correspondence which associates the Z_2 -equivariant homotopy class of $\pi S(f)$ with a regular homotopy class of an immersion f is a bijection between $[M \subseteq \mathbb{R}^m]$ and the set of Z_2 -equivariant homotopy classes of Z_2 -equivariant maps of SM to S^{m-1} .

On the other hand, let ΔM be the diagonal of $M \times M$. Then there is a fixed point free involution on $M \times M - \Delta M$ defined by the interchange of factors. Thus, for an embedding $f: M \subset \mathbb{R}^m$, we have the \mathbb{Z}_2 -equivariant map

$$f': M \times M - \Delta M \longrightarrow S^{m-1},$$

$$f'(x, y) = (f(x) - f(y)) / ||f(x) - f(y)|| \quad (x, y \in M, x \neq y).$$

THEOREM (Haefliger [3]). If 2m > 3(n+1), then the correspondence which associates the Z_2 -equivariant homotopy class of f' with an isotopy class of an

embedding f is a bijection between $[M \subset R^m]$ and the set of Z_2 -equivariant homotopy classes of Z_2 -equivariant maps of $M \times M - \Delta M$ to S^{m-1} .

Let $PM = SM/Z_2$ and $M^* = (M \times M - \Delta M)/Z_2$ be the tangent projective bundle over M and the reduced symmetric product of M, respectively. Moreover, let

 $\eta: PM \longrightarrow P^{\infty}$ and $\xi: M^* \longrightarrow P^{\infty}$

be the classifying maps of the double coverings $SM \rightarrow PM$ and $M \times M - \Delta M \rightarrow M^*$, respectively. Now, $S^{\infty} \rightarrow P^{\infty}$ is the universal double covering and $S^{\infty} \times_{Z_2} S^{m-1} \rightarrow P^{\infty}$ is homotopically equivalent to the natural inclusion $P^{m-1} \subset P^{\infty}$. Therefore the above theorems are restated as follows, where

 $[X, P^{m-1}; \alpha] = [X, S^{\infty} \times_Z, S^{m-1}; \alpha]$ for $\alpha: X \longrightarrow P^{\infty}$

denotes the homotopy sets of liftings of α to $S^{\infty} \times Z, S^{m-1}$:

THEOREM 1.1. There exist bijections

$$A: [M \subseteq R^m] \cong [PM, P^{m-1}; \eta] \quad if \quad 2m > 3n + 1,$$

$$B: [M \subset R^m] \cong [M^*, P^{m-1}; \xi] \quad if \quad 2m > 3(n+1).$$

Each set of the right hand sides has the structure of an abelian group by [2] if it is not empty, which induces those of $[M \subseteq R^m]$ and $[M \subset R^m]$.

Now *PM* is a manifold of dimension 2n-1 and M^* has the homotopy type of a *CW*-complex of dimension less than 2n.

PROPOSITION 1.2 (Bausum [1, Prop. 5 and Prop. 6], Larmore-Rigdon [8, Prop. 4.1], Yasui [13, Prop. 1.1]). Assume that X has the homotopy type of a CW-complex of dimension less than $2n \ (n \ge 4)$. Then for a map $\alpha: X \to P^{\infty}$, there exist decreasing filtrations

$$\begin{split} [X, P^{2n-1}; \alpha] &= G_0(\alpha) \supset G_1(\alpha) = 0, \quad G_0(\alpha) = H^{2n-1}(X; Z); \\ [X, P^{2n-2}; \alpha] &= F_0(\alpha) \supset F_1(\alpha) \supset F_2(\alpha) = 0, \\ F_0(\alpha)/F_1(\alpha) &= H^{2n-2}(X; Z[v]), \\ F_1(\alpha) &= \operatorname{Coker} \left(\Theta: H^{2n-3}(X; Z[v]) \longrightarrow H^{2n-1}(X; Z_2)\right), \end{split}$$

where $H^{i}(X; \mathbb{Z}[v])$ is the integral cohomology of X twisted by $v = \alpha^{*}u$ ($u \in H^{1}(P^{\infty}; \mathbb{Z}_{2})$ is the generator) and

$$\Theta = Sq^2\tilde{\rho}_2 + \binom{2n-1}{2}v^2\tilde{\rho}_2$$

 $(\tilde{\rho}_2: H^i(X; Z[v]) \rightarrow H^i(X; Z_2)$ is the reduction mod 2).

By the definitions of the maps I_m , E_m and J_m in the introduction and the bijections A and B in Theorem 1.1, we have the commutative diagram

$$\begin{bmatrix} M \subset R^{m+1} \end{bmatrix} \xleftarrow{E_m} \begin{bmatrix} M \subset R^m \end{bmatrix} \xrightarrow{J_m} \begin{bmatrix} M \subseteq R^m \end{bmatrix} \xrightarrow{I_m} \begin{bmatrix} M \subseteq R^{m+1} \end{bmatrix}$$
$$B \downarrow \cong \qquad B \downarrow \cong \qquad A \downarrow = A \downarrow$$

for 2m > 3(n+1) (cf. [8], [11]), where $i: P^{m-1} \subset P^m$ is the natural inclusion and

 $j: PM \longrightarrow M^*$ is the embedding with $\xi j = \eta$

induced from the Z₂-equivariant map $j: SM \rightarrow M \times M - \Delta M$ defined by $j(u) = (\exp(u), \exp(-u))$.

PROPOSITION 1.3 (Larmore-Rigdon [8, Prop. 5.1 and Prop. 6.1]). Let (X, α) represent (PM, η) or (M^*, ξ) , and consider the filtrations of $[X, P^{m-1}; \alpha]$ for m = 2n - 1, 2n given in Proposition 1.2. Then

(1) $i_{s}: [X, P^{2n-2}; \alpha] \rightarrow [X, P^{2n-1}; \alpha]$ preserves the filtrations and the induced homomorphism

$$i_{\mathfrak{s}}: F_0(\alpha)/F_1(\alpha) = H^{2n-2}(X; \mathbb{Z}[v]) \longrightarrow G_0(\alpha) = H^{2n-1}(X; \mathbb{Z})$$

is just the multiplication by $V = \tilde{\beta}_2(1) \in H^1(X; \mathbb{Z}[v])$ ($\tilde{\beta}_2: H^i(X; \mathbb{Z}_2) \to H^{i+1}(X; \mathbb{Z}[v])$) is the twisted Bockstein operator);

(2) $j^{\sharp}: [M^{\ast}, P^{m-1}; \xi] \rightarrow [PM, P^{m-1}; \eta]$ preserves the filtrations and $j^{\sharp}: G_0(\xi) \rightarrow G_0(\eta)$ and $j^{\sharp}: F_i(\xi)/F_{i+1}(\xi) \rightarrow F_i(\eta)/F_{i+1}(\eta)$ are j^{\ast} on the cohomology groups and moreover j^{\sharp} for m = 2n - 1 induces the map

$$j_0^*$$
: Ker $(j^*: F_0(\xi)/F_1(\xi) \longrightarrow F_0(\eta)/F_1(\eta)) \longrightarrow \operatorname{Coker} (j^*: F_1(\xi) \longrightarrow F_1(\eta)),$

which is equal to the functional operation

$$\Theta_j: \operatorname{Ker} j^*(\subset H^{2n-2}(M^*; \mathbb{Z}[v])) \longrightarrow H^{2n-1}(PM; \mathbb{Z}_2) / (\operatorname{Im} \Theta + \operatorname{Im} j^*)$$

given by $\delta^{-1}\Theta i^{*-1}$ in the commutative diagram

of the exact sequences of the pair (M^*, PM) , where $v = \xi^* u$ and i: $M^* \subset (M^*, PM)$.

Furthermore, let $\Lambda^2 M = (M \times M)/Z_2$ be the 2-fold symmetric product of M, the set of unordered pairs of M. Then $\Lambda^2 M - \Delta M = M^*$ and PM = j(PM) bounds a tubular neighborhood N of ΔM in $\Lambda^2 M$, and the natural inclusions

$$(M^*, PM) \subset (\Lambda^2 M, N) \supset (\Lambda^2 M, \Delta M)$$

induce isomorphisms of cohomology groups (cf. [8, §5]). Thus we have the following

LEMMA 1.4. The cohomology exact sequence of (M^*, PM) with any coefficients (e.g., the one in the diagram in Proposition 1.3) can be replaced by the exact sequence

$$\cdots \longrightarrow H^{i-1}(M^*) \xrightarrow{j^*} H^{i-1}(PM) \xrightarrow{\hat{o}} H^i(\Lambda^2 M, \Delta M)$$
$$\xrightarrow{i^*} H^i(M^*) \xrightarrow{j^*} H^i(PM) \longrightarrow \cdots .$$

Our study is based on these results. Moreover the cohomology of $(\Lambda^2 M, \Delta M)$ is investigated by L. L. Larmore[7]. The notations Λx and $\Delta(x, y)$ and the results stated in [7, pp. 908–915] are freely quoted hereafter. We also use the following lemma and the results remarked in §5.

LEMMA 1.5. (1) $\tilde{\rho}_r(\Lambda x) = \Lambda(\rho_r x)$ and $\tilde{\rho}_r(\Delta(x, y)) = \Delta(\rho_r x, \rho_r y)$ for $x, y \in H^*(M; Z_s)$, where $r \mid s, s \leq \infty$ and $\rho_r, \tilde{\rho}_r$ are the reductions mod r.

(2) $\Delta(x, y) = \Lambda x \Lambda y + \Lambda(xy)$ for $x, y \in H^*(M; \mathbb{Z}_2)$.

(3) $\delta(v^i x) = v^{i+1} \Lambda x$ for $x \in H^*(M; \mathbb{Z}_2)$, where $v^i x = j^* v^i \cdot \pi^* x$ ($\pi: PM \to M$ is the projection).

PROOF. The relations (1) and (2) are easily obtained by chasing the constructions of Λx and $\Delta(x, y)$ given in [7]. The relation (3) follows from the equality $\delta x = v\Lambda x (\delta: H^{i-1}(M) = H^{i-1}(\Delta M) \to H^i(\Lambda^2 M, \Delta M))$ in [7, Lemma 6], by noticing that the restriction of the projection $N \to M$ on PM is equal to π and the one on ΔM is the identity $\Delta M \to M$. q.e.d.

§2. J_{2n} , I, E and $[M \subseteq R^{2n-1}]$

The following results are well-known:

(2.1) Let $v \in H^1(PM; Z_2)$ be the first Stiefel-Whitney class of the double covering $SM \rightarrow PM$. Then 1, v,..., v^{n-1} form a base of the $H^*(M; Z_2)$ -module $H^*(PM; Z_2)$ with the relation

$$v^n = \sum_{i=1}^n v^{n-i} w_i \quad (w_i = w_i(M)).$$

(2.2) $[M \subseteq \mathbb{R}^{2n}] = H^{2n-1}(PM; Z)$ in Theorem 1.1 and Proposition 1.2 is isomorphic to Z if n is even and Z_2 if n is odd.

(2.3) ([3], [5] and [11]) $[M \subset R^{2n}] = H^{2n-1}(M^*; Z)$ in Theorem 1.1 and Proposition 1.2 is isomorphic to

On the map defined by regarding embeddings as immersions

$$\begin{aligned} H^{n-1}(M; Z) & \text{if } n \text{ is odd and } w_1 = 0, \\ Z + K & (K = \text{Ker} (Sq^1: H^{n-1}(M; Z_2) \rightarrow H^n(M; Z_2))) \text{ if } n \text{ is even and } w_1 \neq 0, \\ H^{n-1}(M; Z_2) & \text{otherwise.} \end{aligned}$$

PROOF OF MAIN THEOREM ON J_{2n} . By the results stated in §1, we have a commutative diagram

where the lower sequence is exact by Lemma 1.4, while by Proposition 5.2(2),

$$H^{2n}(\Lambda^2 M, \Delta M; Z) = \begin{cases} Z & \text{if } n \text{ is even and } w_1 = 0, \\ Z_2 & \text{otherwise.} \end{cases}$$

Thus if n is even and $w_1 \neq 0$ then $\text{Im}(j^*: Z+K \rightarrow Z)=2Z$, and if it is not then $j^*=0$. q.e.d.

We now recall that the filtration

$$[M \subseteq R^{2n-1}] = [PM, P^{2n-2}; \eta] = F_0 \supset F_1 \supset 0 \quad (F_i = F_i(\eta))$$

satisfies

$$F_0/F_1 = H^{2n-2}(PM; Z[v]),$$

$$F_1 = \operatorname{Coker} \left(\Theta: H^{2n-3}(PM; Z[v]) \longrightarrow H^{2n-1}(PM; Z_2) \right)$$

where $\Theta = Sq^2\tilde{\rho}_2 + (n-1)v^2\tilde{\rho}_2$.

The twisted integral cohomology of PM is investigated by R. D. Rigdon and is given as follows:

PROPOSITION 2.4 (Rigdon [11, Prop. 9.2 and 9.13]). Let $M \in H^n(M; \mathbb{Z}_2)$ be the generator. Then

(1) if n is even, there exist isomorphisms

$$H^{2n-1}(PM; Z[v]) = Z_2,$$

$$\theta: H^{n-1}(M; \mathbb{Z}_2) \cong H^{2n-2}(PM; \mathbb{Z}[v]), \quad \theta(x) = \tilde{\beta}_2(v^{n-2}x) \ (x \in H^{n-1}(M; \mathbb{Z}_2));$$

(2) if n is odd, there exist isomorphisms

$$H^{2n-1}(PM; Z[v]) = Z,$$

$$\theta: H^{n-1}(M; Z[w_1]) + H^n(M; Z_2) \cong H^{2n-2}(PM; Z[v]),$$

$$\theta(M) = \tilde{\beta}_2(v^{n-3}M), \ \tilde{\rho}_2\theta(y) = (v^{n-1} + v^{n-2}w_1)\tilde{\rho}_2 y \ (y \in H^{n-1}(M; Z[v])).^*)$$

Let $M' \in H^{n-1}(M; \mathbb{Z}_2)$ be the element with $Sq^1M' = M$ when $w_1 \neq 0$ and let $K = \text{Ker}(Sq^1: H^{n-1}(M; \mathbb{Z}_2)) \rightarrow H^n(M; \mathbb{Z}_2))$. Then $H^{2n-2}(PM; \mathbb{Z}[v])$ is the following form by Proposition 2.4, $(\mathbb{Z}_r \langle a \rangle$ denotes the cyclic group of order r generated by a):

(2.5)
$$F_0/F_1 = \theta H^{n-1}(M; Z_2) \quad \text{if } n \text{ is even and } w_1 = 0,$$
$$= \theta K + Z_2 \langle \theta M' \rangle \quad \text{if } n \text{ is even and } w_1 \neq 0,$$
$$= \theta H^{n-1}(M; Z[w_1]) + Z_2 \langle \theta M \rangle \quad \text{if } n \text{ is odd.}$$

Further, by studying Θ , we have

(2.6)
$$F_1 = \operatorname{Coker} \Theta = \begin{cases} H^{2n-1}(PM; Z_2) = Z_2 & \text{if } n \text{ is odd and } w_1 = 0, \\ 0 & \text{or } n \equiv 2(4), \\ 0 & \text{otherwise.} \end{cases}$$

In case of $F_1 = Z_2$, the group extension ϕ_2 of $0 \rightarrow F_1 \rightarrow F_0 \rightarrow F_0/F_1 \rightarrow 0$ is given by

$$\phi_2 = Sq^2 \tilde{\beta}_2^{-1} + (n-1)v^2 \tilde{\beta}_2^{-1} + Sq^1 \tilde{\rho}_2 \colon \{z \in F_0/F_1 | 2z = 0\} = \tilde{\beta}_2 H^{2n-3}(PM; Z_2)$$
$$\longrightarrow F_1 = H^{2n-1}(PM; Z_2),$$

which is proved by using [10, Th. 4.1] (cf. [9, Cor. 3.7]), and so we have the following:

(2.7) The group extension ϕ_2 is trivial except for

$$\phi_2(\theta M') = v^{n-1}M \quad if \quad n \equiv 2(4) \quad and \quad w_1 \neq 0,$$

$$\phi_2(\theta M) = v^{n-1}M \quad if \quad n \equiv 3(4) \quad and \quad w_1 = 0.$$

THEOREM 2.8 (Bausum [1, Th. 37 and Prop. 41], Larmore-Thomas [10, Th. 5.1], Rigdon [11, Th. 10.4]). Let $n \ge 4$. Then the group $[M \subseteq R^{2n-1}] = [PM, P^{2n-2}; \eta]$ is as follows:

$$\begin{split} [M \subseteq R^{2n-1}] &= \theta H^{n-1}(M; Z_2) & \text{if } n \equiv 0(4), \\ &= \theta H^{n-1}(M; Z_2) + Z_2 & \text{if } n \equiv 2(4) \text{ and } w_1 = 0, \\ &= \theta K + Z_4 & \text{if } n \equiv 2(4) \text{ and } w_1 \neq 0, \\ &= \theta H^{n-1}(M; Z) + Z_2 + Z_2 & \text{if } n \equiv 1(4) \text{ and } w_1 = 0, \\ &= \theta H^{n-1}(M; Z) + Z_4 & \text{if } n \equiv 3(4) \text{ and } w_1 = 0, \\ &= \theta H^{n-1}(M; Z[w_1]) + Z_2 & \text{if } n \equiv 1(2) \text{ and } w_1 \neq 0. \end{split}$$

^{*)} This relation is different from that of Rigdon [11], but his relation can be modified as stated in the proposition by chasing his construction of θ .

PROOF OF MAIN THEOREM ON I AND E. By (2.2), (2.4) and Proposition 1.3(1), we see that

(2.9) ([11, Th. 10.4]) I is trivial if n is even.

Assume that n is odd and consider the homomorphism

$$\rho_2 i_{\sharp} \theta \colon H^{n-1}(M; Z[w_1]) + H^n(M; Z_2) \cong H^{2n-2}(PM; Z[v])(=F_0/F_1)$$

$$\xrightarrow{i_{\sharp}} H^{2n-1}(PM; Z)(=Z_2) \xrightarrow{\rho_1} H^{2n-1}(PM; Z_2).$$

Then the relation $\rho_2 i_{\sharp} \theta(x, y) = v^{n-1} y$ follows from Propositions 2.4, 1.3(1) and (2.1). Therefore, by (2.6-8), we have the equalities

$$I(a, b, c) = b if n \equiv 1(4) and w_1 = 0,$$

$$I(a, b) \equiv b(2) if n \equiv 3(4) and w_1 = 0,$$

$$I(a, b) = b if n \equiv 1(2) and w_1 \neq 0.$$

These and (2.9) show the desired results on I. The results on E is proved by R. D. Ridgon [11, Th. 11.11 and Th. 11.26]. q.e.d.

§3. $j^{\sharp}: F_i(\xi)/F_{i+1}(\xi) \rightarrow F_i(\eta)/F_{i+1}(\eta)$ in Proposition 1.3

In this and next sections, we investigate the homomorphism

$$J_{2n-1} = j^* \colon [M \subset R^{2n-1}] = [M^*, P^{2n-2}; \zeta] \longrightarrow [M \subseteq R^{2n-1}] = [PM, P^{2n-2}; \eta]$$

in Proposition 1.3(2), which preserves the filtrations

$$[M^*, P^{2n-2}; \xi] = F_0(\xi) \supset F_1(\xi) \supset 0, \quad [PM, P^{2n-2}; \eta] = F_0(\eta) \supset F_1(\eta) \supset 0$$

given in Proposition 1.2.

LEMMA 3.1. $j^* = j^*$: $F_1(\zeta) = H^{2n-1}(M^*; Z_2) \to F_1(\eta) = H^{2n-1}(PM; Z_2)$ is trivial.

PROOF. This is an immediate consequence of E. Thomas [12, Prop. 2.9(c)]. q. e. d.

Next, we study the homomorphism

$$j^{z} = j^{*} : F_{0}(\xi)/F_{1}(\xi) = H^{2n-2}(M^{*}; Z[v])$$
$$\longrightarrow F_{0}(\eta)/F_{1}(\eta) = H^{2n-2}(PM; Z[v]),$$

where the range $H^{2n-2}(PM; Z[v])$ is given in Proposition 2.4. Hereafter, we use essentially Propositions 5.2-3 given in §5 below.

LEMMA 3.2. (1) If n is even and $w_1 = 0$, then j^* is surjective. (2) If n is even and $w_1 \neq 0$, then $\operatorname{Im} j^* = \theta \rho_2 H^{n-1}(M; Z) = \theta K$. (3) If n is odd and $w_1 = 0$, then $\operatorname{Im} j^* = \theta \beta_2 H^{n-2}(M; Z_2)$.

(4) If n is odd and $w_1 \neq 0$, then $\operatorname{Im} j^* = \theta H^{n-1}(M; Z[w_1])$.

PROOF. We prove the lemma by using the exact sequence

$$(3.3) \quad \cdots \longrightarrow H^{2n-2}(M^*; Z[v]) \xrightarrow{j^*} H^{2n-2}(PM; Z[v])$$

$$\stackrel{\hat{o}}{\longrightarrow} H^{2n-1}(\Lambda^2 M, \Delta M; Z[v]) \xrightarrow{i^*} H^{2n-1}(M^*; Z[v])$$

$$\stackrel{j^*}{\longrightarrow} H^{2n-1}(PM; Z[v]) \xrightarrow{\hat{o}} H^{2n}(\Lambda^2 M, \Delta M; Z[v]) \longrightarrow 0$$

in Lemma 1.4. In this sequence, the following is given by R. D. Rigdon [11, Prop. 11.9 and Prop. 11.19]:

(3.4)
$$H^{2n-1}(M^*; Z[v]) \cong H^{n-1}(M; Z)$$
 if n is even and $w_1 = 0$,
 $\cong Z + K$ if n is odd and $w_1 \neq 0$,
 $\cong H^{n-1}(M; Z_2)$ otherwise.

(1) Assume that *n* is even and $w_1 = 0$. Then for any $z \in H^{n-1}(M; Z)$, we have $\delta \tilde{\beta}_2(v^{n-2}z') = \tilde{\beta}_2 \delta(v^{n-2}z') = \tilde{\beta}_2(v^{n-1}Az') = \tilde{\beta}_2(Az'Az' + v^{n-2}A(Sq^1z')) = \tilde{\beta}_2 \tilde{\rho}_2 \Delta(z, z) = 0$ ($\rho_2 z = z'$) by Lemma 1.5 and [7, Lemma 10]. Therefore the first δ in (3.3) is trivial by Proposition 2.4 (1) and so (1) is shown.

(2) Assume that n is even and $w_1 \neq 0$. Then the exact sequence (3.3) is equal to

$$H^{2n-2}(M^*; \mathbb{Z}[v]) \xrightarrow{j^*} \theta K + \mathbb{Z}_2 \xrightarrow{\hat{o}} K + \mathbb{Z}_4 \longrightarrow K + \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \longrightarrow 0$$

by Proposition 2.4(1), (3.4) and Propositions 5.2-3, and so $\text{Im } \delta = Z_2$. Now $\delta \theta K = 0$ is proved in the above case. Thus $\text{Im } j^* = \text{Ker } \delta = \theta K$.

(3) Assume that n is odd and $w_1 = 0$. Then (3.3) induces an exact sequence

(3.5)
$$H^{2n-2}(M^*; Z[v]) \xrightarrow{j^*} \theta G + Z_2 \langle \tilde{\beta}_2(v^{n-3}M) \rangle$$

 $\xrightarrow{\hat{\theta}} G + Z_2 \langle \tilde{\beta}_2(v^{n-2}\Lambda M) \rangle \xrightarrow{i^*} K = \rho_2 G, \ (G \cong H^{n-1}(M; Z)),$

by Proposition 2.4(2), (3.4) and Propositions 5.2-3. Here the relation

$$\delta\tilde{\beta}_2(v^{n-3}M) = \tilde{\beta}_2(v^{n-2}\Lambda M)$$

holds by Lemma 1.5(3), and the relation

$$(3.6) \qquad \qquad \delta(\theta G) \subset G$$

holds, because $\tilde{\rho}_2 \tilde{\beta}_2 (v^{n-2} \Lambda M) = v^{n-1} \Lambda M$ in $H^{2n-1}(\Lambda^2 M, \Delta M; Z_2)$ by [7, Lemma

10] and $\tilde{\rho}_2 \delta \theta G = \delta \tilde{\rho}_2 \theta G = 0$ by Lemma 1.5 and Proposition 2.4(2). Therefore the sequence (3.5) induces an exact sequence

$$(3.5)' \qquad H^{2n-2}(M^*; Z[v]) \xrightarrow{\theta^{-i}j^*} G \xrightarrow{f} G \xrightarrow{g} K \longrightarrow 0, \quad (f = \delta\theta, g = i^*).$$

Here $K = \rho_2 G = G/2G$. Hence g(2G) = 0 and g induces an epimorphism $g': G/2G \to K$, which is isomorphism because G/2G is finite. Therefore 2G = Ker g = Im f. Since rank G = rank 2G and 2G = Im f, we see that

Ker $f \subset T$ and f(T) = 2T (T is the torsion subgroup of G)

by noticing that the torsion subgroup of 2G is equal to 2T. Thus f determines an epimorphism

$$f \mid T: T \longrightarrow 2T.$$

If we can prove

(3.7)
$$_{2}G (= \{x \in G \mid 2x = 0\}) = \beta_{2}H^{n-2}(M; Z_{2}) \subset \text{Ker } f \text{ in } (3.5)',$$

then $_2T(=\{x \in T | 2x=0\})= _2G \subset \text{Ker}(f|T)$ an f|T induces an epimorphism $T/_2T \rightarrow 2T$, which is isomorphic because the orders of the two groups are finite and coincident with each other. Hence $\text{Ker} f=_2G$ and Lemma 3.2(3) is proved.

To show (3.7), we notice that $\theta(\beta_2 H^{n-2}(M; Z_2)) \subset \tilde{\beta}_2 H^{2n-3}(PM; Z_2)$. For any element $X \in \theta(\operatorname{Im} \beta_2)$, there is an element $Y \in H^{2n-3}(PM; Z_2)$ such that $\tilde{\beta}_2 Y = X$ and

$$Y = \lambda v^{n-3}M + v^{n-2}x + (v^{n-1}y + v^{n-3}Sq^2y)$$

for some $\lambda \in \mathbb{Z}_2$, $x \in H^{n-1}(M; \mathbb{Z}_2)$ and $y \in H^{n-2}(M; \mathbb{Z}_2)$ by (2.1). For $x \in H^{n-1}(M; \mathbb{Z}_2)$, there is a relation $\tilde{\rho}_2 \tilde{\beta}_2(v^{n-3}x) = v^{n-2}x$ and so $\tilde{\beta}_2(v^{n-2}x) = 0$. Further the relation $\delta \tilde{\beta}_2(v^{n-1}y + v^{n-3}Sq^2y) = 0$ for $y \in H^{n-2}(M; \mathbb{Z}_2)$ follows from Lemma 1.5 and [7, Th. 11]. Thus $\delta X = \delta \tilde{\beta}_2 Y = \lambda \tilde{\beta}_2(v^{n-2}\Lambda M)$ and so $\tilde{\rho}_2 \delta X = \lambda v^{n-1}\Lambda M$. This and (3.6) imply $\lambda = 0$ and so $\delta X = 0$. This completes the proof of (3.7).

(4) Assume that *n* is odd and $w_1 \neq 0$. Then $\tilde{\rho}_2$: $H^{2n-1}(\Lambda^2 M, \Delta M; Z[v]) \rightarrow H^{2n-1}(\Lambda^2 M, \Delta M; Z_2)$ is monomorphic by Proposition 5.3(iv). Further, by Lemma 1.5 and Proposition 2.4, we see that

$$\tilde{\rho}_2 \delta \tilde{\beta}_2(v^{n-3}M) = v^{n-1} \Lambda M, \quad \tilde{\rho}_2 \delta \theta(x) = 0 \quad \text{for} \quad x \in H^{n-1}(M; Z[w_1]).$$

Therefore Im $j^* = \text{Ker } \delta = \theta H^{n-1}(M; Z[w_1]).$

q. e. d.

§4.
$$J_{2n-1}: [M \subset R^{2n-1}] \rightarrow [M \subseteq R^{2n-1}]$$

This section is a continuation of §3 and we will determine $\text{Im } J_{2n-1}$ by using Proposition 1.3(2).

If $F_1(\eta) = 0$, then $\lim J_{2n-1} = \lim (j^*: F_0(\xi)/F_1(\xi) \to F_0(\eta)/F_1(\eta))$ and so by Proposition 1.3(2), (2.6) and Lemma 3.2, we have the following

PROPOSITION 4.1. (1) If $n \equiv 0(4)$ and $w_1 = 0$, then $\text{Im } J_{2n-1} = [M \subseteq R^{2n-1}]$.

- (2) If $n \equiv 0(4)$ and $w_1 \neq 0$, then $\text{Im } J_{2n-1} = \theta \rho_2 H^{n-1}(M; Z) = \theta K$.
- (3) If $n \equiv 1(2)$ and $w_1 \neq 0$, then $\text{Im } J_{2n-1} = \theta H^{n-1}(M; Z[w_1])$.

In the rest of this section, we study J_{2n-1} in case when $n \equiv 1(2)$ and $w_1 = 0$, or $n \equiv 2(4)$. In these cases, $F_1(\eta) = H^{2n-1}(PM; Z_2)$ and we have to study the homomorphism

$$j_0^{\sharp}$$
: Ker $(j^{\sharp}: F_0(\xi)/F_1(\xi) \longrightarrow F_0(\eta)/F_1(\eta)) \longrightarrow \operatorname{Coker} (j^{\sharp}: F_1(\xi) \longrightarrow F_1(\eta))$

induced from $j^{\sharp}: (F_0(\xi), F_1(\xi)) \rightarrow (F_0(\eta), F_1(\eta))$. By Lemma 3.1,

Coker
$$(j^{\sharp}: F_1(\xi) \longrightarrow F_1(\eta)) = F_1(\eta) = H^{2n-1}(PM; Z_2) = Z_2$$
.

Further by the second half of Proposition 1.3(2),

$$\operatorname{Im} i_0^{\mathfrak{s}} = \operatorname{Im} \delta^{-1} \Theta$$

where

$$\Theta = Sq^2\tilde{\rho}_2 + (n-1)v^2\tilde{\rho}_2 \colon H^{2n-2}(\Lambda^2 M, \, \Delta M; \, Z[v]) \longrightarrow H^{2n}(\Lambda^2 M, \, \Delta M; \, Z_2) \,.$$

Because $H^{2n}(\Lambda^2 M, \Delta M; Z_2) = Z_2$,

(4.3) the homomorphism $\delta: H^{2n-1}(PM; \mathbb{Z}_2) \rightarrow H^{2n}(\Lambda^2 M, \Delta M; \mathbb{Z}_2)$ in (4.2) is an isomorphism.

We now assume that the integral cohomology groups $H^{i}(M; Z)$ for i=n, n-1 are given as in (5.1). Let K_i (i=1,..., 4) be the subgroups of $H^{2n-2}(\Lambda^2 M,$ ΔM ; Z₂) defined as follows:

$$\begin{split} K_1 &= \{ \Lambda \rho_2 x \Lambda \rho_2 y \, | \, x, \, y \in H^{n-1}(M; \, Z) \} \,, \\ K_2 &= \{ \Lambda \rho_2 x \Lambda M \, | \, x \in H^{n-2}(M; \, Z) \} \,, \, (M = \rho_2 M \text{ if } w_1 = 0) \,, \\ K_3 &= Z_2 \langle v^{n-2} \Lambda M \rangle \,, \\ K_4 &= \sum_{i=\alpha+1}^{\beta} Z_2 \langle \Lambda M \Lambda \rho_2 y_i + (r(i)/2) \Lambda M' \Lambda \rho_2 x_i \rangle \text{ if } w_1 \neq 0. \end{split}$$

LEMMA 4.4. With the above notation, $\tilde{\rho}_2 H^{2n-2}(\Lambda^2 M, \Delta M; Z[v])$ is

- (1) $\sum_{i=1}^{3} K_i$ if n is even and $w_1 = 0$,
- (2) $\sum_{i=1}^{4} K_i$ if n is even and $w_1 \neq 0$, (3) $K_1 + K_2$ if n is odd and $w_1 = 0$.

PROOF. (1) Assume that n is even and $w_1 = 0$. Then $H^{2n-2}(\Lambda^2 M, \Delta M; Z_2)$ is given by [7, Th. 11] as follows:

On the map defined by regarding embeddings as immersions

$$H^{2n-2}(\Lambda^2 M, \Delta M; Z_2) = K_1 + K_2 + K_3 + K_5$$

where

$$K_5 = \sum_{i=\alpha+1}^{\beta} Z_2 \langle \Lambda \rho_2 y_i \Lambda M \rangle.$$

By Lemma 1.5 and the relation $\tilde{\rho}_2 \tilde{\beta}_2 = Sq^1 + v$, we have the relations

$$\begin{split} \tilde{\rho}_2 &\Delta(x, y) = \Lambda \rho_2 x \Lambda \rho_2 y \quad \text{for} \quad x, y \in H^{n-1}(M; Z), \\ \tilde{\rho}_2 &\Delta(x, M) = \Lambda \rho_2 x \Lambda \rho_2 M = \Lambda \rho_2 x \Lambda M \quad \text{for} \quad x \in H^{n-2}(M; Z), \\ \tilde{\rho}_2 &\tilde{\beta}_2(v^{n-3} \Lambda M) = v^{n-2} \Lambda M, \\ \tilde{\beta}_2(\Lambda \rho_2 y_i \Lambda M) = \tilde{\beta}_2 \tilde{\rho}_2 \Delta(y_i, \rho_{r(i)} M) = (r(i)/2) \tilde{\beta}_{r(i)} \Delta(y_i, \rho_{r(i)} M), \end{split}$$

and so

$$K_1 + K_2 + K_3 \subset \tilde{\rho}_2 H^{2n-2}(\Lambda^2 M, \Delta M; Z[v]).$$

On the other hand, $(r(i)/2)\tilde{\beta}_{r(i)}\Delta(y_i, \rho_{r(i)}M)$ for $\alpha < i \le \beta$ form a base of $\tilde{\beta}_2 H^{2n-2}(\Lambda^2 M, \Delta M; Z_2)$ by Proposition 5.3(i). This completes the proof of (1).

(2) Assume that n is even and $w_1 \neq 0$. Then we have, in the same way as the above proof,

$$H^{2n-2}(\Lambda^2 M, \Delta M; Z_2) = \sum_{i=1}^4 K_i + K_6, \quad K_6 = \{\Lambda M' \Lambda x \, | \, x \in H^{n-1}(M; Z_2)\},\$$

and

$$K_1+K_3\subset \tilde{\rho}_2 H^{2n-2}(\Lambda^2 M,\, \varDelta M\,;\, Z[v])\,.$$

Moreover, we have the relations

$$\tilde{\rho}_2 \tilde{\beta}_2 (\Lambda \rho_2 x \Lambda M') = \Lambda \rho_2 x \Lambda M,$$

$$\tilde{\rho}_2 \tilde{\beta}_2 (\Lambda M' \Lambda \rho_2 y_i) = \Lambda M \Lambda \rho_2 y_i + (r(i)/2) \Lambda M' \Lambda \rho_2 x_i \quad \text{for} \quad \alpha < i \le \beta,$$

and so $K_2 + K_4 \subset \tilde{\rho}_2 H^{2n-2}(\Lambda^2 M, \Delta M; Z[v])$. On the other hand, we see that $\dim_{Z_2} \tilde{\beta}_2 H^{2n-2}(\Lambda^2 M, \Delta M; Z_2) = \beta + 1$ by Proposition 5.3(ii) and $\dim_{Z_2} K_6 = \beta + 1$. This implies (2).

(3) is obtained by the method similar to those of the above cases. q. e. d.

LEMMA 4.5. Im j_0^s ($\subset H^{2n-1}(PM; Z_2) = Z_2$) is given as follows:

(1) When $n \equiv 2(4)$ and $w_1 = 0$, $\text{Im } j_0^{\sharp} = 0$ if and only if $w_2 \rho_2 H^{n-2}(M; Z) = 0$.

(2) When $n \equiv 2(4)$ and $w_1 \neq 0$, $\text{Im } j_0^{\sharp} = 0$ if and only if $w_2 + w_1^2 = 0$.

(3) When $n \equiv 1(2)$ and $w_1 = 0$, $\text{Im } j_0^{\sharp} = 0$ if and only if $w_2 \rho_2 H^{n-2}(M; Z) = 0$.

PROOF. The $(Sq^2 + (n-1)v^2)$ -image of K_i (i=1,...,4) are easily obtained by using [7, Lemmas 7 and 10] as follows:

$$\begin{aligned} (Sq^{2} + (n-1)v^{2}) & (K_{1} + K_{3}) = 0, \\ (Sq^{2} + (n-1)v^{2})K_{2} &= \{\Lambda Sq^{2}\rho_{2}x\Lambda M \mid x \in H^{n-2}(M; Z)\}, \\ (Sq^{2} + v^{2}) & (\Lambda M\Lambda \rho_{2}y_{i} + (r(i)/2)\Lambda M'\Lambda \rho_{2}x_{i}) = \Lambda M\Lambda Sq^{2}\rho_{2}y_{i} \quad (\alpha < i \leq \beta). \end{aligned}$$

Using these relations and the well-known fact that $Sq^2x = (w_2 + w_1^2)x$ for $x \in H^{n-2}(M; \mathbb{Z}_2)$, we have

$$\Theta H^{2n-2}(\Lambda^2 M, \Delta M; Z[v]) = \{\Lambda w_2 \rho_2 x \Lambda M \mid x \in H^{n-2}(M; Z)\}$$

in cases (1) and (3),
$$= \{\Lambda (w_2 + w_1^2) x \Lambda M \mid x \in H^{n-2}(M; Z_2)\} \text{ in case (2)}.$$

This and (4.3) show the lemma.

We are now ready to determine Im J_{2n-1} for $n \equiv 1(2)$ and $w_1 = 0$, or $n \equiv 2(4)$.

PROPOSITION 4.6. (1) Assume that $n \equiv 2(4)$ and $w_1 = 0$. Then

$$\operatorname{Im} J_{2n-1} = \begin{cases} [M \subseteq R^{2n-1}] & \text{if } w_2 \rho_2 H^{n-2}(M; Z) \neq 0, \\ \theta H^{n-1}(M; Z_2) & \text{otherwise.} \end{cases}$$

(2) Assume that $n \equiv 2(4)$ and $w_1 \neq 0$. Then

$$\operatorname{Im} J_{2n-1} = \begin{cases} \theta K + Z_2 & \text{if } w_2 + w_1^2 \neq 0, \\ \theta K & \text{otherwise.} \end{cases}$$

(3) Assume that
$$n \equiv 1(2)$$
 and $w_1 = 0$. Then

$$Im J_{2n-1} = \theta \beta_2 H^{n-2}(M; Z_2) \qquad if \quad w_2 \rho_2 H^{n-2}(M; Z) = 0,$$

= $\theta \beta_2 H^{n-2}(M; Z_2) + 0 + Z_2 \qquad if \quad n \equiv 1(4) \quad and \quad w_2 \rho_2 H^{n-2}(M; Z) \neq 0,$
= $\theta \beta_2 H^{n-2}(M; Z_2) + Z_2 \qquad otherwise.$

PROOF. This is an immediate consequence of Lemmas 3.1, 3.2, 4.5 and (2.7). q.e.d.

Propositions 4.1 and 4.6 give the results on J_{2n-1} in Main Theorem. Thus Main Theorem in the introduction is proved.

§5. Appendix on $H^i(\Lambda^2 M, \Delta M; Z[v])$ for $i \ge 2n-3$

In the previous sections, the cohomology of $(\Lambda^2 M, \Delta M)$ plays an important part. L. L. Larmore [7] investigated it but the author can not understand the proof of [7, Th. 20]. Therefore we should like to try to describe the cohomology

470

q. e. d.

groups $H^{2n}(\Lambda^2 M, \Delta M; Z)$ and $H^i(\Lambda^2 M, \Delta M; Z[v])$ for $i \ge 2n-3$ by using the notations and the results stated in [7, pp. 908–915]. We note that Propositions 5.4-5 for i=2n-2, 2n-3 are not used in this paper and are prepared for the forthcoming paper [14].

Let *M* be a closed connected *n*-manifold and assume that

(5.1)
$$H^{n}(M; Z) = Z\langle M \rangle \text{ if } w_{1} = 0, \quad = Z_{2}\langle \beta_{2}M' \rangle (Sq^{1}M' = M) \text{ if } w_{1} \neq 0,$$
$$H^{m}(M; Z) = \sum_{i=1}^{\gamma(m)} Z_{r(m,i)}\langle x_{m,i} \rangle \text{ (direct sum) for } m \leq n-1,$$
$$x_{m,i} = \beta_{r(m,i)}y_{m,i} (y_{m,i} \in H^{m-1}(M; Z_{r(m,i)}) \text{ for } \alpha(m) < i \leq \gamma(m),$$

where the order r(m, i) is infinite for $1 \le i \le \alpha(m)$, a power of 2 for $\alpha(m) < i \le \beta(m)$ and a power of an odd prime for $\beta(m) < i \le \gamma(m)$, and if $\alpha(m) < i < j$ then either (r(m, i), r(m, j)) = 1 or r(m, i) | r(m, j) holds.

Furthermore, for the simplicity,

(5.1)' denote
$$\alpha(m)$$
, $\beta(m)$, $\gamma(m)$, $r(m, i)$, $x_{m,i}$ and $y_{m,i}$ in (5.1) respectively by

 α , β , γ , r(i), x_i and y_i when m = n - 1, α' , β' , γ' , r'(i), x'_i and y'_i when m = n - 2.

Then we have the following propositions, where (i)'s,..., (iv)'s hold respectively when

- (i) *n* is even and $w_1 = 0$, (ii) *n* is even and $w_1 \neq 0$,
- (iii) *n* is odd and $w_1 = 0$, (iv) *n* is odd and $w_1 \neq 0$.

PROPOSITION 5.2. (1) $H^{2n}(\Lambda^2 M, \Delta M; \mathbb{Z}[v])$ is

- (i) $Z_2 \langle \tilde{\beta}_2(v^{n-1}\Lambda \rho_2 M) \rangle$, (ii) $Z_2 \langle \tilde{\beta}_2(v^{n-1}\Lambda M) \rangle$,
- (iii) $Z\langle \Delta(M, M) \rangle$, (iv) $Z_2 \langle \tilde{\beta}_2(\Lambda M' \Lambda M) \rangle$.
- (2) $H^{2n}(\Lambda^2 M, \Delta M; Z)$ is
- (i) $Z\langle \Lambda M \Lambda M \rangle$, (ii) $Z_2\langle \beta_2(\Lambda M' \Lambda M) \rangle$,
- (iii) $Z_2 \langle \beta_2(v^{n-1} \Lambda \rho_2 M) \rangle$, (iv) $Z_2 \langle \beta_2(v^{n-1} \Lambda M) \rangle$.

PROPOSITION 5.3. $H^{2n-1}(\Lambda^2 M, \Delta M; Z[v])$ is

- (i) G, (ii) $Z_4 \langle (1/2)\tilde{\beta}_2(v^{n-1}\Lambda M') \rangle + K$,
- (iii) $Z_2 \langle \tilde{\beta}_2(v^{n-2}\Lambda \rho_2 M) \rangle + G$,
- (iv) $Z_2 \langle \tilde{\beta}_2(v^{n-2}\Lambda M) \rangle + K$, and $\tilde{\rho}_2$: $H^{2n-1}(\Lambda^2 M, \Delta M; Z[v]) \to H^{2n-1}(\Lambda^2 M, \Delta M; Z_2)$ is monomorphic,

where

$$\begin{split} G &= \sum_{i=1}^{a} Z\langle \Delta(x_{i}, M) \rangle + \sum_{i=a+1}^{\gamma} Z_{r(i)} \langle \tilde{\beta}_{r(i)} \Delta(y_{i}, \rho_{r(i)}M) \rangle \; (\cong H^{n-1}(M; Z)), \\ K &= \sum_{i=1}^{\beta} Z_{2} \langle \tilde{\beta}_{2} \Delta(M', \rho_{2}x_{i}) \rangle \; (\cong \mathrm{Im} \; (\rho_{2} \colon H^{n-1}(M; Z) \longrightarrow H^{n-1}(M; Z_{2}))) \\ \\ \mathrm{PROPOSITION} \; 5.4. \quad H^{2n-2} \; (\Lambda^{2}M, \; \Delta M; \; Z[v]) \; is \\ (i) \quad Z_{2} \langle \tilde{\beta}_{2}(v^{n-3}\Lambda\rho_{2}M) \rangle \; + \; G_{1} \; + \; G_{2} \; + \; G_{3} \; + \; G_{4} \; + \; G_{6}, \\ (ii) \quad Z_{2} \langle \tilde{\beta}_{2}(v^{n-3}\Lambda M) \rangle \; + \; G_{1} \; + \; G_{2} \; + \; G_{3} \; + \; G_{4} \; + \; G_{7}, \\ (iii) \quad G_{1} \; + \; G_{3} \; + \; G_{5} \; + \; G_{6}, \\ (iv) \quad Z_{2} \langle \tilde{\beta}_{2}(v^{n-2}\Lambda M') \rangle \; + \; G_{1} \; + \; G_{3} \; + \; G_{5} \; + \; G_{7}, \end{split}$$

where

$$\begin{split} G_{1} &= \sum_{1 \leq i < j \leq \alpha} Z \langle \Delta(x_{i}, x_{j}) \rangle, \qquad G_{2} = \sum_{i=1}^{\alpha} Z \langle \Delta(x_{i}, x_{i}) \rangle, \\ G_{3} &= \left(\sum_{1 \leq i \leq \alpha < j \leq \gamma} + \sum_{\alpha < j < i \leq \gamma} \right) Z_{r(j)} \langle \tilde{\beta}_{r(j)} \Delta(y_{j}, \rho_{r(j)} x_{i}) \rangle, \\ G_{4} &= \sum_{i=\alpha+1}^{\gamma} Z_{r(i)} \langle \tilde{\beta}_{r(i)} \Delta(y_{i}, \rho_{r(i)} x_{i}) \rangle, \qquad G_{5} = \sum_{i=1}^{\beta} Z_{2} \langle \tilde{\beta}_{2}(v^{n-2} \Lambda \rho_{2} x_{i}) \rangle, \\ G_{6} &= \sum_{k=1}^{\alpha} Z \langle \Delta(x_{k}', M) \rangle + \sum_{k=\alpha'+1}^{\gamma'} Z_{r'(k)} \langle \tilde{\beta}_{r'(k)} \Delta(y_{k}', \rho_{r'(k)} M) \rangle (\cong H^{n-2}(M; Z)), \\ G_{7} &= \sum_{k=1}^{\beta'} Z_{2} \langle \tilde{\beta}_{2} \Delta(M', \rho_{2} x_{k}') \rangle + \sum_{i=\alpha+1}^{\beta} Z_{2} \langle \tilde{\beta}_{2} \Delta(M', \rho_{2} y_{i}) \rangle (\cong H^{n-2}(M; Z_{2})). \end{split}$$

PROPOSITION 5.5. $\tilde{\rho}_2 H^{2n-3}(\Lambda^2 M, \Delta M; Z[v])/\delta H^{2n-4}(PM; Z_2)$ is isomorphic to

(i)
$$H$$
, (ii) $H + H_4$, (iii) $H + H_5$, (iv) $H + H_4 + H_5$,

where

$$\begin{split} H &= H_1 + H_2 + H_3, \\ H_1 &= \begin{cases} \left\{ \Lambda \rho_2 x \Lambda \rho_2 M \, | \, x \in H^{n-3}(M; Z) \right\} & \text{if } w_1 = 0, \\ \left\{ \Lambda \rho_2 x \Lambda M \, | \, x \in H^{n-3}(M; Z) \right\} & \text{if } w_1 \neq 0, \end{cases} \\ H_2 &= \left\{ \Lambda \rho_2 x \Lambda \rho_2 y \, | \, x \in H^{n-2}(M; Z), \, y \in H^{n-1}(M; Z) \right\}, \\ H_3 &= \sum_{\alpha < i < j \le \beta} Z_2 \langle \Lambda \rho_2 x_i \Lambda \rho_2 y_j + (r(j)/r(i)) \Lambda \rho_2 y_i \Lambda \rho_2 x_j \rangle, \\ H_4 &= \sum_{k=\alpha'+1}^{\beta'} Z_2 \langle \Lambda \rho_2 y_k' \Lambda M + (r'(k)/2) \Lambda \rho_2 x_k' \Lambda M' \rangle, \\ H_5 &= \sum_{i=\alpha+1}^{\beta} Z_2 \langle \Lambda \rho_2 y_i \Lambda \rho_2 x_i \rangle. \end{split}$$

To prove these propositions, we use the following results frequently: (5.6) ([7, p. 914]) For any cyclic group G, there is an exact sequence $\cdots \longrightarrow H^{i-1}(\Lambda^2 M, \Delta M; G) \xrightarrow{V} H^i(\Lambda^2 M, \Delta M; G[v])$ $\xrightarrow{\pi^*} H^i(M^2, \Delta M; G) \longrightarrow H^i(\Lambda^2 M, \Delta M; G) \longrightarrow \cdots,$

where $\pi: (M^2, \Delta M) \rightarrow (\Lambda^2 M, \Delta M)$ is the natural projection, v is the first Stiefel-Whitney class of the double covering $M^2 - \Delta M \rightarrow \Lambda^2 M - \Delta M = M^*$ and $V = \tilde{\beta}_2(1) \in H^1(M^*; \mathbb{Z}[v])$.

(5.7) For any positive integer p, there is the Bockstein exact sequence

(5.8) ([7, Remark 13]) For any odd prime $p, \pi^*: H^*(\Lambda^2 M, \Delta M; Z_p[v]) \rightarrow H^*(M^2, \Delta M; Z_p)$ is monomorphic and

$$Im \pi^* = \{x \mid x \in H^*(M^2, \Delta M; Z_n), t^*x = -x\},\$$

where t: $(M^2, \Delta M) \rightarrow (M^2, \Delta M)$ is a map defined by t(x, y) = (y, x).

(5.9) (cf. [7, p. 914]) For
$$x \in H^{r}(M; Z_{t})$$
 and $y \in H^{s}(M; Z_{t})$ $(t \leq \infty)$,

$$\pi^* \Delta(x, y) = x \otimes y - (-1)^{rs} y \otimes x \quad and \quad \pi^* \Lambda x = x \otimes 1 - 1 \otimes x,$$

and moreover the order of $\Delta(x, y)$ for $x \neq y$ is the greatest common factor of those of x and y, and the order of Λx is equal to that of x.

We now sketch the proofs of Propositions 5.2–5. By (5.6), the following relation holds:

rank $H^{i}(\Lambda^{2}M, \Delta M; Z[v]) + \operatorname{rank} H^{i}(\Lambda^{2}M, \Delta M; Z) = \operatorname{rank} H^{i}(M^{2}, \Delta M; Z).$

By using (5.9) and Lemma 1.5(1), we can choose generators (mod torsions) of $H^{i}(\Lambda^{2}M, \Delta M; \mathbb{Z}[v])$ and $H^{i}(\Lambda^{2}M, \Delta M; \mathbb{Z})$. In particular we have

LEMMA 5.10. There hold the following congruences mod torsions:

(1)
$$H^{2n}(\Lambda^2 M, \Delta M; Z) \equiv \begin{cases} Z \langle \Lambda M \Lambda M \rangle & \text{if } n \text{ is even and } w_1 = 0, \\ 0 & \text{otherwise.} \end{cases}$$

(2)
$$H^{2n}(\Lambda^2 M, \Delta M; Z[v]) \equiv \begin{cases} Z\langle \Delta(M, M) \rangle & \text{if } n \text{ is odd and } w_1 = 0, \\ 0 & \text{otherwise.} \end{cases}$$

(3)
$$H^{2n-1}(\Lambda^2 M, \Delta M; Z[v]) \equiv \begin{cases} \sum_{i=1}^{a} Z\langle \Delta(x_i, M) \rangle & \text{if } w_1 = 0, \\ 0 & \text{if } w_1 \neq 0. \end{cases}$$

(4) $H^{2n-2}(\Lambda^2 M, \Delta M; \mathbb{Z}[v])$ is congruent mod torsion to the direct sum of G_1 and

$$G_2 \qquad if n is even,$$

$$\sum_{k=1}^{\alpha'} Z\langle \Delta(x'_k, M) \rangle \qquad if \quad w_1 = 0.$$

To determine the odd torsion subgroup of $H^i(\Lambda^2 M, \Delta M; Z[v])$, let p be an odd prime. Then the Z_p -base of $H^i(\Lambda^2 M, \Delta M; Z_p[v])$ can be determined by (5.8-9). Thus the p-primary component and its generators of $H^i(\Lambda^2 M, \Delta M; Z[v])$ are determined by the exact sequence (5.7) for odd prime p and [7, Remark 16]. In particular we have

LEMMA 5.11. Denote by T_o^i the odd torsion subgroup of $H^i(\Lambda^2 M, \Delta M; \mathbb{Z}[v])$. Then

(1)
$$T_o^{2n} = 0;$$

(2) $T_o^{2n-1} = \begin{cases} (G)_o = \sum_{i=\beta+1}^{\gamma} Z_{r(i)} \langle \tilde{\beta}_{r(i)} \Delta(y_i, \rho_{r(i)} M) \rangle & if \quad w_1 = 0, \\ 0 & if \quad w_1 \neq 0; \end{cases}$

(3) T_{0}^{2n-2} is the direct sum of

$$(G_3)_o = \left(\sum_{1 \le i \le \alpha, \beta < j \le \gamma} + \sum_{\beta < j < i \le \gamma}\right) Z_{r(j)} \langle \tilde{\beta}_{r(j)} \Delta(y_j, \rho_{r(j)} x_i) \rangle$$

and

$$\begin{aligned} (G_4)_o &= \sum_{i=\beta+1}^{\gamma} Z_{r(i)} \langle \tilde{\beta}_{r(i)} \Delta(y_i, \rho_{r(i)} x_i) \rangle & \text{if } n \text{ is even,} \\ (G_6)_o &= \sum_{k=\beta'+1}^{\gamma'} Z_{r'(k)} \langle \tilde{\beta}_{r'(k)} \Delta(y'_k, \rho_{r'(k)} M) \rangle & \text{if } w_1 = 0. \end{aligned}$$

The proof of (1) of Proposition 5.2 is given by using Lemmas 5.10–11, (5.7) for p=2 and [7, Th. 11], and that of (2) is given by using the ordinary Bockstein exact sequence instead of (5.7).

In the rest of this section, we study the 2-primary components of $H^{i}(\Lambda^{2}M, \Delta M; Z[v])$ for $2n-3 \le i \le 2n-1$. First we consider the case (ii) *n* is even and $w_{1} \ne 0$. By (5.7) for p=2, Lemmas 5.10-11 and [7, Th. 11], we have

$$H^{2n-1}(\Lambda^2 M, \Delta M; Z[v]) = K + Z_s \left(K = \sum_{i=1}^{\beta} Z_2 \langle \bar{\beta}_2 \Delta(M', \rho_2 x_i) \rangle\right),$$

$$\tilde{\rho}_2 Z_s = Z_2 \langle v^{n-1} \Lambda M + \Lambda M' \Lambda M \rangle, \text{ for some integer } s \ge 2.$$

In the exact sequence (3.3), both groups $H^{2n-2}(PM; Z[v])$ and $H^{2n-1}(M^*; Z[v])$ are isomorphic to $H^{n-1}(M; Z_2)$ by Proposition 2.4 and (3.4) and so $s \leq 4$. On the other hand,

$$\tilde{\rho}_2 \tilde{\beta}_2 H^{2n-2}(\Lambda^2 M, \Delta M; Z_2) \ni v^{n-1} \Lambda M + \Lambda M' \Lambda M$$

follows briefly. Thus $s \ge 4$ and so s = 4. Moreover by (5.7) for p = 2, (5.9) and Lemmas 1.5 and 5.10, we see that

$$Z_{s} = Z_{4} \langle (1/2) \tilde{\beta}_{2}(v^{n-1} \Lambda M') \rangle,$$

and

where s(j) is the order of $\Delta(x_j, x_j)$. As for the element $\Delta(x_j, x_l)$, if $i \neq j$ then $\pi^* \tilde{\beta}_{r(j)} \Delta(y_j, \rho_{r(j)} x_l) = \pi^* \Delta(x_j, x_l)$ by (5.9) and hence

$$\beta_{r(j)} \Delta(y_j, \rho_{r(j)} x_i) = \Delta(x_j, x_i) + V X_{j,i} \text{ for some } X_{j,i} \in H^{2n-3}(\Lambda^2 M, \Delta M; Z)$$

by (5.6). Further we see easily that

$$\tilde{\rho}_2 \beta_{r(j)} \Delta(y_j, \rho_{r(j)} x_i) = \Lambda \rho_2 x_j \Lambda \rho_2 x_i + v \rho_2 X_{j,i} \neq 0$$

by Lemma 1.5. Therefore we can replace $\Delta(x_j, x_i)$ by $\tilde{\beta}_{r(j)}\Delta(y_j, \rho_{r(j)}x_i)$. If i=j and r(j)=2, then

$$\tilde{\rho}_2 \beta_2 \Delta(y_j, \rho_2 x_j) = \Lambda \rho_2 x_j \Lambda \rho_2 x_j = \tilde{\rho}_2 \Lambda(x_j, x_j)$$

by Lemma 1.5, and so s(j)=2 and $\Delta(x_j, x_j)$ can be replaced by $\tilde{\beta}_2 \Delta(y_j, \rho_2 x_j)$. If i=j and $r(j) \ge 4$, then we see easily that

$$\tilde{\beta}_{r(j)} \Delta(y_j, \rho_{r(j)} x_j) = \Delta(x_j, x_j) + V Y_j \quad (Y_j \in H^{2n-3}(\Lambda^2 M, \Delta M; Z))$$

by (5.6) and (5.9), and that

$$\tilde{\beta}_2(\Lambda \rho_2 y_i \Lambda \rho_2 x_i) \neq 0$$

by (5.7) for p=2. Using Lemma 1.5 and the relation $\tilde{\beta}_2 \tilde{\rho}_2 = (r/2)\tilde{\beta}_r$: $H^{i-1}(\Lambda^2 M, \Delta M; Z_r[v]) \rightarrow H^i(\Lambda^2 M, \Delta M; Z[v])$, we see that

$$(r(j)/2)\beta_{r(j)}\Delta(y_j,\,\rho_{r(j)}x_j)=\beta_2\tilde{\rho}_2\Delta(y_j,\,\rho_{r(j)}x_j).$$

The above three relations imply that s(j)=r(j) and $\Delta(x_j, x_j)$ can be replaced by $\tilde{\beta}_{r(j)}\Delta(y_j, \rho_{r(j)}x_j)$. This completes the proofs of (ii)'s of Propositions 5.3-4. The proof of Proposition 5.5(ii) is given by Lemma 1.5(3) and (5.7) for p=2 immediately.

The proofs of (i)'s, (iii)'s and (iv)'s of Propositions 5.3-5 are similar to, but simpler than, those of (ii)'s except the results concerning H_5 of Proposition 5.5 for odd n.

Let n be odd. By simple calculations, using Lemma 1.5, Proposition 5.4 and (5.9), we see that

$$\tilde{\beta}_2(\Lambda \rho_2 y_j \Lambda \rho_2 x_j) \in \operatorname{Ker} \pi^* \qquad (\subset H^{2n-2}(\Lambda^2 M, \Delta M; Z[v]))$$

and

Ker
$$\pi^* = \{ \tilde{\beta}_2(v^{n-2}\Lambda x) \mid x \in H^{n-1}(M; \mathbb{Z}_2) \}.$$

This implies that there is an element $X_1 \in H^{n-1}(M; \mathbb{Z}_2)$ such that

$$\Lambda \rho_2 y_i \Lambda \rho_2 x_i + v^{n-2} \Lambda X_i \in \operatorname{Im} \tilde{\rho}_2.$$

Using this result, Lemma 1.5(3) and (5.7) for p=2, we have Proposition 5.5(iii)-(iv) completely.

References

- [1] D. R. Bausum, Embeddings and immersions of manifolds in Euclidean space, Trans. Amer. Math. Soc., 213 (1975), 263-303.
- [2] J. C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc., 133 (1968), 447–475.
- [3] A. Haefliger, Plongements de variétés dans le domaine stable, Séminaire Bourbaki 1962/ 63, nº 245.
- [4] A. Haefliger and M. W. Hirsch, *Immersions in the stable range*, Ann. of Math., 75 (1962), 231-241.
- [5] and and and an one of the existence and classification of differentiable embeddings, Topology, 2 (1963), 129–135.
- [6] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276.
- [7] L. L. Larmore, The cohomology of (Λ²X, ΔX), Canad. J. Math., 27 (1973), 908-921.
- [8] L. L. Larmore and R. D. Rigdon, Enumerating immersions and embeddings of projective spaces, Pacific J. Math., 64 (1976), 471-492.
- [9] L. L. Larmore and E. Thomas, Group extensions and principal fibrations, Math. Scand., 30 (1972), 227-248.
- [10] and , Group extensions and twisted cohomology theories, Illinois J. Math., 17 (1973), 397–410.
- [11] R. D. Rigdon, Immersions and embeddings of manifolds in Euclidean space, Thesis, Univ. of California at Berkeley, 1970.
- [12] E. Thomas, Embedding manifolds in Euclidean space, Osaka J. Math., 13 (1976), 163-186.
- [13] T. Yasui, The enumeration of embeddings of lens spaces and projective spaces, Hiroshima Math. J., 8 (1978), 235-253.
- [14] ———, Enumerating embeddings of n-manifolds in (2n-1)-dimensional Euclidean space, preprint.

Department of Mathematics, Faculty of Education, Yamagata University