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ABSTRACT

Robot manipulator joints with only a single state sensor (either in position or in velocity) are limited

in their ability to determine both state variables (in position and in velocity). Also, if the single sensor

fails, the robot becomes uncontrollable. In the present paper, we propose a method which efficiently

uses multi—sensor information to obtain a more precise description of joint position and velocity, and

such a method allows for a robust control system free from the affects of spurious sensor observa

tion, one which is impervious to single sensor failure. We employ an encoder and a tachometer for

each joint as sensors. A technique is described for combining both uncertain sensor observations with

an observation model to provide an optimal estimation of both state variables. The estimation method

does not result in more than one sample period of delay in time, as the estimator does not use a time

series analysis. In order to detect a sensor failure, we use a cross—checking hypothesis test for re

dundant sensor information. In addition, we can detect a control failure by including the command in

formation of the control in the hypothesis test. The algorithm for implementing the estimation and the

hypothesis test is presented. Simulation results demonstrate that the technique works well.

1. INTRODUCTION

Although, many robot control schemes have been proposed to provide for more exact position and

force control, the actuator sensor system itself has not been given much attention. It is, however, the

basis for any form of robot control. These actuator observation are noisy and often spurious. An en

coder and a tachometer, which are used often as the robot joint sensors have both quantizing and rip

ple noise, respectively. Further, the information from them is not precise enough over their entire

range of operation needed for robot control. In order to get noise—free data, filters have been used.

For example, Suehiro and Takase [l] applied a first—order lag element digital filter into the veloc
ity feedback loop to stabilize the servo control around the resonance frequency. However, any such

filter introduces a time delay which may cause both control error and control instability. Our

approach is to use redundant sensor information sources. The joint position or the velocity can be

obtained from both of the information sources by either differentiation or integration. If each joint

has two or more sensors the system can be considered as a redundant sensor system. By combining

the information from many different sources we can obtain a more accurate information of the joint

state without causing any time delay.
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If the sensor of a robot actuator is the only sensor and it fails then it is no longer possible to

control the joint and a catastrophic accident can occur. With only one sensor, there is no way to avoid

this kind of problem. Workers cannot go safely into the operating area of the robot. If we can detect a

sensor failure and can continue to move the manipulator to a safe position, then the manipulator will

become much safer. In order to this, it is important to use a redundant sensor system. By cross

checking the redundant sensor information sources, it is possible to detect the failure of any one sen

sor. Moreover, the information received from the failed sensor can be rejected from the estimation of

joint state. We will be able to continue to control the manipulator until we get to a safe position to

stop the manipulator.

There have been a number of multi—sensor robot systems described in the literature. These pap

ers [2—4 ] investigate the manner in which multi—sensor system may be used to gain information
about the environment. Allen and Bajcsy [2] have employed stereo edges to match objects to a fixed
world model, then using a tactile probe to investigate occluded parts. This technique has essentially

used a heuristic process to bring two different information sources together, which is difficult to ex

tend consistently to general sensors, and provides no basis for representing uncertainty of observa

tions. Durrant—Whyte [3, 4] has presented a theory and methodology for integrating and propagat
ing geometric sensor observations to obtain knowledge about an uncertain geometric environment. The

method is based on Bayesian techniques and on statistical decision theory; it is applicable to general

sensors with Bayesian model as a basis. In our approach it is important to consider the computational

burden needed to implement the technique, because the method is to be performed in the robot servo

control loop.

The next Section is concerned with the optimal estimations for joint state using redundant in
formation. We treat the observation model as a static linear system to exclude the time delay in the
estimation theory of the dynamic system. We will obtain the optimal estimations as a linear function of

redundant information. The weight parameters are functions of the noise variances. Cross—checking
hypothesis tests are described for detecting spurious sensor information. In Section 3, the simple
noise models of an encoder and a tachometer are discussed. The models involve the mean and the

variance of the sensor noise. A simulation is carried out in Section 4 to verify the method described
in Sections 2 and 3.

2. INTEGRATION OF REDUNDANT SENSOR INFORMATION

In this Section, the three independent information sources for each joint are taken into account.

2.1. Observation Model and Estimator

The basic observation model to be considered in this paper is the static Fisher model [5] in which

the observation process is modeled as follows:

z = Hx+r (2.1 )

where, z is an observation vector,

z = [z1pz2pz3pz1l/ z2l/z3!T

H =

("1 0]
1 0

1 0

0 1

0 1

Lo i J
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The prime indicates a transpose of the matrix. The subscripts 1, 2 and 3 refer to each of the sensors.
The superscripts p and v describe position and velocity. The x is a state vector of system which is
completely unknown,

x= [*? xv]\

r is a noise vector,

r= [ripr2pr3prlur2"r3"r

E[r] = u

E [rr']=R= diagonal [Rxp R2P R3P V R2" #3" ],

where each diagonal element of the matrix R, i.e. R„ is the variance of the noise of sensor i.

It is assumed that the probability density function of the random noise is Gaussian.

r is N (u, R)

Then z is also Gaussian [5] ,

z is iV(x + u, R)

For the Fisher model we can make the following estimator which yields the minimum error covar-

iance matrix.

x=W(z-u) (2.2)

W-2HR

S^H'R^H)"1

where the minimum error covariance and the mean of estimator are

2 = £[(x-x)(x-x)'] (2.3)

E [x] = x. ( 2.4 )

In the other words, the equation for position or velocity is

*=&Rrlrl iRr\z-Ui) (2.5)
1=1 1=1

In this estimation scheme, we can verify which combination of sensors is better than the others

by computing the minimum error covariance matrix.

2.2. Spurious Information Source Detection

If bad data points are observed, a catastrophic problem might occur in the robot control. The spurious

data can often be detected using hypothesis—testing concepts. In a redundant sensor system, hypoth-
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esis testing can be used to cross—check the observations in order to decide which information source

is spurious.

For the cross—checking test, the following hypotheses for position or velocity observation are

used.

where,

Hn ^•cc ™cc%'*a

z,-
hcr—

rcc is N (ucc, Rcc) r. completely unknown

H2: H\ is not true

(2.6.a )

(2.6.b)

The spurious data which cannot be included in the observation model can be caused by many things,
such as sensor failure, failure of A/D conversion equipment, or communication line failure. We

assume that any communication and A/D converter failures relates to only one observation. We also
assume that the software does not fail. Therefore, kinds of failures are classified as sensor failures

or others. The Table 1 shows the relationship between sensor failure and hypothesis testing. At least
three independent information sources are required, because if we have only two sensors we cannot
recognize which sensor fails by the cross-checking test. Furthermore there are temporary and
permanent sensor failures. If it is temporary, one can ignore the failed observation in estimating the
joint status. If we were to include the failed information in the integration of data, it would result in
an incorrect estimation. When the failure is permanent we have to change the control mode and to
move the manipulator to a safe position. We could decide if we have a permanent failure by counting
the number of the spurious observations.

Table 1: Hypothesis testing for failure detection

sensor 1-2 2-3 3-1

No. 1 sensor failure H2 Hx H2

No. 2 sensor failure H2 H2 Hi

No. 3 sensor failure Hi H2 Hz

the other failure H2 Hz H2

To test these hypotheses we will evaluate the log likelihood function, £;(z).

f J-(z)=lnp>(z) (2.7)

where p;(z) is the probability density of z for the j th hypothesis. For the hypothesis, Hu the prob
ability density assuming that is true is

phl (Z)=[(2*)2 | Rcc | ] 1/2exP(-y) [(z-Ucc)-hcc*] 'RcT'Kz-Uj-hee*]

where, because the real state, x, is unknown, the result of estimation is being uesd.

(2.8)
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'r>-iu \-ix—(hcc'Rcr hcc) hcc'Rcc (z —ucc)

From Equation (2.7), log likelihood decision function becomes

f M(z)=y -21n(2*)-ln IR„ \ -\(z-uJ-hx\'R-l\(z-ucc)-hccx}

(2.9)

(2.10)

It is more convenient to use only third term in right hand equation of Equation (2.10). With Equation

(2.9), the convenient decision function is derived as follows:

2_$hl(z) = R-][(z-ui)-xf+R-1[(zj-uj)-x\
[(Z,—«,-)—(Zj—U;)]2

Ri+Rj
(2.11)

Since (z—u,)—(z; —u;) has the variance of R;+Rj, a reasonable choice for the tails in the Gaussian dis
tribution yields the following decision rule:

Choose #i if £ hi(z)< 9

Choose H2 iff hi(z)>9

2.3. Including prior information

The control system can be modeled as follows:

xd = x-rc

(2.12.a)

(2.12.b)

(2.13)

where, x^ is a desired information vector. The rc is a control error vector whose probability density

function can be modeled as Gaussian distribution.

rc isN(0, W)

The covariance matrix is the control error matrix, "ty".

If the joint has only two independent sensors, the prior information which is the desired data in

the control, must be taken into account in the cross—checking hypothesis tests to find which informa

tion source has failed. In this case we can put the prior information, x,i, on one of the sensor observa

tions into Equation (2.6), where the control error, r0 is modeled as a noise for the prior information.

By using the decision function, Equation (2.11), and the decision rule, Equation (2.12), not only checks

for sensor failures but also for control failure. This is based on the assumption that both the sensor

and the control do not fail at same time.

When the joint has three or more idependent observation sources, we do not need this assump

tion. In this case, the sensor failure is detected by the cross—checking tests without the control in

formation, and then the control failure is checked by the following hypothesis tests. The estimated

state,x, is used instead of the actual state, x, because the x cannot be known.

(2.14;
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By including the estimation error covariance matrix, Equation (2.3), the following hypotheses are
made for detecting control failure.

G\: x=y\, y\ has probabilitydensity p (y\) = N (xd,V+ 2) ( 2.15.a )

G2: G\ is not true ( 2.15.b )

In the same manner as equations (2.7)-(2.10), the convenient decision function becomes

\xd-xf

A reasonable choice for the tails in the Gaussian distribution yields the following decision rule:

Choose Gi if Zg 1 (x}<9 ( 2.17.a )

Choose G2 if fgi(*)>9 ( 2.17.b )

2.4. Algorithm for Implementation

A different algorithm must be used for two sensor systems and for joint with more than two sensors.

The difference between them is in the checking method of the control failure. In the case of two sen

sors, the prior information is used in the cross—checking test with sensor information source. For
three or more sensors, the sensor failure is checked by only sensor observations, and control failure

is checked based on estimated joint state.

H=0,n=n + \,s=0

observe data from sensors

and read command data

compute the position and velocity
from observed data

byEqn's(3.11)and(3.12)

estimate of joint state
by Eqn. (2.5)

Fig. 1 Algorithm of integration of sensors

tachometer failui

/?2-'=0

Nf=5

control failure

the other failure

interrupt 1

interrupt 2

interrupt 3
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Figure 1 shows a flowchart for two sensor system which consists of an encoder and a tachometer.

We apply the hypothesis testing to the position and the velocity data for each sensor. If either the

tests for position or velocity chooses H2, we would decide that the hypothesis H\, is not true. In the

flowcharts the "S" indicates types of sensors. The estimated position from velocity sensors is cali

brated every 125 cycles by the position sensor observation such as encoder observation, since this

data become inaccurate with repeated integration. Permanent sensor failure is detected by counting
the number of spurious information observations. In this algorithm we used five as the limit of the

number of spurious data observations to decide permanent failure. After a permanent failure is de

tected, the system interrupts to higher level to decide what action should be taken depending on the

type of failure. Interrupt 1 (sensor failure) : The interrupt makes a new command trajectory to get to

a safe position, the control follows the command data without the failed information source until the

manipulator reaches the desired position. Interrupt 2 (control failure) : In this case the manipulator

has collided with an obstacle. The interrupt changes the command position to the point of contact

where the control failure happened. The control continues to stay at the position. Interrupt 3 (the

other failure) : We can no longer control or get any correct observation. The control stops immediate

ly when this failure happens.

This scheme should be performed at the observation level of the joint servo control. This level

occurs before the sensor observation are converted into the joint position and velocity. The technique

must be implemented in the real time robot control. The program which calculates the present algor

ithm includes 6 multiplications, 7 divisions and 19 additions. The computation load is small enough to

apply the technique in real time.

3. SENSOR MODELING

It would be useful to be able to also use the motor data to estimate joint state. The motor voltage Vm

is given by the sum of the back emf and the armature voltage in the dc motor.

Vm=IaRa+»Kb, (3.1)

where, Ia, Rm v and Kb are armature current, armature resistance, angular velocity and back emf con

stant of the motor, respectively. In the equation it is assumed that the inductance effect can be

ignored. If the motor voltage and the armature current are sensed or known, the angular velocity can

be estimated from Equation (3.1). Therefore, the motor voltage is an independent information source

for the joint velocity.

Figure 2 shows the actual observation of motor data where the velocity is estimated by using

Equation (3.1). When constant armature current is applied, the estimated velocity dose not have a lot

of noise (Fig. 2(a)). But, unfortunately, if the armature current is changed to control the velocity, the

noise becomes much larger (Fig.2 (b)). The inductance term, which is proportional to the armature-

current change, makes a major contribution to the noise during the control. We are thus unable to use

the motor data as an information source.

In this paper, we employ an encoder and a tachometer for each joint to estimate position and

velocity and to detect sensor failute. The system is simplest among the multi—sensor system de

scribed, also these sensors are popular in commercial robots. The encoder and the tachometer have

the following noises and error parameters:

a. Quantizing noise of both the encoder and A/D converter
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Fig. 2 Motor data
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(b) constant speed control

b. Ripple noise due to the commutation of the tachometer or motor

c. Error in differentiation or integration to derive both position and velocity.

More than one of these noise sources is mixed up in each sensor source. The contributions of noise to

the sensors is listed in Table 2.

Table 2: Contribution of noises in the observation

sensor information noise

encoder
position

velocity V "•" f,!iff

tachometer
position ''n/i ' Ymlcx ' Tqiid

velocity rri/> ' Yqi,d

rqe '• quantizing noise of encoder

rnad '• quantizing noise of A/D converter
rrlp '. ripple noise of tachometer or motor

rdiff '• errors by first derivative

Tinier ' error by integration

3.1. Quantizing Noise

Digital data has truncation errors. The accuracy is determined by the quantization size, <j . The prob

ability density function for quantizing noise is uniform in the range 0< r< q. In general, the uniform

probability density function can be written as follows:

/(r) =
\/{a-b)

0

if a<r<b

if r< a or r> b
(3.2)

The probability density models of quantizing noise for an encoder and an A/D converter are

listed in Table 3. The <je and qa[[ are the quantization sizes of the encoder and the A/D converter.

Since the A/D converter produces, as output, a voltage, the noise is divided by the back emf constant

Ki, to estimate the velocity from the observed voltage.

Table 3: Uniform distribution functions for noises

fir)
1

b-a
a 6

fK)
1

Qe
0 q.

f(rmd')
1,„i

0
q„d
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The mean and variance are calculated by the following manner for the uniform distribution.

°° a+ b

and

Rq=El(r-uq)2} =]j$-U(l)2fr(?)d$ =^y/~

;3.3)

(3.4)

The mean and variance of the noise in the data which is modified by differentiation or integration
can be obtained from those of the original noise. If the original noise was uncorrelated and has the

same mean, uot the same variance, RQ, the means and variances of modified noise is as follows:

z(n)-z(n-l) 1
ud~E{ ] = — (uq-uo) = 0

9 r z(n) —z(n— IK 9 2Rd~E \(z(n)-ud)2} =E [( ]2] =-gR0
n Z(i)+(*-l)

w,~£[2 h] = nhu0

9 fn z(i)+g(i-l) h2
Rt~E [( i zdt-Ui)2) =E[ (2 h-nhuo) 2\=n-z-R0

The mean and variance for each noise are listed in Table 4.

Table 4: Mean and variance for error source

noise model

source mean variance

r p' qe

Qe

2 12

r v'qe 0
6h2

r *' qad

Qad2h2

H2AKf

r v'qad

Qad

2K„

Qad1
\2Kh2

r • i*'rip 0 0.0571 X{Ah)2n

rn; 0 0.1142XA2

rdiff 0 (30fc)2

'in teg 0 (1.7/i3n)2

(3.5)

(3.6)

(3.7)

(3.8)
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3.2. Ripple noise

In the observed data of the tachometer, there is a ripple noise. The noise could be modeled as follows:

, Arrip = A | sin (cot) | -— (3.9)

The amplitude, A, is proportional to velocity until certain velocity. Over the velocity the amplitude is

constant.

\Ka I * \ if J * | < * rip
\Ka» rip if I * | > »rip

OJ=Kome\ » I

Since the probability density distribution of ripple noise is not simple, the mean uripp and the variance
Rrip were simulated by using the noise function, Equation. (3.9). From the result it could be estimated

by

urip=0 (3.10.a)

#rz/=0.1142XA\ (3.10.b)

3.3. Errors in Differentiation and Integration

A first backward difference of the encoder observation data is employed to calculate the velocity.

zp(n)-zp(n-l)
z (n)« (3.11)

where, h is time period between two samplings. While, in order to compute the position from the
velocity data we need to integrate as follows.

n ZU(l)+z'"(i-l)
zp (nh) «!£ h ( 3.12)

There are truncation errors in both Equations (3.11) and (3.12). The errors are obtained by the
following equations.

z^f),
rdijj=—2—h (3.13)

Tinteg = ^2 U ( 3J4 )

where, f is a value that lies somewhere between i-\ and i. Therefore, these errors depend on the
acceleration and the jerk. If we assume a cubic function as the trajectory,

x{t) = ao +ait+a2?+a3?, (3.15)

the acceleration and the jerk are as follows:
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a?" = 2a2+ 6a3t
x — ba3

The parameters a2 and a3 are computed as follows:

<*2 . 2 xf

a3 = 7*xf

where, tj and x/ are the moving time and distance, those errors can be modeled as random variables
with Gaussian probability density functions. In order to detrtmine the variance, we assume 2(sec) and
SO(rad) for the tf and x/, respectively. The maximum absolute value of the acceleration is 120 (rad2/
sec2). We use half of the maximum value as the standered deviation. While, the standard deviation of
the jerk is 20 (radP/sec3). The variances for errors in the differentiation and the integration are shown
in Table 4.

4. EXAMPLE AND SIMULATION

To check the model we built a test system which consists of an encoder, a tachometer and a motor.

The values of the parameters of the experimental test system are tabulated in Table 5. The resolution

of A/D converter is 12 bits for ± 10V. The values of the amplitude and frequency of the ripple noise
are evaluated from the experimenral data. The example velocity data obtained from the test system

are shown in Fig. 3 and 4. There are quantizing and ripple noises in Fig. 3 and 4, respectively, such
as described in the sensor model. The statistical values of noises are listed in Table 6. The values are

calculated by using values of parameters denoted in Table 5. According to Table 2, the mean and

variance of noise in each sensor observation are computed with the values of each noise (Table 7).

VELOCITY

(rad/sec)

"I 1 1

0.5 1 1.5 2

time (sec)

Fig. 3 Encoder data

40~ ftVWWWH**^^

VELOCITY
(rad sec)

wwymwm»wywvwv^^

wwwwwvw^^

10 —vw\WV\f^V<WV*/*V>^^

1 1 1

0 0.5 1 1.5 2

time (sec)

Fig. 4 Tachometer data
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Table 5: Value of the coefficients

Qe

2*
(rad)

2000

h 4X10"3(s<?c)

Qad 4.88X10"3(K)

Kb 0. 20(V/rad/s)

A 0.12i/(v<20),2.4(i;>20)

Kome 7(1/rad)

Table 6: Mean and variance of noise source

noise estimated value

source mean variance

r p'qe 1.6X10"3 8.2X10"7

r '' qe 0 0.1

r p'qad 4.9X10"5n 4.0X10"lon

'qad 1.2X10"2 5.0X10"5

'np 0
1.3X10"8Xt>Vi;<20)

5.3X10"6w(r>20)

rrip 0
1.6X10"3Xi;2(i;<20)

0.66d<>20)

rdiff 0 1.4X10"2

'in teg 0 1.2X10"14n2

Table 7: Statistics of noises for each sensor

sensor information mean variance

encoder
position 1.6X10"3 8.2X10"7

velocity 0 0.114

tachometer

position 4.9X10"5Xn

(1.3X10-8XV2+4.1X10"10)XW

+ r.2X10_1V(v<20)

(5.3X10"6 + 4.1X10"10)Xn

+ 1.2X10"14n2(v>20)

velocity 1.2X10"2
1.6X10"3Xi;2+5.0X10'5

0.66 + 5.0X10"5(i;>20)

In calculating the velocity it is not true that the tachometer information source is more precise

over entire range than the velocity information calculated from encoder data. In the position informa

tion, the encoder data are not always more accurate than that from tachometer. The variance changes

for the encoder as a function of velocity (Fig. 5); the noise of encoder is independent on the velocity.

On the other hand, the tachometer data become more noisy as velocity increases. Therefore, in the

high velocity range the encoder data has smaller variance than that of the tachometer. There exists

the same situation in position observation. As we can see from Table 7, the position data evaluated

from the tachometer has smaller variance than that of the encoder at low speed and in the small num

ber range of integration cycles. In conclusion it can be seen that it is important to combine the both

encoder and tachometer information sources to accurately estimate joint state. The present technique

described in Section 2 is useful to combine the multi—sensor information sources with optimal

weights.

The simulation was performed by using the values of parameter in Table 7 to verify the present

technique. The cubic function denoted in Equation (3.15) was used as a command trajectory for con

trol. The actual trajectory is calculated by adding the control error to the command path (Fig. 6(a)),

where the control error is modeled as a sinusoidal curve (Fig. 6(b)).

rcp = 0.055m(10 7rt) (3.16)
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VARIANCE

(rod/sec?

0.01

POSITION

(rad) 40-

POSITION

(rad) 40

10 20

VELOCITY (radlsec)

VARIANCE
(rod Isec)2

1- S™P(,mlg:ri0d
2

ENCODER: dotted line
TACHOMETER: solid line

4 yS
0.1-

/

0 01 -

8y

i 1

10 20

VELOCITY (radlsec)

Fig. 5 Variance Change in Velocity

(a) Command trajectory

time (sec)

(c) Estimated data

60

POSITION

(rad) 40

(e) Tachometer data

(b) Real trajectory

(d) Encoder data

VELOCITY

40 (radlsec)

Fig. 6 Integration of Multi—Sensor Information

The variances of control error are 2.5 X 10~3 and 2.4 in position and velocity, respectively. The data
are shown in actuator space, i.e., the value of angle is that of the motor shaft. The simulated results
of sensor observation are shown in Fig. 6(d) and (e). We can. find that the estimator (Fig. 6(c)) pro

vides a clean information source over the entire range of velocities.

The simulations for sensor failures are shown in Fig 7 and 8. The real trajectory used here is
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(a) Tachometer data

60

POSITION

(rad) 40

20

0

velocity s~S

position
-

—

1 1 1

1

time (sec)

(b) Estimated data

VELOCITY

(radlsec)

80-

60-

posrnoN

(rod) 40-

20-

velocity je"~*

position

1 1 1

60

POSITION

(rad) 40

80
80-

60

40

VELOCITY

(radlsec )
POSITION

(rad)

60-

40-

20 20-

0 0-

1

time (sec)

(b) Estimated data

time (sec)

Fig. 7 Encoder Failure Simulation

time (sec)

Fig. 8 Tachometer Failure Simulation

VELOCITY

(radlsec)

the same as that in Fig.6(b). The failures happen at 1 second. The cross—checking test finds the fai

lure and then the information is ignored from the estimation. In this point there is no time delay. If
the time delay is included, the estimated data will become very bad, bacause the velocity change due to

the encoder failure is a large. The figure shows that after the failure happens the estimator follows
the real path in both cases of encoder and tachometer failures.

5. CONCLUSIONS

A method which integrates the joint sensor information sources was proposed with the evidence of

validity by simulation. The technique combines an estimator and a crosschecking hypothesis test for
redundant multi—sensor information based on Fisher static model. The method provides for the effi
cient use of multi—sensor system to estimate precise joint state without introducing any time delay
and also detection of a spurious sensor information source. In addition it can check any control failure

by the hypothesis test. Therefore the scheme is useful for the precise and robust robot control. It is

easy to extend this technique to the other joint sensors such as a resolver, potentiometer, etc.

In order to get complete information of joint status, the acceleration and the torque are impor
tant. The acceleration can be obtained by the differentiation from velocity data. Unfortunately this

data is even more noisy than the control error. Therefore we did not consider the information in this

paper. To get the clean information for acceleration, we will need either a high resolution encoder or

an acceleration sensor. While, the torque information is also related with the velocity and the accel

eration in the dynamic equation of the motor. By using a torque sensor we can get in addition to the

force information more exact data for joint angle, velocity and acceleration. Consequently, the techni

que could be used for robust force feedback control.

ACKNOWLEDGMENTS

The authors would like to thank Dr. M. Mintz for his helpful suggestion and discussion. And also we

thank Mr. F. Fuma for making the test system.



Integration of Multi-Sensor Manipulator Actuator Information for Robust Robot Control Systems 27

REFERENCE

[1] T. Suehiro and K. Takase: "A Manipulation System Based on Direct-Computational Task-Coor
dinate Servoing"", Second Int. Symp. Robotics Research, pp 34—41. 1984.

[2] P. Allen and R. Bajcsy: "Two Sensors are Better Then One. Example of Vision and Touch!", Third
Int. Symp. Robotics Research, pp 48—53, 1985.

[3] H. F. Durrant—Whyte: "Consistent Integration and Propagation ofDisparate Sensor Observations",
IEEE Int. Conf. Robotics and Automation, pp 1464-1469, 1986.

[4] H. F. Durrant-Whyte: "Integration, Coordination and Control of Multi-Sensor Robot Systems"",
Ph. D. Thesis in Systems Engineering, Univ. Pennsylvania, August 1985.

[5] F. C. Schweppe: "Uncertain Dynamic Systems"", Prentice-Hall Inc., 1973.


