電圧形インバータ駆動誘導電動機の

トルク脈動低減PWM制御法

實成 義孝・篠原 勝次・福元 木草・入佐 俊幸 (受理 平成元年5月31日)

PWM METHOD FOR REDUCTION OF TORQUE PULSATIONS OF AN INDUCTION MOTOR DRIVEN BY VOLTAGE SOURCE INVERTER

Yoshitaka MINARI, katsuji SHINOHARA, Mokusou FUKUMOTO and Toshiyuki IRISA

It is inevitable that the torque of an induction motor driven by a voltage source inverter contains many harmonic components. The instantaneous torque of the induction motor pulsates with six times the fundamental frequency in the sine-wave PWM system as compared to the fundamental sine -wave signals with a triangular carrier signal. This phenomenon is similar to an optimal PWM system using a sine-wave pattern. This pulsation is based upon a voltage vector pattern. A 6th harmonic signal of fundamental frequency is added to sine-wave signals of the sine-wave PWM system, in order to eliminate this pulsation.

The instantaneous torque and current of the induction motor were computed by the state variable method. As a result of computation, the 6th harmonic pulsation of torque vanishes as compared with the sine-wave PWM system, or the optimal PWM system. In the same manner as the sine-wave PWM system, however, the inner small ripple remains in the waveform. It does not appear in the optimal PWM system.

On the other hand, such a waveform as an instantaneous maximum torque constant is shown by the use of a modification of the optimal pattern. In this case, the bottom of the torque waveform varies by six times to the fundamental frequency.

The motor current is a sinusoidal waveform as is the sine-wave PWM system in all the patterns.

1. まえがき

電圧形 PWM インバータで駆動される誘導電動機の トルク脈動は、機械系との共振を発生したり、回転速 度にリプルを含む原因となる。このトルク脈動の低減 に関する研究としなみ、誘導機を流れる高調波電流を 考慮した評価関数から、それを最小とする PWMパ ターンを求める方法^{1).2)}、トルクリプルの大きさを表 す評価関数を考えそれを最小とする PWM波形合成 法³⁾ さらには瞬時トルクを制御する方法⁴⁾ などがある。 PWM波形の発生法には、あらかじめ決められたパル ス幅パターンを ROM などに記憶させておき、クロッ ク信号により制御する方法,基本周波数の信号波とス イッチングパターンを決める搬送波とを比較制御する 方式がある。正弦信号波と三角搬送波とを比較制御する 方式がある。正弦信号波と三角搬送波とを比較するい わゆる正弦波パターン PWM変調では,誘導電動機の 瞬時トルクは基本周波数の6倍で脈動する⁵⁾。この6 倍調波のトルク脈動を除去するために,基本正弦信号 波に6倍調波の正弦信号波を加えて PWM変調するこ とを試みる。そのときの電動機電流及び瞬時トルクを 状態変数法により計算し,トルク脈動の低減効果につ いて検討する。計算結果の一部についてはすでに報告 したが⁶⁾,本文ではまず正弦波パターンでのトルク波 形及び電流波形を求め,正弦波+6倍調波変調でのト ルク波形及び電流波形と比較検討する。次に最適パ ターン¹¹に基づいたトルク波形及び6倍調波を加味し たトルク波形を計算し特徴について述べる。

2. 回路と計算法

計算に用いた電圧形インバータの回路を図1に示 す。a, b, c各相において上アームトランジスタT₁, T₂, T₃がオンのときを1,下アームトランジスタT₄, T₅, T₆がオンのときを0とすれば,スイッチングモー ドは, $V_1(100)$, $V_2(110)$, $V_3(010)$, $V_4(011)$, $V_5(001)$, $V_6(101)$, $V_7(111)$, $V_0(000)$ の8種類の電圧ベクトル で表される。図2は正弦波・三角波比較とスイッチン グ状態及び電圧ベクトルを示したものである。 e_a , e_b , e_c は直流電源の仮想中点からの端子 a, b, cの電位を 表している。また波形の対称性から計算区間は60°で ある。その区間内には V_5 , V_6 , V_1 , V_0 , V_7 のモード

図2 正弦波·三角波変調

が存在する。ここに基本正弦信号波60Hz,三角搬送 波4.5kHz であり,75パルスモードである。

各モードにおける回路の接続は図3に示される。電 圧の関係式は次のようになる。

$V_5 \mathbf{f} - \mathbf{k} : E_d - e_{sc} + e_{sa} = 0$	(1)
$e_{sa} = e_{sb}$	(2)
$V_6 \not\in - \not\models : E_d - e_{sa} + e_{sb} = 0$	(3)
$e_{sa} = e_{sc}$	(4)

$$e_{sb} = e_{sc} \qquad \qquad \dots \dots \qquad (6)$$

 $V_0, V_7 モード: e_{sa} = e_{sb} = e_{sc}$ ………(7) 電流については各モード共通に

となる。ここに e_{sa} , e_{sb} , e_{sc} は(9)式で, e_{sa} , $e_{s\beta}$ に静止座標変換される。

$$\begin{pmatrix} e_{sa} \\ e_{sb} \end{pmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} \sqrt{3}/2 & 0 & -\sqrt{3}/2 \\ -1/2 & 1 & -1/2 \end{pmatrix} \begin{pmatrix} e_{sa} \\ e_{sb} \\ e_{sc} \end{pmatrix} \cdots \cdots (9)$$

i_{sa}, i_{sb}, i_{sc} についても同様である。誘導電動機の瞬 時電圧電流方程式は(10)式で表される。

$$\begin{pmatrix} \mathbf{e}_{s} \\ \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_{s} + L_{s}p & Mp \\ M \left(p - \mathbf{j}P\boldsymbol{\omega}_{r} \right) & \mathbf{r}_{r} + L_{r} \left(p - \mathbf{j}P\boldsymbol{\omega}_{r} \right) \end{pmatrix} \begin{pmatrix} \mathbf{i}_{s} \\ \mathbf{i}_{r} \end{pmatrix} \cdots (10)$$

 $e_{s} = (e_{s\alpha} + je_{s\beta}) / \sqrt{2}$ $i_{s} = (i_{s\alpha} + ji_{s\beta}) / \sqrt{2}$ $i_{r} = (i_{r\alpha} + ji_{r\beta}) / \sqrt{2}$ さらに二次鎖交磁束ベクトルは

で表されるので、(10) 式は(12) 式となる。

$$\begin{cases} \mathbf{e}_{s} \\ \mathbf{O} \end{cases} = \begin{cases} \mathbf{r}_{s} + \mathbf{p} \,\sigma \, \mathbf{L}_{s} \quad \mathbf{p} \mathbf{M} / \mathbf{L}_{r} \\ - \,\sigma \,_{\mathbf{r}} \mathbf{M} \quad \mathbf{p} - \mathbf{j} \mathbf{P} \boldsymbol{\omega}_{r} + \,\sigma_{r} \end{cases} \begin{bmatrix} \mathbf{i}_{s} \\ \boldsymbol{\Psi}_{r} \end{bmatrix} \quad \dots \dots \quad (12)$$

ただし

$$\sigma = 1 - M^2 / L_s L_r$$
$$\sigma_r = r_r / L_r$$

瞬時トルクは

 $\tau = PM(i_{s\beta} i_{r\alpha} - i_{s\alpha} i_{r\beta}) \qquad \dots \dots \qquad (13)$

で表されるので(11)式の関係より

$$\tau = \sqrt{2} PM \left(i_{s\beta} \Psi_{r^{\alpha}} - i_{s^{\alpha}} \Psi_{r^{\beta}} \right) / L_r \cdots \cdots (14)$$

となる。

2.2 状態方程式

(12) 式より電圧方程式を求め、電圧の関係式(1)
 (7)、及び座標変換の(9)式より、状態方程式は(15)式となる。

 $px = A_{\xi}x$ ($\xi = 5, 6, 1, 0$) (15)

ここに状態変数xは

$$\mathbf{x} = [E_d, i_{s^{\alpha}}, i_{s^{\beta}}, \Psi_{r^{\alpha}}, \Psi_{r^{\beta}}]^{\mathrm{T}} \qquad \dots \dots \qquad (16)$$

V6モードの係数行列 A6は

	0	0	0	0	0
	0	$-\gamma_{se}/\sigma_{Ls}$	0	σrK	PωrK
$A_6 =$	- <mark>√2/√3</mark> σLs	0	$-\gamma_{se}/\sigma_{Ls}$	- <i>Ρω_rK</i>	σrK
	0	$\sigma r M / \sqrt{2}$	0	−ø r	$-P\omega r$
	0	0	$\sigma r M / \sqrt{2}$	$P \omega r$	$-\sigma r$

..... (17)

である。ただし
$$r_{se} = r_s + (1 - \sigma) L_s L_r$$

 $K = \sqrt{2} M / \sigma L_s L_r$

他モードの係数行列は, A₆の2行及び3行の1列が それぞれ次のように変わり,他要素は同じである。

2.3 状態変数法

図2において、60°区間に全76個のモードが存在す る。to=0とする。

(15)式より 0 < // ・・・

$$0 \leq t < t_1$$
.

$$\mathbf{x}(t_1) = \exp \left(\mathbf{A}_0 t_1 \right) \mathbf{x} (0_+)$$

= $\mathbf{\Phi}_0(t_1) \mathbf{x} (0_+) = \mathbf{\Phi}_0(t_1) \mathbf{B}_c \mathbf{x} (0_-)$
..... (18)

ここにΦ₀(t₁)は状態推移行列である。

B。は接続行列であり(19)式で表される。

	1	0	0	0	0	
	0	1/2	$\sqrt{3}/2$	0	0	
$B_c =$	0	$-\sqrt{3}/2$	1/2	0	0	(19)
	0	0	0	1/2	$\sqrt{3}/2$	
	0	0	0	-\sqrt{3}/2	1/2	

 $t_1 \leq t < t_2$:

 $t_{75} \leq t < T:$

 \mathbf{x} $(T_{-}) = \Phi_0 (T - t_{75}) \Phi_6 (t_{75} - t_{74})$

$$\dots \Phi_0(t_1) B_c x(0.) = H x(0.) \quad \dots \dots (21)$$
解の周期性 x(T.) = x(0.) より

 $(H-I)_{x}$ (0.) =0 (22)

(22) 式をガウス消去法で解きx(0-)を求め,接 続行列 B_cより初期値x(0+)を決めることができる。 これより(15) 式をルンゲクッタ法で解き状態量を求める。

3. 計算結果

計算に用いた誘導電動機定数及び計算条件は表1に

衣1	0.75K W	200 () た奴
及び計算条件		
一次抵抗	rs	3.45Ω
二次抵抗	rr	2.09Ω
一次インダクタンス	Ls	0.192 H
二次インダクタンス	Lr	0.192 H
相互インダクタンス	M	0.184 H
極対数	P	2
直流電源	Ed	294 V
変調率		0.795
すべり		0.05

新道電動機 (0 75WW 900W) 合粉

示される。

3.1 正弦波変調におけるトルクと電流

図4は基本正弦信号波と三角波変調の場合の一次電流 i_{sa} , $i_{s\beta}$ と二次鎖交磁束 Ψ_{ra} , $\Psi_{r\beta}$ を表している。 (9)式の変換行列より, i_{sa} は i_{sa} - i_{sc} に比例した量であり, 36°付近でその脈動が小さくなっている。 $i_{s\beta}$ は i_{sb} に比例した量であり, i_{sb} の脈動を表している。 なお磁束 Ψ_{ra} , $\Psi_{r\beta}$ は脈動していないことがわかる。 図5はトルク波形であり,基本周波数の6倍で脈動する。トルクの脈動は(14)式からわかるように,6° 付近では電流の脈動が互いに打ち消される部分があっ て全体的に小さくなり,36°付近では $i_{s\beta}$ の脈動が直接的に影響し脈動の幅は大きくなる。

このときの電動機電流波形 *isa* は図 6 に示される。 図 2 の電圧ベクトルが,対称三相正弦波のときの磁束 ベクトル円に沿う正弦波パターンであり,*isa* は正弦 波状に変化している。

3.2 正弦波+6倍調波変調におけるトルクと電流 図7,図8は電流 isb の脈動と電圧ベクトルパター ンを6°付近と36°付近について示したものである。実 線は正弦波変調での脈動であり電圧ベクトルパターン で定まる。脈動の幅は6°付近で小さく、36°付近で大

きい。トルクの脈動を低減するためには、この脈動幅 ができるだけ均一になるように電圧ベクトルパターン を変化すればよい。図2,図4に示されるように、基 本正弦信号波, $A_s \sin(\omega_s t - \theta)$ に, 破線で示され る6倍調波の信号 $-Am\cos 6(\omega_{st}-\theta)$ を加えて 変調すれば、電圧ベクトルパターンが脈動を均一にす る方向へ変化する。図7、図8の破線はこれを示した ものである。ここに $A_s=10$, Am=1.4, $\theta=6$ °であ る。6°付近では電圧ベクトル0が大きくなり、7が 小さくなる。36°付近ではこの逆に電圧ベクトル0が 小さくなり、7が大きくなる。このように主に零電圧 ベクトルが変化し、電流の脈動幅は、6°付近と36°付 近との差が小さくなっている。図9,図10はトルク脈 動の変化を示したものである。実線と破線を比較する と、零電圧ベクトルの変化によりトルクの下り傾きの 時間が調整され、正弦波+6倍調波変調によりトルク の脈動幅が均一化されることがわかる。

図11はトルク波形を1周期について示したものであ

-

實成・篠原・福元・入佐:電圧形インバータ駆動誘導電動機のトルク脈動低減 P W M 制御法

49

50

12 4 4				
電	6°付 近			
ペッ 圧 クトル	正弦波変調	正弦波+ 6倍調波変調		
7	0.37541E-04	0.26049E-04		
6	0.35076E-04	0.34776E-04		
5	0.40722E-04	0.40736E-04		
0	0.33703E-04	0.45967E-04		
5	0.38566E-04	0.38433E-04		
6	0.38567E-04	0.38681E-04		
7	0.33712E-04	0.21448E-04		
6	0.40713E-04	0.40674E-04		
5	0.35076E-04	0.35372E-04		
0	0.37546E-04	0.49019E-04		
5	0.32978E-04	0.32625E-04		
6	0.43878E-04	0.43688E-04		

表2 電圧ベクトルの時間幅〔秒〕

る。図5と比較して6倍調波の脈動が除去され,Am =1.4,1.5付近において最適な変調であると思われる。 またトルク脈動の大きさも小さくなっている。図12は Am=1.4のときの電動機電流波形である。零以外の電 Eベクトルも少し変化するが,正弦波パターンからの ずれは僅少であり,図6とほとんど同じ正弦波状であ る。電圧ベクトルの時間幅の変化は表2,表3のよう に示される。

3.3 最適パターンとの比較

図 2 において、1 単位 T_{s} にある電圧ベクトル5、 6 の幅を1として、 T_{s} の中心からベクトルの前エッジまでの長さを0.531としたものは最適パターンである¹⁾。25単位すべてについて、これを適用して計算し

表3 電圧ベクトルの時間幅〔秒〕

	「電	36°付	近
	、 圧	正弦波変調	正弦波+ 6倍調波変調
	7	0.23088E-04	0.33922E-04
	6	0.63963E-04	0.64402E-04
	5	0.41677E-05	0.40149E-05
	0	0.63801E-04	0.51833E-04
	5	0.22317E-05	0.24079E-05
	6	0.65141E-04	0.64950E-04
	7	0.22779E-04	0.35133E-04
	6	0.65136E-04	0.64945E-04
	1	0.22412E-05	0.24033E-05
	0	0.63791E-04	0.51832E-04
	1	0.41770E-05	0.40245E-05
	6	0.63963E-04	0.64402E-04
د ع ري 1.1	0 - . 5 -		S = 0.05
1.	0	1201	2401 011 7
	0		
	図.	13 トルク波形(菆 適バターン)
Ē 2.0	0 -		
4			S=0.05
ິ 1.	5-		Am = 2.0
1.	o 	120*	240° wst 31
	図14	1 トルク波形 ()	ルク最大値一定)

たトルク波形を図13に示す。電圧ベクトルパターンは 正弦波パターンを用いているため、わずかであるが6 倍調波の脈動が残っている。なお全単位について、電 圧ベクトルを1単位の中央に配置するパターンは実用 法²⁾であるが、トルク波形の計算結果は図13とほとん

ど同一である。最適パターンによるトルク波形は,脈 動の内側に小振幅のリプルがないことが特徴である。 図14は,正弦波+6倍調波変調で得られた電圧ベクト ルパターンを各単位について電圧ベクトルの配置を移 動させ,瞬時トルクの最大値をほぼ一定にしたもので ある。図よりわかるように平均トルクが変動すること になるがその値は小さい。図15はこのときの電動機電 流波形であり,最適パターンにおける電流波形と同様 な正弦波状である。以上の4例について,平均トルク, 電動機電圧,電動機電流の計算結果は表4に示される がすべて同じ値であると言える。

4. あとがき

基本正弦信号波に6倍調波の正弦信号波を加えて変 調するPWM制御法について,誘導電動機の瞬時トル ク及び電流を計算し,トルクの6倍調波脈動が除去さ れる結果が得られた。これは,従来の最適パターンで は6倍調波のトルク脈動が生じていたが,この問題点 が解決されたことになる。しかしながら,最適パター ンと比較すると,正弦波+6倍調波変調方式では脈動 波形の内側の小振幅のリプルは残る。(正弦波変調方 式においてもこの現象は生ずる)。トルク最大値一定 PWM方式は最適パターンの変形であり,正弦波+6 倍調波変調に比較してトルク脈動の振幅は小さくなる が,トルク波形の下部に基本周波数の6倍の脈動が現 れる。

表4 電圧・電流・トルク

	平均トルク 〔N・m〕	電動機電流 〔A〕	電動機電圧 〔V〕		
正弦波変調	2.03	2.14	198		
正弦波+ 6倍調波変調	2.03	2.15	198		
最適パターン	2.03	2.15	198		
トルク最大値 一定パターン	2.03	2.15	198		

参考文献

- 曽根・田中:「電圧形 P W M インバータで誘導機 を駆動した時のトルクリプルの低減策」電気学会 半導体電力変換研究会資料 SPC-86-7 (昭61)
- 陳・金:「インバータ誘導機系の新特性計算法と PWM パターン最適化への応用」電学論D, Vol. 108-D, No. 11(昭63)
- ・田中:「電圧形インバータで誘導機を駆動 した時のトルクリプルを低減する PWM 波形合成 法」
 電気学会全国大会 No. 546(昭61)
- 高橋・野口:「瞬時すべり周波数制御に基づく誘 導電動機の新高速トルク制御法」 電学論 B, Vol. 106-B, No. 1 (昭61)
- 5) 村井・浅野・常広:「インバータ駆動誘導機のト ルク脈動低減のための PWM 制御法の考察」 電 学論 B, Vol. 101-B, No. 6 (昭56)
- 6)実成・篠原・今村・福元・入佐:「電圧形インバー タ駆動誘導電動機のトルク脈動を考慮した PWM 制御法」 電気学会全国大会 No. 546(平1)