化学プロセス・リアルタイム・シミュレータの開発

吉福 功美・伊地知和也 (受理 平成7年5月31日)

Development of the Real Time Simulator for Chemical Process Systems

Isami YOSHIFUKU and Kazuya IJICHI

Similar to computer physics which is recently highlighted as the third physics, in this study we will define computer chemical engineering as follows: a study which, by the computer reappearance of the chemical process system modeled, predicts changes of phenomena occurring in this system, and one which examines the propriety of the model and determines the laws governing this system.

As a link in the chain of the computer chemical engineering defined above, a real time simulator for the chemical process system has been developed. In contrast to the ordinary simulator, this simulator can be expected to advance the appropriateness of the model, and contribute to the prediction of abnormal or dangerous phenomena, because of a direct connection between the computer and the process apparatus.

In this report, a real time simulator for the simple distillation process is developed, and the results obtained by the application of this simulator are shown.

緒 言

最近,理論,実験物理に対して第三の物理すなわち コンピュータ物理が脚光を浴びている。ここではこれ を真似て,コンピュータ化学工学を次のように定義す る。モデル化された化学プロセスをコンピュータで再 現し,条件を色々変えて現象の変化を予測したり,そ のモデルの妥当性を検討するばかりでなく,化学プロ セスを支配する法則まで見つけようとする学問が,コ ンピュータ化学工学である。本研究はその一環として 始められたものである。

化学プロセス・リアルタイム・シミュレータとは, ある化学プロセスに対してプロセスが動き始めるとと もにコンピュータも起動し,現在プロセスで起きてい る現象が同時刻にコンピュータ上でも起こるように作 られたシミュレータのことである。このようなシミュ レータはコンピュータとプロセスの装置が直結してい るので,ふつうのシミュレータと異なり,測定値或い は実験データとの比較によってモデルの適応性を向上 させることができ、それによってプロセスの精密な解 析を可能にし、製品の品質の管理を行うことができ、 またプロセスの異常現象に対する予測や危険防止に貢 献することが期待できる。

本研究では、研究対象として、解析の比較的易しい 単素留プロセスをとり、溶液には物性の良く知られて いるメタノールー水系を取り上げた。このプログラム の作成に当たってはハードウエアとしてはコンピュー タや AD コンバータ等の知識、ソフトウエアとして は化学工学の知識 - 蒸留理論、分縮理論や伝熱理論 -の他に、微分方程式の解法(例えば RKG 法)、補間 法、一変数探索問題の解法など幾つかの知識、情報を 必要とした。

なお既に幾つかのプロセス・シミュレータが市販さ れている^{1,2)}。これらの汎用プログラムは高価である が、使いこなせばそれぞれのプロセスに対して効果が あると考えられる。しかし個々のプロセスにはそれぞ れがもつ特性があるので、個々のプログラムを作成す ることも価値がある。本研究で得られた情報を基にす れは、他のどんな化学プロセスに対してもシミュレー タ・プログラムを作成できると期待できる。

第1章 実験装置および実験方法

実験装置を図1に示す。缶(丸底フラスコ)に原料 をいれ、スライダックによって出力を変えられるよう にしてあるヒータによって加熱する。溶液の中に挿入 した熱電対からの電圧は、増幅器によって増幅された 後 AD コンバータを通ってコンピュータに取り込ま れる。電圧は、1度に50回のサンプリングを行いその 結果の平均を算出する。前もって水銀温度計を用いて 温度-電圧の検定直線を作成しておき、電圧値は温度 に換算される。缶の中の溶液については実験の始めと 終わりに、留出液については一定時間毎にサンプリン グしておき、実験終了後その組成(メタノールのモル 分率)を密度計によって測定する。

実験の手続きとしては、始めに、原料のメタノール 水溶液を450mlとりその温度,重量、液の重量組成を 測定後缶の中に入れる。冷却水の流量や気圧,気温は 別に測定しておく。スライダックの出力,実験時間等 を決めておきこれらをプログラムに入力しておく。ヒー タの電源を入れると同時にコンピュータのプログラム を走らせる。始めは予熱期間で温度上昇は見られない が、次いで加熱期間に入り缶の液の温度が上昇する。 しばらくすると沸騰が始まり蒸留期間に入る。留出液 についてのサンプリングを行う。所定の時間が来たら 電源を切る。時間やその他のデータは画面に表示され ている。

第2章 プログラムについて

2-1 プログラムの概要

このリアルタイムシミュレーターは次の3種類のプ ログラムからなっている。

(a) プログラム A: このプログラムは予備実験で用いられるもので、次の通りである。実験条件を入力

しこのプログラムを走らせると缶液中のセンサーか らの情報(電圧mV)はADコンバータ,アンプを 通ってコンピュータに入り,温度に換算される。画 面上に温度-時間データがプロットされる。またこ のデータはファイルに保存される。なおこの実験中 一定時間毎に留出液のサンプリングが行われる。

シミュレータは、RKG 法によって微分方程式を 解いて行うが、温度の計算結果はドットとして画面 に表示される。一方、温度センサー(熱伝対)から の温度の測定値はある時間毎に丸印として画面に示 される。なおこれらのデータは両者ともファイルに 保存され後で画面に表示することができるようになっ ている。この測定値と計算値が良好な一致をするよ うなシミュレータを作成することが本研究の目的で ある。

- (b) プログラム B: このプログラムは実験とは切りは なしてコンピュータ上で走らせるものである。画面 は上下2種類有り、上の画面には温度-時間データ が、下の画面には缶液の組成-時間および留出液組 成-時間データが表示されるようになっている。始 めの予熱期間および加熱期間では予備実験で得られ た温度の測定値(画面では丸印で示される)と計算 値が一致するようなパラメータ UA. nおよび rの 選択を行う。この選択後プログラムにパラメータを 入力し、プログラムを走らせるが、蒸留期間で、予 備実験で得られた液組成の測定値(画面では丸印で 示される)と計算値が一致するようなパラメータの 分縮率γおよび留出速度 p の選択を行う。このプ ログラムには γ および p が変化するとして微分方 程式に組み込んであるが、始めは一定であるとして、 それらの初期値としてパラメータγ0 および p0 選 択を行う。その後それらの減少率γ1 および pl の 値の選択を行う。
- (c) プログラム C: このプログラムは本実験で用いる もので、画面その他はプログラム A と同じである。 プログラム Bで得られたパラメータが組み込まれて おり、温度時間データがリアルタイムで画面に現れ る。温度の測定値は丸印で計算値はドットとしてプ ロットされる。
 - 2-2 微分方程式

本プログラムでは微分方程式が骨格をなしており, ここでは3期間にわけて表示する。

(a) 予熱期間 この期間は缶の温度は変化せず,また 液量,液濃度も変化しない期間で,電熱によって加

熱媒体が暖まる期間である。予備実験のデータから その時間 τ はパラメータとして実験データに合うよ うに決められる。この期間の微分方程式は次の通り である。

$$dF/dt = 0$$

- dx/dt = 0
- dT/dt = 0

ここで初期値は F0, x0, T0 であり, 各変数は一 定値をとる。画面上では idx=1 と表示される。

(b) 加熱期間 この期間は缶の温度が上昇し、沸騰が 始まるまでの期間である。微分方程式は次に示す。

dF/dt = 0dx/dt = 0 $F \cdot Cp \cdot dT/dT = \eta \cdot qE - UA(T - Ta)$

ここで水溶液の比熱 Cp については

 $Cp = CpM \cdot x + CpW \cdot (1-x)$

とし、CpM=75.86、CpW=75.44 を用いた。この 期間中は温度だけが変化し、液の量と濃度には変化 がない。原料の液組成から前もって沸点 BP を計算 しておくが、温度がこの BP 値になるまでを加熱期 間とする。ここで電熱量 qE 及び外の空気の温度 Ta は既知量であり、効率 η や総括電熱係数と電熱 面積の積 UA は実験データに合うように決められ るべきパラメータである。画面上では idx=2 と表 示される。

(c) 蒸留期間 この期間は蒸留が行われており、次の 微分方程式を想定する。

$$dF/dt = -p$$

$$dx/dt = -p \cdot (yG - x)/F$$

$$dp/dt = -p1$$

$$d\gamma/dt = -\gamma 1$$

ここで第3,4式は留出速度 p および分縮率 γ が時間と共に減少するという想定を示している。これらの初期値を p0 および γ 0 とするが, p1 および γ 1 は何れも実験で決められるべきパラメータである。

またここでは dT/dt の式を想定してないので, 液の温度 T を計算する必要が生じる。第二式は低 沸点成分の物質収支を表している。ここで yG は分 縮後の気相組成であって, 液組成 x とこれに平衡 な気相組成 y およびパラメータとしての分縮率 γ か ら計算できる。これを

$$\mathbf{y}\mathbf{G} = \mathbf{f}\mathbf{1}(\mathbf{x}, \, \mathbf{y}, \, \boldsymbol{\gamma}) \tag{1}$$

と表す。ここで yG はある時間での留出液組成に等 しいとする。また気液平衡関係については後述する が,結局 x から気相組成 y および缶の液温度 T を計 算できる。

$$\mathbf{y} = \mathbf{f2}(\mathbf{x}) \tag{2}$$

$$T = f3(x) \tag{3}$$

プログラム上では時間を短縮するために、これら のデータをファイルに保存し、Lagrange 補間法 を用いてyおよびTが計算できるようになっている。 この期間は画面上では idx=3と表示される。

2-3 気液平衡関係の式

気液平衡関係の式として次の各式を用意する。

$$y_i = K_i \cdot x_i$$
 (4)

ここでKiは成分iの平衡比であって、純粋成分iの蒸 気圧Pi0、全圧Pおよび成分iの液相における活量係 数riによって次式のようにあらわされる。

$$Ki = ri \cdot Pi0/P \tag{5}$$

さらにPi0は Antoine の式

$$Pi0 = Ai + Bi/(T + Ci)$$
(6)

で与えられる。本研究ではAi, Bi, Ciとして次のデー タを用いた⁴⁾。

メタノール	10.1339	1541.861	-37.006
水	10.0641	1650.4	-46.89
	/	- 0.4 000	-

またriとしては次の Wilson の式を用いる。

$$\ln ri = \ln(\sum j xj \cdot \Lambda ij) + 1 - \sum k(xk \cdot \Lambda ki / \sum j xj \cdot \Lambda kj)$$
(7)
$$\Lambda ij = (vj/vi) \exp(-(\lambda ij - \lambda ii)/RT)$$
(8)

ここでモル容積viについてはメタノールおよび水に ついて

$$v_1 = 64.509 - 19.716E - 2 \cdot T + 3.8735E - 4 \cdot T^2$$
 (9)
 $v_2 = 22.888 - 3.642E - 2 \cdot T + 0.6857E - 4 \cdot T^2$ (10)

また Wilson パラメータとして

$$\lambda_{12} - \lambda_{11} = 1086$$
$$\lambda_{12} - \lambda_{22} = 1632$$

を用いた。これらの式によって、xおよびTからyを

図2 温度T決定のためのフローグラフ

計算することができる。そのフローグラフを図2に示 すが、左端の変数の並びの中で液の温度Tだけが未知 数であって他は既知である。このフローグラフはTの 値を仮定して Σ yi = 1を満足させる値を求める数値 計算法を示しており、これを次のように表わす。

 $T: (\Sigma yi-1)^2 = \min$

例えば黄金分割探索法のような一変数探索によって、 ある x の値に対する T および y の値を求めることがで きる。このことを(2)および(3)式が表している。

2-4 分縮理論

完全に保温していない装置では、発生した蒸気の一 部が液化して缶に戻る現象すなわち分縮が起きる。こ の場合の理論は分縮理論といわれ、すでに分かってい る³⁾ので簡単に説明する。この計算のフローグラフを 図3に示す。ここでECは気液平衡曲線を、DLは対 角線を、またTLはタイラインすなわち点(y,y)を 通り勾配が $-\gamma/(1-\gamma)$ の直線を表している。液相組 成xが与えられたとき、xy座標でxから気液平衡関 係ECよりyが求められる。yからx軸に平衡に引い た直線と対角線(DL)の交点をA点とするとA点の 座標(y,y)となる。A点から傾き $-\gamma/(1-\gamma)$ の直 線(TL)を引き、この直線と平衡曲線の交わる点を B点とするとこの点Bの縦座標yGが分縮率 γ のとき の残存蒸気組成である。これが(1)式を表している。

なお分縮率は時間によって減少していくことが考え られる。これは保温等を行わない状態で実験を行って いるために実験開始直後はフラスコ内壁の温度が外気

図3 分縮理論のフローグラフ

に近い低温であるのに対して,時間がたつにつれヒー タからの熱によりフラスコ内壁が高温になっていくた めである。このことを考慮して,前節で述べた蒸留期 間での微分方程式が追加されている。

第3章 実験結果

実験条件として、冷却水の流量を一定(26ml/sec) にし、特別に保温は行わない状態で、またヒータの出 力は450KWとなるようにスライダックを調節した。 メタノール水溶液の濃度は50vol%(32mol%)程度と し、毎回ほぼ一定量の仕込み液をとって実験した結果 を次に示す。実験条件は

室温 Ta=21.9℃, 仕込み液組成x0=0.4132,

仕込み液量 F0=17.062mol, 時間3000sec,

である。まず、プログラムAをともなう予備実験を行 う。結果はADコンバータから取り入れ、さらに換算 された温度-時間データであるが、これはファイル処 理によって、その中から15、6個のデータを選択し、 プログラムBに転記する。また予備実験で得た缶液組 成データ、及び留出液データも転記する。

次にコンピュータ上で、プログラムBによりパラメー タの決定を行う。図4に最終結果を示す。始めに、予 熱および加熱期間において総括伝熱係数と面積の積 UA. 熱損失係数 n および予熱時間 r の決定を行う。 本例ではUA=0.7、 η =0.30、 τ =170であった。実 験は3回行ったが、これらの値は殆ど同一であった。 さらに, パラメータ p0, p1, r0 および r1 の決定で あるが, 始めに p0 以外は0 として p0 の決定を行う。 次に p1 を決める。本実験では p0=0.007, p1=2.OE -06という値を得た。3回の実験に共通の値である。 最後にγ0,γ1であるが、特にγ1は留出液組成時間 曲線の形に余り影響がなく、本実験では $\gamma 0=0.1$ 、 γ 1=0という結果を得た。これらも3回の実験に共通 であった。すなわち,蒸留期間ではγについての微分 方程式は不要である。図4はこれらのデータを用いた 場合を示している。またプログラムBの試行の際、パ ラメータの決定には多少時間がかかるが実験と無関係 に行うことができるという利点がある。

最後にプログラムCを伴う本実験であるが,図4の 温度時間曲線と殆ど同じ結果を得た。ただしこの曲線 は温度を示す丸印がリアルタイムでの実測値であるこ とが図4の上図とは異なっている点に留意する。

JR= 3000 S1=2999 f1= 6.417 xw=0.0452 yw=0.2528 yG=0.2753 tw= 93.20 p=0.2537E-02 bet=0.6241 CP= 75.46

Ret?

結 言

単蒸留プロセスに対するリアルタイムシミュレータ として、2回の実験に適用するものおよびパラメータ 決定のためのもの計3種類のプログラムを開発した。 このプログラムと実験を組合わせた結果、分縮率を一 定とし、時間と共に変化する留出速度の微分方程式や 温度、組成についての微分方程式を用いたものが本実 験をよくシミュレートすることが分かった。

今後の課題として留出液組成或いは缶液組成を測定 する濃度センサーをとりつけて行う実験が必要となる であろう。

謝辞

本研究で実験およびソフトウェアの開発に携わった 当時の学生,坂下博之,田畑建治,川畑由利子,本浦 麻理子氏に感謝する。

記号

Ai	:Antoine 定数	[—]
Bi	:Antoine 定数	[-]
\mathbf{BP}	:沸点	[°]
\mathbf{Ci}	:Antoine 定数	[-]
Ср	:比熱	$[J/kg \cdot K]$
DL	:対角線	[-]
EC	:気液平衡曲線	[-]
F	:缶液量 .	[mol]
F0	:原料仕込量	[mol]
Ki	:成分iの平衡比	[-]
р	: 留出速度	[mol/S]
p1	:p についてのパラメータ	[-]
Р	:圧力	[Pa]
Pi0	:純粋成分 i の蒸気圧	[Pa]
qE	:与える熱量	[W]
ri	:成分iに対する液相における	舌量係数 [-]
t	:時間	[s]
Т	:缶液温度	[℃]
Ta	:外気の温度	[℃]
TL	:タイライン	[-]

UA	:総括伝熱係数と表面積の積	[W/K]
vi	:成分iのモル容積	[cm³/mol]
х	:液相組成(低沸点成分のモル分	率) [-]
xw	:缶液組成	[-]
у	:気相組成	[-]
уG	:分縮後の気相組成	[-]
γ	:分縮率	[-]
γ1	:γ についてのパラメータ	[-]
η	:熱効率	[-]
τ	:温度上昇における時間遅れ	[s]
λij	:Wilson パラメータ	[J/mol]
Λij	:Wilson パラメータ	[-]
Σi	Summation for i	
<sub< td=""><td>scripts></td><td></td></sub<>	scripts>	
i	:成分(i=1, 2)	
М	:メタノール	

- W :水
- 0 :初期値或いは純粋成分

引用文献

- 植木 浩:実用産業情報(㈱ニューマチック発行), 第1号, p89 (1994)
- 木村憲一:実用産業情報(㈱ニューマチック発行), 第1号, p107 (1994)
- 3) 藤田重文:化学工学1第2版,岩波書店, p131 (1988)
- 4) 仲ら:パソコンで学ぶ化学プロセス,朝倉書店, p133 (1989)