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ABSTRACT

Reliability of functionally gradient material (FGM) concerning with the brittle fracture

strength is studied based on the "weakest link" model. The FGM is the plaster-corundum model

system having four kinds of composition gradation. Effects of the specimen size and shape, i.e.,

the stress gradation, on the strength are numerically analyzed and discussed based on the experi

mental results of 3-point bending, 4-point bending, and ring diametrical compression tests. The

applied stress is divided into two parts, i.e., acted on a matrix of plaster and distributed parti

cles of corundum, based on the micro-mechanics. The fracture strength of plaster, which domi

nates the strength of specimen itself, is plotted on the Weibull probability paper and each data

set is confirmed to obey the two-parameter Weibull distribution. The average of Weibull para

meter of m = 8 is obtained then the deviation of data is relatively large. The dependence of the

effective volume on the composition gradation is analyzed and seems to have a tendency to in

crease as the composition gradation increased. The strength of plaster is independent on the com

position gradation. The mean strength of plaster, <r, is decreased with the increase of the effec

tive volume, Ve, and is arranged as the relation of <x = 8.3Ve~0125.

1. INTRODUCTION

The reliability of functionally gradient material (FGM), which have non-uniform tailored

composition gradation to satisfy the required function from a machine and/or a structural
design, is one of the important factor for a promotion of the commercial usage. One of the

aim to make composition gradation is development of the mechanical properties by combining

the advantage of strong but brittle material with relatively weak but ductile material. It seems

to happen to possess only the brittle character even those designed materials. Then it is neces

sary to consider the evaluation method of the brittle character properly to apply brittle FGMs

as a structural member. The data of fracture strength and the discussion of reliability con

cerning with FGMs seem to be impossible to find out yet because of the newness of itself.

Thus, it is interesting to analyze the reliability of brittle FGMs connecting with the size ef

fect of strength.

The author proposed one of the method to make a FGM ring or thick-walled tube by

applying a centrifugal force to the mixture of molten metal and ceramics powder(1M2). The
justice of this method was confirmed with a FGM of plaster-corundum model system. And

then, the effects of composition gradation on the ring crushing strength were measured and
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analyzed using the plaster-corundum FGMs(3). The simplest theory to evaluate the strength
of brittle material statistically seems to be the weakest link model, i.e., Weibull theory(4M6).
The brittle character of the size effect can be explained by applying the concept of effective

volume. The plaster itself must obey the weakest link theory and the strength of the model
FGM depends on the fracture strength of plaster. Then the reliability of FGM's strength data

is examined by applying the concept of the weakest link theory as a first trial. Each fracture

strength of plaster in FGMs is possible to evaluate from the macroscopic fracture strength of

FGM applying the micro-mechanics(7).
In the present paper, it is discussed about the method to evaluate the reliability of brittle

FGM's strength using plaster-corundum model FGMs. So that, effective volume, which is one

of the parameter to compare the strength data of different methods and sizes, is calculated

for the tests of 3-point bending, 4-point bending, and ring diametrical compression. It is as

sumed here that the usual theoretical assumptions for uniform material are able to apply for

FGMs. The strength of FGM is statistically discussed based on the effective volume calculated

by the stress acted on the- plaster that is dominated the fracture of the model FGMs.

2. ANALYSIS AND EXPERIMENTAL METHOD

2.1 Weibull Distribution Function

The FGM is assumed to break according to the weakest link theory proposed by Weibull

where the strength of a material is controlled by the growth of the defects in the body of vol

ume V. In case of two-parameter Weibull distribution, the probability function F(<x) is;

F(<r) = 1-exp |JV(*/OmdV| (1)

where, m is shape or Weibull parameter and a0 is scale parameter. If tensile stress field in a

specimen is given as a function of maximum tensile stress, <rt, an effective volume, Ve, is;

VE = JV(<r/<TtfdV (2)

Substituting Eq. (2) into Eq. (1) ;

F(<r) = 1-exp |-U/OmVE| (3)

and mean fracture strength, <x, is given as follows;

^ =<r0VE"1/mri(m +l)/m[ (4)

where r (•) is a Gamma function. Thus, relation between effective volume and fracture strength
is;

^2/?i = (VEi/VE2)1/m (5)

where o\ and oi are the mean fracture strength having an effective volume of Vei and Ve2, re
spectively.

2.2 Experimental Material and Specimen

The materials tested in the present study are model FGMs made by the centrifugal meth

od utilizing the difference of centrifugal force caused by the difference of density between each

component. The combination of materials is plaster as a matrix and corundum powder as dis-
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tributed particles having grain size of #60(1). Elastic modulus of bulk plaster and corundum
are Ep=5:35GPa and Ec:5=360GPa, respectively, and Poisson's ratio are assumed same and con

stant of v= l/3. The tests of 3-point bending, 4-point bending, and ring diametrical compres
sion are done by a screw-driven tension-compression machine with the cross-head speed of 0.1
mm/min. Figure 1 shows the dimension of specimens and those are width b=16mm, height h=14mm,
and span LI = 25mm for 3-point bending specimen, b= 16mm, h = 14mm, upper span LI = 12mm and
lower span L2= 26mm for 4-point bending specimen and outer diameter D = 90mm, inner diameter
d=60mm, thickness t = 15mm, and width b=30mm for ring diametrical compression specimen. Speci
mens are dried in room temperature more than three months after formed and are kept in the
dryer of 40°C for one day before testing.

Four kinds of the mean volume fraction of corundum R for each specimen are made and
are R = 15vol%, 25vol%, 35vol% and 0vol% as standard. The gradation profiles in the radial di
rection of mold are mathematically arranged as a function of specific thickness, X, where X =
0 and X= l are corresponding to the inner and outer surfaces of the ring, respectively(1) Those
functions, f(X), are;

f (X) = -13.96X3 +20.94X2 +11.51 (6)

f(X) = -80.31X3 +120.46X2 +4.93 (7)

f(X) = -131.91X3 +197.87X2 +2.02 • (8)

3-point Bending
4-point Bending

U=25mm L2= 0mm
Li=12mm L.2 = 26inm

Li

(a) Bending Specimen b=16mm h= 14mm

(b) Ring Crushing Specimen D=9 d=60mm b=30mm

Fig. 1 Configuration of the specimens and the arrows
indicate the loading direction.
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Fig. 2 Gradient distribution of corundum in plaster matrix
and corresponding elastic modulus gradation.

for R= 15vol%, 25 vol% and 35vol%, respectively. The distribution profiles of corundum pow

ders are shown in Fig. 2. There is a tendency that the gradation increases with an increase of

R-value because of a higher applied centrifugal force. Here, cracks for each specimen are always

initiated from X = 0 of the inner surface and propagated toward the radial direction of the

mold.

The gradient distribution of elastic modulus, E(X), generated by the composition grada
tion, f (X), is represented by the following equation(8);
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E(X) = (l-f)Ep + fEc-f(l-f)(Ec-Ep)7l(f+l/2)Ep+(l-f)Ec| •(9)

where f = f (X)/100. Variations of elastic modulus are also shown in Fig. 2 and the profiles
show the comparable tendency with the composition gradation.

2.3 Stress Field for Bending Test

The bending theory of a straight beam is applied for the evaluation of the stress field of

3-point and 4-point bending specimens. Stress, <x, and strain, e, of some distance, e, from a neu

tral axis is;

:e/r •(10)

<r = E(X)-e = E(X)-e/r •(11)

where r is the curvature of neutral axis. The condition that a summation of stresses acting

over the cross-section, A, is zero gives a relation;

JtfdA = J|E(X) -e/r| dA = 0 (12)

And the relation that summation of moment around zz-axis (i.e., width direction) equals to
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the applied bending moment M gives the relation;

J(e-<r)dA = J|E(X)-e7rldA = M (13)

After all, Eqs. (12) and (13) are written as;

J|E(X)-e|dA = 0 (14)

7=[J|E(X)-e2(dA]/M (15)

respectively. If the bending moment is known, the distribution fields of strain and stress are

obtained based on Eqs. (10) and (11), respectively.
2.4 Stress Field for Ring Diametrical Compression Test

The curved beam theory is applied to analyze the stress field of a ring diametrical com

pression specimen(3). The strain, e, and stress, a, at a point of distance e from a neutral axis
of curvature 7 is given by;

e = (7-e0 + e-a;o)/(7 + e) (16)

<j = E(X)-e (17)

where e0 and (0o is the longitudinal strain and angular strain, respectively. The tensile load,

T, and the bending moment, M, which are components of an applied ring compression load,

are balanced with the stresses by Eq. (17) and then the relations are written as;

T=/(TdA = £oJlE(X)-7/(7 +e)|dA + w0/|E(X)-e/(7 +e)|dA (18)

M=/(e-(r)dA = £o/lE(X)-7-e/(7 +e)|dA + cyo/lE(X)-e2/(7 +e)|dA-(19)

Values of e0 and co0 at any radial plane are calculated from a simultaneous equation of Eqs.

(18) and (19). Thus, the strain and stress fields are obtained from Eqs. (16) and (17), respectively.
2.5 Calculation of Effective Volume

Numerical calculation is done for the evaluation of the effective volume defined by Eq.

(2). Equation (2) is arranged for the easiness of calculation as;

Vb* 2l(<T/<Tt)mAVt (20)

In case of 3-point and 4-point bending tests, the finite volume of AV is

AV = b- AL- Ah (21)

where AL and Ah is the finite increment toward span and height direction of rectangular

specimen, respectively. The calculation of the effective volume by Eq. (20) is easily done. Be
cause the border of tensile and compressive stress region is the neutral axis, strains are a simple

function of the bending moment, M, which is reduced to Eqs. (10) and (15), and stresses parallel
to a load axis are in proportion to the bending moment at the position.

While a simple relation is not held in ring specimens. The volume is divided into the fi
nite volume of AV at an angle increment, A 6 , from a loading axis and a radius increment,

A7, from an inner plane of the ring;
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AV = b-7A0 • A7 (22)

The stress distribution in the ring specimen are different qualitatively depending on a position

of a radial plane because the tensile load, T, and the bending moment, M, vary as a function

of angle, 6 , from the loading axis. Therefore, it is necessary to calculate an average stress

acted on each finite volume of AV different from the bending test. Thus the effective volume

can be estimated by applying Eq. (20).
2.6 Separation of Stress Applied on FGM

The stress applied on FGM can be divided into stress components for plaster and corundum

based on the micro-mechanics(7). When solid circular particles are distributed in matrix, the
vector representation of stress components for a matrix {<xm} and a particle {<rp} are given as;

{<rm} = Bp [Bp"1 {?}] (23)

{<yp} = Bp &} (24)

respectively. Where {a} is macroscopic applied stress components and;

Bp=[l-(l-f)Lm(Sp-I)(Cp-Cm)]"1 • (25)

Bp=[l-Lm(Sp-I)(Cp-Cm)r • (26)

and I is the 4 th unit tensor;

Iijki = *ik*ji + *u*jk (27)

where d is Cronecker delta and L stiffness tensor (i.e., {a} =L{e}), S Eshelby tensor(9) and C
elastic compliance (i.e., {e} = C{<x}). Those values used in the present analysis are given in Ap
pendix. So the effective volume is calculated to insert the stresses given by Eq. (23) into cor
responding a and <xt terms of Eq. (20) as mentioned in Sec. 2.5.

3. RESULTS AND DISCUSSION

3.1 Stress Distribution and Gradient Composition

The specific stress distributions normalized with respect to maximum tensile stress are
shown in Figs. 3 and 4 for the evaluation of the effect of a gradient distribution on the stress
field. Fig. 3 shows profiles of stress distribution along a loading axis of 3-point and 4-point
bending tests. Both normalized results are coincided with each other because the difference

of a bending moment is vanished by normalization. The stress distribution profile of the ring
specimen is depended on the angular position of a radial plane. Figure 4 shows the stress distri
bution profiles along the loading axis for ring diametrical compression test where yield the
maximum tensile stress and also yield the maximum stress gradation(3). The average of a
specific tensile stress is increased with an increase of R-value and a deviation of the stress dis

tribution from R = 0 curve for Fig. 4 is less than that for Fig. 3. In a ring diametrical com
pression test, tensile stresses are generated in four regions which are upper and lower inside
regions on a loading axis and left and right outside regions normal to the loading axis. How
ever, failure always initiate from the inner radial plane along the loading axis so that both
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3-point Bending

Component for plaster-*
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0.0 0.2 0.4 0.6 0.8 1.0

Normalized Thickness

Fig. 3 Distribution of total applied stress and stress acted on plaster
for 3-point and 4-point bending tests.

Ring Crushing

Component for plaster-*
-1

0.0 0.2 0.4- 0.6 0.8 1.0

Normalized Thickness

Fig. 4 Distribution of total applied stress and stress acted on plaster
for ring diametrical compression tests.

outside regions are omitted for the calculation in the present study.
3.2 Effective Stress for Fracture

The fracture strength of plaster is quite weak compared with that of corundum and then

plaster dominates the fracture of plaster-corundum model FGM(3). In this situation, it seems
to be proper to evaluate the effective volume with respect to the stress only worked on plas-
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ter which is divided the total applied stress according to the method mentioned in Sec. 2.6.

The distribution of specific stress worked on plaster is also shown in Figs. 3 and 4, where

stresses are normalized with the maximum tensile stress. The deviation of a stress distribu

tion for each curve from R = 0 curve is smaller compared with total ones mentioned in Sec. 3.1.

The dependence of effective volumes on Weibull parameter, m, is checked in a range m = 4 - 30
and the results are shown in Fig. 5. The dependence of effective volumes on the composition
gradation is recognized as follows; the effective volume as a function of the composition gra
dation is decreased in the first time and then increased compared with a homogeneous one.
Moreover, the effective volumes become large in the order of 3-point bending, ring diametrical

compression, and 4-point bending tests and these values are seemed to be proper for the dis
cussion of the size effect.

3.3 Fracture Stress and Effective Volume

Fracture stresses are calculated from a fracture load followed by the method mentioned

in Sec. 2.3 and Sec. 2.4. The fracture strength are plotted on the Weibull probability paper as
shown in Fig. 6. The data number of each group is 50 to 60 points and the variation between

each data line for bending tests seems to be greater compared with that for ring compression
tests. Each data set makes each straight line having no obvious transition point. So that they
seem to be obeied two-parameter Weibull distribution and the lines for the calculation of para
meters are obtained by a least square method. These parameters of Weibull parameter (i.e.,
shape parameter), scale parameter, mean strength, variance and coefficient of variation are
summarized in Table 1. Any dependence of Weibull parameter on the composition gradation is
not obvious. The average of Weibull parameter is m = 7.7 (^8) and the small m-value means

that the strength data have a relatively large deviation.

Figure 7 shows the relation between an effective volume for m = 8 and plaster fracture

stress which is calculated based on equations shown in Sec. 2.6. Each data set plot the maxi-
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Fig. 6 Comparisons of Weibull plots of fracture strength for tests of 3-point bending,
4-point bending, and ring diametrical compression.

Table 1 Summary of Weibull parameter.

Test Method m Go a v V

R = 0 (Plaster) Specimen

3-point Bending 8.65 7.57 7.15 0.97 0.138

Ring Crushing 7.63 5.97 5.61 0.76 0.155

4-point Bending 8.20 5.88 5.55 0.65 0.145

R = 15 Specimen

3-point Bending 7.76 5.64 5.30 0.65 0.153

Ring Crushing 7.77 5.14 4.84 0.54 0.152

4-point Bending 8.30 4.68 4.42 0.40 0.143

R = 25 Specimen

3-point Bending 6.17 6.15 5.68 1.35 0.204

Ring Crushing 7.29 5.27 4.94 0.64 0.162

4-point Bending 6.18 4.30 3.98 0.66 0.204

R = 35 Specimen

3-point Bending 6.58 5.39 5.00 0.92 0.191

Ring Crushing 7.67 4.95 4.65 0.51 0.154

4-point Bending 8.72 3.79 3.59 0.24 0.137

m; Shape Parameter,
a ; Mean Strength (MPa),
V ; Coefficient of Variation

Go; Scale Parameter (MPa)
v ; Variance

mum, minimum and average values and plot points are within two dotted lines. The fracture

stress is decreased with an increase of effective volume that is the order of 3-point bending,
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for Weibull parameter m = 8.0.

ring diametrical compression and 4-point bending tests. The solid line in Fig. 7 shows the

mean value of fracture stress and obeys Eq. (5) as;

1000

•(28)

Again, here assumed the strength of a plaster-corundum model FGM is controlled by the frac

ture of weaker plaster and then the effective volumes concerning with the stress acted on only

plaster are calculated. The assumption seems to be proper judging from a relation of Eq. (28)
and plaster-corundum model FGM has the size effect. While the strength of plaster-corundum

model FGM for any volume and composition gradation can be evaluated using Eq. (28).

4. CONCLUSIONS

Plaster-corundum FGM specimens having four kinds of composition gradation are made

and three kinds of tests, which were 3-point bending, 4-point bending and ring diametrical com

pression tests, are done for the purpose to offer one of the concept how to consider and treat

the reliability of strength data in FGMs. The data of strength are summarized based on the

effective volume of the specimen and the following results are obtained.

(1) The fracture strength of each composition gradation and each test method can adopted

the two parameter Weibull distribution.

(2) The greater composition gradation gives the bigger effective volume of specimen.
(3) Weibull parameter seems to be independent of the composition gradation and the small

average value of m = 8 is obtained.
(4) Size effect that the bigger effective volume gives the smaller fracture strength is observed

and the mean strength of plaster is arranged as <t = 8.3Ve~°'12S.
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APPENDIX

In case of Poisson's ratio v= 1/3, the Eshelby tensor(9) S, the stiffness tensor L and the
elastic compliance C shown in Sec. 2.6 are given as follows;

S1S2S2 0 0 0

S2 Si S2

S2 S2 Si

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

S3 0 0

0 S3 0

0 0 S3

•(A-l)

where Si = (7-5v)/15(l-v)= 8/15, S2 = -(l-5^)/15(l-y) = 1/15, and S3 = (4-5v) /15 (1- v)
= 7/30.

L =

Li L2 L2

L2 Li L2

L2 L2 Li

000

000

000

000

000

000

L300

0L30

OOLs

where Li = (l-y2)E/(l-3v2-2v3)=3E/2,L2=(y + v2)E/(l-3v2-2y3)

E/2(l + v)=3E/8.

C =

Ci C2 C2

C2 Ci C2

C2 C2 Ci

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

c3 0 0

0 c3 0

0 0 c3

where Ci = l/E, C2= -v/E= -1/3E and C3=l/G = 2(l + v)/E = 8/3E.

•(A-2)

3E/4 and L3 = G;

•(A-3)


