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Numerical Simulation of Tide in Kagoshima Bay

by Two-Dimensional Subdomain Finite Element Method

Hiroyuki Kikukawa* and Noriko Komaki*

Abstract

The tidal flow in Kagoshima Bay is numerically simulated by the horizontally

two-dimensional subdomain finite element method with the two-step Lax-Wendroff time

stepping scheme. The bay is divided into quadrilateral elements. The real depth at every node

is determined from the chart. At the open boundary, the water surface is forced to be oscillatory

with the period of 12. 5 hours.

Stable solutions were obtained after four tidal periods. In the calculated tidal residual flow

pattern, an anti-clockwise and a clockwise vortices appear in the north of the open boundary

and a large anti-clockwise vortex in the center of the bay. The numerical result that the water

flows northward along the east coast and southward along the west coast in the center of the bay

agrees with the oceanographical observations and the distribution of planktons.

Introduction

Kagoshima Bay is located in the most southern part of Kyushu, Japan. It has two deep

basins connected by Sakurajima Channel (Fig. 1). The water renovations of the inner and

the outer basins are the important matters for our concern. The water will be renewed due to

the periodic tidal flow, the constant residual flow, the density flow and the wind driven

flow. The main purpose of this article is to estimate the residual tidal flow in Kagoshima

Bay by the numerical method in the horizontally two-dimensinal space.

The finite element method (FEM) is suitable for modelling complicated topography of
natural bays and inland seas. It also has the advantage of investigating the interesting

domain in detail by using smaller size elements. However, large computing region and long

CPU time are generally needed in FEM calculation. Recently, particular attention has

been devoted to the explicit FEM1),2),3), which could remarkably save the computer cost. In
1986, the conservative region method (CRM) was proposed4) as one of the candidates of the

explicit FEM for tidal flow problems. CRM is based on the direct integral balance of the

water mass and the momentum in some a priori defined subdomain, in contrast to the usual

FEM, which is formulated by the weighted residual method.
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Fig. 1. Topography of Kagoshima Bay.

The numbers denote the depth in meter.

Fig. 2. Division of Kagoshima Bay

into quadrilateral elements.

In this article, another explicit FEM will be proposed for the two-dimensional tidal flow

problems. The philosophy of the method is the same as CRM. But its subdomain is now
variable in contrast to the fixed one of CRM. The programming becomes simpler with less

computer cost. To distinguish the method from CRM, it will be named as the subdomain

finite element method (SDFEM). SDFEM will be applied to Kagoshima Bay and some

interesting results will be presented.

Subdomain finite element method

In SDFEM, a bay or an inland sea is first divided into quadrilateral elements (see

Fig. 2). As in CRM, the surface elevation and the velocity vector at some node a are

determined by considering the conservations of the water mass and the momentum in an

apriori defined subdomain. The subdomain in CRM is shown in Fig. 3 by the area
surrounded by the broken lines. Although the calculated tidal residual flow in a rectangular

model basin was similar to the Yasuda's analytic solution5),6), the programming of CRM was
a little complicated due to the isoparametric parametrization. In SDFEM, the subdomain
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Fig. 3. Subdomain of the isoparametric
parametrization (CRM).

Fig. 4. Subdomain of the simplex
parametrization (SDFEM).

adopted is the area surrounded by the broken lines in Fig. 4. The parametrization is the

simplex one, so the programming is very concise. For a rectangular model basin, the

calculated residual flow in SDFEM is almost qual to that in CRM.

As in the usual FEM, SDFEM equations are first written down for a quadrilateral

element and then summed up over all elements. For an element, the conservative

subdomain for node 1 ( = a) is the triangle constructed by nodes 1, 2 and 4 (hereafter

referred to as the triangle 124) (see Fig. 4). Similarly, the conservative ones for nodes 2, 3

and 4 are the triangles 231, 342 and 413 respectively. The adoption of these variant triangles

for each vertex of a quadrilateral element makes the method highly stable. In the following,

the vertex 1 of a quadrilateral element is concentrated on.

Equation of continuity

The water mass entering the triangle 124 througth the side between the vertices 2 and 4

(hereafter referred to as the side 24) lifts the water surface 77 as ;

pAAv=-f'p{h+v)(vn)drAt

= ~2p(baUl .+ cau2a)At (1)

where p is the density, which is assumed to be constant, A the area of the triangle 124, h the
depth, v the velocity vector, n the unit vector outward normal to the boundary and

u = (h+y)o (2)

Uaz=0C2fi X27t Ca==0C\y X\& { 3 )

In Eq. (3), a, 0 and 7 are cyclic with respect to the vertices 1, 2 and 4. The integral in
Eq. (1) was performed by assuming simplex parametrization of u and making use of Gauss'

theorem. Equation (1) is the fundamental element equation of continuity.

Similar element equations can be also obtained for other element triangles 145, 156 and
162 (see Fig. 4). Since the conservation of water mass is required only in the subdomain

surrounded by the broken lines in Fig. 4 and not in each element triangle, these element
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equations are summed up in one equation. The change of the water surface at node 1,
i.e. Arju will be calculated by replacing Atj by Arjx in the equation.
Equation of momentum

The momentum vector will be changed due to four factors, i.e. the momentum
accompanied with the water mass entering through the side 24 (advective term), the
pressure by the water outside the element subdomain (pressure term), the Coriolis force
(Corioris term) and the friction along the side 24 (viscous term). The gravity does not
directly cause the change of momentum in our horizontally two-dimensional case. But
indirectly it affects through the pressure term by adopting the static pressure approximation ;

P=pg(v-z) ( 4 )

where g denotes the gravitational acceleration.

The fundamental element equation of motion in the element triangle 124is then written as

pAAu =-£p(h+T)){v'n)vdrAt+J\h+r))p{-n)drAt
-ff p(h+vMXv)dsAt+M[\h+v)(n-V)vdrAt (5)

JM24 J2

where / denotes Coriolis coefficient, k the unit vector directed vertically upward and ju is
the viscous coefficient. In Eq. (5), the friction force is supposed to be proportional to
(n• V)v. The integrations in Eq. (5) are carried out by assuming simplex parametrization for

physical quantities and with the help of Gauss' theorem. The final equations are

M-^y=—gj (baUXa)(^V^)+{cQUia)(TiV2fi)-^{I]UiQ)(b0Vl0-\-C&V20) }

-^gmh+vUb^)
D a

o a

-~2p\ bi(baula)+ cx{cauxa) I

pA-XT=~^^aU2a)(Ilvl0)+(CaU2a)(I^V20)+(I]U2a)(b0V^ + C0V2fi)\

-ig[nh+7))a](ceTie)
D a

-%fA(T,ula)
o a

~~2A[ b^baU2a^C^CoU2a)I ( 6)
As in the case of the equation of continuity, similar element equations for the triangles

145, 156 and 162 are summed up with Eq. (6) and ^^(=1, 2) in the left hand sides are

replaced by the ones at node 1. The change of the momentum vector at node 1 will thus be

calculated explicitly.



KlKUKAWA • KOMAKI '. Numerical Simulation by SDFEM 181

Numerical simulation in Kagoshima Bay

The division of Kagoshima Bay into quadrilateral elements is given in Fig. 2. The
number of elements is 1633 and the number of nodes is 1812. The real depth at every node is

determined from the chart. The physical parameters are chosen to be

P=\tf(kg-m-\ y=9.8(m-5-2),

/=0.3745X10"4(5_1) for Latitude 31°N,

H=v=JL v0=5Xl02(m2-s-1), 4>=103(m), 2=sTb7T^ (7)
P u

The kinetic eddy viscosity v is chosen to be proportional to the length of the side 24 (i).
That is to say that the effectof an eddy is perceived only by the elementwith larger size than
the eddy ; a small size element can only recognize the effectsof smaller size eddys. The very
definition of eddy viscosity7) supports the above postulation ; as the most important eddy in
the turbulent flow is the largest one, the size of which is the length of the flow region L, the

eddy viscosity is proportional to L.
Initilly, the water is assumed to be at rest with flat water surface. The water surface at the

open boundary is forced to be oscillatory as

Vopen boundary=flSin(, ZKl/1 }

a=l(m), T=4.5X104(s) (8)
The non-slip boundary condition is adopted at the coast.

The fundamental equations are Eqs. (1) and (6). For the time stepping, the two-step

Lax-Wendroff scheme will be employed ;

pA^=pAf^pA(^)\ pAuT^pAu^pA^-J
I An \n+i I AUi \n+ipAvn+l=pAvn+AtpA[-ft) , pAul+l=pAul+AtpA[-jf) (9)

where n denotes the time step. The time difference At is chosen to be 3 seconds, because

At =5 seconds leads devergence. Stable solutions are obtained after four tidal periods.

In Fig. 5 is given the distribution of u at the maximum ebb current as an example of the

calculated results. The hodographs at several points in the bay are shown in Fig. 6, where

all hodographs rotate clockwise. The maximum value of velocity at the Sakurajima Channel

is about 0. 5 m/s, which is similar to observations. The distributions of the tidal velocity at

every half an hour over one tidal period in the Sakurajima Channel are depicted in Fig. 7. In

Fig. 8 are presented the variations of 77 and Ui{i=\, 2) at the points P, Q, R in Fig. 2. In

Figs. 7 and 8, 0 hour is the time, when the sea level is zero at the open boundary. It is seen
from Fig. 8 that the phases of P and Q are almost the same and the one of R delays about 30

minutes in 77 and u2t while in U\, the phases of Q and R are almost the same and the one of P

advances about 30 minutes. The phase delay of 77 only occurs in the Sakurajima Channel. In

Fig. 9 are given the distributions of the relative phase delays of 77 in the Sakurajima Channel

at the highest (Fig. 9a) and the lowest (Fig. 9b) sea levels.
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Fig. 5. Distribution of u vector at the Fig. 6.
maximum ebb current.

Hodographs at several points in
Kagoshima Bay.

The distribution of the tidal residual flow is presented in Fig. 10. An anti-clockwise and a
clockwise vortices appear in the north of the open boundary. In the center of the basin, a
large anti-clockwise vortex exists and the water flows northward along the east coast and

southward along the west coast. This fact agrees with the oceanographical observations and
the distribution of planktons. A clockwise vortex also appears in the Sakurajima Channel
(see Fig. 11).

Conclusion

Basing on the direct integral balance of the water mass and the momentum in some a priori

defined subdomain, an explicit method is devised for the horizontal

two-dimensional tidal flow problems. The method, named as the subdomain finite element

method, has the ability of modelling the complicated topography of natural bays and inland
seas. From the standpoint of solving the given tidal equations in a bay, SDFEM looks like

curious ; the equations must be solved in each isoparametric element subdomain (Fig. 3),
instead of the variable simplex element subdomain (Fig. 4), and the solution in each
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Fig. 7. Distributions of the tidal velocity at every half an hour over one tidal period in the
Sakurajima Channel. 0 hour is the time, when the sea level is zero at the open
boundary.
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Fig. 8 a. Variation of V at the points P, Q, R in Fig. 2. 0 hour is the time, when the sea
level is zero at the open boundary.
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Fig. 8 b. Variation ofui at the points P, Q, R inFig. 2. 0 hour is the time, when the sea
level is zero at the open boundary.
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Fig. 8 c. Variation of u2 at the points P, Q, R inFig. 2. 0 hour is the time, when the sea
level is zero at the open boundary.
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subdomain will be summed up to give the one in all the bay. However, if one takes the
conservation of the water mass and the momentum as the fundamental priciple, the element

subdomain in SDFEM might be allowed.
SDFEMis applied to Kagoshima Bay. Thecalculated results ofthesurface elevation and

the velocity vector are the natural ones. The phase of the surface elevation delays only
through the Sakurajima Cannel. In our case of Eq. (7), the phase difference between the
south and the north places of the Sakurajima Channel decreases about 10 minutes from the
case of the constant kinetic eddy viscosity v=vQ. In the tidal residual flow, the success of
our calculation is to give a large anti-clockwise vortex in the center of the basin.
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Fig. 9 a. Distribution of the relative phase delay of V in the Sakurajima Channel at the
highest sea level. The numbers denote the phase in minutes.

Fig. 9 b. Distribution of the relative phase delay of V in the Sakurajima Channel at the
lowest sea level. The numbers denote the phase in minutes.
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Fig. 11. Distribution of the tidal residual flow
Fig. 10. Distribution of the tidal residual flow. magnified around the Sakurajima Channel.
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