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Abstract

We study solids made from the unit sphere by removing a number » of parallel cylinders
of various radii that are externally tangent to each other and internally tangent to the unit
sphere. Our main interest is to study extremal properties (the maximum and the minimum)
of geometrical characteristics such as surface area, volume, and perimeter length in the
space of all of these solids. When n = 2, we show that the classical Viviani’s solid enjoys
an extremal property. When n = 3, by restricting the space so that it becomes compact,
we show that geometrical charcteristics have extremes when and only when two of radii of
cylinders are equal each other.

1 Introduction

Let S(R) be a sphere of radius R and C(r) a cylinder of radius » whose surface is tangent to the
surface of the sphere. In the Cartesian coordinates system, for example, they can be represented
as
x2+y2+22§R2, (.’E—’I‘)2+y2ST‘2

respectively. Then we make a solid S(R)\ C(r), that is, a solid made from the sphere by removal
of the cylinder. Such a solid in a particular case r = R/2 was first studied by Viviani in 1692.
In this paper, generalizing Viviani’s solid, we study the solid made from the sphere by removal
of several numbers of cylinders of various radii while axes of cylinders are assumed to be parallel
each other.

In the section 2 we study a solid that is made by intersecting a cylinder with the (fixed) unit
sphere, and evaluate its several geometrical chracteristics (surface area, volume, and perimeter
length). Then we study, as an example, a solid that is made from the unit sphere by removing
two cylinders that are parallel and externally tangent. This solid is a slight generalization of the
classical Viviani’s solid.

In the section 3 we study a solid that is made from the unit sphere by removing 'three’ cylinders
C(z),C(y),C(z) that are parallel and externally tangent. A triplet of ylinders C(z),C(y), C(2)
may be interpreted as a point (z,y, #) in the 3-dimensional Euclidean space. Then we study the
shape of the space S of all of these points. After revealing the structure of the space S, we finally
study the maximum and/or the minimum of several geometrical characteristics. It can be shown
that these characteristics attain their maximum and/or minimum when and only when two of
,y, z are equal.
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2 Several geometrical characteristics about generalized Vi-

viani’s solids

In this section C(r) denotes a cylinder of radius r that passes inside a sphere of unit radius and

which is tangent to the surface of the sphere.

2.1 Surface area

Let S(r) be the surface area of the sphere inside the cylinder. It can be computed by

s oo () (5) e

where
‘ D={(z,y): (z-1+7)°+y* <r’y>0}
Since
az\? 8z\? 1
\/”(éz) () =%
it leads to

. T g
S(r) = 4/ dx/ .
1-2r 0 V1—2?—y?

By change of variable z = 1 — r + 7¢, we have

1 rvi=t? dy
S(r)y=4r / dt/ .
-1 Jo VI={I—r+rt)2—y2

Since it is elementary to show that

= arcsinaé (a>b>0),

/b dz
o Va?—2z?

we have
/“l_t dy . rv1—12 .
= arcsin ——————— = arcsin
0 VI—(l=r+rt)2—y2 V1=(1—=r+rt)?

where we write ¢ = (2 —r)/r. Accordingly we get

1
S(ry = 4r/ arcsin,/ﬂdt
-1 c+t

I

Therefore we obatain the following lemma.

Lemma 1

S(r)=38 (arcsin \/g— Vr(l— r)) R

+1

c+t

)

dr !:(c + 1) arctan \/c——zl_ \/2?——1)} =8 (arctan \/g— \/r(—l—_r)> .
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2.2 Volume
Let V() be the volume of the sphere inside the cylinder. It can be computed by

1 AV ri—(z—1+47)2
V(T)=4// zdzdy=4/ da;/ V1—z? —y?dy.
D 1-2r  Jo

By change of variable z = 1 — r + 7¢, we have

1 rVI—E
V(T):4T/ dt/ VI—{I—r+rt)2—y2dy.
-1 Jo
Now it is elementary to show that
b 1 b
/ Va2 —z2dr = 3 (a2 -aresin — + bva? — b2> .
o a

Accordingly we get V(r) = I; + I3, where

L = 2r2/1 VI-82. /I 1—r+rt)?) —r2(1~ £2) dt
-1

1 . 2(1 ~ #2)
—(L—r 4782 arcsiny | — "L __gt.
21"/_1(1 (I ~7+rt)?) arcsin 1_(1_7“_*_7"15)2dt

First, writing ¢ = (2 — r)/r as before, we have

VO-(1=r+rt)2)—r2(1-t2) =rve-1v1 -t

I

i

Hence
1
L= 2%/c—1 / (1—t)V1+tdt
-1
32y/2(c—1) 4
——r 1
15
Next, since
2(1-¢%) 1+t
1-(1—r+7r)2 e+t
we have

1
1+t
I, = 2r3/il(l—t)(c-i»t)arcsin\/c—__::—gdt

= [(ch_l)i arctarn |/ c—il - ———”2(:5_1) (15¢2 4 50c — 29)| +3 (2)

3 J

Consequently, summing up (1) and (2), we get

(et 1)° arctan\/c—_Q—l - ——‘2(3_1) (8c—5)(c+5)| »

3

larctan \/?—itr— (1 - 4%) (1+3r)/r(1-7)].

Vir) =

Wl
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Therefore, noting that

r .
arctan T, ~ arcsin VT,
Vi-r

we obatain the following lemma.
[arcsin r— (1 - %T) (I+3r)v/r(1- r)} .

Lemma 2
V(r)=

w | oo

2.3 Perimeter

The intersection of two surfaces of sphere and cylinder forms a spatial curve like a lemniscate.
To speak precisely a leaf of the curve can be represented by

z(6) 1—r+rcosd
( y(6) ) = ( rsinf ) (0 <8 < 2n).
z(0) 1—=(0)> — y(6)*

Let L(r) be the perimeter length of the curve. Then it can be computed by

27 L
L{r)= ds =2 / ds.
0 o

Since
2(8)? = 2r(1 — r)(1 — cos )
and 1 y
dr = —rdfsin8, dy = rdfcosf, dz = iﬂ de,
2(8)
we have

ds? = Z{(1+7) + (1 - r)cost} do”.

Thus we see

m
Liry=2- \/g/ VA7) + (1 —71)cosfdb.
0
Now it can be shown that

/ Va+bcos8df =2vVa+b- E(k),
0

where E(-) denotes the complete elliptic integral of the second kind with k% = 2b/(a -+ b). There-
fore we obtain the following lemma.

Lemma 3

L{r) = 4/r- B(VT—7).

2.4 An example of generalized Viviani’s solids

Let C(x), C{y) be two cylinders such that they are externally tangent each other, their axes are
parallel, and their centers lie on a diameter of the unit sphere. Make a solid that is a part of
the sphere outside two cylinders, and let S be its surface area, V its volume, and L its perimeter
length. Then we have :
§ = 4r-S(z) - S{y),
4
= ‘3— - V(.’I?) - V(y)’

L = L@ +Ly),
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where we need to note that z +y = 1.
Using Lemma 1 we have

S(y) =8 <arctaﬁn1 /Ig—y - Vy(l— y)) =8 (arctan\/ ! ;a: —vz(1 —z)) .
Accordingly
S(x)+S(y) =8 (arctan,/i—f—x + arctan 1/ I—T.r —2+/x(1 —x)) .

Now note that

1 =
arctant + arctan =3 for any ¢t > 0.

Hence it follows

S(z)+ S(y) = 4w — 16 V(1 — z),
S =16+/z(l — z).

which implies

Similarly we obtain
v — %—8 (2(1— o))}

and

L=4(VzEN1~-3)+VI-zE(VT)).

Then it can be shown that all of S, V, L have their maximums when z = y.

3 Generalized Viviani’s solids made by removal of three
cylinders

Consider a cylinder of curvature  that is internally tangent to the surface of the unit sphere.
In this section we denote this cylinder by C(x), but sometimes admit to denote a section of the
cylinder, that is, a circle, by the same notation.

3.1 Space of mutually tangent three circles

Let C(1) be a fixed circle. Inside it we consider three circles C(x), C(y), C(z) that are externally
tangent each other and are internally tangent to C(1). Then the classical Descartes’s theorem
shows that z,v, 2 satisfy a quadratic equation

Quz,y,2) =201+ 2% +9°+ %) — (~1+a+y+2)* =0 (3)

We consider the space, which we denote by S, of all the triplets of mutually tangent circles
C(z),C(y),C(2). Then, by (3), the space S can be identified as the set

{(x,y,2) x> Ly>12>1, Qi(z,y,2) =0}

In other words the space S is a part of a quadratic surface.
To determine the shape of S precisely, we change the coordinates system (z,y,2) to a new
system {u,v,w) that are defined by

z
y | =upi+vps+ (w+ V3a)ps, 4
zZ
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where . . .
P1= _f P2 = :E P3 = § a=2+\/§
V3 V3

Since vectors p1, P2, P3 are orthonormal, change of coordinates system leads to
Qi(z,y,2) =207 + 207 — (w+2)%* +4.

Therefore the space S is a leaf of a hyperboloid

(w+2)2_uz—+-v2 _ 5)
2 (v2)?
Now we shall prove that w > 0. Summing up components ov vectors in (4), we have
z+y+z=V3w+v3a) (6)

Then, noting that z > 1,y > 1,z > 1, we see w + 2 > 0. On the other hand, from (5) it follows
that o2
002#2) > 1, that is, w(w +4) > 0.

Accordingly we get w > 0.
Therefore we obtain

(w+2)2_u2+v2:1} @

S:{(u,v,w):wzo, 5 Vo

3.2 Restriction of the space S

Since the space S is not compact, it is difficult to study maximum-minimum problems in the
space. Thus we need restrict the space S. To speak precisely we consider only mutually tangent
three circles C(z), C(y), C(z) that are externally tangent to a fixed circle C(x). Then, using
Descartes’s theorem again, we have

Qaz,y,2) =22+ 22+ 92+ 22— (k+z+y+2)* =0.
In the below throughout we only consider this restricted space
{(Zvyyz) T > 11y > l,z > 17 Ql(zvyvvz) = Ov QQ(.’L’,y,Z) = 0}»

which we denote by S{x).
Since Q1 (x,y,z) = 0 and Q2(z,y, z) = 0, we can immediately derive

z+y+z=RTA (8)

Hence, combining (6) and (8), we see

k—1
‘U1+\/§ :Eﬁ (9)

Thus, if & is fixed, a coordinate w is also fixed.
Furthermore (5) implies that
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where

_ Jw(w+4)
b= 5 .

Thus coordinates (u,v) lies on a circle of radius b, and they can be represented by a parameter

g as
u =bcosf, v=bsinéb.

In summary we see the restricted space is a circle lying on S. Precisely it is described as

z
S(k) = {(z,y,z) : ( y > = (bcosf) p1 + (bsin@)pa+cps (0<6< 2%)} , (10)

z

where
K2—Me+1 k-1

b=  c= .
c 23

24

3.3 Extremes of geometrical characteristics

Consider generalized Viviani’s solids made by removal of three cylinders C(z), C(y), C(z) with
(z,y,2) € S{x). By (10) curvatures (z,y,z) depend only on one parameter §. Consequently
any geometrical characteristic also depends on 8 and thus define a function F/(6). To write more
precisely, by use of lemmes in the section 2, the function F(f) is represented by

F(0) = f(=(0)) + [(y(0)) + f(2(6)) + C,

where f(z) stands for —S(z) and C = 4 in case of surface area; f(z) for —V(z) and C = 47/3
in case of volume; and f(z) for L{z) and C = 0 in case of perimeter length.

Lemma 3 F(6) is a periodic function with period 27/3.
(Proof) First we show

z(6+2—ﬁ) = b cos <0+ 2_7r> <~L> +bsin<0+2—7r> : (—L) +c- 1
3 3 V2 3 NG V3
o ., 2 1 . 27 _2m 1
b (cos@cos? — sin@sin ?> . (—ﬁ> +b (me(:os 3 + cos@sin 3> ( \/f_S) +c
= b~%sin6=z(0)

Similarly we can show

2 2
y o+ = =z(0), =z 0+ = y(6).
3 3
Therefore. since F' is symmetric with respect to (z,¥, ), F is periodic.

(QED.)

To simplify notations we write

z \ =(6) @\ g [ =0
ri= y>=(y(9)>, r’:=<y’ =@(y(9) .
z z(0) 2 #(6)

Then we have d
F'(8) = 7 F(6) = f'(x)d' + f'(y)y' + f'(2)7.
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Lemma 4 In the interval 0 < 8 < %’r, the function F(6) is mazimal at 6 = T and minimal at

8=17%.
(Proof) Since
r = (bcos8) p1 + (bsin8) pa + cps,

we see
r' = —(bsin6) p; + {bcosb) ps.

Accordingly, if § = Z, we have z = y,z’ = —y/, 2’ = 0, which implies F' = 0. Similarly, if 6 = %,
we have y = z,2' = 0,y = —2', which also implies F’ = 0. Therefore we get the conclusion.

(QED.)

Accordingly we obtain the following theorem.
Theorem Among all solids (z,y,z) € S{(k), geometrical charcateristics such as surface area,

volume, and perimeter length are mazimal when

oy MR ) 2b(m)  clk)
A v S Y Y &

and are minimal when
2b(k)  c(k) b(g) (k)
+ —, = = —
NG 30 VT

r=—
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