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1. Introduction

Random tessellations, in particular, Poisson-Voronoi tessellations have interested many
mathematicians as well as many researchers in other fields for a long time. As comprehensive
references, see Mgaller (1994), and Stoyan, Kendall and Mecke (1995). However, most of
these studies have been concerned with random tessellations in Euclidean spaces. On the
other hand, relatively small number of studies have been made in non-Euclidean spaces. For
example of these studies we may cite Miles (1971), Santald and Yanez (1972), and Isokawa
(2000). In particular, while Miles (1971) studied Poisson-Voronoi tessellations on 2-dimen-
sional spheres, that is, non-Euclidean planes with positive curvatures, there seem to be no
research on Poisson-Voronoi tessellations in non-Euclidean planes with negative curvatures,
that is, hyperbolic planes. In this paper we shall investigate Poisson-Voronoi tessellations and
their dual, Poisson-Delaunay tessellations, in hyperbolic planes.

Let H? be a hyperbolic plane with curvature (— k?). In H? we consider a homogeneous
Poisson point process @ with intensity p, and construct a Voronoi tessellation T whose nuclei
coincide with points generated by ®. In the section 2 we study the Poisson-Voronoi tessella-
tion T, and compute the mean number of vertices and the mean perimeter length of cells of T.
In the section 3 we study the Poisson-Delaunay tessellation which is defined by the dual of T.
We shall calculate the the mean magnitude of an angle and the mean area of its Delaunay

triangles.
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2. Poisson-Voronoi tessellation

In this section we shall compute the mean number of vertices E(V) and the mean perim-
eter length E(L) of cells of T. Slivnyak's theorem assures that it is sufficient to compute those
mean quantities for a typical cell Cp, which is defined as the cell with nucleus at the origin O.
We carry out our calculation in a similar manner to that in Meijering (1953). Following the
same author, we introduce the concepts of "mathematical" edges and "mathematical" vertices
of the cell Co. A straight line is called to be a mathematical edge of Cy if it lies equidistant
from the nucleus at O and another nucleus. Namely a mathematical edge bisects the line
segment which connects the nucleus at O and another nucleus. Similarly a point is called to
be a mathematical vertex when it lies equidistant from the nucleus at O and other two nuclei.

Let o stand for any infinitesimal element of any mathematical edge, or any mathemati-
cal vertex. Supposing that w lies distant » from O, we denote by P(r) the probability that wis
never contained in any other cells than Cp. Then the following lemma will play a crucial role

in later arguments.

Lemma 1.

2mp

P(r) = exp(—p(coshkr —1)) , where p = R

Proof. Let D denotes the disc with center at w and radius r. As is easily seen, @ is not
contained in any other cells than Cy if and only if any other nuclei other than O never lie in the
disc D. Then, since the nuclei of our Voronoi tessellation are generated by a homogeneous
Poisson point process with intensity p and the area of D equals g};’;(cosh kr —1), we obtain

the desired conclusion.
For the mean number of vertices, we can show the following concise result.

Theorem 1.

=6 141
E(V)=6 (1+#).

Proof. We first consider the mean number of mathematical edges whose distances from O
are between z and z + dz. Since it is equal to the mean number of nuclei that lie in an annulus

with distant 2z from O and breadth 2dz, it equals
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2r sinh 2kz
P d {k (COSh(k 22) 1)} 4r pTdZ 2.1

Suppose that a mathematical vertex P is the intersection of two mathematical edges / and
m, and denote by z and x their distances from O respectively. Let H and K be the feet of
perpendiculars from O to [ and m respectively, and denote the angle HOK by o. Let C be a
circle with center at O and radius r, and denote by 3 and ¥ the angles extended by chords
which are made by / and m with the circle C respectively. Then hyperbolic trigonometry
shows that

tanh kz _ tanhkx

———, COS _—
nhkr’ Y tanh kr 22)

Furthermore, we can see that the mathematical vertex P lies inside C if and only if
B-7|<a<B+y. 2.3)

Let v(r) be the mean number of mathematical vertices that lie inside C. Then, from

(2.1) and (2.3), it follows that

B IJ" sinh 2kz
u(r) = 5 047rpT dz
(J‘ 4m)sthlcxde‘B 71d J‘4npsmh2kxdxj‘ﬁ+yld )
z k B-v 1t 0 k =B
16mp®

= J sinh2kz dz (J sinh2kx -y + ,BJ sinh 2kx dx)

Now we change variables from z and x to f and yby (2.2), and define

sin fcos
g ’B = P77 F
(8) (1 —t* cos? [3)2 24
with ¢ = tanh kr.

Then we can rewrite

T

-2 sy [y o9

8(v) d?’) :
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Now it can be easily seen that

[Za(8)dB] velr) av = |2 Bo(B) B [? s(r)d

Consequently we get

12870 (% p
u(r) = k—f f(f g(B)dp JO y8(y)dy. @.5)
Now, an elementary calculus shows that
x 5 . 1- %tz
JOZ g(B) dﬁjo ve(y)dy =—5{1- T 2.6)

From(2.5) and (2.6) it immediately follows that

252 .
u(r)= 724’) 1-—2 2.7)

with 7 = tanh kr.
Accordingly the mean number of mathematical vertices that lie in anannulus with distant »

from O and breadth dr is equal to

)= 2

=" sinh® krdr . (2.8)

Now we note that
E(V)= | P(r)-av(r),

which we can easily evaluate using Lemma 1 and (2.8). As a consequence the desired result

can be obtained.

Next we turn to computation of the mean perimeter length E(L).

_L I _1_ 2
E(L)—\/Ejoe /u+2'uu du .

Proof. We first consider a mathematical edge whose distance from O lie between x and x +

Theorem 2.

dx, and denote by 2z the length of tits portion that is contained in a circle with center at O and
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radius r. Hyperbolic trigonometry shows cosh kz = cosh kr/cosh kx. Consequently the length
of its portion that is contained in an annulus A with distant » from O and breadth dr is equal to
2sinkr dr
df{zz} = P 2 3 2 :
\sinh? kr — sinh? kx

We have already seen that the mean number of mathematical edges whose distances

from O are between x and x + dx is given by (2.1), being z replaced by x. Accordingly the

mean length of portions of these mathematical edges that are contained in the annulus A are

J" sinh 2kx 2sinh kr dr
4mp dx -
0 k V/sinh? kr — sinh? kx
_ l6mp sinh kr dr J’ sinh kx cosh kx dx |

0\/sinh® kr — sinh? kx
which turns out to be

li—’f“’sinh2 kr dr . 5.9

Now Lemmal states that any infinitesimal element of these mathematical edges be-

comes that of actual edges with probability P(r). Therefore, using (2.9), we can show that

E(L)= r P(r)- 12””

0 2

= i Jme'“ u+——1—u2du .
Jmp Jo 21

3. Poisson-Delaunay tessellation

sinh® kr dr

Thus the proof is completed.

In this section we shall study the probability distribution of an angle of Delaunay tri-
angle. Let us consider a Delanay triangle OAB. By Slivnyak's theorem we may assume that O
is the origin. We put a = OA, b = OB, ¢ = AB, andy=ZAO0B. Furthermore, if it has the
circumcenter, we denote its circumradius by R. First we study existence of the circumcenter.
For this purpose we introduce the following quantities:

Q, = sinh? kasinh® kbsin®y,
Q, = 3+2(coshka + coshkb) (coshkacoshkb —1)
+(cosh® ka + cosh® kb) sin®y — cosh® kacosh® kb(1+ cos” y )

+ 2sinh kasinh kb(cosh ka — 1) (coshkb —1) cosy. 3.1)
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Lemma 2. A triangle has the circumcenter if and only if Q2 > 0. If it has the circumcenter,

its circumradius is given by

coshkR = g . (3.2)
2

Proof. We set

o= l(sinhk—a + sinh@ + sinh E)
2 2 2 2

O'(O' —sinh k—a) (0 —sinh @) (o —sinh E)
T=1+4. 2 2 2/,

sinh? k—asinh2 @sinhz ke
2 2

Then, as is shown in p.118 of Fenchel (1989), a triangle has the circumcenter if only if T > 1,

and

and moreover, if it has the circumcenter, its circumradius is given by tanh kR =1/ JT.

Now note that

160’(0’ —sinh k—a) (0' —sinh @) (0' —sinh E)
2 2 2

= —sinh* L sinh* L sinh* L5
2 2 2

hzk—a

+ 2sinh® k—"sinh2 B + 2sinh? @sinhz L + 2sinh? Esin
2 2 2 2 2 p]

Then, using sinh’ k2_a = l(cosh ka —1) and similar relations, we have

2

Lo 1- cosh? ka — cosh?® kb — cosh? kc + 2 cosh ka cosh kb cosh kc

3.3)
2(coshka —1)(cosh kb —1)(coshkc —1)

Hence

cosh” kR = 12 - =%,
I-tanh"kR 1-1/7 @,

where

O, = 1—cosh? ka — cosh® kb — cosh? kc + 2 cosh ka cosh kb cosh kc,

0, = 3—2coshka —2coshkb — 2 cosh kc — cosh? ka — cosh? kb — cosh? k¢
+ 2 coshkacosh kb + 2 coshkbcosh kc + 2 cosh kc cosh ka. (3.4)
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To (3.4) we apply the cosine formula of hyperbolic trigonometry. As a result, we can see

él = Q1 and éz = Q2 Therefore, since Q1 is always positive, the proof can be completed.

Next we study a probability density f{a, b,y). Since H? has the Riemannian metric

. 12
ds® = dr® + smh2 kr

de*
sinh kr

drd@.

where (7 8) denotes polar coordinates, its infinitesimal area element is given by

Therefore, using Lemma 1 in the preceding section and Lemma 2, we obtain the following

lemma.

Lemma 3. At any point (a, b, y) for which Q2 > 0,

Lsmhka‘smhkb.exp .y \/Q—l ,
Ik k N

where I denotes the normalizing constant and /,L=27rp/k2 as in the previous section. Elsewhere

f(a,b,y) =

fla, b, y) is identically zero.

From Lemma 3 follows the next Lemma 4, which is concerned with a probability den-

sity f( 7). To state it, we define

J(A)= J: k(z,7) CXP(—ﬂ(—/ll_:Z - 1)) dz (3.5)

and
k(z,A)=ki(z,A) + ka(z,A) + ks(z,4) (3.6)
where
(2-z)° - A*(8-8z+ 7
kl(Z’l) =< . 2( ) 2 (3.7)
20=2) (| _2(1-2))(,_«1+2)
2 2
a2
ky(z,A) = _/ll_lf | arccos et — 7

8(1-2)2 1-z(1- %)
32-48z+4(3+28)° —4(=2+38)2’ - 3(1-2)*

(1 —i(l;’l_)f(l _ M)? ’ (3.8)

2 2
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1 2
ky(z,A) = —7——~- log(l —7(1-%

41-2) )

)
—8+4(3-32+22)e—6(1 - )2 +(1-32" +24°)¢’

3.9
A=) (,_21+2) ]
2 2
Lemma 4.
f(y)=-——"J(cosy).
Proof. By Lemma 3 we have
f(y) = 1 sinhka sinhkb exp[—u( JO _ 1)) dadb.
1 {(a,b):0,>0} k k \/@
i ka kb
Here we change variables (a,b) to (x,y) by x = tanh;and y= tanh; .
Note that, since
2 2
coshka =% sinhka=—2%_ coshkb =12 sinhib=—22L_,
1-x 1-x -y 1-y
the expression \/a / @ reduces to
siny
J1-x* —y* +2xycosy —cos’y
Consequently we have
1 -
= -J(COS ’
where
~ 4 xdx 4ydy
= | 2
{(x,y):l—)(z—y2 +21xy—12 >0} (1 - X ) (1 - y )
2
-exp| —u| — =4 =—11]. :10)
J1=x =y 42y - A

By another change of variables (x,y) to (x,v) by x = (1 — v)/«/i andy =(u+ v)/\/z in

(3.10), J can be rewritten as
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u v

1— =
1+A4 1-A4

*eXpl—H \/ 2 > - (3.11)

In (3.11) we change variables again from (u,v) to (z, 6) by

u=-1+2Azcos6,0=~1-A+/zsinh.

As a result we have
1

i) = J‘OE(z,l)exp(—ﬂ( L - 1))dz ,

where
- %
k(z,2)=8z41- 2 j A+ cos229 6
0 z )
{1—z(1+/lcos20)+4(A+cos29) } a2
and
1+14 =«
0<6, = t. — & — .
), = arctan o

Now, by change of variable as r=tan 6, we have

H(zA) =8 1-2(1-2) | iy (ie

0 {(1 +12) = 2b(a® +£2)(1+ 1) + b*(a? _tz)z}z ;

where

Since the integrand in the last integral is a rational function of t, we can evaluate it in prin-

ciple. However this task is so cumbersome that we have carried out it with the aid of com-
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puter algebra. As a result it turns out that k (z,A) coincides with k(z,A). Therefore J(A) = J (A),

and the proof is completed.

Next we will evaluate the normalizing constant /.

k“.1:12n(i2+i3).
u

Proof. Using Lemma 4 we have

43 1
k1= I J(cosy) dy = LJ(/l)

Lemma 5.

=

dA
=4

nodA 1

= | 22— | k(z,1)exp| - ~1]|d
IN1I- A -L S )exp( #( 1-z D ’
g 1 ! A

- OCXP(—” ( l—z—l)) dzj-‘k(z’/l) -2

Thus we will first evaluate

[

j_]lk(z,/l) R

With the aid of computer algebra, we can evaluate without difficulity:

[ (=)

=0 (3,13)
N1= A2

and
! dA 4mz(8-7z)
k1 ,l = 3 -
Lren = (4-32(1-2)p

(3.14)

On theother hand, in order to evaluate an integral corresponding to k»(z,4), we introduce a

function A(A) by

where
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Furthermore we denote by H(A) a primitive function A(A).

Then partial integration leads to

! dA
Lk(z,l)ﬁ
=[H() 6@, - [ H(A) G/(2) da.

-1

= [ n(1)-6(2) ar

We see that

Ay L=z
G'(A)= N2 (-1~ 2)) (3.15)

and

H(A)= 8 + 8

W1-22(2-2(1-2))°  2(1-2)2(2—2(1+A))

2(-2 + 3z 2(-2 + 3z
+ (3 ) + ( ) : (3.16)

W1-2)2(2-2(1-2)  2(1-2)2(2-2(1+ )

From (3.16) it follows that

_m4-2)
(1 - z)z
On the other hand, using (3.15) and (3.16), we can show
87(8 -8z +2)

(4-32)*(1- z)%

[H(2) G, =

1
| =) 6'(2) ar=-
Consequently we get
dr m(16-12z-2)
sz(z,)\/ = =
1-4 (4-32)’(1-2)2

Adding up(3.13), (3.14), and (3.17), we obtain

1 dA _ 3m
J‘“‘k(z’/l) 1= (1-2)2

1 = o)

GTCJ (2x+x) .“"dx

1 1
2n —+— .
(uz /f)

3.17)

Therefore
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Thus the proof is completed.

Combining Lemma 4 and Lemma 5, we obtain the following theorem.

Theorem 3.
;)

f(7)=1—2h'1(0057)-

The function J is defined by (3.5) in a form of integral. To our regret, this integral seems
to be intractable in terms of elementary functions. However we can give an explicit expres-

sion for the expectation E(7).

Theorem 4.

Proof.  Using Theorem 3 we have
E(y)= L ¥f(v)dy

P ( I ) | A
=—— —f ——-1||dz| k(z,A A—.
127r(1+,u)'[oe)(p( M= ZL (z,A) arccos —

Thus we will first evaluate

.[-‘1 k(z,A) arccosA

dA
V1=-2
With the aid of computer algebra, we can evaluate without difficlity:

1
Lkl(z,/l) arccosl%;— =0 (3.18)

and
dA _ 27"z(8-7z)
VI-2 (4-37(1- 1)

1
Lk3(z,l) arccos A (3.19)
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On the other hand,

JZ ky(z,A) arccosA

\/% = J._llh(/l) G(1) arccos A dA
,[_ll h(A) (G(l) + g - %) (arccosl 5tz ) dA
J: h(}“) (G(/l)+ 72r) (arccosl - 5) dA

+ gJ._l] h(A) (G(/l) + %) dA — gfl h(2) (arccosl - %) dA

Now we observe that the function A4 is an odd function of A and, on the other hand, the

T T
function (G(l) + 5) (aIfCCOS/I - 5) is an even function. Consequently

J: ky(z,A) arccos A ———

1-X
= gj_]l h(1) (G(l) + %) dA - %L h(A) (arccos}t - %) dA
2] w0 6(2) ar-Z[ na) arccosda.

Thus

dA
J-_Ilkz(z,/'t) arccos A m
j Z [ w(a) A dA 3.20
\/i 5 arccos ) (3.20)

Here we can evaluate again with the help of computer

(4 —z—a1-
jl h(A) arccosA dA = ( : < Z). (3.21)
=1

(1-2)2

Accordingly, substituting (3.17) and (3.21) into (3.20), we get

! dr  4An*(8-8z+7)) 2x?
Lkz(z,l) arccosl\/ — = ( ; §)+ — (3.22)
1= (4-3)(1-z: (-9
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Then, adding up (3.18), (3.19), and (3.22), we obtain

dA__,of 1 1

N1=2 (1-2) (l—z)%

L k(z,A) arccos A

Therefore

3 oo
= 'u"[ Am’x e™™ dx

i
3(1+4)

Thus we have completed the proof.

At first sight Theorem 4 above and Theorem 1 in the preceding section are equivalent,
that is, deduced from each other. Heuristically we may expect E(V)- E(y) = 2. However I can

not prove this simple relation before we have computed both E(V) and E(y) individually.

From Theorem 4 and the Gauss-Bonnet formula immediately follows the following cor-

ollary.

Corollary 1.  The expectation of sum of three angles of a Delaunay triangle is equal to
mu /1

m~ And the expectation of area of a Delaunay triangle is equal to m
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