STRUCTURE AND DYNAMICS OF FOREST STANDS IN GUNUNG GADUT, WEST SUMATRA

T. Kohyama¹, M. Hotta², K. Ogino³, Syahbuddin⁴ and E. Mukhtar³

¹ Faculty of Education, Kagoshima University, Kagoshima

² Faculty of Science, Kagoshima University, Kagoshima

³ Faculty of Agriculture, Ehime University, Matsuyama

⁴ Faculty of Science, Andalas University, Padang, West Sumatra

Introduction

In this report, we describe results of the research of permanent tropical forest plots in 1987-1988. The permanent plots were established in Gunung Gadut area, about 18 km east from Padang, West Sumatra, during preceding researches (cf. Hotta, 1984, 1986). At the 1987-1988 research, it passed three to seven years after the establishment of these plots. We are going to continue research at least for 10 years, and here we sketch a brief outline of results of the research.

We express our thanks to many students of the lab of forest ecology, Department of Biology in Andalas University, for their helping every field research.

Field research in 1987-1988

The plots surveyed are listed in Table 1. Hereafter, we refer to each forest plot by the abbreviation in Table 1. Fig. 1 is the map of Gunung Gadut area showing the position of plots.

Among these plots, two 1 ha plots, PIN and GAJ, are established on the old-growth foothill forest where the effect of selection cutting of trees is not strong. AIR and GAD are on virgin forests at higher elevations, which are characteristic cloud forests, or montane evergreen oak forests, at respective elevations. PAT is the transect plot of 10 m wide and 370 m long, crossing a ridge just above PIN from a valley to another valley. An old-growth forest stand covers around the ridge (PATr), while two valley sides are secondary stands affected by clear felling some 15-20 years ago (PATv2), or by flooding, erosion and a severe selection cutting (PATv1). PBA is a 7-year-old secondary stand (clear-felled in 1980), which is located just below PIN. Further description can be seen in earlier

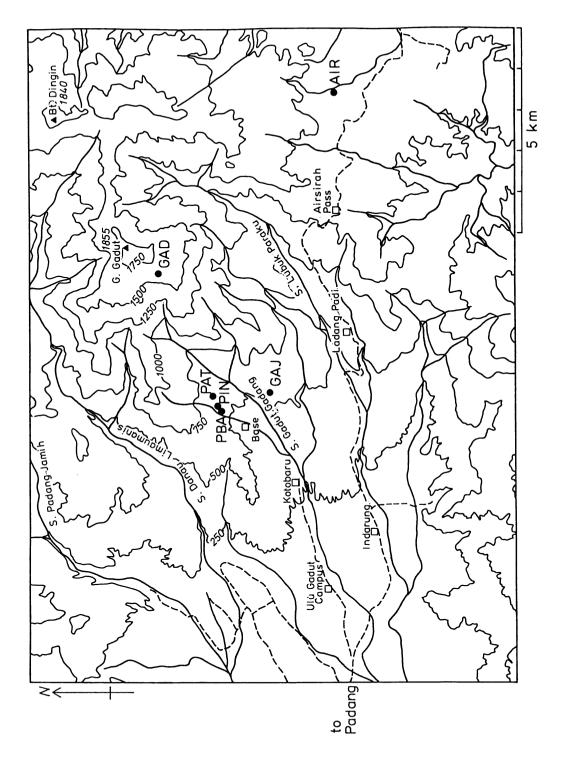


Fig. 1. The geographic map of Gunung Gadut area, showing permanent forest plots (solid circles), with contour at 250 m intervals. Distinctive points are marked by open squares, including the Ulu Gadut Campus of Andalas University and the research base of the house of field guide, Mr. Satar. Bt., Bukit (= Mount); G., Gunung (= Mount); S., Sungai (= River).

Plot name (Abbreviation)	Altitude (m)	Area (ha)	Established		
Pinang Pinang Plot (PIN)	590-620	1.0041	Sep. 1981		
Pinang Pinang Atas Transect (PAT)	570-660	0.3381	Sep. 1984		
Ridge old-growth stand (PATr)*		0.1714			
SE valley secondary stand (PATv1)	*	0.0631			
NW valley secondary stand (PATv2)	*	0.1036			
Pinang Pinang Bawah Plot (PBA)	560	0.0880	Sep. 1984		
Gajabuih Plot (GAJ)	590-635	0.9054	Dec. 1980		
Airsirah Plot (AIR)	1,130	0.0961	Sep. 1980		
G. Gadut Plot (GAD)	1,610	0.0883	Jan. 1983		

Table 1. Permanent Plots in Ulu Gadut region

* PATr, subplot no. 12-30 of PAT transect; PATv1, subplot no. 31-37; PATv2, subplot no. 1-11.

reports (Ogino et al., 1984; Kohyama and Hotta, 1986).

During the present research, we made plot tree census between November 1987 and January 1988. Measurements of dbh (= trunk diameter at breast height) for each numbered tree are the basic data, by which we analyze dbh growth rate and mortality of plot trees. Results of the present dbh census are shown with the data of 3-year before in Appendix I. The complete records of past dbh censuses can be seen in Hotta (1986). During the present census, we corrected several errors in the former data sheets, and moved several trees to the identified fraction. The largest tree in dbh among the plots, No. 496 in GAJ (152.2 cm in 1987), was identified to be *Deplanchea bancana* of Bignoniaceae.

We carried out dbh census for trees above 8 cm in dbh for PIN, GAJ, and above 5 cm for PAT, PBA, AIR and GAD plots. We gave new numbers for the trees which grew up above these minimum sizes after the census of 3-year before (except for AIR). Collected samples for identification were labeled and stored in the herbarium of Andalas University. Distribution maps of trunks of number trees in PIN and GAJ are presented in Appendix V. Hotta (1984) presented the crown projection maps in January 1984 for PIN and GAJ. Appendix V also indicates trees died since January 1984.

During the last 2 or 3 years, many emergent and/or canopy trees of GAJ fell down and we observed a large-scale gap creation. Dead trees more than 50 cm in dbh during 1984-1987 were one *Swintonia schwenckii* (130.5 cm), four *Lithocarpus* spp. (82.4, 55.9, 55.1, and 52.1 cm), and one *Quercus gamelliflora* (69.3 cm). Fig. 2 shows the pattern of gap distribution observed by T.K. in September 1984 and in December 1987 for PIN and GAJ. The distinction between canopy gaps and closed stands is rather expedient, differing from person to person. The definition used in this research by T.K. is that gaps are parts of a forest stand marked by an opening of canopy with distinguishable gap-maker (fallen trunks, standing dead or senescent trees), which is sometimes covered by the closed foliage layer of regrowth less than 20 m in height, and that closed stands are

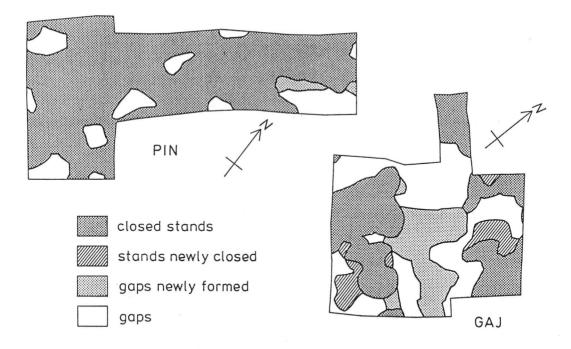


Fig. 2. Distribution of gaps and closed stands, and its change during September 1984 and December 1987, in two 1 ha plots, PIN and GAJ. The state in 1984 is reported by Kohyama and Ogino (1986).

non-gap parts of a forest stand. Gaps in this research can be divided into the gap phase and the building phase of Whitmore (1975) and closed stands correspond to the mature phase of Whitmore. To record the destruction in GAJ, M.H. sketched the profile diagram (Appendix VI-1) for the same forest stand section sketched in December 1980. In PATv1, there was a new gap formation by the fall of a tree of Sterculiaceae (69.7 cm in dbh). For the transect plot PAT, the profile diagram from the central ridge to the valley of southeast slope, including the new gap, was given in Appendix IV-2. In other plots, the death of large trees more than 50 cm in dbh resulting in a large gap formation was not observed during the period between 1984 and 1987.

To analyze the quantitative relationship between dbh and tree height, we measured tree heights of selected trees covering the all size range of plot trees, in PBA, AIR and GAD. Tree heights were calculated by using a degree-level (Ushikata) which had an accuracy of 10 minutes. The raw data appear in Appendix II.

Stand structure and dynamics

Here we describe the stand structure from records of the latest dbh census

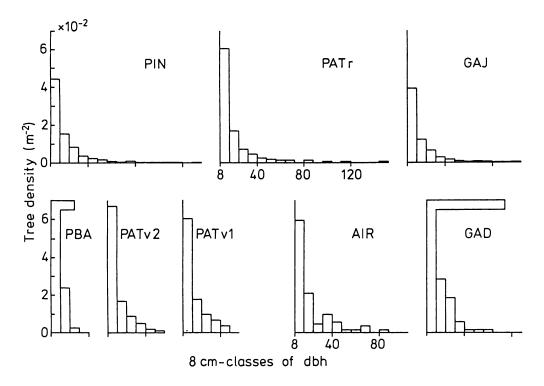


Fig. 3. Frequency distribution of dbh in 8 cm classes, for trees \geq 8 cm dbh, in December 1987.

(November 1987-January 1988), and compare them with the dbh census carried out three years before (December 1984-January 1985). Though the date of censuses differs among plots, we refer the latest as 1987 census and that 3-year before as 1984 census. The complete original data can be seen in Appendix I. We observe trees ≥ 8 cm in dbh in the following calculation, because the minimum dbh employed in censuses differs between plots, as stated before. We make no distinction between stems of trees and those of lianas here.

Fig. 3 shows the frequency distribution of dbh in 8 cm classes in 1987. Each plot has a positively skewed distribution indicating continuous recruitment of smaller saplings. Tree density in the smallest class (8-16 cm in dbh) is larger in younger secondary stands (PBA, PATv2, PATv1), and in primary forest stands at higher elevation (AIR, GAD) than in old-growth stands of foothill forest (PIN, PATr, GAJ).

We estimate above ground biomass as follows. Let denote dbh (cm) and tree height (m) by D and H, respectively. D-H relation of each plot is regressed by the generalized allometric function (Ogawa, 1969):

$$1/H = 1/(AD^{h}) + 1/H^{*}$$
(1)

where A (cm m⁻¹), H^* (m) and h (dimensionless) are regression coefficients. In a preceding report (Kohyama *et al.*, 1986), we calculated

Plots	Sample size	1/A (cm m ⁻¹	1/H* 1) (m ⁻¹)	h	RSS	Max tree height (m)
PBA	37	0.621	0.0134	0.900	1.045	23.5
AIR	33	0.829	0.0321	1.273	0.689	33.8
GAD	30	1.224	0.0493	1.438	0.946	19.9

Table 2. Coefficients of the D-H curve parameters of eqn (1) with the sum of square of residuals (RSS), estimated for three plots.

these coefficients applying the non-linear regression method which minimizes the sum of squares of residuals in terms of logarithmic H. In the 1987 research, we added tree height data for PBA, AIR and GAD. Table 2 gives estimates of coefficients for these plots, which are obtained applying the same method as before to data in Appendix II.

Here, we employ two published allometric relationships between D^2H and tree weight. One is obtained in a warm-temperate evergreen oak forest stand in southern Japan by Nagano (1978):

$$D_{0.1} = 0.941D + 0.734$$
 and
 $W = 0.0303D_{0.1}^{2}H$, (2)

where $D_{0.1}$ (cm) is the trunk diameter of a tree measured at 1/10 of the tree height and W (kg) is the aboveground dry weight of a tree. The other is reported from a tropical lowland Dipterocarp forest in East Kalimantan by Yamakura *et al.* (1986):

$$W_{\rm s} = 0.02903(D^2H)^{0.9813},$$

$$W_{\rm b} = 0.1192 W_{\rm s}^{1.059} \text{ and}$$

$$W_{\rm l} = 0.09146(W_{\rm s} + W_{\rm b})^{0.7266},$$
(3)

where W_s , W_b and W_1 (kg) are dry weights of trunk stem, branch stem and leaves of a tree, respectively, and $W = W_s + W_b + W_L$. Our study plots are located in tropical foothill forest and tropical montane oak forest, and they correspond to intermediate forest types between the tropical lowland forest and the warm-temperate evergreen oak forest. So, we calculate biomass estimates using eqns (2) and (3). We find that two biomass estimates are quite similar to each other. We have that [estimate by eqn (3)] = 1.02 [estimate by eqn (2)] - 0.12, for 8 plot types at two times 1984 and 1987, with the correlation coefficient of 0.9999999.

Table 3 shows the basal area and the aboveground biomass estimated by eqn (2) in 1984 and 1987. The basal area and the aboveground biomass increased during 1984-1987 except for two plots. In GAJ and PATv1, remarkable new gap creation as stated before resulted in the decrease of basal area and biomass. The increment of basal area and biomass by the recruitment of saplings was not so large as compared with the increment by

Plot	in 1984	in 1987	G *	D *	I *	E *
(1) Basa	l area (cm	² m ⁻²)			<u></u>	
PIN	36.48	38.98	2.33	0.38	0.54	0.01
GAJ	30.66	29.03	2.63	4.92	0.66	0.00
PATr	56.14	60.35	4.62	0.86	0.48	0.03
PATv1	30.74	27.28	4.13	8.16	0.57	0.00
PATv2	21.82	26.09	3.90	0.48	0.85	0.00
PBA	8.77	15.24	4.56	0.42	2.34	0.00
AIR	52.59	54.87	3.34	1.29	0.22	0.00
GAD	38.71	41.60	2.34	0.96	1.57	0.06
(2) Abov	eground bi	omass (kg	m ⁻²)			
PIN	38.04	40.52	2.50	0.27	0.25	0.00
GAJ	33.84	30.85	3.08	6.32	0.24	0.00
PATr	59.81	65.14	5.74	0.58	0.19	0.01
PATv1	22.06	18.78	3.30	6.83	0.25	0.00
PATv2	14.50	17.69	3.07	0.24	0.37	0.00
PBA	4.64	8.99	3.58	0.18	0.95	0.00
AIR	45.45	47.58	3.10	1.08	0.10	0.00
GAD	21.95	23.63	1.46	0.54	0.79	0.02

Table 3. Biomass dynamics in Ulu Gadut Plots 1984-1987; biomass is estimated by D-H curve regression and eqn (2).

* G, increment of basal area/biomass by growth of surviving trees during 1984-1987; D, decrease by death of trees during 1984-1987; I, increment by immigration of trees to the class \geq 8 cm dbh during 1984-1987; E, decrease by emigration of trees to the class \leq 8 cm dbh during 1984-1987. Total change during 3 years is G + I - D - E.

the individual tree growth. An exceptionally high rate of recruitment was observed in PBA corresponding to the vigorous recovery of vegetation in this young stand. A high recruitment rate in GAD is artificial one as a large tree had been missed to be numbered until 1987.

The mortality of trees fluctuates year by year, whereas the growth rate of surviving trees is rather stable. The ratio of growth in biomass of surviving trees divided by the biomass in 1984 is 0.022-0.032 year⁻¹ for old-growth stands (cf. Table 3). The reverse of this ratio (31-45 years) corresponds to a rough estimate of the rotation time of stand biomass in steady-state forest stands. This ratio is remarkably larger in secondary stands (0.050 in PATv1, 0.071 in PATv2, and 0.357 year⁻¹ in the youngest PBA).

Fig. 4 shows the size-specific growth rate and the size-specific death rate of trees, calculated for 2^{n} octave classes of dbh: 8-16 cm, 16-32 cm, 32-64 cm, 64-128 cm. In old-growth stands of foothill forest (PIN, GAJ, PATr), as well as in those of montane oak forest (AIR, GAD), the relative growth rate in dbh (RDGR, year⁻¹) decreases with size. There are no dif-

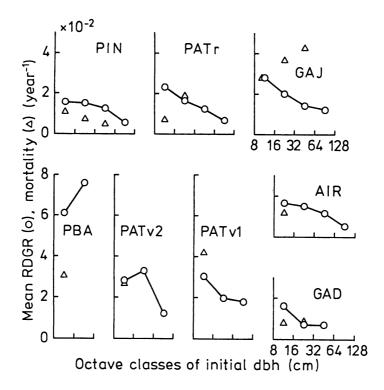


Fig. 4. Mortality and mean growth rate of dbh (RDGR) during December 1984-December 1987, in each of 2^n octave dbh classes in permanent plots. Mortality is estimated for more than 40 trees.

ference in RDGR pattern between forest types in these stable forests. Relatively higher RDGR in GAJ corresponds to higher mortality (higher rate of gap creation) in it, as suggested by Kohyama and Ogino (1986). RDGR is fairly higher in secondary stands of foothill forest (PIN, PATv2, PATv1).

Tree community structure

One of us, M.H., has been identifying plot trees. Though the identification is not yet completed, we can describe an outline of tree communities in each permanent plot. The list of species composition expressed by the number of plot trees is given in Appendix III. To compare tree communities with each other, we analyze here plot trees ≥ 8 cm in dbh. Trees belonging to the same genus are treated to be the same species when only their genera are known. Table 4 shows the species list of each plot in sequence of the sum of basal area. It is a distinctive characteristic of species composition that not only in montane oak forest stands but also in old-growth foothill forest stands species of Fagaceae (Castanopsis spp., Lithocarpus spp. and Quercus spp.) appear with a high basal area ratio. Abundant emergent and canopy-layer species in the old-growth foothill forest, such as Swintonia schwenckii, Canarium denticulatum, Nephelium

Table 4-1. Species list of PIN for trees \geq 8 cm dbh.

Species	No.	BA*	Species	No.	BA*	
Swintonia schwenckii	15	4.699	Quercus sp.	4	0.076	
Lithocarpus sp.	21	3.151	Nephelium mutabilis cf.	1	0.075	
Palaquium sp.	48	1.844	Shorea sp.	2	0.074	
<i>Syzygium</i> sp.	39	1.467	Planchonia valida	2	0.069	
Canarium denticulatum	4	1.463	Flacourtia sp.	2	0.068	
Nephelium juglandifolium	17	1.338	Ganua motleyana	1	0.068	
Quercus gemelliflora	6	1.290	Mallotus paniculatus	4	0.067	
Castanopsis rhamnifolia	6	0.893	Memecylon laurinum	5	0.066	
Calophyllum sp.	3	0.829	Bauhinia sp.	4	0.061	
Mastixia trichotoma	19	0.786	Artocarpus sp.	3	0.054	
Macaranga hypoleuca	9	0.770	Vitex gamosepala	3	0.054	
Dysoxylum sp.	18	0.745	Sterculia sp.	2	0.053	
Phyllanthus indicus cf.	22	0.726	Pometia sp.	6	0.052	
Grewia florida	26	0.660	Willughbia apiculata	5	0.051	
Canarium sp.	7	0.627	Xanthophyllum sp.	3	0.046	
Durio griffithii	9	0.552	Anthocephallus indicus	4	0.044	
Lithocarpus conocarpum	1	0.550	Pithecellobium microcarpum	3	0.040	
Lithocarpus platycarpus	2	0.546	Villebrunea rubescens	3	0.035	
Styrax serrulatum	14	0.446	Sterculia longifolia	3	0.034	
Artocarpus glauca	7	0.410	Talauma sp.	2	0.027	
Hopea mengarawan	8	0.377	Trema orientalis	1	0.027	
Macaranga triloba	12	0.367	Artabotrys gracilis	3	0.026	
Schima wallichii	5	0.348	Uncaria sp.	2	0.024	
Ficus sp.	19	0.341	Quercus lineata	1	0.024	
Castanopsis sp.	4	0.302	Spondias sp. cf.	2	0.022	
Parashorea lucida cf.	9	0.284	Macaranga denticulata	2	0.022	
<i>Nephelium</i> sp.	7	0.279	Cryptocorya zollingeriana	1	0.020	
Hopea sp. cf.	4	0.247	Pithecellobium sp. cf.	1	0.020	
Platea excelsa	7	0.237	Lithocarpus ewyckii cf.	1	0.019	
Evodia latifolia	2	0.234	Ficus miquerii	2	0.018	
Shorea sumatrana	12	0.227	Apolosa sp. cf.	2	0.018	
Mallotus subpeltatus	15	0.213	Aglaea dookoo	1	0.018	
Macaranga pruinosa	4	0.204	Ficus ribes	2	0.017	
Styrax paralleloneurum	7	0.201	Knema cinerea	2	0.016	
Anisophyllea sp.	1	0.193	Knema laurina	1	0.015	
<i>Litse</i> a sp.	10	0.188	Spathostemon javensis cf.	1	0.014	
Sandricum koetjape	10	0.188	Garcinia dioica	2	0.014	
Urophyllum macrophyllum	10	0.180	Laportea stimulans	2	0.013	
Litsea cubeba	2	0.154	Tarenna sp.	1	0.013	
<i>Diospyros</i> sp.	9	0.151	Apolosa frutescens cf.	1	0.012	
Knema hookeriana	3	0.150	Mallotus sp.	2	0.012	
Blumeodendron tokbrai	1	0.150	Xanthophyllum rufum	1	0.012	
Eurya acuminata	8	0.147	Memecylon sp.	1	0.011	
Knema sp.	6	0.133	Litsea lanceolata	1	0.010	
Gonystylus forbesii	9	0.129	Cyathea sp.	1	0.010	
Sterculia cuspidata	7	0.115	Elaeocarpus sp.	1	0.010	
Phoebe sp.	2	0.098	Vatica sp. cf.	1	0.009	
Pternandra caerulescens	6	0.092	Grewia sp.	1	0.008	
Trema angustifolia	4	0.081	Artabotrys sp. cf.	1	0.008	
Lithocarpus sundaicus cf.	1	0.077	Randia sp.	1	0.008	

Species	No.	BA*	Species	No	BA*
Dehasia sumatrana cf.	1	0.008	Aglaea tomentosa	1	0.005
Gonyotalamus sp. cf.	1	0.007	Macaranga sp.	1	0.005
Alstonia angustifolia	1	0.007	Nyssa javanica	1	0.005
Memecylon costatum	1	0.007	Canarium serratum cf.	1	0.005
Uvaria sp.	1	0.007	Cinnamomum sp.	1	0.005
Shorea multiflora cf.	1	0.006	(not determined)	177	7.380
<i>Fissistigma</i> sp.	1	0.006	Total	791	38.974
Santiria sp.	1	0.005			

Table 4-1, continued (PIN)

Table 4-2. Species list	of	GAJ	for	trees	>	8	cm db	bh.
-------------------------	----	-----	-----	-------	---	---	-------	-----

Species	No.	BA*	Species	No.	BA*
Deplanchea bancana	1	2.009	Mallotus paniculatus	4	0.150
Swintonia schwenckii	13	1.838	Gironniera subaequalis	6	0.137
Canarium sp.	8	1.596	Urophyllum macrophyllum	9	0.122
Lithocarpus sp.	12	1.573	Mastixia trichotoma	3	0.119
Syzygium sp.	40	1.516	Knema cinerea	5	0.112
Shorea sp.	7	1.352	Phoebe sp.	4	0.093
<i>Litsea</i> sp.	21	0.893	Macaranga denticulata	8	0.092
Shorea sumatrana	25	0.841	Ryparosa caesia	1	0.091
Palaquium sp.	21	0.815	Dysoxylum sp.	6	0.088
Styrax paralleloneurum	9	0.665	Macaranga hypoleuca	3	0.087
Planchonia valida	4	0.650	Evodia latifolia	1	0.087
Quercus gemelliflora	3	0.644	Vatica sp. cf.	1	0.086
Phyllanthus indicus cf.	22	0.629	Sterculia sp.	3	0.082
Nephelium juglandifolium	6	0.590	Baccaurea sp. cf.	1	0.080
Litsea cubeba	15	0.540	Polyalthea sp.	4	0.072
Pithecellobium microcarpum	18	0.458	Knema hookeriana	1	0.066
Timonius wallichianus	13	0.449	Uvaria sp.	2	0.056
Durio griffithii	8	0.433	Aglaea sp.	3	0.053
Lithocarpus sundaicus	2	0.424	Santiria sp.	4	0.052
Villebrunea rubescens	26	0.391	Mallotus subpeltatus	4	0.048
Lithocarpus ewyckii cf.	1	0.364	Ellipanthus tomentosus	5	0.047
Gonystylus forbesii	13	0.359	Ficus sp.	5	0.045
Ficus ribes	12	0.317	Knema sp.	2	0.044
Diospyros sp.	9	0.310	Planchonia sp.	1	0.042
Tristania bakhuizeni	1	0.262	Platea excelsa	2	0.042
Canarium denticulatum	7	0.249	Pternandra caerulescens	3	0.042
Anisophyllea sp.	8	0.248	Pithecellobium sp.	1	0.037
Nephelium sp.	2	0.246	Cinnamomum verum	2	0.033
Schima wallichii	2	0.236	Flacourtia rukam cf.	2	0.032
Hopea mengarawan	6	0.222	Phyllanthus sp.	1	0.029
Grewia florida	7	0.201	Garcinia dioica	1	0.028
Macaranga triloba	11	0.187	Calophyllum sp.	1	0.028
Castanopsis rhamnifolia	1	0.186	Memecylon sp.	1	0.027
Trema angustifolia	6	0.182	Podocarpus neriifolius	1	0.027
Castanopsis lucida cf.	1	0.182	<i>Neesia</i> sp. cf.	1	0.024
Laportea stimulans	14	0.166	Aglaea tomentosa	2	0.024

Species	No.	BA*	Species	No	• BA*
Artabotrys sp. cf.	2	0.024	Uncaria sp.	1	0.009
Polyosma integrifolia	1	0.023	Memecylon laurinum	1	0.009
Styrax serrulatum	2	0.022	Gymnacranthera paniculata	1	0.009
Ficus miquerii	2	0.022	Anthocephallus indicus	1	0.007
Myristica sp.	2	0.020	Mitrephora sp.	1	0.007
Wrightia laevis	1	0.020	Dracaena elliptica cf.	1	0.007
Eurya acuminata	2	0.020	Euonymus sp.	1	0.007
Popowia sp.	1	0.020	Dialium sp. cf.	1	0.007
Artocarpus glauca	1	0.019	Arthrophyllum sp.	1	0.006
Blumeodendron sp.	1	0.017	Carallia sp. cf.	1	0.006
Cinnamomum sp.	2	0.016	Trigonostemon sp.	1	0.006
Vitex gamosepala	2	0.015	Neuclea sp.	1	0.006
Ardisia sp.	2	0.014	Mallotus sp. cf.	1	0.006
Elaeocarpus sp.	1	0.014	Artabotrys gracilis	1	0.006
Schefflera sp.	1	0.012	Xanthophyllum sp.	1	0.005
Pometia sp.	1	0.011	(not determined)	77	4.026
Milletia sp. cf.	1	0.010	Total		29.024

Table 4-2, continued (GAJ)

Table 4	-3.	Species	list	of	PATr	for	trees	<u>></u>	8	cm	dbh.	

Species	No.	BA*	Species	No	• BA*	
Shorea sp.	3	9.646	Villebrunea rubescens	2	0.253	
Dysoxylum sp.	9	8.197	Cyathocalyx sp.	1	0.229	
Quercus sp.	1	6.219	Litsea sp.	3	0.179	
Lithocarpus sp.	1	3.279	Platea excelsa	3	0.170	
Nephelium sp.	5	3.062	Mallotus subpeltatus	2	0.156	
Quercus lineata	4	2.928	Carallia sp. cf.	1	0.155	
Santiria sp.	2	2.227	Shorea sumatrana	3	0.150	
Canarium sp.	3	2.140	Oncosperma sp.	1	0.143	
Phyllanthus indicus cf.	9	1.519	Swintonia schwenckii	1	0.096	
Planchonia sp.	2	1.429	Vitex gamosepala	1	0.092	
<i>Syzygium</i> sp.	9	1.353	Alstonia sp.	1	0.077	
Palaquium sp.	9	1.270	Urophyllum sp.	1	0.075	
Artocarpus sp.	1	0.965	Polyosma integrifolia	1	0.057	
Quercus gemelliflora	2	0.890	Pithecellobium microcarpum	1	0.054	
<i>Diospyros</i> sp.	10	0.886	Ellipanthus tomentosus	1	0.049	
Gonystylus forbesii	1	0.883	Urophyllum macrophyllum	1	0.044	
Sterculia sp.	5	0.848	Styrax serrulatum	1	0.041	
Hopea mengarawan	3	0.775	Pternandra caerulescens	1	0.041	
Ficus sp.	10	0.724	Phyllanthus sp.	1	0.036	
Nyssa sp.	1	0.617	Grewia florida	1	0.033	
Parashorea lucida	1	0.526	Ficus ribes	1	0.033	
Xanthophyllum sp.	3	0.502	Timonius wallichianus	1	0.033	
Durio griffithii	1	0.366	Macaranga pruinosa cf.	1	0.031	
Laportea stimulans	2	0.347	Aglaea sp.	1	0.031	
Macaranga denticulata	1	0.297	(not determined)	31	5.889	
Macaranga triloba	2	0.286	Total	163	60.349	

Species	No.	BA*	Species	No.	BA*
Cyathocalyx sp.	3	2.973	Flacourtia sp.	1	0.347
Erythrina sp.	5	2.241	Ficus ribes	1	0.276
Syzygium sp.	3	1.963	Urophyllum macrophyllum	2	0.213
Macaranga hypoleuca	1	1.778	Saurauia sp.	1	0.185
Vitex gamosepala	6	1.612	Aglaea sp. cf.	1	0.179
Macaranga pruinosa	1	1.388	Tabernaemontana sp.	1	0.142
Ficus sp.	4	1.269	Canarium sp.	1	0.124
Myristica sp.	2	0.814	Palaquium sp.	1	0.121
Dysoxylum sp.	3	0.772	Ellipanthus tomentosus	1	0.098
Laportea stimulans	2	0.605	Castanopsis sp. cf.	1	0.081
Villebrunea rubescens	2	0.390	(not determined)	16	9.346
Piper aduncum	2	0.350	Total	61	27.278

Table 4-4. Species list of PATv1 for trees ≥ 8 cm dbh.

Table 4-5. Species list of PATv2 for trees \geq 8 cm dbh.

Species	No.	BA*	Species	No.	BA*
Mallotus sp.	9	5.664	Myristica sp.	1	0.373
Anthocephallus indicus	8	2.148	Macaranga sp.	1	0.363
Artocarpus sp.	2	1.890	Dysoxylum sp.	2	0.303
Elaeocarpus sp.	9	1.446	Sterculia sp.	3	0.280
Styrax serrulatum	3	1.193	Trema angustifolia	2	0.186
Erythrina sp.	1	0.950	Piper aduncum	2	0.153
Mallotus paniculatus	2	0.903	Pternandra caerulescens	1	0.148
Ficus sp.	6	0.871	Tabernaemontana sp.	1	0.144
Macaranga triloba	4	0.730	Pometia sp.	2	0.114
Macaranga hypoleuca	2	0.703	Grewia florida	1	0.065
Villebrunea rubescens	9	0.631	Claoxylon longifolium	1	0.064
Symplocos sp.	2	0.433	(not determined)	20	5.522
Laportea stimulans	7	0.416	Total	103	26.090
Ficus ribes	2	0.384			

Table 4-6.	Species	list	of	PBA	for	trees	>	8	сm	dbh.
------------	---------	------	----	-----	-----	-------	---	---	----	------

Species	No.	BA*	Species	No.	BA*
Vernonia arborea	21	4.623	Macaranga gigantea	1	0.104
Mallotus paniculatus	12	2.378	Palaquium sp.	1	0.092
Trema orientalis	3	1.781	Ficus sp.	1	0.082
Macaranga sp.	4	1.056	Saurauia sp.	1	0.080
Elaeocarpus sp.	3	0.906	Trema angustifolia	1	0.072
Villebrunea rubescens	9	0.684	Nephelium sp.	1	0.070
Styrax serrulatum	4	0.331	Knema sp.	1	0.070
Macaranga denticulata	3	0.290	Macaranga hypoleuca	1	0.069
Sapium sebiferum	2	0.288	Dysoxylum sp.	1	0.062
Urophyllum macrophyllum	3	0.225	Coffia arabica	1	0.060
Erythrina sp.	2	0.213	Ficus ribes	1	0.057
Breynia sp.	2	0.174	(not determined)	10	1.338
Macaranga triloba	2	0.120	Total	91	15.236

Species		BA*	Species	No.	BA*	
Quercus lineata	5	8.702	Neesia altissima	1	0.176	
Schima wallichii	2	6.265	Litsea cubeba	1	0.160	
Tristania bakhuizeni	4	4.257	Knema sp.	1	0.151	
Palaquium sp.	6	3.929	Canarium sp.	2	0.127	
Syzygium sp.	11	1.826	Aglaea sp.	2	0.122	
Lithocarpus ewyckii	1	1.327	Castanopsis sp.	1	0.119	
Cinnamomum javanicum	6	0.843	Pithecellobium sp.	1	0.088	
<i>Litsea</i> sp.	3	0.523	Magnolia sp. cf.	1	0.080	
Polyalthea sp.	2	0.509	Timonius wallichianus	1	0.078	
Lithocarpus sp.	1	0.436	Cyathocalyx sp. cf.	1	0.070	
Polyosma sp.	3	0.387	Semecarpus heterophyllus cf.	1	0.061	
Adinandra dumosa	2	0.338	Ficus sp.	1	0.057	
Weinmannia blumei	1	0.336	Xanthophyllum sp.	1	0.053	
Elaeocarpus stipularis	2	0.260	(not determined)	35	23.130	
Cinnamomum sp.	1	0.225	Total	101	54.866	
Macaranga javanica	1	0.219				

Table 4-7. Species list of AIR for trees \geq 8 cm dbh.

Table 4-8. Species list of GAD for trees \geq 8 cm dbh.

Species	No.	BA*	Species	No	BA*
Lithocarpus elegans cf.	11	4.685	Memecylon ovatum cf.	2	0.418
Tristania bakhuizeni	16	4.289	Chrysophyllum malayanum	1	0.338
Canarium sp. cf.	2	2.031	Ilex sp.	1	0.304
Syzygium sp.	8	1.211	Myrica javanica cf.	1	0.257
Lithocarpus sp. cf.	2	1.193	Polyosma sp.	1	0.251
Anneslea fragrans	9	1.163	Bucklandia tricuspis	1	0.152
Podocarpus neriifolius	6	1.120	Memecylon laurinum	1	0.150
Disepalum platypetalum	3	0.909	Cinnamomum sp.	1	0.113
<i>Litsea</i> sp.	1	0.805	Talauma sp.	1	0.080
Ellipanthus tomentosus	5	0.665	Neolitsea sp.	1	0.076
Weinmannia blumei	3	0.634	Garcinia sp.	1	0.065
Macaranga javanica	5	0.548	(not determined)	56	19.140
Platea excelsa	1	0.533	Total	143	41.601
Elaeocarpus sp.	3	0.459			

* BA = sum of trunk basal area $(cm^2 m^{-2})$ for each species.

Table 5. Species diversity in Ulu Gadut forest plots

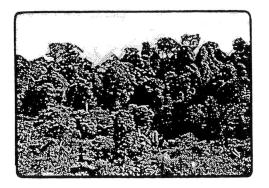
	PIN	GAJ	PATr	PATv1	PATv2	PBA	AIR	GAD
Total no. of trees	791	596	163	61	103	91	101	143
No. of identified trees	614	519	132	45	83	81	66	87
No. of identified species	113	104	50	22	25	24	29	25
Simpson's index	42.8	40.9	30.0	22.0) 17.6	9.5	19.0	13.1

juglandifolium, Shorea sumatrana, Hopea mengarawan, Lithocarpus spp. and Quercus spp. are disappeared in secondary foothill stands, where pioneer species, such as Macaranga spp., Mallotus spp., Vernonia arborea, Villebrunea rubescence and Laportea stimulans, take the place of them.

Table 5 shows the number of trees/species and the Simpson's index of species diversity (Simpson, 1949). The Simpson's index of diversity as the unbiased estimate for the finite community is expressed by $[S^2 - S]/[S_2 - S]$, where S and S₂ are the sum of number of trees and the sum of square of number of trees for every species, respectively. In Table 5, we can find clear tendencies that (1) tree species diversity is richest in old-growth stands of foothill forest (PIN, GAJ, PATr) among our permanent plots, that (2) it increases with aging of secondary stands in the same forest type (PBA \rightarrow PATv2 \rightarrow PATv1 \rightarrow PIN, GAJ, PATr), and that (3) it decreases with elevation in old-growth forest stands (PIN, GAJ, PATr \rightarrow AIR \rightarrow GAD).

References

- Hotta, M. (ed.) 1984. Forest Ecology and Flora of G. Gadut, West Sumatra. Sumatra Nature Study (Botany), Yoshida College, Kyoto University, Kyoto.
- Hotta, M. (ed.) 1986. Diversity and Dynamics of Plant Life in Sumatra. Sumatra Nature Study (Botany), Yoshida College, Kyoto University, Kyoto.
- Kohyama, T. and M. Hotta. 1986. General description of two new study plots established in Ulu Gadut forests. In: M. Hotta, ed., Diversity and Dynamics of Plant Life in Sumatra. p. 1-11. Sumatra Nature Study (Botany), Yoshida College, Kyoto University, Kyoto.
- Kohyama, T., M. Hotta, K. Ogino and T. Yoneda. 1986. Trunk diameter-tree height relationship in Ulu Gadut forest plots. In: M. Hotta, ed., *Diversity and Dynamics of Plant Life in Sumatra.* p. 13-16. Sumatra Nature Study (Botany), Yoshida College, Kyoto University, Kyoto.
- Kohyama, T. and K. Ogino. 1986. Tree growth rate in forest plots of Ulu Gadut. In: M. Hotta, ed., *Diversity and Dynamics of Plant Life in Sumatra*. p. 29-33. Sumatra Nature Study (Botany), Yoshida College, Kyoto University, Kyoto.
- Nagano, M. 1978. Dynamics of stand development. In: T. Kira, Y. Ono and T. Hosokawa, ed., Biological Production in a Warm-Temperate Evergreen Oak Forest of Japan, JIBP Synthesis 18: 21-32.
- Ogawa, H. 1969. An attempt at classifying forest types based on the relationship between tree height and DBH. In: T. Kira, ed., Comparative study of primary productivity in forest ecosystems, JIBP-PT-F Progress Reports for 1968, p. 3-17 (in Japanese).
- Ogino, K., M. Hotta, R. Tamin & T. Yoneda. 1984. Forest ecology of G. Gadut Area. In: M. Hotta, ed., Forest Ecology and Flora of G. Gadut,


West Sumatra, p. 15-48. Sumatra Nature Study (botany), Yoshida College, Kyoto University, Kyoto.

Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688.

Whitmore, T.C. 1975. Tropical Rain Forests of the Far East. Clarendon Press, Oxford.

Yamakura, T., Hagihara, A., Sukardjo, S. and Ogawa, H. 1986. Aboveground biomass of tropical rain forest stands in Indonesian Borneo. *Vegetatio* 68: 71-82.

٠