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Abstract 
 

There are several kinds of learning methods however most of the research tell us 

that reinforcement learning (RL) [1] is the most suitable method in machine learning 

that deals with the decision to take an action using an agent at discrete time steps, and it 

is expected that would be useful anywhere in the future. There are several ways to 

implement the learning process but Q-learning algorithm due to Watkins [2] is a policy 

for estimating the optimal state-action value (Q-value), and it is one of the most 

fundamental methods in RL. Q-learning can apply in many practical applications but it 

works only state and action are both discrete. It is difficult to treat in continuous state 

space because of the Curse of dimensionality problem. 

This dissertation proposes VQE (Voronoi Q-value Element) to be able to apply the 

Q-learning in continuous state space and to solve the Curse of dimensionality problem 

by partitioning the state space. As a method of space division, we apply the Voronoi 

diagram which is a general space division. Nevertheless, Voronoi diagram has a lot of 

flexibility thus a method of position determination of VQEs becomes a problem. 

Therefore, we present the addition method of VQEs to decide the position and LBG 

algorithm is used for adaptive state transition vector grouping. In addition, we propose 

the integration method of VQEs to reduce the number of states and memory usage and 

Delaunay tessellation technique is used to find the adjacent VQEs. These proposed 

methods also aim to show the improvement of a learning efficiency.  

In order to examine the efficiency of our proposed methods, we constructed the 

continuous states and discrete actions experimental model. The experiments are carried 

out compared with lattice of a previous work. The results indicate that the proposed 

methods are greatly improved than the previous method.  
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Chapter 1 
 

Introduction 
 

1.1  Historical Background 

 

Nowadays, intelligent robots are applied in many fields. The intelligent robots have 

many potential applications in industry, medicine, and even service at home that make 

their study important. However, highly intelligent tasks are still difficult to be achieved 

by the robots. When the robots perform the tasks in an uncertain environment, searching 

the optimal behavior is very important. It is not easy to find the optimal behavior in the 

changing environment under various situations. There are several kinds of learning 

methods for the robots, such as supervised learning, unsupervised learning, and 

reinforcement learning [1].  

The supervised learning learns from examples provided by a knowledgeable 

external supervisor, the unsupervised learning learns without external supervisor, and 

the reinforcement learning learns from the evaluated feedback information called the 

reinforcement signal (critic). In order to find the optimal behavior practically, 

reinforcement learning is the most suitable method. Reinforcement learning is studied in 

most current research in machine learning, statistical pattern recognition, and artificial 

neural networks [1]. One method of designing the agents that constitute a single-agent 

system is called reinforcement learning [1]. Since the distances between the robot 

(agent) and the obstacles or the target (reward-area) are not discrete values practically, 

the Q-Learning on continuous state space is applied to intelligent robots in this study.  

Reinforcement learning work in statistics, psychology, neuroscience, and computer 
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science, and it has attracted rapidly increasing interest in the machine learning and 

artificial intelligence communities nowadays. It’s effective that the human being 

controlling the action of the robot to learn autonomously, and it is the problem faced by 

an agent that must learn behavior through trial-and-error interactions with an 

environment.  

Some aspects of reinforcement learning are closely related to search and planning 

issues in artificial intelligence. Learning algorithms based on an evaluative feedback 

signal are generally referred to as reinforcement learning (RL) algorithms, where the 

agent solves the given task based on rewards received from the environment. Otherwise, 

RL is a type of machine learning that deals with the decision to take an action using an 

agent that can run in certain environments. It’s one of the most important learning 

methods for intelligent robots working in unknown environments. 

In the widely used of RL approaches, it constructs a learning agent using the 

Q-Learning method, which is a representative technique of RL. RL uses the numerical 

value by learning that is called Q-value. It’s the value of an action in a certain state. The 

action value that has the value of each action in a certain state is preserved in the table 

called Q-Table as shown in Figure 2.2. When the action in a certain state is executed, 

the expected value of the reward can obtain in the future. If the value of obtaining in the 

future is large, the amount of a certain reward Q-value is possible a good action. 

However, it tests various actions, and gradually will look for a good Q-value from the 

beginning because it doesn't know which action is a good action. The Q-values of the 

initial states are all initialized to the value zero.  

In particular, Q-Learning that is one of the most fundamental methods of 

reinforcement learning can apply in many practical applications because the optimal 

policy is guaranteed to be obtained if the learning environment is a discrete Markov 

decision process. However, it works only for discrete state space. It’s difficult to handle 

on continuous state space. In the case of Q-Learning is treated on continuous state space, 

the size of the Q-Table increases rapidly by Curse of dimensionality, and it’s not 

realistic. It’s one of the most serious problems in function approximation, and 
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reinforcement learning. The curse of dimensionality also exists in a single-agent 

environment.  

Curse of dimensionality problem means as the dimension numbers of state space 

increases, the state also increases exponentially when the state space is divided into 

lattice. On the other hand, as the number of state and action variables increases, the size 

of the Q-Table used to store Q-values grows exponentially. An enlargement of the state 

space in reinforcement learning causes the learning speed to decrease suddenly or 

causes an enormous amount of memory to be required. The various approaches to 

autonomously constructing a feature space have been investigated such as the wire 

fitting approach, tile coding with hashing, a tree-based algorithm, and a method 

based on the self-organizing map to solve the curse of dimensionality problem. 

These methods aim at effective construction of a feature space for function 

approximation.  

In a single-agent environment, the Actor-Critic method has been proposed for 

a continuous action space, and a state generalization method using support vector 

machines (SVM) [8] and state space hierarchy construction [11] have been 

purposed for a continuous state space.  

 

1.2  Research Objective 
 

The aim of the research is to apply the Q-learning method in continuous state-space 

using the concept of Voronoi space division. Therefore, we propose Voronoi Q-value 

Element (VQE) to solve the Curse of dimensionality problem also by partitioning the 

state space adaptively. As a method of Voronoi space division, Voronoi diagram is used 

because it is a general space division method. However, Voronoi diagram has a lot of 

flexibility, i.e., it has a high degree of freedom, thus a position determination method 

becomes a problem. Therefore, we present an addition method of VQEs to decide the 

position of VQEs using LBG algorithm for adaptive state transition vector grouping. 

Moreover, we present the integration method of VQEs to reduce the number of states 
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and memory usage using the Delaunay tessellation technique for integration of adjacent 

VQEs. These proposed methods also aim to show the improvement of a learning 

efficiency based on Q-Learning in continuous state space.  

In order to examine the proposed methods, 2-types of experimental model based on 

continuous states and discrete actions of feeder mouse (Esa-Hiroi Mouse) are 

constructed. These are non-coincidence of state space and action space model (Model I) 

we called “Bait View World” shown in Figure1.2, and another one is coincidence of 

state space and action space model (Model II), we called “Bug Pos” illustrated in Figure 

1.1. There is the action space which the agent is learning toward the goal-area, and the 

state space which is trying to segment the continuous space as a Voronoi space division.  

Additionally, we conducted the demonstration experiments using these 2-models 

and verified the effectiveness of proposed methods. We examined the performance of 

the following several different methods in a stationary situation of reward-area through 

the computer simulations. These are 1) lattice also called Q-Table, 2) one of proposed 

method which is addition method using LBG algorithm, and 3) integration method of 

VQEs using Delaunay tessellation technique on continuous state space. 

Actually, there are many researches that the Q-Learning applied in continuous state 

Figure 1.1：BugPos Model Figure 1.2：BaitViewWorld Model 
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space. The two references papers that are most closely related to our research are:  

1) Q-Learning in continuous state and action spaces (1999) by Chris Gaskett, 

David Wettergreen, Alexander Zelinsky [3] but it considers the Q-Learning in both state 

and action spaces are continuous.  

2) An adjustment method of the number of states on Q-learning segmenting state 

space adaptively (2003) by Tomoki Hamagami, Seiichi Koakutsu, and Hironori Hirata 

[4]. However, their system is different from ours. Our methods apply the Q-learning in 

continuous states and discrete actions using the concept of Voronoi space division.  

 

1.3 Dissertation Overview 

 

This thesis consists of 8 chapters. The contents of each chapter are as follows: 

Chapter 1 starts with an introduction that explains briefly the historical background 

of motivation for learning, and discusses the curse of dimensionality. This chapter also 

describes the aim and objectives of the study, and specifies the dissertation structure.  

Chapter 2 gives an overview or the basic concepts and ideas related to this research 

namely the basic principles for the reinforcement learning such as the standard 

reinforcement learning model. Section 2.2 defines a technique for people to realize the 

learning ability, and to automatically perform what kind of action should take by 

computer machine in order to maximize the expected value of future reward in 

unknown environment. Section 2.3 describes the problem of reinforcement learning, 

and defines some classic model-free algorithms for reinforcement learning from delayed 

reward: Markov decision process, and value function. In section 2.4, the most important 

aspects of normal Q-Learning algorithm which is a typical technique of reinforcement 

learning was described. Section 2.5 also describes the action selection method of agent, 

and section 2.6 describes the Q-Table which divides the state space into lattice and the 

division method of Q-Table. Moreover, section 2.7 discusses the curse of dimensionality 

which increases the number of states exponentially in high dimensions. Furthermore, 

section 2.8 gives and shows the result of Q-Block that execution times takes about twice 
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than Q-Table when we used Q-Block to solve the curse of dimensionality problem.  

Chapter 3 describes the VQE (Voronoi Q-value Element) which divides the state 

space using the concept of Voronoi space division in order to solve the above problem, 

and also gives the idea of Voronoi diagram, and how Voronoi diagram could be used to 

partition the state space. Although Q-Table needs to prepare Q-value in all states 

beforehand, VQE can be added to the state space as required. Section 3.1 describes the 

Voronoi division which is the division method of space whether arbitrary points being 

the closest to which mother point with respect to the mother point located on space. 

Section 3.2 presents the creation method of VQE, a reference method of VQE, method 

of space division using VQEs, and the advantages of Q-Learning that used VQE are 

enhanced learning speed and reliability for this task, and the essential characteristics of 

VQEs in a continuous state space are also described. This chapter also explains several 

methods of nearest neighbor search.  

Chapter 4 evaluates the effectiveness of proposed Q-Learning technique by using 

VQEs, and performs the computer simulations as a comparison experiment of Q-Table 

that described in previous section 2.6 and VQEs. And 2-types of experimental models 

which are Model I and Model II are explained in Section 4.2 for full details. These 

2-models are based on continuous states and discrete actions of feeder mouse (Esa-Hiroi 

Mouse). After that, we show the better performance using VQEs on continuous states 

and discrete actions for 4-dimensional spaces by comparing the normal Q-Learning 

(Q-Table) and Q-Learning with the use of VQEs. In addition, the conclusions are 

considered.  

Chapter 5 examines the learning performance of various strategies using 2-types of 

experimental model I and model II with reward-area in a stationary situation in 

single-agent environment and decide how to act in certain state. In order to test our 

hypotheses, we experimented by rotating the angles of agent’s actions, angles of VQEs 

by the angle in 5 times interval between 0 degrees and 90 degrees in which VQEs are 

arranged in a lattice structure. Moreover, a random arrangement of VQEs experiment 

also conducted to correctly evaluate the optimal Q-values for state and action pairs in 
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order to deal with continuous-valued inputs. As a result of experiments using 

experimental model II, the learning speed has most increased when the angles of VQEs 

and angles of actions is just 45 degrees out of alignment in case of 4-actions.  

Chapter 6 presents the addition method of VQEs which is a position determination 

method to decide the position of VQEs in order to realize a Voronoi region since the 

performance of Q-Learning changes according to the arrangement of VQE. Moreover, 

the simulation was performed in both experimental models and the learning 

performance was examined. And also presents block-counting method and a new 

adaptive segmentation of continuous state space based on vector quantization algorithm 

such as LBG (Linde-Buzo-Gray) for high-dimensional continuous state spaces. The 

objective of adaptive state space partitioning is to develop the efficiency of learning 

reward values with an accumulation of state transition vector (STV) in a single-agent 

environment. Moreover, the study of the resulting state space partition reveals in a 

Voronoi tessellation. In addition, the experimental results show that this proposed 

method can partition the continuous state space appropriately into Voronoi regions 

according to not only the number of actions, and achieve a good performance of reward 

based learning tasks compared with other approaches such as square partition lattice on 

discrete state space. 

Chapter 7 describes an algorithm of integration of VQEs to reduce the number of 

states, the memory usage and the learning time. It also aims to improve the performance 

of learning efficiency. Then it proceeds and described the topological structures of 

Delaunay network to find the adjacent VQEs for integration on continuous state space. 

We add VQEs on state space, and integrate which has the same optimal action selections. 

A computer simulation has been performed using experimental Model I, and the 

simulation results are explained compared with 3-methods such as lattice of a previous 

method which is Q-Table, addition method of VQEs, and integration method of VQEs 

with the reward-area in a stationary condition only.  
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Chapter 2 
 

Reinforcement learning and 

Q-Learning 
 

2.1  Basic Principals 
 

In this chapter we will introduce a review for the basic concepts of machine 

learning as reinforcement learning and the various representation of the Q-Learning, 

Markov-decision process, curse of dimensionality, state space division method and the 

agent’s action selections are described.  

 

2.2 Machine Learning and Reinforcement Learning 
 

The performance and computational analysis of machine learning algorithms is a 

branch of statistics known as computational learning theory. Machine learning is about 

designing algorithms that allow a computer to learn. Learning is not necessarily 

involves consciousness but learning is a matter of finding statistical regularities or other 

patterns in the data. Thus, many machine learning algorithms will barely resemble how 

human might approach a learning task. However, learning algorithms can give insight 

into the relative difficulty of learning in different environments.  

There is machine learning that is one of the research tasks in the field of Artificial 

Intelligence to perform the learning ability automatically and the same functions a 
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reality by computer as technology and a technique. Machine learning is generally 

classified into supervised learning which learns by giving the input so as to policy of 

back propagation and support vector machine which is a classical multilayer perceptron 

neural networks, unsupervised learning which learns without giving those like 

clustering, and reinforcement learning (RL).  

Reinforcement Learning (RL) is a type of Machine Learning, and thereby also a 

branch of Artificial Intelligence. It is the most suitable method in machine learning that 

deals with the decision to take an action using an agent at discrete time steps and it is 

expected that would be useful anywhere in the future [1]. RL methods attempt to 

improve the agent’s decision-making policy over the time. The agent’s goal is to get as 

much reward as it can over the long run. Moreover it allows machines and software 

agents to automatically determine the ideal behavior within a specific context, in order 

to maximize its performance. The goal of RL is to figure out how to choose actions in 

response to states so that reinforcement is maximized. That is, the agent is learning a 

② Decide Action ⑥Learn 

① Observe 

③Act 

④Change State 

⑤Reward 

Figure 2.1：Flowchart of Reinforcement Learning (RL) 
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policy, a mapping from states to actions. The agent’s policy is divided into two 

components, how good the agent thinks an action is for a given state and how the agent 

uses what it knows to choose an action for a given state. Simple reward feedback is 

required for the agent to learn its behavior this is known as the reinforcement signal. In 

the general case of RL problem, the agent’s actions determine not only its immediate 

reward, but also the next state of the environment. The agent will have to be able to 

learn from delayed reinforcement. In the problem, an agent is supposed decide the best 

action on the current state. When this step is repeated, the problem is known as a 

Markov Decision Process.  

In the standard RL model, an agent is connected to its environment via perception 

and action, as depicted in Figure 2.1. RL deal with the issue of the agent within a certain 

environment observes the present state, and decides the next action to be taken. It is 

performed by the interaction of agent and environment, and learning progresses by 

repeating a series of flows from the state observation to the learning. TD (Temporal 

Difference) Learning, Q-Learning which is online learning of control strategies when 

next state function is unknown learning, etc. are known as a typical technique of RL.  

Figure 2.1 shows the interaction of agent and environment at discrete time steps t in 

learning process. A system with RL comprises two elements: an agent and an 

environment. The agent repeatedly observes the state variable of its environment, and 

chooses an action. The environment changes the state by the agent’s behavior, and 

returns the reward. The agent takes the reward from the environment, and updates a 

policy accordingly, and outputs the action to the environment. After that, the state 

changes from the current state to the next state, and the agent learns based on the reward 

by its own action policy.   

1. State Observation (Observe) 

The agent first observes the environment and obtains the state. 

2. Action Decision (Decide Action) 

The agent then decides the action based on the state that was obtained by state 

observation.  
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3. Act 

The agent performs the decided action with respect to the environment. 

4. State Transition (Change State) 

The environment influences by acting the agent, and a state is changed.  

5. Reward 

The environment returns the reward to the agent that corresponds to the current state 

after changing the state. 

6. Learn 

Finally, the agent learns by receiving the reward.  

RL learns the optimal action by repeating this process from 1~6, and the agent 

accumulates the value of Q during the learning period. The Q-value is expected value of 

the returns, which is discounted sum of the rewards that agent received. 

 

2.3 Problem of RL 

2.3.1 Proceeding 

 

The reinforcement learning aims at maximizing the final accumulation of 

remuneration obtained from environment. This accumulation of remuneration is given 

by the following formulas.  





T

k

kt

k

t rR
0

1
 

 Here, T  is the last time,   is a numerical value (reward) of whether to carry 

out the consideration of the remuneration that can obtained in future however.  

 

2.3.2 Markov Decision Processes 

 

In RL study, an environmental state is needed for an agent in the case of action 

determination and learning. This state is generally modeled by the Markov decision 
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processes, also known problems with delayed reinforcement are well modeled as 

Markov decision processes (MDPs). An MDP consist of a set of states, a set of actions, 

a reward function, and a state transition function. The agent observes state and chooses 

action then receives reward, and state changes to next state. A state transition function 

probabilistically specifies the next of the environment as a function of its current state 

and the agent’s action.  The reward function specifies expected instantaneous reward 

as a function of the current state and action. The model is Markov if the state transitions 

are independent of any previous environment states or agent actions. There are many 

good references to MDP models (Bellman 1957; Bertsekas 1987; Howard 1960; 

Puterman 1994). The general MDPs may have infinite (even uncountable) state and 

action spaces.  

The probability that the phenomenon in the future will happen is decided only 

from the present state and the character in which it does not depend is call the Markov 

nature to the previous state. Generally it is the action that taken by the time t . Since all 

the phenomena which happened in the past are related, the response to set 1t  is 

defined as follows. On the other hand, it will be time t  f a state signal has the Markov 

nature. A response is time t , since it is depend only on the state where state and action 

pair set defines as follows.  

 tttt asrrss ,|,Pr 11    

Here, if the environment has the Markov nature, the present state and the state of 

action to the next, and action can be predicted. Furthermore, all the future states and 

actions can be predicted form the present by repeating it. The RL study which fills the 

Markov nature is called the Markov decision process. If the space of a state and action 

is limited, it will be called a limited Markov decision process. When the arbitrary states 

and action are given, it will be a next state possible and the probability is given by the 

following formula.  

 aassssP ttt

a

ss   ,|Pr 1  
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Moreover, when the present state and action is given the expected value of reward 

is given by the following formula.  

 ssaassrER tttt

a

ss
  11 ,,|  

2.3.3 Value Function 

 

A reward which carries out the target of RL evaluating remuneration and 

maximizing the expected value of reward which defines a value function in order to 

measure whether it is worthy of the present state being how much in that case. Firstly, 

the action a  takes the state by the policy   is assumed as ),( as .  
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It carries out the basis value by this policy   and can be expressed as follows.  
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The value function has the basic property of recursive relations.  
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It is called the Bellman equation and this equation is a state s  worth of the 

remuneration in all succession discounted. It is carried out by occurrence probability to 

all the actions.  
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2.4 Q-Learning 
 

There are several ways to implement the learning process. However, Q-Learning is 

one of the policy types of TD learning proposed by Watkins in 1989 [1]. It’s based on 

the idea that the expected discounted sum of future reinforcements can be estimated by 

a function of each action in each state, which gives the value of Q to the pair of a state 

and action, and can be used to define an optimal policy. It’s one of the most fundamental 

methods, and the most popular. It has been proposed for the intelligent robots to find the 

optimal behavior. It seems to be the most effective model-free algorithm for learning 

from delayed reinforcement, and can apply in many practical applications. However, 

Q-Learning is generally considered in the case that states and actions are both discrete. 

It’s difficult to handle on continuous state space because of Curse of Dimensionality 

problem that explain in section 2.7.1. It needs to discretize the state space into a lot of 

smaller discrete regions when the case of continuous state space is treated.  

In general Q-Learning, every action and state pair have their own Q-value. Q-values 

store in a table is called Q-Table and it looks like a square lattice in 2-dimensions. These 

values are initialized to small random numbers, and gradually change toward the 

optimal values through learning. Q-values are used to predict the discounted cumulative 

reinforcement for each state-action pair because of the agent learns a mapping form 

states and actions to their Q-values.  

In the simplest case, the Q-value for a state-action pair is the sum of all 

reinforcement signals, and the Q-Learning function is the function that maps from 

state-action pairs to values. But the sum of all future reinforcements may be infinite 

when there is no terminal state. In Q-Learning, the selected action a  of Q-value in 

time t  is updated by following equation.  

＜Q-Learning Equation＞ 

 ),(),(max  ),(    ),( 1 ttt
a

ttttt asQasQrasQasQ    
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2.4.1 Q-Learning Algorithm 

 

A state-action value (Q-value) which is denoted by  ),( tt asQ is updated just by 

taking the one with the maximum Q-value for the current state. For each state-action 

pair,  

1. Observe the current state st.  

2. Select an action ta
 
using ε-greedy action selection method and execute it. 

3. Receive an immediate reward from the environment.  

4. Observe a next state 1ts . 

5. Update the Q-value for  ),( tt asQ state-action pair using above Q-Learning 

equation.  

6. Increase the time t to t+1 and go back to step (1) and repeat the process.  

In this equation, a state in time t is st , Q-value of action ta  in the state st is

 ),( tt asQ , it tell us the immediate reward for making a good an action is given a 

certain state. Moreover,   is the learning rate,  is the discount rate, tr  
is a reward. 

Furthermore, ),(max 1 asQ t
a

  shows the maximum Q-value of next state in time 1t . 

This equation means if the Q-value of next state is greater than the current Q-value, it 

increases the current Q-value. Conversely, if the Q-value of next state is lesser than 

current Q-value, it decreases the current Q-value.  

 

2.5 Action Selection Method 
 

Since all state and action pairs must be chosen for the sufficient number of times as 

what kind of action selection method may be used for convergence of Q-learning. 

However, in order to gain more reward the following techniques are used in many cases.  
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2.5.1 ε-Greedy Method 

 

This method chooses the random action in small probabilityε. If it does not take 

the random action, it selects the maximum Q-value by taking the highest action. In other 

words, it chooses the action a  that will become )(max aQt
a

 at time t .  

Probability of random action  ： ε(ε＜1) 

Probability of maximum Q-value action ： 1-ε 

 

2.5.2 Roulette Selection Method 

 

It is a selection method of individual i  to choose the probability when it 

assumes as ip  

 


N

k k

i
i

f

f
p

1

  

A substance of adaptive value is expressed as fi, and it is the requisite that 

adaptive value does not take a negative value. Since the probability that a substance or 

individual organism with high adaptive value will be chosen when the value which is 

carried out scaling of the adaptive value in fact is used in many cases. 
 

 

2.5.3 Softmax Technique 

 

This technique is given the high selection probability in good action, and as for 

other, it is given to the high order selection probability according to the presumed 

value. The Boltzmann distribution is used as the function. A selection probability 

),( as  of an action a  in state s  is expressed as  
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Here, T  is a positive constant, A  is a set of the possible action in state.  

 

2.6 General state space partition method in 

Q-Learning 

2.6.1 Q-Table 

 

The expected value (Q-value) of each action in each state is stored in a table that 

used in Q-Learning is called a Q-Table, which looks like a square lattice in two 

dimensions. Q-value is the discounted sum of the rewards agent that receives for a state 

and action pair. But if the state space is too large then it would be impossible to store all 

the Q-values. An example of Q-Table is shown in figure 2.2, and figure 2.3 also shows 

an example of Q-value selection in Q-Table. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2：An example of Q-Table 

0.09 0.12 … … … 0.26 

0.11 0.15 … … … 0.28 

: :    : 

: :    : 

0.15 0.18 … … … 0.33 

State s  

Action a 
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Figure 2.3：An example of Q-value selection in Q-Table 

 

2.6.2 Space-Division method of Q-Table 

 

A segmentation of space using normal Q-Learning is shown in Figure 2.4. 

Q-Table divides the entire all state space into the shape of square discrete regions like a 

“lattice” to treat the case of normal Q-learning on continuous state space. It finely 

divides the state space into very small tiny discrete regions thus the size of all state are 

equal. Dividing the state space into many smaller discrete regions like a lattice, the 

values of Q are evenly arranged all over the space surface. Therefore this subdivision 

method can possibly generate the waste space because it needs to divide the all space 

surface even the position which is not used Q-value. It means Q-Table use the Q-value 

in all states. Thus, Q-Table takes a long time to learn to get a reward and it is hard to 

partition the space partially. Furthermore, it has Curse of dimensionality problem 

explained in section 2.7.1.  

0.09 0.12 … … … 0.26 

0.11 0.15 … … … 0.28 

0.13 0.14    0.28 

0.16 0.18    0.32 

0.15 0.16 … … … 0.33 

1ts
 

 tt asQ ,
 

Maximum 

Q-value of next 

state 1ts  

State transition 
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2.7 Q-Learning Problem 

2.7.1 Curse of Dimensionality 

 
The curse of dimensionality also exists in a single-agent environment. When 

reinforcement learning is applied in an actual environment, the action outputs are 

continuous values, especially for robot control, and the state space is given according to 

continuous values. With a method that performs learning by discretizing the continuous 

values, the size of the action space and state space will explode. In an environment 

where the curse of dimensionality occurs, a great deal of time will be required for an 

agent to search the learning space, and the learning speed will end up decreasing 

significantly.  

Even in a single-agent environment or 2-dimensional state space, when 

reinforcement learning is used in an actual environment, the decrease in learning speed 

is problematical. Therefore, multi-dimensional state space requires even more learning 

time than learning in a 2-dimensional state space. In addition, it also has the important 

problem that the increase in the number of dimensions or number of agents will cause 

Q-values 

Figure 2.4：Example of space-division method of Q-Table 

Waste space 
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the curse of dimensionality. This is because the state space is constructed with the input 

state or all agents as part of the environment, and as the number of dimensions or as the 

number of agents increases, the state space grows exponentially, which results in the 

size of state space exploding.  

Curse of dimensionality also means, as the number of dimensions or agents 

increases, the size of the Q-Table to store Q-values grows exponentially and it’s not 

realistic. An enlargement of the state space in reinforcement learning causes the learning 

speed to decrease suddenly or causes an enormous amount of memory to be required.  

 

2.8 Previous Work 

2.8.1 Q-Block 

 

There are so many state where it is not used in division of Q-Table exists in many 

cases although the learning progresses as described in above section 2.6.2. And if we 

use Q-Table in high dimension, the number of states increases exponential to create all 

states at first and may occur the curse of dimensionality, and a memory may be 

input Q-Table 

Q-Block 

Figure 2.5：An example of Q-Block Figure 2.5：An example of Q-Block 
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insufficient. Then a technique of creating the element of Q-Table that only require for 

learning is proposed. Q-Block is generated as one element of a table when Q-value is 

needed. First, an agent generates the element of Q-Table corresponding to the state 

where it needed in state observation and action determination, and stores in a hash table. 

Next, it is referred to when the state where it is referred to exists in a hash table. It 

enables it for a state to reduce the number of states generated by the memory into a high 

dimension, and to use a lattice-like separation technique.  

However, according to the results of our experiments in Q-Learning using 

Q-Block, the number of obtained rewards is equivalent to the previous study which used 

Q-Table. Although, Q-Table cannot perform execution over 8-dimensions because of 

insufficient memory and the number of states could be reduced, Q-Block can apply to 

40-dimensions were checked. However, it resulted the Q-Learning using Q-Block took a 

time nearly twice compared with Q-Table.  

Since we seen decrease in performance as the dimension grows up in execution 

time, we need to consider another method that raises the learning efficiency for space 

division such as a required place which used Q-value divides finely but the place which 

is not required is not used.  
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Chapter 3 
 

A proposition of VQE (Voronoi 

Q-value Element) 
 

3.1 Voronoi Diagram  
 

Q-Learning is an effective learning method regarding the discrete state space. 

Nevertheless, it needs to discretize the state space in the case of Q-Learning treats on 

continuous state space but it has the problem that is not realistic in normal Q-Learning. 

And, it is difficult to adjust the number of state in Q-Table depending on the necessary 

adjustments of addition and deletion of an element because the normal Q-Learning 

separates the state equality.  

Therefore, we proposed VQE (Voronoi Q-value Element) to treat on continuous 

state space using the general idea of Voronoi space division. As a method of Voronoi 

space division, Voronoi diagram is used in our approach to partitions the space into cells 

or a number of convex regions, where each region consists of all points that are closer to 

one site than to any other. It has nearest-neighbor searches property but it cannot able to 

use over 2-dimensions. As a simple illustration of Voronoi diagram is described in 

figure 3.1.  

Voronoi diagram records information about what is close to what. It is a partition 

or a subdivision of the plane into n cells or convex regions in terms of a given discrete 
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set of points. It’s a segmented shape divided by the mother point or an arbitrary point, 

however VQE is used here in our method. The partition of the plane formed by the 

closest point Voronoi regions. In other words, if S is a given set of points in the plane, 

and each point of the plane is associated with the nearest point of S, then the plane is 

divided into convex polygons, or cells containing exactly one member of S such that for 

each point. Such a partition is called a Voronoi tessellation, also called Voronoi Diagram. 

If S is generated randomly or start from a random set of points, the result is a random 

Voronoi Diagram.  

Voronoi cells can also be defined by measuring distances to objects that are not 

points. Voronoi diagram are often not feasible for over 2-dimensions due to its 

exponentially increasing size but it has the property of solving the waste of spaces and 

nearest neighbor search problem because one of the most important data structures 

problems in computational geometry is solving nearest neighbor queries.  

Figure 3.1 shows an example of java applet animation of Voronoi diagram in a 

random set of points. A set of point is given as input, and output is a partition of the 

Figure 3.1：Illustration of a Voronoi Diagram in a random set of points 
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plane into regions of equal nearest neighbors. VQEs are marked with a black point, and 

the colored areas are the Voronoi region that belongs to the black point. Voronoi regions 

(cells) are bounded by line segments and Vorornoi region of a point is unbounded if and 

only if the point is a vertex of the convex hull of the point set. Voronoi edge is a bisector 

of two sites whose regions are adjacent. It can see that Voronoi Diagram is closely 

related to Delaunay Triangulation as well as to the convex hull of its projection onto 

some paraboloid. In both cases the connection is made with the use of duality. We will 

discuss it later when we talk about the dual structure called a Delaunay triangulation.  

 

3.2 A Proposition of VQE in Continuous State Space 

3.2.1 VQE (Voronoi Q-value Element) 

 
Voronoi Q-value element (VQE) is a point that corresponds to the region or area. It 

has Q-value with regards to each discrete action. In the Q-Learning with the use of VQE, 

it was just creates the VQE on each agent’s action. Figure 3.2 shows 100 random 

numbers of VQEs are arranged on the state space. The blue points belong to the point of 

VQE. 

Figure 3.2：Example of 100 random VQEs on state space  
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3.2.2 Creation Method of VQE 

 

 

An example of creation of VQE is when the input enters on the state space, VQE is 

created and it returns the Q-value. Moreover, in the case of more than one inputs enter 

within the area of VQE, it searches the shortest distance from VQE, and Q-value of 

nearest VQEs from that point is returned. The image of creation method of VQE is 

shown in Figure 3.3 and 3.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4： Example of state space division using VQEs 

Figure 3.3： Creation method of VQE 
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3.2.3 Method of Space-Division using VQEs 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5：Example of space-division of VQEs 

 

The state space is divided into Voronoi region which is only required to divide in 

space division method of VQEs, and it just only uses the Q-value where there are lots of 

inputs as shown in Figure 3.5. Although Q-Table needs to prepare Q-value in all states 

beforehand, VQE can be added to the state space as required.  

 

3.2.4   Advantages of VQEs 

 

There are some advantages of VQEs. These are described as follows:  

1. VQE can reduce the waste of spaces.  

2. It does not have overlapping area within the region of VQE when partitioning 

the state space.  

3. If data are deleted, other data can supplement the space in the erased part when 

data are deleted.  

4. It is easy to integrate.  

VQE 
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3.2.5   Advantages of Q-Learning using VQE 

 

Furthermore, there are some advantages of Q-Learning using VQEs. These are: 

1. The number of states and the size of state can adjust by executing the addition and 

deletion of VQE.  

2. It is thought that the state which is not required for learning is treated in a rough way, 

and the required state can reduce the number of states, and can save the memory 

usage.  

3. Q-Table divides the state space in a lattice structure thus the size of all states will 

become the same size. Therefore, it is difficult to adjust the state partially. 

4. In Q-Learning using VQE, it can solve the problem of increasing memory usage 

when the number of states is increased.  

 

3.3 Nearest-Neighbor Search Method 
 

Input 

Overlapping region 

Q (st,at) Q (st,at) Input 

Figure 3.6：Differences of Q-Block and VQE for Voronoi space division 
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In this section, we investigate a number of nearest neighbor search methods. 

Nearest-neighbor searching is a fundamental problem design of geometric data 

structures. It defined as a given collection of n points build a data structure which given 

any query point and reports the data point that is closest to the query. It has applications 

in many areas, including data mining, pattern recognition and classification, machine 

learning and data compression are some examples. Many data structures have been 

proposed for nearest neighbor searching. 

We want to find the nearest neighbor of a given query vector without computing 

all distances. However, there was a problem to search time exponentially increase if the 

dimension goes up, and the Curse of dimensionality problem exact search inefficient 

therefore we try to use the method of MD-Tree, LSH (Locality-Sensitive Hashing), 

ANNS (Approximate Nearest Neighbor Searching) to obtain the nearest VQE in a given 

point. Then, we implement the programs using the algorithm of those techniques, and 

apply those. Each search method is specified by a data structure for storing the data and 

algorithms for building, and searching the structure. For example, given a distance 

function D, a collection of points B (in k-dimensional space), and a point P (in that 

space), it is often desired to find P’s nearest neighbor in B. 

 

3.3.1  MD-Tree (Multi-dimensional Tree) 

 

A multi-dimensional tree (MD-Tree) is one of the multi-dimensional management 

structures, and developed by extending the concept of the B-Tree data. MD-Tree can be 

used for improving the balance factor and to high the storage utilization and the 

algorithm of insertion and deletion methods are included in the structure. The special 

characteristics of MD-Tree are as follows: 

(1)  The processes of insertion and deletion data are high-speed. 

(2)  It can adjusts the balance of level and keeps high memory storage    

utilization. 
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(3)  There are no overlaps and no needs to periodical restructuring of the tree 

structure by not integrating internal nodes on its delete process. 

(4)  It can combine the delete-insert algorithm in each data cut down the 

processing data.  

MD-Tree has two novel concepts: internal leaf and improvements in bottom-up 

search. MD-tree has two novel concepts, internal leaf and improvements in bottom-up 

search. The internal leaf that is managed by corresponding internal node in a tree has 

pointers to moving objects and helps reduce the update cost of the tree. The improved 

bottom-up search of the tree reduces the retrieval costs by managing the non-overlapped 

areas of split data space. 

 

3.3.2 LSH (Locality-Sensitive Hashing) 

 

Locality Sensitive Hashing (LSH) is a widely-used algorithmic tool which brings 

the classic technique of hashing to geometric settings in many existing approaches, and 

it provides some guarantees on the search quality for some distributions. It has many 

variants, some examples are Hamming space [Gionis, Indyk, Motwani, 99], Euclidean 

version (E2LSH) [Datar, Indyk, Immorlica, Mirrokni, 04], Leech Lattice Quantization 

[Andoni, Indyk, 06]] and Spherical LSH [Terasawa, Tanaka, 07], etc. It is an algorithm 

for solving the approximate neighbor search in high dimensional spaces. The basic idea 

is to hash the input items so that similar items are mapped to the same buckets with high 

probability.  

 

3.3.3  NNS (Nearest Neighbor Searching) 

 

Nearest Neighbor Searching (NNS) also known as proximity search or closest point 

search, is an optimization problem for finding closest points in metric spaces. It is a 

technique which greatly reduces processing time and required amount of memory for 

nearest neighbor search.  
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Chapter 4 
 

The experiments of Q-Table and 

VQE  
 

4.1 Introduction  
 

In this chapter, we examined the efficiency of proposed VQEs and Q-Table also 

called lattice which is an existing method. In order to evaluate the effectiveness of 

proposed VQE, very simple and efficient techniques of experimental models are 

constructed and computer simulation has been performed. We first explain two types of 

experimental model in this sub-section 4.2.  Then the experimental parameters are 

explained. Moreover, we show the result of computer simulations on 4-dimensional 

spaces and the effectiveness of the proposed method.  

 

4.2 Experimental Model 
 

In order to examine the proposed methods, there are two types of experimental 

model. These are as follows: 

Experimental Model I :  Non-coincidence of State Space and Action Space model 

Experimental Model II:  Coincidence of State Space and Action Space model 

In the experimental model I, the action space and the state space are not coincided 

each other. It has two state input values such as the distance and the angle. And the 

possible numbers of control actions are 3-actions. In the experimental model II, the 
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action space and the state space are totally coincide each other. It has one state input 

values which is the position of agent and the maximum number of control actions are 

N-actions. These two experimental models are based on continuous states and discrete 

actions of feeder mouse.  

 

4.2.1 Experimental Model I 

 

The experimental model is non-coincidence of state space and action space model. 

There is the action space which the agent is learning toward the goal-area shown in 

Figure 4.1, and the state space which is trying to segment the continuous space as a 

Voronoi space division shown in Figure 4.3. In the action space, the reward-area is 

denoted by square shape and the agent is denoted by triangular arrowhead which 

indicates the direction in which the agent is moving. The agent receives a reward of +1 

when it enters the reward-area, then the agent’s position is randomly changed on this 

action space. Otherwise, if the agent collides into a border or wall, it gets a reward of -1. 

Figure 4.1： Action Space of Model I 
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The objective of agent is to get reward as much as possible during a specific period. The 

reward-area is put in the center of the action space as a constant in fixed position. The 

number of dimensions can increase by 2-dimensions when one reward-area is increased. 

The size of state and action space is -100 to 100.  

 

4.2.1.1 2-Inputs values and 3-Types of agent’s actions 

Figure 4.2： Two inputs values for Model I 

 

Figure 4.3： State Space of Model I 
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The agent observes the distance (d) from the position of the agent to the 

reward-area, and the angle ( ) between the trend of agent and reward-area as shown in 

Figure 4.2. These 2-state input values generate the 2-dimensional state space as shown 

in Figure 4.3. In this state space, VQEs are arranged into 10×10 lattice structure 

therefore it has 100 numbers of VQEs on the state space. The 3-kinds of action 

selections are 1) straight ahead display by red color, 2) right rotation display by blue 

color, and 3) left rotation display by green color as shown in Figure 4.4. 

 

4.2.2 Experimental Model II 

 

The experimental model II is coincidence of state space and action space model. It 

means the action space and the state space totally coincide with each other. In this 

model II, the agent is supposed to head toward the reward-area subjected to various 

performance criteria in which the reward-area is denoted by closed circle and the agent 

is denoted by open circle in the working environment of action space as shown in 

Figure 4.5. The agent has N-kinds of action selections and the position of the agent is 

assumed as state input. The reward-area is placed at the center of the action space in 

Figure 4.4： Three types of agent’s action selections for Model I 
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fixed position as constant. The size of state and action space is -100 to 100. In the state 

space, VQEs are arranged into 10×10 lattice structure therefore it has 100 number of 

VQEs on the state space as shown in Figure 4.6. The initial position of agent and 

position of VQEs can change by the different seeds of random number which is sets of 

digits (i.e., 1,2,3,4,5,6,7,8,9).  

 
Figure 4.6： State Space of Model II 

 

Figure 4.5： Action Space of Model II 
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4.2.3 Decision making technique of agent’s action 

 

The agent selects the next action which has the highest Q-value. An action which has 

a large Q-value is considered to be a good way to achieve the goal. However, selecting 

the highest Q-value continually decreases the opportunity to find a better way. Therefore, 

the agent sometimes selects the next action at random. This random selection is useful 

for exploring the state space and finding a new and better way which has not been found 

yet. An example of deciding action is described in Figure 4.7. This action selection 

method is epsilon-greedy method. In our experiments,  

Probability of random action rate:  ε＜1    (30%) 

Probability of maximum Q-value action:  1- ε    (70%) 

 

4.3 The experiments of Q-Table and VQE 

 

In order to examine the performance of Q-Table and VQE, we used the 

experimental model I. In this simulation, a bug is supposed to head toward the bait areas 

subjected to various performance criteria. This bug is an agent in this model and a bug 

moves in a closed 4-dimensional world. We call this model “bait world” because 

Figure 4.7： Deciding the action 
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bait-area for the bug is put on this world. The bug eats the bait when it enters the 

bait-area. The objective of the bug is to eat as many of the good baits as possible during 

a specific period.  

Figure 4.1 shows an image of the “bait world”. The two reward-areas are randomly 

placed in this closed 4-dimensional world. Since the number of bait areas is 2, the agent 

observes 4 parameter input values. These 4 parameters construct the 4-dimensional state 

space. In this study, VQEs posses radius to use the multi-dimensional tree (MD-Tree) 

search method because Voronoi diagram cannot able to use over 2-dimensions.  

 

4.3.1 Experimental Parameters 

 

The parameter values were set as shown in Table 4.1. In our experiment, one “turn” 

means one cycle of reinforcement learning, i.e., from an observation of the agent to an 

update of the Q-value. Here, 100,000 turns make one “episode” and executed for 400 

episodes in one “experiment”. And then, we count the number of rewards that the agent 

Figure 4.8： Experimental Model I in a closed 4-D world 
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entered during one period, and did 10 trials for one “episode” by changing the different 

initial seed of random numbers. Then we took an average of those 10 trials. The 

learning rate α was set to 0.1 and the discount rate γ was set to 0.9.  

 

4.3.2 Experimental Results 

 

In order to prove the effectiveness of the proposed VQE method, the first 

simulation is carried out in 4-dimensions with radius of VQE. We did several 

Size of action space    100×100 

Partition No. of Q-Table    10×10, 15×15 lattice size 

Initial value of Q     01.0),(0  asQ   

 

Probability of random action   0.3 

Probability of optimal action Q-value  0.7 

Velocity of agent 

Straight ahead, right rotation, left rotation 5 

 

10
6
 continuous action times   1 episode 

Number of episodes    400 episodes 

Learning rate α     0.1 

Discount rate γ      0.9 

Experiment times by changing random seed number     10 trials 

Radius of VQE 0.03, 0.04, 0.044, 0.045, 0.05, 

0.053, 0.06,  

0.07, 0.075, 0.08, 0.085, 0.09 

Table 4.1：Experimental parameters of 4-D world 
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experiments by changing the radius of VQE and size of lattice. However, we show some 

results in here.  

The obtained behavior of reward numbers for the size of the lattice on 10×10 and 

15×15 are shown in Figure 4.9, and the changes of states number also illustrated in 

Figure 4.10 respectively. The horizontal axis represents the number of episodes, and the 

vertical axis represents the number of rewards or the number of states. The number of 

rewards in 10×10 Q-Table is extremely good than 15×15 Q-Table. In figure 4.10, the 

size of the state space for 10×10 Q-Table is extremely large at 50,000 states. As a result, 

since the number of rewards that are subject to learning is relatively related to the size 

of lattice, the learning speed is extremely fast in small lattice size. 

In the second simulation, the size of partition number of Q-Table and the radius of 

VQE are experimented as 15×15 and 0.045 by proper adjustment. The experimental 

results on the difference of reward numbers and state numbers between VQE and 

Q-Table are shown in Figure 4.11 and 4.12, respectively. As a result, the proposed 

technique gives a better performance than Q-Table at 2000 reward numbers as shown in 

Figure 4.11.  

Figure 4.9：Changes of rewards number in a 10×10 and 15×15 lattice size 
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Figure 4.10：Changes of states number in a 10×10 and 15×15 lattice size 

 

Figure 4.11：Changes of rewards number in the case of 0.045 radius of VQE and 

15×15 lattice size 
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4.4 Conclusion 
 

From the results given above in Figure 4.9 and 4.10, the division number 10 in 

Q-Table of learning efficiency is better than 15×15 lattice. The division number 15 is 

five times greater than the division number 10. Therefore, the delay means that the 

reward is getting bigger. However, the ultimate reward acquisition is around 1500. 

As the results of experiment shown in Fig. 4.11 and Fig. 4.12, compared to Q-Table, 

VQE can increase the number of rewards and it take less number of states than Q-Table. 

Therefore, VQE is effect extremely for Voronoi space division in continuous state space. 

And we can say that Q-Learning using VQEs are more effective than using normal 

Q-Learning.  

 

 

 

 

Figure 4.12：Changes of states number in the case of 0.045 radius of VQE and 

15×15 lattice size 
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Chapter 5 
 

A comparison of learning 

performance in two-dimensional 

Q-learning by the difference of 

Q-values alignment 
 

5.1 Introduction 

 
In this chapter, we examine the learning efficiency of VQE in various strategies 

under different situations on 2-dimensional state space. In order to check the 

effectiveness of VQE, 2-types of simulations experiments for each model are carried out. 

For experimental Model I; 

Exp-1:  Random arrangement of VQEs 

Exp-2:  Turning angles of VQEs by degrees in lattice arrangement  

For experimental Model II; 

Exp-1:  Random arrangement of VQEs 

Exp-2: Turning angles of VQEs and agent’s action by degrees in lattice 

arrangement 

In these experiments, we tested the learning performance with one agent and one 

reward area in a closed 2-dimensional space in case of the reward-area is placed at the 

center of the action space with a fixed position. Each experiment was done 10 times and 
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the results were averaged. It means the agent learns the continuous actions with one 

hundred thousand times as one “episode” and executed for 20 episodes in one 

“experiment”. Then, the number of rewards that agent entered to reward-area is counted 

for each episode and did 10 trials for each episode and take an average of those 10 trials 

by changing the different initial seeds of random number. We examined the 

effectiveness of VQE without using radius in 2-dimensional state space using 2-types of 

experimental model. The agent learns to reach the reward area successfully during the 

reward-based learning process under various conditions.  

 

5.2 Experiments of Model I 

5.2.1 Random arrangement of VQEs  

 

Firstly, we consider the VQE arrangement into lattice structure. It means VQEs are 

arranged in an orderly lattice. A general 2-dimensional lattice in a 10×10 size of 

Q-Table (10×10 grid environment) is shown in Figure 5.1. When this original 

2-dimesional lattice is conducted by random noise of flat distributions (i.e., 0.01, 0.02, 

0.03, 0.04, 0.05), we get the random arrangement of VQEs looks like Figure 5.2.  

Figure 5.2： Random arrangement of 

VQEs 

Figure 5.1：Original 2-dimensional     

lattice 
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Figure 5.3 shows the experimental results that were obtained by using original lattice 

arrangement and random arrangement of VQEs in a 10×10 lattice size and a 20×20 

lattice size. The horizontal axis represents the values of noise of flat distribution, and the 

vertical axis represents the average number of rewards that the agent received. In Figure 

5.3, 0 is lattice arrangement. As you can see, the number of rewards is going down from 

the original 2-dimensional lattice arrangement to random arrangement. Therefore, we 

can say that the learning performance is changed depend on the position of VQEs.  

 

5.2.2 Turning angles of VQEs by degrees 

 

In this subsection, we rotate VQEs that are arranged into lattice structure between 

the ranges of 0 degrees to 90 degrees by 5 degrees intervals of counter-clockwise 

rotation in a 20×20 lattice (Figure 5.4). If we rotate the 2-dimensional 20×20 lattice by 

45 degrees, we get the following rotated lattice looks like Figure 5.5.  

The experimental result of rotated VQEs that are arranged in a 20×20 lattice is 

shown in Figure 5.6. As a result of turning angles of VQEs experiment, the number of 

rewards most decreased at 45 degrees. It is considered that if VQEs are rotated, when a 

Figure 5.3： Result of random arrangement of VQEs 
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state is changed a state goes to the same state although the agent takes a different action 

as shown in Figure 5.7. In the above Q-Learning equation, Q-value is decreased if the 

Figure 5.4：20×20 lattice 
Figure 5.5：A rotated VQEs in a 20×20 lattice by 

45 degrees 

Figure 5.6：Result of turning angles of VQE by degrees in a 20×20 lattice 
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action acts in the same area. It may the most common cause of decreased learning 

(Figure 5.7). Actually, when a state is changed, the agent takes different action and a 

state also must be changed to different state.  

 

5.3 Experiments of Model II 

5.3.1 Random arrangement of VQEs 

 

To clearly show the effectiveness of the proposed technique of VQE, we also used 

similar experiment but different experimental model estimates in lattice arrangement 

(Figure 5.8) and random arrangement of VQE (Figure 5.9) with noise of flat distribution 

(i.e., 1, 2, 3, 4, 5), which were used as comparison techniques in this experimental 

model II. In the environment described above, we compared the proposed technique of 

VQE with lattice arrangement and random arrangement in terms of the number of lattice 

size using the parameter values that described in above.  

As Figure 5.10 reveals, when VQEs are randomly arranged on the state space, the 

learning speed was clearly slow in any experimental model. Therefore, it needs to 

decide the most suitable position of VQE because the learning speed decreases depend 

on the position of VQEs.  

 

Figure 5.7：The most common cause of decreased learning in a rotated VQEs 
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Figure 5.10：Result of random arrangement of VQEs in Model II 

Figure 5.8：10×10 size of lattice Figure 5.9：Lattice to random arrangement 

of VQEs 
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5.3.2 Turning angles of VQEs and agent’s actions by 

degrees 

 

In the case of Model II, to investigate the effect of VQEs we rotated VQEs and 

agent’s actions by degrees between 0 degrees to 90 degrees by 5 degrees intervals of 

counter-clockwise rotation in a 10×10 lattice and 20×20 lattice. In this simulation, the 

possible number of control actions is assumed as 4-actions such as 1) go up, 2) go down, 

3) go left, and 4) go right. Figure 5.11 shows 4-kinds of actions at 0 degrees. If we 

rotate these normal actions by 45 degrees, we get a rotated action looks like this Figure 

5.12. VQEs that are arranged into lattice structure also rotated.  

There are 2-elements rotations such as angle of VQE and angle of action. The 

obtained results are shown in Figure 5.13 and 5.14, respectively. We performed the 

experiment using a lattice size of 10×10 and 20×20. According the result of Figure 5.13, 

in a 10×10 lattice size of the state space for rotation, the number of rewards increase 

when either the angles of VQEs or agent’s action is just 45 degrees out of alignment in 

case of 4-actions. Additionally, the learning speed increase when either turning angles of 

VQEs or agent’s action is just 60 degrees out of alignment in case of 3-actions and in 

Figure 5.11：4-kinds of actions at 

0 degree 

Figure 5.12：A rotated actions by 

45 degrees 
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case of 6-actions when just 60 degrees out of alignment, respectively. Otherwise, it 

decreases if both have the same turning angles.  

Figure 5.14：Result of turning angles of VQEs and actions in a 20×20 lattice 

Figure 5.13：Result of turning angles of VQEs and actions in a 10×10 lattice 



CHAPTER 5.  A COMPARISON OF LEARNING PERFORMANCE IN 

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES 

ALIGNMENT                                                                

50 

 

 

 

Figure 5.15 clearly shows in order to realize Figure 5.13, and Figure 5.14. It means 

the number of reward increase either turning angles of VQEs or action is just 45 degrees 

out of alignment in case of 4-actions. On the other hand, if the turning angles of VQEs 

and actions have both same angles, the number of reward is decreased. Figure 5.14 

shows that a similar result also occurs in a 20×20 lattice.  

Moreover, when the turning angles of action at 45 degrees in 4-actions, the number 

of rewards has increased at 0 degree, 90 degrees, 180 degrees, 270 degrees, and 360 

degrees turning angles of VQEs. Conversely, the number of rewards has decreased at 45 

degrees and 135 degrees turning angles of VQEs.   

 

5.4 Conclusion 
 

In this chapter, we examined the learning performance of VQEs on various 

strategies under different conditions using 2-types of experimental model with 2-kinds 

of simulation environments in case of the reward-area is placed at the center of the 

Figure 5.15：Result of turning angles of VQEs and actions  
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action space with a fixed position. At the current stage, we only performed the 

experiments in 2-dimensions.  

According to the results of experiments, in any experimental model the learning 

speed decreased in the case of random arrangement of VQEs. We believe that the 

decrease in the learning speed of random arrangement of VQEs was depended on the 

position of VQEs. In the experiment of experimental model II, if we rotate VQEs and 

actions, the learning speed increase when either turning angles of VQEs or actions is 

just 45 degrees out of alignment in case of 4-actions. Additionally, the learning speed 

increase if 30 degrees out of alignment in case of 6-actions, and 60 degrees out of 

alignment in case of 3-actions. On the other hand, the learning speed has decreased if 

both have the same turning angles.  

Furthermore, it is also concluded that when the turning angles of actions at 45 

degrees in 4-actions, the number of rewards has increased at 0 degree, 90 degrees, 180 

degrees, 270 degrees, and 360 degrees turning angles of VQEs. Conversely, the number 

of rewards has decreased at 45 degrees and 135 degrees turning angles of VQEs. From 

this experiment, the optimal position of VQE is obtained from the group of state 

transition vector (STV) of each action. As future topics of research, we plan to propose 

the addition method of VQE to decide the position of VQEs because we want to make 

the optimal state space. By deciding the position of VQEs with the actions, we will 

implement the method of VQE in division and integration. Moreover, we plan these 

techniques to a high-dimensional problem by generating an N-dimensional state space. 
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Chapter 6 
 

A proposition of addition method 

of VQEs in Q-Learning 
 

6.1 Introduction 

 

In this chapter, we present the addition method of VQEs to decide the position of 

VQE. Additionally we introduce the block-counting method, and LBG method for 

vector grouping based on adaptive state space partitioning algorithm. This study will 

also seek to develop the efficiency of reward learning based on state-space partitioning 

technique. Accordingly, we conducted our purposed method on continuous state space 

and discrete actions, and compare the performance with size of square partition lattice. 

Since we consider a single-agent RL problem on continuous state space and discrete 

actions, we apply 2-types of experimental models I and model II in different 

environments as mentioned in previous section 4.2. These 2-types of models have same 

purposes but different state input variables and different number of control actions.  

This chapter is organized as follows. First, the addition method of VQEs using 

model II is presented in Section 6.3. In section 6.3.2, the block counting method is 

explained, and the results for model II are shown in Section 6.3.3. In section 6.4, the 

same addition method of VQEs using model I is presented. And then, the LBG adaptive 

vector quantization algorithm is described in Section 6.4.2 to organize the number of 
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STVs into several groups. The efficiency of rewards learning is investigated and the 

simulation results using model I are explained in Section 6.4.3. A conclusion is also 

given in Section 6.5.  

 

6.2 Addition Algorithm 
 

From the previous experiment of turning angles of VQE and actions using 

experimental model II, the optimal position of VQE is obtained from the group of state 

transition vector (STV) of each action. The addition algorithm is as follows: 

1) Collect STVs during a specific period of time. 

2) Categorize the STVs into several groups. 

3) Calculate the centroid of each group. 

4) Add a VQE to that midpoint or centroid of STV’s group. 

To employ the addition algorithm, 2-types of experimental model are used.  

 

6.3 Addition method of VQEs using Model II 

6.3.1 First-stage of addition of VQEs 

Figure 6.1： Initial-state of addition of VQEs on state space 
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In the first-stage of VQE’s formation using model II in the case of reward-area is 

placed at the center of the action space with fixed position, we first arrange the 

temporary points into lattice structure on the state space as shown in Figure 6.1. When 

the learning process is started, we take the state transition vectors (STVs) which is a 

distance that entered from the position of the agent to the reward-area (Figure 6.2). 

Figure 6.2： Collecting STVs during a specific period of time 

Figure 6.3： Sketching the representative vectors 
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Alternatively, it is discounted sum of the rewards that the agent received. If the amount 

of STVs gets 1000 vectors or more, we group or quantize the STVs by continuously 

taking the same actions using Block-counting algorithm (section 6.3.3). Additionally, 

Figure 6.5： Image of first-stage formation of VQEs in 7-actions 

Figure 6.4： Generating the VQEs at the centroid of representative vectors 
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we seek the representative vectors and describe those STV groups as representative 

vectors (Figure 6.3). Thereupon, VQEs are generated at the place of each representative 

vectors in accordance with the number of control actions in regard to the reward-area on 

the state space (Figure 6.4). In essence, the continuous state space is partitioned into the 

number of N-actions subspaces as Voronoi regions. In this case, the possible numbers of 

control actions are assumed as 7-actions. Finally, we delete the temporary points in 

which VQEs are added on the state space. Figure 6.5 shows the image of first-stage 

output of addition of VQEs in case of 7-actions by drawing Voronoi diagram.  

The implementation of partitioning algorithm is conducted on 2-dimensional state 

space with one state input variable and N-actions to examine the impact of learning. The 

state space is partitioned into the number of N-actions subspaces. 

 

6.3.2 Next-stage of addition of VQEs 

 

In the second-stage of addition of VQEs, we collect lots of STVs again that come 

from temporary points to new VQEs of the first-stage output as shown in Figure 6.6. We 

do not take the STVs that come from new VQEs to new VQEs. In this stage, we do the 

same process as mentioned in section 6.3.1 of first-stage formation. However in this 

second-stage, VQEs are added in regard to the created VQEs but it does not exactly 

produce in accordance with the number of control actions as the first-stage in generating. 

Moreover, a threshold value is calculated to make the group of STVs. A threshold value 

is the quotient of dividing the number accumulated STV (1000 vectors) by the number 

of actions for example 7-actions in this case (Figure 6.7). A threshold value can change 

depending on the number of actions. If the sum of STV values in taking the same action 

has greater a threshold value, we make the group which exceeds a threshold value, and 

represents as representative vectors.  

Moreover, we calculate the minimum distance between two new added VQEs to 

merge the points into one if there were too close to each other. If the distance among the 

new VQEs of the second-stage is less than the ratio of a minimum distance, the first 
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entry VQE is added. If not, there were no new VQEs around are added. The image of 

addition of VQEs in case of 7-actions is illustrated in Figure 6.8. 

Figure 6.6 ： Collection of STVs for next-stage of addition of VQEs 

 

Figure 6.7 ： Calculation of threshold values in second-stage for vector grouping 
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6.3.3 Block-counting method 

 

Figure 6.8 ： Image of addition of VQEs in 7-actions 

 

Figure 6.9 ： In case of 1000 threshold value of STVs 
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The idea of proposed addition algorithm is to group together states with similar 

action for suitable partitioning. Consequently, the block-counting method of STVs is 

used to categorize STVs into several groups.  

Here, the threshold value of STV was set to 1000 vectors and the division number 

of grid (lattice size) was set to 30×30. The threshold value is determined according to 

preliminary experiments, and this value was fixed throughout all episodes. However, if 

the number of STV is smaller than the current threshold value (1000 vectors) or if the 

block-space is divided more finely i.e. greater than the 30 division number of 

block-space, it is difficult to make the grouping. The method that was used to 

implement the vector quantization determines the size of the block-space and threshold 

value of STV for grouping. 

 

6.3.4 The Experimental results of Model II 

 

We compared the learning performance of addition method of VQEs using 

block-counting method for STV’s grouping and Q-Table on 14×14 size of lattice (i.e., 

Figure 6.10 ： In case of 100 threshold value of STVs 
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196 states) in the case of the number of created VQEs are same with size of lattice in 

Table 6.2：Experimental parameters for experiment of addition method  

Figure 6.11 ： Result of 7-actions  
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any N-actions. A continuous action learning time is 20 thousand time as one episode for 

50 episodes, and performed 10 trials on each episode by changing the different initial 

seeds of random number. Furthermore, we did 4-experiments using 7-actions, 6-actions, 

4-actions and 3-actions, and the results are shown in Figure 6.11, 6.12, 6.13, and 6.14 

Figure 6.12 ： Result of 6-actions  

 

Figure 6.13 ： Result of 4-actions  
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respectively. The experimental parameter values in both learning methods were set as 

shown in Table 6.2. The experiments for each task of control actions are carried out 

using these parameter values.  

The result that were obtained by using the proposed technique which is addition 

method of VQEs, and lattice which is previous work conducted by coincidence of state 

space and action space model. The horizontal axis represents the number of episodes, 

and the vertical axis represents the number of average rewards that the agent entered to 

the reward-area. As a result, the learning speed of proposed addition method is slightly 

improved compared with Q-Table and these results show that the result can be changed 

depend on the behavior of the agent.  

 

6.4 Addition method of VQEs using Model I 

6.4.1 Creation of VQEs 

 

In this section, the same addition algorithm is applied in different environment 

which is experimental model II. We add VQEs on continuous state space by 

implementing the state space partitioning formation with the same addition concept as 

Figure 6.14 ： Result of 3-actions  
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described in section 6.3. In the first-stage of addition of VQEs, since the experimental 

model is non-coincidence of state space and action space model, VQEs are produced on 

suitable multiple position of the direction of representative vectors as shown in Figure 

6.15 but we do not judge yet whether that position is really appropriate location or not.  

In next-stage of addition, lots of STVs is taken that entered from temporary points 

Figure 6.15 ： An image of first-stage output of addition of VQEs 

 

Figure 6.16 ： Collection of STVs in next-stage of addition 
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to created VQEs of first-stage output, it does not take that come from VQEs to VQEs. 

An example of collecting STVs is illustrated in Figure 6.16. The image of addition of 

VQEs is described in Figure 6.17. In this addition, LBG algorithm is used for grouping 

of STVs.  

 

6.4.2 LBG Algorithm 

 

LBG (Linde-Buzo-Gray) algorithm is a typical technique of vector quantization 

algorithm and it looks like a clustering algorithm which takes a set of input vectors as 

input and generates a representative subset of vectors with a quantization vector. The 

vector quantization is a classical quantization technique from signal processing and 

image compression which allows the modeling of probability density functions by the 

distribution of prototype vectors. It was originally used for data compression. It works 

by dividing a large set of points (vectors) into groups having approximately the same 

number of points closest to them. Each group is represented by its centroid point. Since 

data points are represented by the index of their closest centroid, commonly occurring 

data have low error, and rare data high error. This is why vector quantzation is suitable 

Figure 6.17 ： An image of addition of VQEs in model I 
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for lossy data compression. It can also be used for lossy data correction and density 

estimation. It assists to project a continuous input space on a discrete output space, 

while minimizing the loss of information.  

The modification of adaptive vector quantization method was introduced enhanced 

Figure 6.18 ：Initial state of LBG algorithm 

Figure 6.19 ：Deciding the cluster of input vectors 
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LBG (Patane & Russo, 2001) [6], and adaptive incremental LBG (Shen & Hasegawa, 

2006) [7]. A simple LBG algorithm for our simulation is expressed as follows:  

Step 1: Collect set of input vectors and put quantization vector (QV) at random (Fig. 

6.18) 

Step 2: Decide the cluster of input vectors that belongs to the nearest QV. 

Step 3: Move QV towards the centroid of input vector by a small fraction of the 

distance. (Fig. 6.19) 

Step 4: Repeat step 2 and 3 until the QV do not change.  

Figure 6.18 describes an initial state of vector quantization algorithm. The input 

vectors are marked with a red +, and QVs are marked with blue *. Since the number of 

QV in clustering problem is not known a priori, the number of QV which has smallest 

measurement error rates in group is determined by changing the number of QV, and 

seeks the minimum distance of QV at a given time. Thus, the total measurement error 

is getting smaller. However, since one group is represented by two QVs, and two 

groups are represented by one QV, the QV of smallest measurement error is moved to 

the position of the largest measurement error if the standard deviation is large. A large 

standard deviation indicates the data are spread out or widely scatter condition in 

group. Figure 6.20 obtained by using the above mentioned LBG algorithm. Each 

Figure 6.20 ：The complete LBG algorithm 
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group represents by its center point generally known as QV. Then put on noise and 

move QV in random direction again. In algorithm, we first initialize a threshold value 

to 0.1 and do repeat this above process in several times until the amount of motion QV 

is less than a threshold value. The convergence of LBG algorithm depends on the 

initial quantum vector and the threshold in implementation. 

 

6.4.3 The Experimental results of Model I 

 

When using experimental model I which is non-coincidence of state space and 

action space model to examine the learning speed of proposed addition method of VQEs, 

2-types of simulation experiments are carried out.  

Exp-1: Stationary reward-area at the center of the action-space (Fig. 6.21) 

Exp-2: Moving reward-area like a circle (Fig. 6.22) 

Each of the experiment were investigated using the same environment 

(Experimental Model I) described in Section 4.2.1 but the reward-area placed at the 

center of the action-space and the reward-area moving like a circle. The parameters for 

these tasks were set as described in above Table 6.2. We did an experiment for one time 

Figure 6.22：Random feeding-area Figure 6.21：Center feeding-area 
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on 10 trials by specifying proper initial seed values and take an average for those 10 

trials on each episode. Moreover, we executed for 100 episodes and checked the number 

of rewards for each episode. In addition, we compared the learning speed of proposed 

Figure 6.23 ： Results for proposed addition method of VQEs and Q-Table in a 

13×13 size of lattice in the case of stationary reward-area 

Figure 6.24 ： Results for proposed addition method of VQEs and Q-Table in a 

13×13 size of lattice in the case of moving reward-area like a circle 
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addition method and Q-Table on 13×13 size of lattice when the numbers of created 

VQEs have the same number of lattice size. The result of an experiment is depicted in 

Figure 6.23, and 6.24. As in the experimental results for Exp-1, the learning efficiency 

of proposed addition method is slightly improved than the learning performance of 

13×13 size of lattice. On the other hand, in the result of Exp-2, the learning speed has 

decreased when the reward-area is moving on the action space. The results show that 

the behavior of the agent can be changed depend on the situation. 

 

6.5 Conclusions 
 

In this chapter, addition method of VQEs for position determination has been 

proposed and LBG algorithm is applied in this study for adaptive vector grouping of 

STVs. And we examined the performance of our proposed method using 2-types of 

experimental model in different situations. In the first-stage of VQE’s addition of both 

models, VQEs produce in regard to the reward-area on the state space. From the 

second-stage, VQEs produce in regard to the created VQEs of first-stage output.  

In Model I, VQEs are generated in accordance with the number of control actions 

on the state space in the first-stage formation because the action space and the state 

space is entirely coincide each other. Moreover, we did 4-experiments using various 

actions such as 7, 6, 4, 3 actions. Consequently, the results have shown that the learning 

performance of proposed technique is much more developed than lattice in any actions.  

In Model II, we examined the performance of proposed method in stationary 

(Exp-1) that indicates a reward-area is placed at the center of the action-space in a fixed 

position, and non-stationary situations of reward-area (Exp-2). In computer simulations 

for the non-stationary situations, it gives the decrease reward learning. Therefore, it 

showed that the performance of each strategy strongly depends on the behavior of agent. 

According to the result of number of rewards difference of stationary and non-stationary 

reward-area conditions, it is shown that the effectiveness of the proposed addition 

method in case of stationary condition.  



CHAPTER 7.  A PROPOSITION OF INTEGRATION METHOD OF VQEs IN 

Q-LEARNING                                                                  

70 

 

 

 

 

 

Chapter 7 
 

A proposition of integration 

method of VQEs in Q-Learning 
 

7.1 Introduction 

 
This chapter describes the integration of VQEs on continuous state space to reduce 

the number of states and memory usage in order to realize the position of VQE and to 

speed up the learning efficiency since the performance changes according to the 

arrangement of VQE. Moreover we investigate the performance and efficiency of our 

integration method using Model I also called “Bait View World” model. The key point 

of our integration method is to integrate the same optimal actions selection as shown in 

Figure 7.1.  

 

7.2 Integration Algorithm 

 
There are 5 conditions to integrate the adjacent VQEs. If  

1. Two adjacent VQEs must be new added VQEs. 

2. It must take the same optimal action. 
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3. These optimal actions have not changed over the 10,000 action times in 1000,000 

integrated timing of new added VQEs.  

4. These are not already used for integration. 

5. After adding new VQEs to 300 or more. 

Then start the integration process and add the integration point to the center of the 

adjacent VQEs, and delete those two adjacent VQEs.  

 

Figure 7.1 ： An image of integration of VQEs  

Figure 7.2：Image of agent’s action on state space 

 

Red  :   Straight ahead 

Green:   Left rotation 

Blue  :  Right rotation 
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7.3 Delaunay Tessellation Algorithm 
 

In the previous section, we discussed about Voronoi diagrams. Now, we consider the 

related structure which is Delaunay tessellation technique for integration of VQEs 

because we want to integrate the adjacent VQEs therefore we used Delaunay 

tessellation technique to find the adjacent VQEs. The Delaunay tessellation is another 

fundamental computational geometry structure and dual tessellation of Voronoi diagram. 

The Delaunay triangulation is the straight-line dual of the Voronoi diagram obtained by 

joining all pairs of points belongs to the set. The triangulation i.e., all triangles of the 

Delaunay triangulation are obtained by joining the adjacent points of Voronoi diagram.  

Delaunay tessellation algorithm is expressed as follows: 

(1)  Generate a random point. 

(2)  Find the closest point and 2
nd

 closest point by measuring the distance from that      

random point and connect it. 

(3)  Repeat this process several times.  

Figure 7.3：An example of java applet animation of Delaunay tessellation 
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An example of java applet animation of Delaunay tessellation is illustrated in 

Figure 7.3. However, if the distance of point by itself is nearest point, it returns the null. 

Finally, all connection between the closest adjacent points is cut. 

 

7.4 Experiments and Results using Model I 
 

This section describes comparative experiments that were conducted on three 

different methods in a stationary condition of reward-area. These are given below: 

(1)  13×13 size of lattice arrangement  

(2)  Addition method of VQEs using Model I  

(3)  Integration method using Model I 

 

Size of action space    100×100 

Initial value of Q     01.0),(0  asQ  (Random) 

Probability of random action   0.3 

Probability of optimal action Q-value  0.7 

Velocity of agent 

Straight ahead, Right rotation, Left rotation  5 

 

Episode numbers    160 Episodes 

Control action times for 1 episode 10
5
 continuous action times 

Learning rate α    0.1 

Discount rate γ      0.9 

Experiment times by changing random seed number     10 trials 

Amount of agent’s movement  2.0 ~ 5.0 

 

Table 7.4：Experimental parameter for integration of VQEs 
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Each method were investigated using the same environment (Experimental Model 

I) as the autonomous mouse robot task described in Section 4.2.1. The experimental 

parameters for these 3 tasks were set as described in a Table 7.3. We conducted the 

experiments with 100,000 continuous learning action times. It makes one “episode” and 

executed for 160 episodes in one “experiment”.  After that, we did 10 trials on each 

episode and take an average of these 10 trails. The learning rate α was set to 0.1 and 

discount rate γ was set to 0.9. Moreover, we checked the learning performance of these 

three methods in stationary situation which is the reward-area is placed at the center of 

the action space in a fixed position. 

Figure 7.4 shows the changes in the number of rewards over 0 to 160 episodes 

when each of the methods was used. In Figure 7.4, the average number of rewards first 

increase at there is many VQEs but it has decreased at less VQE in the integration 

method because the integration process starts after VQEs adds to 300 numbers of VQEs 

in the integration algorithm and reduces the number of VQEs to the same number of 

lattice size. Furthermore, this is thought that to be the reason that sometimes the agent 

may take the wrong action. For example, in the above Figure 7.2, the agent took left 

Figure 7.4：Experimental result of 3-methods 
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rotation instead of taking the right rotation. However, we can say that the integration 

method develops the learning efficiency than other 2 methods when the numbers of add 

VQEs and integration VQEs are same with t with the number of 169 (13×13 lattice 

size).  

However in this simulation, Q-value is used only one-side of adjacent VQEs, and 

the agent did not take the state transition vector. According to the result of experiment, it 

is shown that the integration method improves the quality of learning and can reduce the 

number of states. Nevertheless, we occurs the over-integration problem in this 

integration method though the number of states has decreased shown in Figure 7.5. 

Therefore, we are still considering about this problem and will figure out as future 

challenges.  

 

 

 

 

Figure 7.5： Image of over-integration of VQEs on continuous state space 
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Chapter 8 
 

Conclusions 
 

In this thesis, we first presented Voronoi Q-value Element (VQE) using the concept 

of Voronoi space division to be able to apply the normal Q-Learning in continuous state 

space and to solve the Curse of dimensionality problem that described in Section 2.7.1. 

The advantages of VQEs are given in Section 3.2.4. Then the performance of proposed 

VQEs with radius on 4-dimensional space is examined by computer simulations on 

competitive situations of lattice which is Q-Table with previous work in Section 4.3. 

The results have shown that the proposed method is much more efficient than Q-Table 

to apply the Q-Learning in continuous state space. 

In order to examine the efficiency of the proposed method, we briefly explained 

2-types of experimental model which is Model I and Model II. These models are based 

on continuous states and discrete actions of feeder mouse. The experimental model I is 

non-coincidence of state space and action space model, and the experimental model II is 

coincidence of state space and action space model. There is the action space which the 

agent is learning toward the goal-area to get as much reward as during a specific period 

of time. The state space which is partitioning the continuous state space into Voronoi 

regions using the concept of Voronoi diagram, and it demonstrate the reference times of 

VQEs, kinds of agent’s action selection with color, and the value of Q.  

In Chapter 5, we investigated the effectiveness of VQEs using several strategies of 

Model I and Model II, and the simulation results are showed. From these experiments, 

we realize that the Q-Learning using VQEs gives a good result but it has a position 

determination problem because of the Voronoi diagram has a lot of flexibility. Moreover, 
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from these experiments of Model II, the optimal position of VQEs is obtained from the 

group of state transition vector of each action. Therefore, we have proposed the addition 

method of VQEs to solve this position determination problem in Section 6.2, and it also 

aims to show the improvement of a learning efficiency. Thus, we checked up the 

learning performance of proposed method using 2-types of experimental model in 

Section 6.3 and 6.4 which are different environment. Furthermore, it is compared to the 

existing method which is lattice. After that, we showed that proposed addition method is 

slightly improved than Q-Table. In the addition method, LBG vector quantization 

algorithm is used for adaptive state transition vector grouping.  

In Chapter 7, we presented the integration method of VQEs to reduce the number of 

states and to speed up the learning efficiency. In this integration method, Delaunay 

tessellation algorithm is used for integration of adjacent VQEs. Then the performance of 

lattice, addition method, and integration method were examined by computer 

simulations using only experimental Model I with the reward-area place at the center of 

the action space in a fixed position. According to the results of experiment, the 

integration method can increase the total amount of rewards and slightly improved than 

Q-Table. Moreover, it can reduce the number of states greatly.  
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Summary 
 

This thesis mainly presents a study on state space partitioning using Vorornoi 

diagram based on Q-Learning algorithm with the use of VQE. Here we manly present a 

study on solving curse of dimensionality problem conducting the normal Q-Learning on 

continuous state space in a single-agent environment. We aim by this research to speed 

up the learning efficiency in different situations as well as decrease the learning time. In 

order to do that we proposes VQE in various method such as Voronoi space division, 

rotating VQE, addition of VQE, addition and integration of VQE, etc. in several 

versions. In addition we present a better performance of learning for the algorithm.  

Chapter 1 provides an introduction explains briefly the historical development the 

ideas to find alternatives to computer simulation and how it leads to think about the 

Q-Learning algorithm in continuous state space as a strongly possible alternative and 

the motivation for learning. This chapter also describes the aim and objectives of the 

study, and specifies the dissertation structure.  

Chapter 2 gives an overview or the basic concepts and ideas related to this research 

namely the basic principles for the reinforcement learning such as the standard 

reinforcement learning model. Section 2.2 defines a technique for people to realize the 

learning ability, and to automatically perform what kind of action should take by 

computer machine in order to maximize the expected value of future reward in 

unknown environment. Section 2.3 describes the problem of reinforcement learning, 

and defines some classic model-free algorithms for reinforcement learning from delayed 

reward: Markov decision process, and value function. In section 2.4, the most important 

aspects of normal Q-Learning algorithm which is a typical technique of reinforcement 

learning was described. Section 2.5 also describes the action selection method of agent, 

and section 2.6 describes the Q-Table which divides the state space into lattice and the 

division method of Q-Table. Moreover, section 2.7 discusses the curse of dimensionality 

which increases the number of states exponentially in high dimensions. Furthermore, 
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section 2.8 gives and shows the result of Q-Block that execution times takes about twice 

than Q-Table when we used Q-Block to solve the curse of dimensionality problem.  

Chapter 3 describes the VQE (Voronoi Q-value Element) which divides the state 

space using the concept of Voronoi space division in order to solve the above problem, 

and also gives the idea of Voronoi diagram, and how Voronoi diagram could be used to 

partition the state space. Although Q-Table needs to prepare Q-value in all states 

beforehand, VQE can be added to the state space as required. Section 3.1 describes the 

Voronoi division which is the division method of space whether arbitrary points being 

the closest to which mother point with respect to the mother point located on space. 

Section 3.2 presents the creation method of VQE, a reference method of VQE, method 

of space division using VQEs, and the advantages of Q-Learning that used VQE are 

enhanced learning speed and reliability for this task, and the essential characteristics of 

VQEs in a continuous state space are also described. This chapter also explains several 

methods of nearest neighbor search.  

Chapter 4 evaluates the effectiveness of proposed Q-Learning technique by using 

VQEs, and performs the computer simulations as a comparison experiment of Q-Table 

that described in previous section 2.6 and VQEs. And 2-types of experimental models 

which are Model I and Model II are explained in Section 4.2 for full details. These 

2-models are based on continuous states and discrete actions of feeder mouse (Esa-Hiroi 

Mouse). After that, we show the better performance using VQEs on continuous states 

and discrete actions for 4-dimensional spaces by comparing the normal Q-Learning 

(Q-Table) and Q-Learning with the use of VQEs. In addition, the conclusions are 

considered.  

Chapter 5 examines the learning performance of various strategies using 2-types of 

experimental model I and model II with reward-area in a stationary situation in 

single-agent environment and decide how to act in certain state. In order to test our 

hypotheses, we experimented by rotating the angles of agent’s actions, angles of VQEs 

by the angle in 5 times interval between 0 degrees and 90 degrees in which VQEs are 

arranged in a lattice structure. Moreover, a random arrangement of VQEs experiment 
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also conducted to correctly evaluate the optimal Q-values for state and action pairs in 

order to deal with continuous-valued inputs. As a result of experiments using 

experimental model II, the learning speed has most increased when the angles of VQEs 

and angles of actions is just 45 degrees out of alignment in case of 4-actions.  

Chapter 6 presents the addition method of VQEs which is a position determination 

method to decide the position of VQEs in order to realize a Voronoi region since the 

performance of Q-Learning changes according to the arrangement of VQE. Moreover, 

the simulation was performed in both experimental models and the learning 

performance was examined. And also presents block-counting method and a new 

adaptive segmentation of continuous state space based on vector quantization algorithm 

such as LBG (Linde-Buzo-Gray) for high-dimensional continuous state spaces. The 

objective of adaptive state space partitioning is to develop the efficiency of learning 

reward values with an accumulation of state transition vector (STV) in a single-agent 

environment. Moreover, the study of the resulting state space partition reveals in a 

Voronoi tessellation. In addition, the experimental results show that this proposed 

method can partition the continuous state space appropriately into Voronoi regions 

according to not only the number of actions, and achieve a good performance of reward 

based learning tasks compared with other approaches such as square partition lattice on 

discrete state space. 

Chapter 7 describes an algorithm of integration of VQEs to reduce the number of 

states, the memory usage and the learning time. It also aims to improve the performance 

of learning efficiency. Then it proceeds and described the topological structures of 

Delaunay network to find the adjacent VQEs for integration on continuous state space. 

We add VQEs on state space, and integrate which has the same optimal action selections. 

A computer simulation has been performed using experimental Model I, and the 

simulation results are explained compared with 3-methods such as lattice of a previous 

method which is Q-Table, addition method of VQEs, and integration method of VQEs 

with the reward-area in a stationary condition only
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