

Study on reinforcement learning using Voronoi

diagram in continuous state space

連続的な状態空間のボロノイ分割を用いた

強化学習に関する研究

KATHY THI AUNG

Graduate School of Science and Engineering

Department of System Information Science

Kagoshima University

March 2013

Study on reinforcement learning using Voronoi

diagram in continuous state space

連続的な状態空間のボロノイ分割を用いた

強化学習に関する研究

A Thesis submitted to the Graduate School of Science and Engineering, Kagoshima

University, Japan, in fulfillment of the requirement for the degree of

Degree of Philosophy in Engineering

Accepted on recommendation of:

1. Dr. Shigeru Nakayama

Professor

Dept. of Information Science and Biomedical Engineering

Graduate School of Science and Engineering

Kagoshima University, Japan

2. Dr. Kunihiko Mori

Professor

Dept. of Information Science and Biomedical Engineering

Graduate School of Science and Engineering

Kagoshima University, Japan

3. Dr. Takayasu Fuchida

Associate Professor

Dept. of Information Science and Biomedical Engineering

Graduate School of Science and Engineering

Kagoshima University, Japan

i

Contents

Acknowledgements .. x

Abstract .. 1

1. Introduction .. 2

1.1 Historical Background ... 2

1.2 Research Objective .. 4

1.3 Dissertation Overview ... 6

2. Reinforcement learning and Q-Learning .. 9

2.1 Basic Principals .. 9

2.2 Machine Learning and Reinforcement Learning ... 9

2.3 Problem of RL ... 12

2.3.1 Proceeding .. 12

2.3.2 Markov Decision Processes ... 12

2.3.3 Value Function ... 14

2.4 Q-Learning ... 15

2.4.1 Q-Learning Algorithm .. 16

2.5 Action Selection Method ... 16

2.5.1 ε-Greedy Method .. 17

2.5.2 Roulette Selection Method ... 17

ii

2.5.3 Softmax Technique .. 17

2.6 General state space partition method in Q-Learning 18

2.6.1 Q-Table ... 18

2.6.2 Space-Division method of Q-Table .. 19

2.7 Q-Learning Problem .. 20

2.7.1 Curse of Dimensionality ... 20

2.8 Previous Work ... 21

2.8.1 Q-Block .. 21

3. A proposition of VQE (Voronoi Q-value Element) 23

3.1 Voronoi Diagram ... 23

3.2 A Proposition of VQE in Continuous State Space 25

3.2.1 VQE (Voronoi Q-value Element)... 25

3.2.2 Creation Method of VQE ... 26

3.2.3 Method of Space-Division using VQEs 27

3.2.4 Advantages of VQEs .. 27

3.2.5 Advantages of Q-Learning using VQE .. 28

3.3 Nearest-Neighbor Search Method ... 28

3.4.1 MD-Tree (Multi-dimensional Tree) ... 29

3.4.2 LSH (Locality-Sensitive Hashing) ... 30

3.4.3 NNS (Nearest Neighbor Searching) ... 30

4. The experiments of Q-Table and VQE .. 31

iii

4.1 Introduction .. 31

4.2 Experimental Model .. 32

4.2.1 Experimental Model I ... 33

 4.2.1.1 2-Inputs values and 3-Types of agent’s actions 33

4.2.2 Experimental Model II ... 34

4.2.3 Decision making technique of agent’s action................................. 36

4.3 The experiment of Q-Table and VQE .. 36

4.3.1 Experimental Parameters .. 37

4.3.2 Experimental Results .. 38

4.4 Conclusion ... 41

5. A comparison of learning performance in 2D Q-Learning by the

difference of Q-values alignment ... 42

5.1 Introduction .. 42

5.2 Experiments of Model I ... 43

5.2.1 Random arrangement of VQEs .. 43

5.2.2 Turning angles of VQEs by degrees .. 44

5.3 Experiments of Model II .. 46

5.3.1 Random arrangement of VQES .. 44

5.3.2 Turning angles of VQEs and agent’s action by degrees 48

5.4 Conclusion ... 50

6. A proposition of addition method of VQEs in Q-Learning 52

6.1 Introduction .. 52

iv

6.2 Addition Algorithm .. 53

6.3 Addition method of VQEs using Model II .. 53

6.3.1 First-stage of addition of VQEs ... 53

6.3.2 Next-stage of addition of VQEs ... 56

6.3.3 Block-counting method .. 58

6.3.4 The Experimental results of Model II .. 59

6.4 Addition method of VQEs using Model I .. 62

6.4.1 Creation of VQEs ... 62

6.4.2 LBG Algorithm .. 64

6.4.3 The Experimental results of Model I .. 67

6.5 Conclusions .. 69

7. A proposition of integration method of VQEs in Q-Learning 70

7.1 Introduction .. 70

7.2 Integration Algorithm .. 70

7.3 Delaunay Tessellation Algorithm .. 72

7.4 Experiments and Results using Model I .. 73

8. Conclusions ... 76

Summary .. 78

The Bibliography ... 81

v

List of Figures

1.1 BugPos Model .. 5

1.2 BaitViewWorld Model .. 5

2.1 Flowchart of Reinforcement Learning ... 10

2.2 An example of Q-Table ... 18

2.3 An example of Q-value selection in Q-Table .. 19

2.4 Example of space-division of Q-Table .. 20

2.5 An example of Q-Block ... 21

3.1 Illustration of a Voronoi Diagram in a random set of points 24

3.2 Example of 100 random VQEs on state space ... 25

3.3 Creation method of VQE ... 26

3.4 Example of state space division using VQEs .. 26

3.5 Example of space division of VQEs .. 27

3.6 Differences of Q-Block and VQE for Voronoi space division 28

4.1 Action Space of Model I .. 32

4.2 Two inputs values for Model I ... 33

4.3 State Space of Model I ... 33

4.4 Three types of agent’s action selections for Model I 34

4.5 Action Space of Model II ... 35

4.6 State Space of Model II ... 35

vi

4.7 Deciding the action .. 36

4.8 Experimental Model I in a closed 4-D world .. 37

4.9 Changes of rewards number in a 10×10 and 15×15 lattice size 39

4.10 Changes of states number in a 10×10 and 15×15 lattice size 40

4.11 Changes of rewards number in the case of 0.045 radius of VQE and 15×15

lattice size ... 40

4.12 Changes of states number in the case of 0.045 radius of VQE and 15×15

lattice size ... 41

5.1 Original 2-dimensional lattice ... 43

5.2 Random arrangement of VQEs .. 43

5.3 Result of random arrangement of VQEs .. 44

5.4 20×20 lattice .. 45

5.5 A rotated VQEs in a 20×20 lattice by 45 degrees...................................... 45

5.6 Result of turning angles of VQEs by 45 degrees in a 20×20 lattice 45

5.7 The most common cause of decreased learning in a rotated VQEs 46

5.8 10×10 size of lattice ... 47

5.9 Lattice to random arrangement of VQEs ... 47

5.10 Result of random arrangement of VQEs in Model II 47

5.11 4-kinds of actions at 0 degree .. 48

5.12 A rotated actions by 45 degrees ... 48

5.13 Result of turning angles of VQEs and actions in a 10×10 lattice 49

5.14 Result of turning angles of VQEs and actions in a 20×20 lattice 49

vii

5.15 Result of turning angles of VQEs and actions ... 50

6.1 Initial-state of addition of VQEs on state space .. 53

6.2 Collecting STVs during a specific period of time 54

6.3 Sketching the representative vectors .. 54

6.4 Generating the VQEs at the centroid of representative vectors 55

6.5 Image of first-stage formation of VQEs in 7-actions 55

6.6 Collection of STVs for next-stage of addition of VQEs 57

6.7 Calculation of threshold values in second-stage for vector grouping 57

6.8 Image of addition of VQEs in 7-actions .. 58

6.9 In case of 1000 threshold value of STVs ... 58

6.10 In the case of 100 threshold values of STVs ... 59

6.11 Result of 7-actions ... 60

6.12 Result of 6-actions ... 61

6.13 Result of 4-actions ... 61

6.14 Result of 3-actions ... 62

6.15 An image of first-stage output of addition of VQEs 63

6.16 Collection of STVs in next-stage of addition .. 63

6.17 An image of addition of VQEs in model I ... 64

6.18 Initial state of LBG algorithm .. 65

6.19 Deciding the cluster of input vectors ... 65

6.20 The complete LBG algorithm .. 66

viii

6.21 Center feeding area .. 67

6.22 Random feeding area ... 67

6.23 Results of proposed addition method of VQEs and Q-Table in a 13×13

size of lattice in the case of stationary reward-area 68

6.24 Results of proposed addition method of VQEs and Q-Table in a 13×13

size of lattice in the case of moving reward-area like a circle 68

7.1 An image of integration of VQEs .. 71

7.2 Image of agent’s action on state space ... 71

7.3 An example of java applet animation of Delaunay tessellation 72

7.4 Experimental result of 3-methods .. 74

7.7 Image of Over-integration of VQEs on continuous state space 75

ix

List of Tables

4.1 Experimental parameter of 4-D world ... 38

6.2 Experimental parameter for experiment of addition method 60

7.3 Experimental parameter for integration of VQEs 73

x

Acknowledgements

First of all, I would like to express my profound gratitude to my academic

supervisor; associate Professor Dr. Takayasu Fuchida for supervising me, providing

guidance, and on time suggestions during all my graduate study. His generous help

and affection gave me encouragement during the difficult times and assisted me to

carry my research work to completion.

I would also like to express my appreciation to my committee members, Dr.

Shigeru Nakayama and Dr. Kunihiko Mori for all useful advices, comments,

discussions and correction about my research.

My sincere thanks go to all of my colleagues, teachers and staff members of

Information and Computer Science Department for their valuable academic

discussions and effective supports in necessary study material.

I am truly and deeply indebted to my (father) and mother, my beloved brothers

and sisters for their love, inspiration, encouragement and endless moral support over

the years.

Finally, I am sincerely very grateful to all my friends all over the world who

always so generously provided and has helped me in different aspects of life. And I am

also greatly appreciate to my Japanese host families and the people of Kagoshima for

taking care of me, for their very kind hospitality and extremely courteousness, and

make me having an unforgettable experience during my stay in Japan.

1

Abstract

There are several kinds of learning methods however most of the research tell us

that reinforcement learning (RL) [1] is the most suitable method in machine learning

that deals with the decision to take an action using an agent at discrete time steps, and it

is expected that would be useful anywhere in the future. There are several ways to

implement the learning process but Q-learning algorithm due to Watkins [2] is a policy

for estimating the optimal state-action value (Q-value), and it is one of the most

fundamental methods in RL. Q-learning can apply in many practical applications but it

works only state and action are both discrete. It is difficult to treat in continuous state

space because of the Curse of dimensionality problem.

This dissertation proposes VQE (Voronoi Q-value Element) to be able to apply the

Q-learning in continuous state space and to solve the Curse of dimensionality problem

by partitioning the state space. As a method of space division, we apply the Voronoi

diagram which is a general space division. Nevertheless, Voronoi diagram has a lot of

flexibility thus a method of position determination of VQEs becomes a problem.

Therefore, we present the addition method of VQEs to decide the position and LBG

algorithm is used for adaptive state transition vector grouping. In addition, we propose

the integration method of VQEs to reduce the number of states and memory usage and

Delaunay tessellation technique is used to find the adjacent VQEs. These proposed

methods also aim to show the improvement of a learning efficiency.

In order to examine the efficiency of our proposed methods, we constructed the

continuous states and discrete actions experimental model. The experiments are carried

out compared with lattice of a previous work. The results indicate that the proposed

methods are greatly improved than the previous method.

CHAPTER 1. INTRODUCTION

2

Chapter 1

Introduction

1.1 Historical Background

Nowadays, intelligent robots are applied in many fields. The intelligent robots have

many potential applications in industry, medicine, and even service at home that make

their study important. However, highly intelligent tasks are still difficult to be achieved

by the robots. When the robots perform the tasks in an uncertain environment, searching

the optimal behavior is very important. It is not easy to find the optimal behavior in the

changing environment under various situations. There are several kinds of learning

methods for the robots, such as supervised learning, unsupervised learning, and

reinforcement learning [1].

The supervised learning learns from examples provided by a knowledgeable

external supervisor, the unsupervised learning learns without external supervisor, and

the reinforcement learning learns from the evaluated feedback information called the

reinforcement signal (critic). In order to find the optimal behavior practically,

reinforcement learning is the most suitable method. Reinforcement learning is studied in

most current research in machine learning, statistical pattern recognition, and artificial

neural networks [1]. One method of designing the agents that constitute a single-agent

system is called reinforcement learning [1]. Since the distances between the robot

(agent) and the obstacles or the target (reward-area) are not discrete values practically,

the Q-Learning on continuous state space is applied to intelligent robots in this study.

Reinforcement learning work in statistics, psychology, neuroscience, and computer

CHAPTER 1. INTRODUCTION

3

science, and it has attracted rapidly increasing interest in the machine learning and

artificial intelligence communities nowadays. It’s effective that the human being

controlling the action of the robot to learn autonomously, and it is the problem faced by

an agent that must learn behavior through trial-and-error interactions with an

environment.

Some aspects of reinforcement learning are closely related to search and planning

issues in artificial intelligence. Learning algorithms based on an evaluative feedback

signal are generally referred to as reinforcement learning (RL) algorithms, where the

agent solves the given task based on rewards received from the environment. Otherwise,

RL is a type of machine learning that deals with the decision to take an action using an

agent that can run in certain environments. It’s one of the most important learning

methods for intelligent robots working in unknown environments.

In the widely used of RL approaches, it constructs a learning agent using the

Q-Learning method, which is a representative technique of RL. RL uses the numerical

value by learning that is called Q-value. It’s the value of an action in a certain state. The

action value that has the value of each action in a certain state is preserved in the table

called Q-Table as shown in Figure 2.2. When the action in a certain state is executed,

the expected value of the reward can obtain in the future. If the value of obtaining in the

future is large, the amount of a certain reward Q-value is possible a good action.

However, it tests various actions, and gradually will look for a good Q-value from the

beginning because it doesn't know which action is a good action. The Q-values of the

initial states are all initialized to the value zero.

In particular, Q-Learning that is one of the most fundamental methods of

reinforcement learning can apply in many practical applications because the optimal

policy is guaranteed to be obtained if the learning environment is a discrete Markov

decision process. However, it works only for discrete state space. It’s difficult to handle

on continuous state space. In the case of Q-Learning is treated on continuous state space,

the size of the Q-Table increases rapidly by Curse of dimensionality, and it’s not

realistic. It’s one of the most serious problems in function approximation, and

CHAPTER 1. INTRODUCTION

4

reinforcement learning. The curse of dimensionality also exists in a single-agent

environment.

Curse of dimensionality problem means as the dimension numbers of state space

increases, the state also increases exponentially when the state space is divided into

lattice. On the other hand, as the number of state and action variables increases, the size

of the Q-Table used to store Q-values grows exponentially. An enlargement of the state

space in reinforcement learning causes the learning speed to decrease suddenly or

causes an enormous amount of memory to be required. The various approaches to

autonomously constructing a feature space have been investigated such as the wire

fitting approach, tile coding with hashing, a tree-based algorithm, and a method

based on the self-organizing map to solve the curse of dimensionality problem.

These methods aim at effective construction of a feature space for function

approximation.

In a single-agent environment, the Actor-Critic method has been proposed for

a continuous action space, and a state generalization method using support vector

machines (SVM) [8] and state space hierarchy construction [11] have been

purposed for a continuous state space.

1.2 Research Objective

The aim of the research is to apply the Q-learning method in continuous state-space

using the concept of Voronoi space division. Therefore, we propose Voronoi Q-value

Element (VQE) to solve the Curse of dimensionality problem also by partitioning the

state space adaptively. As a method of Voronoi space division, Voronoi diagram is used

because it is a general space division method. However, Voronoi diagram has a lot of

flexibility, i.e., it has a high degree of freedom, thus a position determination method

becomes a problem. Therefore, we present an addition method of VQEs to decide the

position of VQEs using LBG algorithm for adaptive state transition vector grouping.

Moreover, we present the integration method of VQEs to reduce the number of states

CHAPTER 1. INTRODUCTION

5

and memory usage using the Delaunay tessellation technique for integration of adjacent

VQEs. These proposed methods also aim to show the improvement of a learning

efficiency based on Q-Learning in continuous state space.

In order to examine the proposed methods, 2-types of experimental model based on

continuous states and discrete actions of feeder mouse (Esa-Hiroi Mouse) are

constructed. These are non-coincidence of state space and action space model (Model I)

we called “Bait View World” shown in Figure1.2, and another one is coincidence of

state space and action space model (Model II), we called “Bug Pos” illustrated in Figure

1.1. There is the action space which the agent is learning toward the goal-area, and the

state space which is trying to segment the continuous space as a Voronoi space division.

Additionally, we conducted the demonstration experiments using these 2-models

and verified the effectiveness of proposed methods. We examined the performance of

the following several different methods in a stationary situation of reward-area through

the computer simulations. These are 1) lattice also called Q-Table, 2) one of proposed

method which is addition method using LBG algorithm, and 3) integration method of

VQEs using Delaunay tessellation technique on continuous state space.

Actually, there are many researches that the Q-Learning applied in continuous state

Figure 1.1：BugPos Model Figure 1.2：BaitViewWorld Model

CHAPTER 1. INTRODUCTION

6

space. The two references papers that are most closely related to our research are:

1) Q-Learning in continuous state and action spaces (1999) by Chris Gaskett,

David Wettergreen, Alexander Zelinsky [3] but it considers the Q-Learning in both state

and action spaces are continuous.

2) An adjustment method of the number of states on Q-learning segmenting state

space adaptively (2003) by Tomoki Hamagami, Seiichi Koakutsu, and Hironori Hirata

[4]. However, their system is different from ours. Our methods apply the Q-learning in

continuous states and discrete actions using the concept of Voronoi space division.

1.3 Dissertation Overview

This thesis consists of 8 chapters. The contents of each chapter are as follows:

Chapter 1 starts with an introduction that explains briefly the historical background

of motivation for learning, and discusses the curse of dimensionality. This chapter also

describes the aim and objectives of the study, and specifies the dissertation structure.

Chapter 2 gives an overview or the basic concepts and ideas related to this research

namely the basic principles for the reinforcement learning such as the standard

reinforcement learning model. Section 2.2 defines a technique for people to realize the

learning ability, and to automatically perform what kind of action should take by

computer machine in order to maximize the expected value of future reward in

unknown environment. Section 2.3 describes the problem of reinforcement learning,

and defines some classic model-free algorithms for reinforcement learning from delayed

reward: Markov decision process, and value function. In section 2.4, the most important

aspects of normal Q-Learning algorithm which is a typical technique of reinforcement

learning was described. Section 2.5 also describes the action selection method of agent,

and section 2.6 describes the Q-Table which divides the state space into lattice and the

division method of Q-Table. Moreover, section 2.7 discusses the curse of dimensionality

which increases the number of states exponentially in high dimensions. Furthermore,

section 2.8 gives and shows the result of Q-Block that execution times takes about twice

CHAPTER 1. INTRODUCTION

7

than Q-Table when we used Q-Block to solve the curse of dimensionality problem.

Chapter 3 describes the VQE (Voronoi Q-value Element) which divides the state

space using the concept of Voronoi space division in order to solve the above problem,

and also gives the idea of Voronoi diagram, and how Voronoi diagram could be used to

partition the state space. Although Q-Table needs to prepare Q-value in all states

beforehand, VQE can be added to the state space as required. Section 3.1 describes the

Voronoi division which is the division method of space whether arbitrary points being

the closest to which mother point with respect to the mother point located on space.

Section 3.2 presents the creation method of VQE, a reference method of VQE, method

of space division using VQEs, and the advantages of Q-Learning that used VQE are

enhanced learning speed and reliability for this task, and the essential characteristics of

VQEs in a continuous state space are also described. This chapter also explains several

methods of nearest neighbor search.

Chapter 4 evaluates the effectiveness of proposed Q-Learning technique by using

VQEs, and performs the computer simulations as a comparison experiment of Q-Table

that described in previous section 2.6 and VQEs. And 2-types of experimental models

which are Model I and Model II are explained in Section 4.2 for full details. These

2-models are based on continuous states and discrete actions of feeder mouse (Esa-Hiroi

Mouse). After that, we show the better performance using VQEs on continuous states

and discrete actions for 4-dimensional spaces by comparing the normal Q-Learning

(Q-Table) and Q-Learning with the use of VQEs. In addition, the conclusions are

considered.

Chapter 5 examines the learning performance of various strategies using 2-types of

experimental model I and model II with reward-area in a stationary situation in

single-agent environment and decide how to act in certain state. In order to test our

hypotheses, we experimented by rotating the angles of agent’s actions, angles of VQEs

by the angle in 5 times interval between 0 degrees and 90 degrees in which VQEs are

arranged in a lattice structure. Moreover, a random arrangement of VQEs experiment

also conducted to correctly evaluate the optimal Q-values for state and action pairs in

CHAPTER 1. INTRODUCTION

8

order to deal with continuous-valued inputs. As a result of experiments using

experimental model II, the learning speed has most increased when the angles of VQEs

and angles of actions is just 45 degrees out of alignment in case of 4-actions.

Chapter 6 presents the addition method of VQEs which is a position determination

method to decide the position of VQEs in order to realize a Voronoi region since the

performance of Q-Learning changes according to the arrangement of VQE. Moreover,

the simulation was performed in both experimental models and the learning

performance was examined. And also presents block-counting method and a new

adaptive segmentation of continuous state space based on vector quantization algorithm

such as LBG (Linde-Buzo-Gray) for high-dimensional continuous state spaces. The

objective of adaptive state space partitioning is to develop the efficiency of learning

reward values with an accumulation of state transition vector (STV) in a single-agent

environment. Moreover, the study of the resulting state space partition reveals in a

Voronoi tessellation. In addition, the experimental results show that this proposed

method can partition the continuous state space appropriately into Voronoi regions

according to not only the number of actions, and achieve a good performance of reward

based learning tasks compared with other approaches such as square partition lattice on

discrete state space.

Chapter 7 describes an algorithm of integration of VQEs to reduce the number of

states, the memory usage and the learning time. It also aims to improve the performance

of learning efficiency. Then it proceeds and described the topological structures of

Delaunay network to find the adjacent VQEs for integration on continuous state space.

We add VQEs on state space, and integrate which has the same optimal action selections.

A computer simulation has been performed using experimental Model I, and the

simulation results are explained compared with 3-methods such as lattice of a previous

method which is Q-Table, addition method of VQEs, and integration method of VQEs

with the reward-area in a stationary condition only.

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

9

Chapter 2

Reinforcement learning and

Q-Learning

2.1 Basic Principals

In this chapter we will introduce a review for the basic concepts of machine

learning as reinforcement learning and the various representation of the Q-Learning,

Markov-decision process, curse of dimensionality, state space division method and the

agent’s action selections are described.

2.2 Machine Learning and Reinforcement Learning

The performance and computational analysis of machine learning algorithms is a

branch of statistics known as computational learning theory. Machine learning is about

designing algorithms that allow a computer to learn. Learning is not necessarily

involves consciousness but learning is a matter of finding statistical regularities or other

patterns in the data. Thus, many machine learning algorithms will barely resemble how

human might approach a learning task. However, learning algorithms can give insight

into the relative difficulty of learning in different environments.

There is machine learning that is one of the research tasks in the field of Artificial

Intelligence to perform the learning ability automatically and the same functions a

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

10

reality by computer as technology and a technique. Machine learning is generally

classified into supervised learning which learns by giving the input so as to policy of

back propagation and support vector machine which is a classical multilayer perceptron

neural networks, unsupervised learning which learns without giving those like

clustering, and reinforcement learning (RL).

Reinforcement Learning (RL) is a type of Machine Learning, and thereby also a

branch of Artificial Intelligence. It is the most suitable method in machine learning that

deals with the decision to take an action using an agent at discrete time steps and it is

expected that would be useful anywhere in the future [1]. RL methods attempt to

improve the agent’s decision-making policy over the time. The agent’s goal is to get as

much reward as it can over the long run. Moreover it allows machines and software

agents to automatically determine the ideal behavior within a specific context, in order

to maximize its performance. The goal of RL is to figure out how to choose actions in

response to states so that reinforcement is maximized. That is, the agent is learning a

② Decide Action ⑥Learn

① Observe

③Act

④Change State

⑤Reward

Figure 2.1：Flowchart of Reinforcement Learning (RL)

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

11

policy, a mapping from states to actions. The agent’s policy is divided into two

components, how good the agent thinks an action is for a given state and how the agent

uses what it knows to choose an action for a given state. Simple reward feedback is

required for the agent to learn its behavior this is known as the reinforcement signal. In

the general case of RL problem, the agent’s actions determine not only its immediate

reward, but also the next state of the environment. The agent will have to be able to

learn from delayed reinforcement. In the problem, an agent is supposed decide the best

action on the current state. When this step is repeated, the problem is known as a

Markov Decision Process.

In the standard RL model, an agent is connected to its environment via perception

and action, as depicted in Figure 2.1. RL deal with the issue of the agent within a certain

environment observes the present state, and decides the next action to be taken. It is

performed by the interaction of agent and environment, and learning progresses by

repeating a series of flows from the state observation to the learning. TD (Temporal

Difference) Learning, Q-Learning which is online learning of control strategies when

next state function is unknown learning, etc. are known as a typical technique of RL.

Figure 2.1 shows the interaction of agent and environment at discrete time steps t in

learning process. A system with RL comprises two elements: an agent and an

environment. The agent repeatedly observes the state variable of its environment, and

chooses an action. The environment changes the state by the agent’s behavior, and

returns the reward. The agent takes the reward from the environment, and updates a

policy accordingly, and outputs the action to the environment. After that, the state

changes from the current state to the next state, and the agent learns based on the reward

by its own action policy.

1. State Observation (Observe)

The agent first observes the environment and obtains the state.

2. Action Decision (Decide Action)

The agent then decides the action based on the state that was obtained by state

observation.

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

12

3. Act

The agent performs the decided action with respect to the environment.

4. State Transition (Change State)

The environment influences by acting the agent, and a state is changed.

5. Reward

The environment returns the reward to the agent that corresponds to the current state

after changing the state.

6. Learn

Finally, the agent learns by receiving the reward.

RL learns the optimal action by repeating this process from 1~6, and the agent

accumulates the value of Q during the learning period. The Q-value is expected value of

the returns, which is discounted sum of the rewards that agent received.

2.3 Problem of RL

2.3.1 Proceeding

The reinforcement learning aims at maximizing the final accumulation of

remuneration obtained from environment. This accumulation of remuneration is given

by the following formulas.





T

k

kt

k

t rR
0

1

 Here, T is the last time,  is a numerical value (reward) of whether to carry

out the consideration of the remuneration that can obtained in future however.

2.3.2 Markov Decision Processes

In RL study, an environmental state is needed for an agent in the case of action

determination and learning. This state is generally modeled by the Markov decision

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

13

processes, also known problems with delayed reinforcement are well modeled as

Markov decision processes (MDPs). An MDP consist of a set of states, a set of actions,

a reward function, and a state transition function. The agent observes state and chooses

action then receives reward, and state changes to next state. A state transition function

probabilistically specifies the next of the environment as a function of its current state

and the agent’s action. The reward function specifies expected instantaneous reward

as a function of the current state and action. The model is Markov if the state transitions

are independent of any previous environment states or agent actions. There are many

good references to MDP models (Bellman 1957; Bertsekas 1987; Howard 1960;

Puterman 1994). The general MDPs may have infinite (even uncountable) state and

action spaces.

The probability that the phenomenon in the future will happen is decided only

from the present state and the character in which it does not depend is call the Markov

nature to the previous state. Generally it is the action that taken by the time t . Since all

the phenomena which happened in the past are related, the response to set 1t is

defined as follows. On the other hand, it will be time t f a state signal has the Markov

nature. A response is time t , since it is depend only on the state where state and action

pair set defines as follows.

 tttt asrrss ,|,Pr 11  

Here, if the environment has the Markov nature, the present state and the state of

action to the next, and action can be predicted. Furthermore, all the future states and

actions can be predicted form the present by repeating it. The RL study which fills the

Markov nature is called the Markov decision process. If the space of a state and action

is limited, it will be called a limited Markov decision process. When the arbitrary states

and action are given, it will be a next state possible and the probability is given by the

following formula.

 aassssP ttt

a

ss   ,|Pr 1

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

14

Moreover, when the present state and action is given the expected value of reward

is given by the following formula.

 ssaassrER tttt

a

ss
  11 ,,|

2.3.3 Value Function

A reward which carries out the target of RL evaluating remuneration and

maximizing the expected value of reward which defines a value function in order to

measure whether it is worthy of the present state being how much in that case. Firstly,

the action a takes the state by the policy  is assumed as),(as .

 








 




 ssrEssREsV t

k

kt

k

stt ||)(
0

1


It carries out the basis value by this policy  and can be expressed as follows.

 








 




 aassrEaassREasQ tt

k

kt

k

tstt ,|,|),(
0

1


The value function has the basic property of recursive relations.

 

 

 












































































s

a

ss

a

ss

a

s

t

k

kt

k

t

a

ss

a

ss

a

t

k

kt

k

t

t

k

kt

k

stt

sVRPas

ssrrERPas

ssrrE

ssrE

ssREsV

)(),(

|),(

|

|

|)(

1

0

21

0

21

0

1




















It is called the Bellman equation and this equation is a state s worth of the

remuneration in all succession discounted. It is carried out by occurrence probability to

all the actions.

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

15

2.4 Q-Learning

There are several ways to implement the learning process. However, Q-Learning is

one of the policy types of TD learning proposed by Watkins in 1989 [1]. It’s based on

the idea that the expected discounted sum of future reinforcements can be estimated by

a function of each action in each state, which gives the value of Q to the pair of a state

and action, and can be used to define an optimal policy. It’s one of the most fundamental

methods, and the most popular. It has been proposed for the intelligent robots to find the

optimal behavior. It seems to be the most effective model-free algorithm for learning

from delayed reinforcement, and can apply in many practical applications. However,

Q-Learning is generally considered in the case that states and actions are both discrete.

It’s difficult to handle on continuous state space because of Curse of Dimensionality

problem that explain in section 2.7.1. It needs to discretize the state space into a lot of

smaller discrete regions when the case of continuous state space is treated.

In general Q-Learning, every action and state pair have their own Q-value. Q-values

store in a table is called Q-Table and it looks like a square lattice in 2-dimensions. These

values are initialized to small random numbers, and gradually change toward the

optimal values through learning. Q-values are used to predict the discounted cumulative

reinforcement for each state-action pair because of the agent learns a mapping form

states and actions to their Q-values.

In the simplest case, the Q-value for a state-action pair is the sum of all

reinforcement signals, and the Q-Learning function is the function that maps from

state-action pairs to values. But the sum of all future reinforcements may be infinite

when there is no terminal state. In Q-Learning, the selected action a of Q-value in

time t is updated by following equation.

＜Q-Learning Equation＞

 ),(),(max),(),(1 ttt
a

ttttt asQasQrasQasQ  

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

16

2.4.1 Q-Learning Algorithm

A state-action value (Q-value) which is denoted by),(tt asQ is updated just by

taking the one with the maximum Q-value for the current state. For each state-action

pair,

1. Observe the current state st.

2. Select an action ta

using ε-greedy action selection method and execute it.

3. Receive an immediate reward from the environment.

4. Observe a next state 1ts .

5. Update the Q-value for),(tt asQ state-action pair using above Q-Learning

equation.

6. Increase the time t to t+1 and go back to step (1) and repeat the process.

In this equation, a state in time t is st , Q-value of action ta in the state st is

),(tt asQ , it tell us the immediate reward for making a good an action is given a

certain state. Moreover,  is the learning rate, is the discount rate, tr
is a reward.

Furthermore,),(max 1 asQ t
a

 shows the maximum Q-value of next state in time 1t .

This equation means if the Q-value of next state is greater than the current Q-value, it

increases the current Q-value. Conversely, if the Q-value of next state is lesser than

current Q-value, it decreases the current Q-value.

2.5 Action Selection Method

Since all state and action pairs must be chosen for the sufficient number of times as

what kind of action selection method may be used for convergence of Q-learning.

However, in order to gain more reward the following techniques are used in many cases.

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

17

2.5.1 ε-Greedy Method

This method chooses the random action in small probabilityε. If it does not take

the random action, it selects the maximum Q-value by taking the highest action. In other

words, it chooses the action a that will become)(max aQt
a

 at time t .

Probability of random action ： ε(ε＜1)

Probability of maximum Q-value action ： 1-ε

2.5.2 Roulette Selection Method

It is a selection method of individual i to choose the probability when it

assumes as ip

 


N

k k

i
i

f

f
p

1

A substance of adaptive value is expressed as fi, and it is the requisite that

adaptive value does not take a negative value. Since the probability that a substance or

individual organism with high adaptive value will be chosen when the value which is

carried out scaling of the adaptive value in fact is used in many cases.

2.5.3 Softmax Technique

This technique is given the high selection probability in good action, and as for

other, it is given to the high order selection probability according to the presumed

value. The Boltzmann distribution is used as the function. A selection probability

),(as of an action a in state s is expressed as

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

18

 
  



Ap
TpsQ

TasQ
as

/),(exp

/),(exp
),(

Here, T is a positive constant, A is a set of the possible action in state.

2.6 General state space partition method in

Q-Learning

2.6.1 Q-Table

The expected value (Q-value) of each action in each state is stored in a table that

used in Q-Learning is called a Q-Table, which looks like a square lattice in two

dimensions. Q-value is the discounted sum of the rewards agent that receives for a state

and action pair. But if the state space is too large then it would be impossible to store all

the Q-values. An example of Q-Table is shown in figure 2.2, and figure 2.3 also shows

an example of Q-value selection in Q-Table.

Figure 2.2：An example of Q-Table

0.09 0.12 … … … 0.26

0.11 0.15 … … … 0.28

: : :

: : :

0.15 0.18 … … … 0.33

State s

Action a

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

19

ts

 ),(),(max),(),(1 ttt
a

ttttt asQasQrasQasQ  

Figure 2.3：An example of Q-value selection in Q-Table

2.6.2 Space-Division method of Q-Table

A segmentation of space using normal Q-Learning is shown in Figure 2.4.

Q-Table divides the entire all state space into the shape of square discrete regions like a

“lattice” to treat the case of normal Q-learning on continuous state space. It finely

divides the state space into very small tiny discrete regions thus the size of all state are

equal. Dividing the state space into many smaller discrete regions like a lattice, the

values of Q are evenly arranged all over the space surface. Therefore this subdivision

method can possibly generate the waste space because it needs to divide the all space

surface even the position which is not used Q-value. It means Q-Table use the Q-value

in all states. Thus, Q-Table takes a long time to learn to get a reward and it is hard to

partition the space partially. Furthermore, it has Curse of dimensionality problem

explained in section 2.7.1.

0.09 0.12 … … … 0.26

0.11 0.15 … … … 0.28

0.13 0.14 0.28

0.16 0.18 0.32

0.15 0.16 … … … 0.33

1ts

 tt asQ ,

Maximum

Q-value of next

state 1ts

State transition

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

20

2.7 Q-Learning Problem

2.7.1 Curse of Dimensionality

The curse of dimensionality also exists in a single-agent environment. When

reinforcement learning is applied in an actual environment, the action outputs are

continuous values, especially for robot control, and the state space is given according to

continuous values. With a method that performs learning by discretizing the continuous

values, the size of the action space and state space will explode. In an environment

where the curse of dimensionality occurs, a great deal of time will be required for an

agent to search the learning space, and the learning speed will end up decreasing

significantly.

Even in a single-agent environment or 2-dimensional state space, when

reinforcement learning is used in an actual environment, the decrease in learning speed

is problematical. Therefore, multi-dimensional state space requires even more learning

time than learning in a 2-dimensional state space. In addition, it also has the important

problem that the increase in the number of dimensions or number of agents will cause

Q-values

Figure 2.4：Example of space-division method of Q-Table

Waste space

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

21

the curse of dimensionality. This is because the state space is constructed with the input

state or all agents as part of the environment, and as the number of dimensions or as the

number of agents increases, the state space grows exponentially, which results in the

size of state space exploding.

Curse of dimensionality also means, as the number of dimensions or agents

increases, the size of the Q-Table to store Q-values grows exponentially and it’s not

realistic. An enlargement of the state space in reinforcement learning causes the learning

speed to decrease suddenly or causes an enormous amount of memory to be required.

2.8 Previous Work

2.8.1 Q-Block

There are so many state where it is not used in division of Q-Table exists in many

cases although the learning progresses as described in above section 2.6.2. And if we

use Q-Table in high dimension, the number of states increases exponential to create all

states at first and may occur the curse of dimensionality, and a memory may be

input Q-Table

Q-Block

Figure 2.5：An example of Q-Block Figure 2.5：An example of Q-Block

CHAPTER 2. REINFORCEMENT LEARNING AND Q-LEARNING

22

insufficient. Then a technique of creating the element of Q-Table that only require for

learning is proposed. Q-Block is generated as one element of a table when Q-value is

needed. First, an agent generates the element of Q-Table corresponding to the state

where it needed in state observation and action determination, and stores in a hash table.

Next, it is referred to when the state where it is referred to exists in a hash table. It

enables it for a state to reduce the number of states generated by the memory into a high

dimension, and to use a lattice-like separation technique.

However, according to the results of our experiments in Q-Learning using

Q-Block, the number of obtained rewards is equivalent to the previous study which used

Q-Table. Although, Q-Table cannot perform execution over 8-dimensions because of

insufficient memory and the number of states could be reduced, Q-Block can apply to

40-dimensions were checked. However, it resulted the Q-Learning using Q-Block took a

time nearly twice compared with Q-Table.

Since we seen decrease in performance as the dimension grows up in execution

time, we need to consider another method that raises the learning efficiency for space

division such as a required place which used Q-value divides finely but the place which

is not required is not used.

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

23

Chapter 3

A proposition of VQE (Voronoi

Q-value Element)

3.1 Voronoi Diagram

Q-Learning is an effective learning method regarding the discrete state space.

Nevertheless, it needs to discretize the state space in the case of Q-Learning treats on

continuous state space but it has the problem that is not realistic in normal Q-Learning.

And, it is difficult to adjust the number of state in Q-Table depending on the necessary

adjustments of addition and deletion of an element because the normal Q-Learning

separates the state equality.

Therefore, we proposed VQE (Voronoi Q-value Element) to treat on continuous

state space using the general idea of Voronoi space division. As a method of Voronoi

space division, Voronoi diagram is used in our approach to partitions the space into cells

or a number of convex regions, where each region consists of all points that are closer to

one site than to any other. It has nearest-neighbor searches property but it cannot able to

use over 2-dimensions. As a simple illustration of Voronoi diagram is described in

figure 3.1.

Voronoi diagram records information about what is close to what. It is a partition

or a subdivision of the plane into n cells or convex regions in terms of a given discrete

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

24

set of points. It’s a segmented shape divided by the mother point or an arbitrary point,

however VQE is used here in our method. The partition of the plane formed by the

closest point Voronoi regions. In other words, if S is a given set of points in the plane,

and each point of the plane is associated with the nearest point of S, then the plane is

divided into convex polygons, or cells containing exactly one member of S such that for

each point. Such a partition is called a Voronoi tessellation, also called Voronoi Diagram.

If S is generated randomly or start from a random set of points, the result is a random

Voronoi Diagram.

Voronoi cells can also be defined by measuring distances to objects that are not

points. Voronoi diagram are often not feasible for over 2-dimensions due to its

exponentially increasing size but it has the property of solving the waste of spaces and

nearest neighbor search problem because one of the most important data structures

problems in computational geometry is solving nearest neighbor queries.

Figure 3.1 shows an example of java applet animation of Voronoi diagram in a

random set of points. A set of point is given as input, and output is a partition of the

Figure 3.1：Illustration of a Voronoi Diagram in a random set of points

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

25

plane into regions of equal nearest neighbors. VQEs are marked with a black point, and

the colored areas are the Voronoi region that belongs to the black point. Voronoi regions

(cells) are bounded by line segments and Vorornoi region of a point is unbounded if and

only if the point is a vertex of the convex hull of the point set. Voronoi edge is a bisector

of two sites whose regions are adjacent. It can see that Voronoi Diagram is closely

related to Delaunay Triangulation as well as to the convex hull of its projection onto

some paraboloid. In both cases the connection is made with the use of duality. We will

discuss it later when we talk about the dual structure called a Delaunay triangulation.

3.2 A Proposition of VQE in Continuous State Space

3.2.1 VQE (Voronoi Q-value Element)

Voronoi Q-value element (VQE) is a point that corresponds to the region or area. It

has Q-value with regards to each discrete action. In the Q-Learning with the use of VQE,

it was just creates the VQE on each agent’s action. Figure 3.2 shows 100 random

numbers of VQEs are arranged on the state space. The blue points belong to the point of

VQE.

Figure 3.2：Example of 100 random VQEs on state space

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

26

3.2.2 Creation Method of VQE

An example of creation of VQE is when the input enters on the state space, VQE is

created and it returns the Q-value. Moreover, in the case of more than one inputs enter

within the area of VQE, it searches the shortest distance from VQE, and Q-value of

nearest VQEs from that point is returned. The image of creation method of VQE is

shown in Figure 3.3 and 3.4.

Figure 3.4： Example of state space division using VQEs

Figure 3.3： Creation method of VQE

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

27

3.2.3 Method of Space-Division using VQEs

Figure 3.5：Example of space-division of VQEs

The state space is divided into Voronoi region which is only required to divide in

space division method of VQEs, and it just only uses the Q-value where there are lots of

inputs as shown in Figure 3.5. Although Q-Table needs to prepare Q-value in all states

beforehand, VQE can be added to the state space as required.

3.2.4 Advantages of VQEs

There are some advantages of VQEs. These are described as follows:

1. VQE can reduce the waste of spaces.

2. It does not have overlapping area within the region of VQE when partitioning

the state space.

3. If data are deleted, other data can supplement the space in the erased part when

data are deleted.

4. It is easy to integrate.

VQE

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

28

3.2.5 Advantages of Q-Learning using VQE

Furthermore, there are some advantages of Q-Learning using VQEs. These are:

1. The number of states and the size of state can adjust by executing the addition and

deletion of VQE.

2. It is thought that the state which is not required for learning is treated in a rough way,

and the required state can reduce the number of states, and can save the memory

usage.

3. Q-Table divides the state space in a lattice structure thus the size of all states will

become the same size. Therefore, it is difficult to adjust the state partially.

4. In Q-Learning using VQE, it can solve the problem of increasing memory usage

when the number of states is increased.

3.3 Nearest-Neighbor Search Method

Input

Overlapping region

Q (st,at) Q (st,at) Input

Figure 3.6：Differences of Q-Block and VQE for Voronoi space division

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

29

In this section, we investigate a number of nearest neighbor search methods.

Nearest-neighbor searching is a fundamental problem design of geometric data

structures. It defined as a given collection of n points build a data structure which given

any query point and reports the data point that is closest to the query. It has applications

in many areas, including data mining, pattern recognition and classification, machine

learning and data compression are some examples. Many data structures have been

proposed for nearest neighbor searching.

We want to find the nearest neighbor of a given query vector without computing

all distances. However, there was a problem to search time exponentially increase if the

dimension goes up, and the Curse of dimensionality problem exact search inefficient

therefore we try to use the method of MD-Tree, LSH (Locality-Sensitive Hashing),

ANNS (Approximate Nearest Neighbor Searching) to obtain the nearest VQE in a given

point. Then, we implement the programs using the algorithm of those techniques, and

apply those. Each search method is specified by a data structure for storing the data and

algorithms for building, and searching the structure. For example, given a distance

function D, a collection of points B (in k-dimensional space), and a point P (in that

space), it is often desired to find P’s nearest neighbor in B.

3.3.1 MD-Tree (Multi-dimensional Tree)

A multi-dimensional tree (MD-Tree) is one of the multi-dimensional management

structures, and developed by extending the concept of the B-Tree data. MD-Tree can be

used for improving the balance factor and to high the storage utilization and the

algorithm of insertion and deletion methods are included in the structure. The special

characteristics of MD-Tree are as follows:

(1) The processes of insertion and deletion data are high-speed.

(2) It can adjusts the balance of level and keeps high memory storage

utilization.

CHAPTER 3. A PROPOSITION OF VQE (VORONOI Q-VALUE ELEMENT)

30

(3) There are no overlaps and no needs to periodical restructuring of the tree

structure by not integrating internal nodes on its delete process.

(4) It can combine the delete-insert algorithm in each data cut down the

processing data.

MD-Tree has two novel concepts: internal leaf and improvements in bottom-up

search. MD-tree has two novel concepts, internal leaf and improvements in bottom-up

search. The internal leaf that is managed by corresponding internal node in a tree has

pointers to moving objects and helps reduce the update cost of the tree. The improved

bottom-up search of the tree reduces the retrieval costs by managing the non-overlapped

areas of split data space.

3.3.2 LSH (Locality-Sensitive Hashing)

Locality Sensitive Hashing (LSH) is a widely-used algorithmic tool which brings

the classic technique of hashing to geometric settings in many existing approaches, and

it provides some guarantees on the search quality for some distributions. It has many

variants, some examples are Hamming space [Gionis, Indyk, Motwani, 99], Euclidean

version (E2LSH) [Datar, Indyk, Immorlica, Mirrokni, 04], Leech Lattice Quantization

[Andoni, Indyk, 06]] and Spherical LSH [Terasawa, Tanaka, 07], etc. It is an algorithm

for solving the approximate neighbor search in high dimensional spaces. The basic idea

is to hash the input items so that similar items are mapped to the same buckets with high

probability.

3.3.3 NNS (Nearest Neighbor Searching)

Nearest Neighbor Searching (NNS) also known as proximity search or closest point

search, is an optimization problem for finding closest points in metric spaces. It is a

technique which greatly reduces processing time and required amount of memory for

nearest neighbor search.

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

31

Chapter 4

The experiments of Q-Table and

VQE

4.1 Introduction

In this chapter, we examined the efficiency of proposed VQEs and Q-Table also

called lattice which is an existing method. In order to evaluate the effectiveness of

proposed VQE, very simple and efficient techniques of experimental models are

constructed and computer simulation has been performed. We first explain two types of

experimental model in this sub-section 4.2. Then the experimental parameters are

explained. Moreover, we show the result of computer simulations on 4-dimensional

spaces and the effectiveness of the proposed method.

4.2 Experimental Model

In order to examine the proposed methods, there are two types of experimental

model. These are as follows:

Experimental Model I : Non-coincidence of State Space and Action Space model

Experimental Model II: Coincidence of State Space and Action Space model

In the experimental model I, the action space and the state space are not coincided

each other. It has two state input values such as the distance and the angle. And the

possible numbers of control actions are 3-actions. In the experimental model II, the

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

32

action space and the state space are totally coincide each other. It has one state input

values which is the position of agent and the maximum number of control actions are

N-actions. These two experimental models are based on continuous states and discrete

actions of feeder mouse.

4.2.1 Experimental Model I

The experimental model is non-coincidence of state space and action space model.

There is the action space which the agent is learning toward the goal-area shown in

Figure 4.1, and the state space which is trying to segment the continuous space as a

Voronoi space division shown in Figure 4.3. In the action space, the reward-area is

denoted by square shape and the agent is denoted by triangular arrowhead which

indicates the direction in which the agent is moving. The agent receives a reward of +1

when it enters the reward-area, then the agent’s position is randomly changed on this

action space. Otherwise, if the agent collides into a border or wall, it gets a reward of -1.

Figure 4.1： Action Space of Model I

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

33

The objective of agent is to get reward as much as possible during a specific period. The

reward-area is put in the center of the action space as a constant in fixed position. The

number of dimensions can increase by 2-dimensions when one reward-area is increased.

The size of state and action space is -100 to 100.

4.2.1.1 2-Inputs values and 3-Types of agent’s actions

Figure 4.2： Two inputs values for Model I

Figure 4.3： State Space of Model I

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

34

The agent observes the distance (d) from the position of the agent to the

reward-area, and the angle () between the trend of agent and reward-area as shown in

Figure 4.2. These 2-state input values generate the 2-dimensional state space as shown

in Figure 4.3. In this state space, VQEs are arranged into 10×10 lattice structure

therefore it has 100 numbers of VQEs on the state space. The 3-kinds of action

selections are 1) straight ahead display by red color, 2) right rotation display by blue

color, and 3) left rotation display by green color as shown in Figure 4.4.

4.2.2 Experimental Model II

The experimental model II is coincidence of state space and action space model. It

means the action space and the state space totally coincide with each other. In this

model II, the agent is supposed to head toward the reward-area subjected to various

performance criteria in which the reward-area is denoted by closed circle and the agent

is denoted by open circle in the working environment of action space as shown in

Figure 4.5. The agent has N-kinds of action selections and the position of the agent is

assumed as state input. The reward-area is placed at the center of the action space in

Figure 4.4： Three types of agent’s action selections for Model I

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

35

fixed position as constant. The size of state and action space is -100 to 100. In the state

space, VQEs are arranged into 10×10 lattice structure therefore it has 100 number of

VQEs on the state space as shown in Figure 4.6. The initial position of agent and

position of VQEs can change by the different seeds of random number which is sets of

digits (i.e., 1,2,3,4,5,6,7,8,9).

Figure 4.6： State Space of Model II

Figure 4.5： Action Space of Model II

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

36

4.2.3 Decision making technique of agent’s action

The agent selects the next action which has the highest Q-value. An action which has

a large Q-value is considered to be a good way to achieve the goal. However, selecting

the highest Q-value continually decreases the opportunity to find a better way. Therefore,

the agent sometimes selects the next action at random. This random selection is useful

for exploring the state space and finding a new and better way which has not been found

yet. An example of deciding action is described in Figure 4.7. This action selection

method is epsilon-greedy method. In our experiments,

Probability of random action rate: ε＜1 (30%)

Probability of maximum Q-value action: 1- ε (70%)

4.3 The experiments of Q-Table and VQE

In order to examine the performance of Q-Table and VQE, we used the

experimental model I. In this simulation, a bug is supposed to head toward the bait areas

subjected to various performance criteria. This bug is an agent in this model and a bug

moves in a closed 4-dimensional world. We call this model “bait world” because

Figure 4.7： Deciding the action

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

37

bait-area for the bug is put on this world. The bug eats the bait when it enters the

bait-area. The objective of the bug is to eat as many of the good baits as possible during

a specific period.

Figure 4.1 shows an image of the “bait world”. The two reward-areas are randomly

placed in this closed 4-dimensional world. Since the number of bait areas is 2, the agent

observes 4 parameter input values. These 4 parameters construct the 4-dimensional state

space. In this study, VQEs posses radius to use the multi-dimensional tree (MD-Tree)

search method because Voronoi diagram cannot able to use over 2-dimensions.

4.3.1 Experimental Parameters

The parameter values were set as shown in Table 4.1. In our experiment, one “turn”

means one cycle of reinforcement learning, i.e., from an observation of the agent to an

update of the Q-value. Here, 100,000 turns make one “episode” and executed for 400

episodes in one “experiment”. And then, we count the number of rewards that the agent

Figure 4.8： Experimental Model I in a closed 4-D world

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

38

entered during one period, and did 10 trials for one “episode” by changing the different

initial seed of random numbers. Then we took an average of those 10 trials. The

learning rate α was set to 0.1 and the discount rate γ was set to 0.9.

4.3.2 Experimental Results

In order to prove the effectiveness of the proposed VQE method, the first

simulation is carried out in 4-dimensions with radius of VQE. We did several

Size of action space 100×100

Partition No. of Q-Table 10×10, 15×15 lattice size

Initial value of Q 01.0),(0  asQ

Probability of random action 0.3

Probability of optimal action Q-value 0.7

Velocity of agent

Straight ahead, right rotation, left rotation 5

10
6
 continuous action times 1 episode

Number of episodes 400 episodes

Learning rate α 0.1

Discount rate γ 0.9

Experiment times by changing random seed number 10 trials

Radius of VQE 0.03, 0.04, 0.044, 0.045, 0.05,

0.053, 0.06,

0.07, 0.075, 0.08, 0.085, 0.09

Table 4.1：Experimental parameters of 4-D world

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

39

experiments by changing the radius of VQE and size of lattice. However, we show some

results in here.

The obtained behavior of reward numbers for the size of the lattice on 10×10 and

15×15 are shown in Figure 4.9, and the changes of states number also illustrated in

Figure 4.10 respectively. The horizontal axis represents the number of episodes, and the

vertical axis represents the number of rewards or the number of states. The number of

rewards in 10×10 Q-Table is extremely good than 15×15 Q-Table. In figure 4.10, the

size of the state space for 10×10 Q-Table is extremely large at 50,000 states. As a result,

since the number of rewards that are subject to learning is relatively related to the size

of lattice, the learning speed is extremely fast in small lattice size.

In the second simulation, the size of partition number of Q-Table and the radius of

VQE are experimented as 15×15 and 0.045 by proper adjustment. The experimental

results on the difference of reward numbers and state numbers between VQE and

Q-Table are shown in Figure 4.11 and 4.12, respectively. As a result, the proposed

technique gives a better performance than Q-Table at 2000 reward numbers as shown in

Figure 4.11.

Figure 4.9：Changes of rewards number in a 10×10 and 15×15 lattice size

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

40

Figure 4.10：Changes of states number in a 10×10 and 15×15 lattice size

Figure 4.11：Changes of rewards number in the case of 0.045 radius of VQE and

15×15 lattice size

CHAPTER 4. THE EXPERIMENTS OF Q-TABLE AND VQE

41

4.4 Conclusion

From the results given above in Figure 4.9 and 4.10, the division number 10 in

Q-Table of learning efficiency is better than 15×15 lattice. The division number 15 is

five times greater than the division number 10. Therefore, the delay means that the

reward is getting bigger. However, the ultimate reward acquisition is around 1500.

As the results of experiment shown in Fig. 4.11 and Fig. 4.12, compared to Q-Table,

VQE can increase the number of rewards and it take less number of states than Q-Table.

Therefore, VQE is effect extremely for Voronoi space division in continuous state space.

And we can say that Q-Learning using VQEs are more effective than using normal

Q-Learning.

Figure 4.12：Changes of states number in the case of 0.045 radius of VQE and

15×15 lattice size

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

42

Chapter 5

A comparison of learning

performance in two-dimensional

Q-learning by the difference of

Q-values alignment

5.1 Introduction

In this chapter, we examine the learning efficiency of VQE in various strategies

under different situations on 2-dimensional state space. In order to check the

effectiveness of VQE, 2-types of simulations experiments for each model are carried out.

For experimental Model I;

Exp-1: Random arrangement of VQEs

Exp-2: Turning angles of VQEs by degrees in lattice arrangement

For experimental Model II;

Exp-1: Random arrangement of VQEs

Exp-2: Turning angles of VQEs and agent’s action by degrees in lattice

arrangement

In these experiments, we tested the learning performance with one agent and one

reward area in a closed 2-dimensional space in case of the reward-area is placed at the

center of the action space with a fixed position. Each experiment was done 10 times and

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

43

the results were averaged. It means the agent learns the continuous actions with one

hundred thousand times as one “episode” and executed for 20 episodes in one

“experiment”. Then, the number of rewards that agent entered to reward-area is counted

for each episode and did 10 trials for each episode and take an average of those 10 trials

by changing the different initial seeds of random number. We examined the

effectiveness of VQE without using radius in 2-dimensional state space using 2-types of

experimental model. The agent learns to reach the reward area successfully during the

reward-based learning process under various conditions.

5.2 Experiments of Model I

5.2.1 Random arrangement of VQEs

Firstly, we consider the VQE arrangement into lattice structure. It means VQEs are

arranged in an orderly lattice. A general 2-dimensional lattice in a 10×10 size of

Q-Table (10×10 grid environment) is shown in Figure 5.1. When this original

2-dimesional lattice is conducted by random noise of flat distributions (i.e., 0.01, 0.02,

0.03, 0.04, 0.05), we get the random arrangement of VQEs looks like Figure 5.2.

Figure 5.2： Random arrangement of

VQEs

Figure 5.1：Original 2-dimensional

lattice

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

44

Figure 5.3 shows the experimental results that were obtained by using original lattice

arrangement and random arrangement of VQEs in a 10×10 lattice size and a 20×20

lattice size. The horizontal axis represents the values of noise of flat distribution, and the

vertical axis represents the average number of rewards that the agent received. In Figure

5.3, 0 is lattice arrangement. As you can see, the number of rewards is going down from

the original 2-dimensional lattice arrangement to random arrangement. Therefore, we

can say that the learning performance is changed depend on the position of VQEs.

5.2.2 Turning angles of VQEs by degrees

In this subsection, we rotate VQEs that are arranged into lattice structure between

the ranges of 0 degrees to 90 degrees by 5 degrees intervals of counter-clockwise

rotation in a 20×20 lattice (Figure 5.4). If we rotate the 2-dimensional 20×20 lattice by

45 degrees, we get the following rotated lattice looks like Figure 5.5.

The experimental result of rotated VQEs that are arranged in a 20×20 lattice is

shown in Figure 5.6. As a result of turning angles of VQEs experiment, the number of

rewards most decreased at 45 degrees. It is considered that if VQEs are rotated, when a

Figure 5.3： Result of random arrangement of VQEs

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

45

state is changed a state goes to the same state although the agent takes a different action

as shown in Figure 5.7. In the above Q-Learning equation, Q-value is decreased if the

Figure 5.4：20×20 lattice
Figure 5.5：A rotated VQEs in a 20×20 lattice by

45 degrees

Figure 5.6：Result of turning angles of VQE by degrees in a 20×20 lattice

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

46

action acts in the same area. It may the most common cause of decreased learning

(Figure 5.7). Actually, when a state is changed, the agent takes different action and a

state also must be changed to different state.

5.3 Experiments of Model II

5.3.1 Random arrangement of VQEs

To clearly show the effectiveness of the proposed technique of VQE, we also used

similar experiment but different experimental model estimates in lattice arrangement

(Figure 5.8) and random arrangement of VQE (Figure 5.9) with noise of flat distribution

(i.e., 1, 2, 3, 4, 5), which were used as comparison techniques in this experimental

model II. In the environment described above, we compared the proposed technique of

VQE with lattice arrangement and random arrangement in terms of the number of lattice

size using the parameter values that described in above.

As Figure 5.10 reveals, when VQEs are randomly arranged on the state space, the

learning speed was clearly slow in any experimental model. Therefore, it needs to

decide the most suitable position of VQE because the learning speed decreases depend

on the position of VQEs.

Figure 5.7：The most common cause of decreased learning in a rotated VQEs

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

47

Figure 5.10：Result of random arrangement of VQEs in Model II

Figure 5.8：10×10 size of lattice Figure 5.9：Lattice to random arrangement

of VQEs

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

48

5.3.2 Turning angles of VQEs and agent’s actions by

degrees

In the case of Model II, to investigate the effect of VQEs we rotated VQEs and

agent’s actions by degrees between 0 degrees to 90 degrees by 5 degrees intervals of

counter-clockwise rotation in a 10×10 lattice and 20×20 lattice. In this simulation, the

possible number of control actions is assumed as 4-actions such as 1) go up, 2) go down,

3) go left, and 4) go right. Figure 5.11 shows 4-kinds of actions at 0 degrees. If we

rotate these normal actions by 45 degrees, we get a rotated action looks like this Figure

5.12. VQEs that are arranged into lattice structure also rotated.

There are 2-elements rotations such as angle of VQE and angle of action. The

obtained results are shown in Figure 5.13 and 5.14, respectively. We performed the

experiment using a lattice size of 10×10 and 20×20. According the result of Figure 5.13,

in a 10×10 lattice size of the state space for rotation, the number of rewards increase

when either the angles of VQEs or agent’s action is just 45 degrees out of alignment in

case of 4-actions. Additionally, the learning speed increase when either turning angles of

VQEs or agent’s action is just 60 degrees out of alignment in case of 3-actions and in

Figure 5.11：4-kinds of actions at

0 degree

Figure 5.12：A rotated actions by

45 degrees

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

49

case of 6-actions when just 60 degrees out of alignment, respectively. Otherwise, it

decreases if both have the same turning angles.

Figure 5.14：Result of turning angles of VQEs and actions in a 20×20 lattice

Figure 5.13：Result of turning angles of VQEs and actions in a 10×10 lattice

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

50

Figure 5.15 clearly shows in order to realize Figure 5.13, and Figure 5.14. It means

the number of reward increase either turning angles of VQEs or action is just 45 degrees

out of alignment in case of 4-actions. On the other hand, if the turning angles of VQEs

and actions have both same angles, the number of reward is decreased. Figure 5.14

shows that a similar result also occurs in a 20×20 lattice.

Moreover, when the turning angles of action at 45 degrees in 4-actions, the number

of rewards has increased at 0 degree, 90 degrees, 180 degrees, 270 degrees, and 360

degrees turning angles of VQEs. Conversely, the number of rewards has decreased at 45

degrees and 135 degrees turning angles of VQEs.

5.4 Conclusion

In this chapter, we examined the learning performance of VQEs on various

strategies under different conditions using 2-types of experimental model with 2-kinds

of simulation environments in case of the reward-area is placed at the center of the

Figure 5.15：Result of turning angles of VQEs and actions

CHAPTER 5. A COMPARISON OF LEARNING PERFORMANCE IN

TWO-DIMENSIONAL Q-LEARNING BY THE DIFFERENCE OF Q-VALUES

ALIGNMENT

51

action space with a fixed position. At the current stage, we only performed the

experiments in 2-dimensions.

According to the results of experiments, in any experimental model the learning

speed decreased in the case of random arrangement of VQEs. We believe that the

decrease in the learning speed of random arrangement of VQEs was depended on the

position of VQEs. In the experiment of experimental model II, if we rotate VQEs and

actions, the learning speed increase when either turning angles of VQEs or actions is

just 45 degrees out of alignment in case of 4-actions. Additionally, the learning speed

increase if 30 degrees out of alignment in case of 6-actions, and 60 degrees out of

alignment in case of 3-actions. On the other hand, the learning speed has decreased if

both have the same turning angles.

Furthermore, it is also concluded that when the turning angles of actions at 45

degrees in 4-actions, the number of rewards has increased at 0 degree, 90 degrees, 180

degrees, 270 degrees, and 360 degrees turning angles of VQEs. Conversely, the number

of rewards has decreased at 45 degrees and 135 degrees turning angles of VQEs. From

this experiment, the optimal position of VQE is obtained from the group of state

transition vector (STV) of each action. As future topics of research, we plan to propose

the addition method of VQE to decide the position of VQEs because we want to make

the optimal state space. By deciding the position of VQEs with the actions, we will

implement the method of VQE in division and integration. Moreover, we plan these

techniques to a high-dimensional problem by generating an N-dimensional state space.

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

52

Chapter 6

A proposition of addition method

of VQEs in Q-Learning

6.1 Introduction

In this chapter, we present the addition method of VQEs to decide the position of

VQE. Additionally we introduce the block-counting method, and LBG method for

vector grouping based on adaptive state space partitioning algorithm. This study will

also seek to develop the efficiency of reward learning based on state-space partitioning

technique. Accordingly, we conducted our purposed method on continuous state space

and discrete actions, and compare the performance with size of square partition lattice.

Since we consider a single-agent RL problem on continuous state space and discrete

actions, we apply 2-types of experimental models I and model II in different

environments as mentioned in previous section 4.2. These 2-types of models have same

purposes but different state input variables and different number of control actions.

This chapter is organized as follows. First, the addition method of VQEs using

model II is presented in Section 6.3. In section 6.3.2, the block counting method is

explained, and the results for model II are shown in Section 6.3.3. In section 6.4, the

same addition method of VQEs using model I is presented. And then, the LBG adaptive

vector quantization algorithm is described in Section 6.4.2 to organize the number of

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

53

STVs into several groups. The efficiency of rewards learning is investigated and the

simulation results using model I are explained in Section 6.4.3. A conclusion is also

given in Section 6.5.

6.2 Addition Algorithm

From the previous experiment of turning angles of VQE and actions using

experimental model II, the optimal position of VQE is obtained from the group of state

transition vector (STV) of each action. The addition algorithm is as follows:

1) Collect STVs during a specific period of time.

2) Categorize the STVs into several groups.

3) Calculate the centroid of each group.

4) Add a VQE to that midpoint or centroid of STV’s group.

To employ the addition algorithm, 2-types of experimental model are used.

6.3 Addition method of VQEs using Model II

6.3.1 First-stage of addition of VQEs

Figure 6.1： Initial-state of addition of VQEs on state space

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

54

In the first-stage of VQE’s formation using model II in the case of reward-area is

placed at the center of the action space with fixed position, we first arrange the

temporary points into lattice structure on the state space as shown in Figure 6.1. When

the learning process is started, we take the state transition vectors (STVs) which is a

distance that entered from the position of the agent to the reward-area (Figure 6.2).

Figure 6.2： Collecting STVs during a specific period of time

Figure 6.3： Sketching the representative vectors

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

55

Alternatively, it is discounted sum of the rewards that the agent received. If the amount

of STVs gets 1000 vectors or more, we group or quantize the STVs by continuously

taking the same actions using Block-counting algorithm (section 6.3.3). Additionally,

Figure 6.5： Image of first-stage formation of VQEs in 7-actions

Figure 6.4： Generating the VQEs at the centroid of representative vectors

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

56

we seek the representative vectors and describe those STV groups as representative

vectors (Figure 6.3). Thereupon, VQEs are generated at the place of each representative

vectors in accordance with the number of control actions in regard to the reward-area on

the state space (Figure 6.4). In essence, the continuous state space is partitioned into the

number of N-actions subspaces as Voronoi regions. In this case, the possible numbers of

control actions are assumed as 7-actions. Finally, we delete the temporary points in

which VQEs are added on the state space. Figure 6.5 shows the image of first-stage

output of addition of VQEs in case of 7-actions by drawing Voronoi diagram.

The implementation of partitioning algorithm is conducted on 2-dimensional state

space with one state input variable and N-actions to examine the impact of learning. The

state space is partitioned into the number of N-actions subspaces.

6.3.2 Next-stage of addition of VQEs

In the second-stage of addition of VQEs, we collect lots of STVs again that come

from temporary points to new VQEs of the first-stage output as shown in Figure 6.6. We

do not take the STVs that come from new VQEs to new VQEs. In this stage, we do the

same process as mentioned in section 6.3.1 of first-stage formation. However in this

second-stage, VQEs are added in regard to the created VQEs but it does not exactly

produce in accordance with the number of control actions as the first-stage in generating.

Moreover, a threshold value is calculated to make the group of STVs. A threshold value

is the quotient of dividing the number accumulated STV (1000 vectors) by the number

of actions for example 7-actions in this case (Figure 6.7). A threshold value can change

depending on the number of actions. If the sum of STV values in taking the same action

has greater a threshold value, we make the group which exceeds a threshold value, and

represents as representative vectors.

Moreover, we calculate the minimum distance between two new added VQEs to

merge the points into one if there were too close to each other. If the distance among the

new VQEs of the second-stage is less than the ratio of a minimum distance, the first

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

57

entry VQE is added. If not, there were no new VQEs around are added. The image of

addition of VQEs in case of 7-actions is illustrated in Figure 6.8.

Figure 6.6 ： Collection of STVs for next-stage of addition of VQEs

Figure 6.7 ： Calculation of threshold values in second-stage for vector grouping

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

58

6.3.3 Block-counting method

Figure 6.8 ： Image of addition of VQEs in 7-actions

Figure 6.9 ： In case of 1000 threshold value of STVs

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

59

The idea of proposed addition algorithm is to group together states with similar

action for suitable partitioning. Consequently, the block-counting method of STVs is

used to categorize STVs into several groups.

Here, the threshold value of STV was set to 1000 vectors and the division number

of grid (lattice size) was set to 30×30. The threshold value is determined according to

preliminary experiments, and this value was fixed throughout all episodes. However, if

the number of STV is smaller than the current threshold value (1000 vectors) or if the

block-space is divided more finely i.e. greater than the 30 division number of

block-space, it is difficult to make the grouping. The method that was used to

implement the vector quantization determines the size of the block-space and threshold

value of STV for grouping.

6.3.4 The Experimental results of Model II

We compared the learning performance of addition method of VQEs using

block-counting method for STV’s grouping and Q-Table on 14×14 size of lattice (i.e.,

Figure 6.10 ： In case of 100 threshold value of STVs

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

60

196 states) in the case of the number of created VQEs are same with size of lattice in

Table 6.2：Experimental parameters for experiment of addition method

Figure 6.11 ： Result of 7-actions

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

61

any N-actions. A continuous action learning time is 20 thousand time as one episode for

50 episodes, and performed 10 trials on each episode by changing the different initial

seeds of random number. Furthermore, we did 4-experiments using 7-actions, 6-actions,

4-actions and 3-actions, and the results are shown in Figure 6.11, 6.12, 6.13, and 6.14

Figure 6.12 ： Result of 6-actions

Figure 6.13 ： Result of 4-actions

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

62

respectively. The experimental parameter values in both learning methods were set as

shown in Table 6.2. The experiments for each task of control actions are carried out

using these parameter values.

The result that were obtained by using the proposed technique which is addition

method of VQEs, and lattice which is previous work conducted by coincidence of state

space and action space model. The horizontal axis represents the number of episodes,

and the vertical axis represents the number of average rewards that the agent entered to

the reward-area. As a result, the learning speed of proposed addition method is slightly

improved compared with Q-Table and these results show that the result can be changed

depend on the behavior of the agent.

6.4 Addition method of VQEs using Model I

6.4.1 Creation of VQEs

In this section, the same addition algorithm is applied in different environment

which is experimental model II. We add VQEs on continuous state space by

implementing the state space partitioning formation with the same addition concept as

Figure 6.14 ： Result of 3-actions

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

63

described in section 6.3. In the first-stage of addition of VQEs, since the experimental

model is non-coincidence of state space and action space model, VQEs are produced on

suitable multiple position of the direction of representative vectors as shown in Figure

6.15 but we do not judge yet whether that position is really appropriate location or not.

In next-stage of addition, lots of STVs is taken that entered from temporary points

Figure 6.15 ： An image of first-stage output of addition of VQEs

Figure 6.16 ： Collection of STVs in next-stage of addition

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

64

to created VQEs of first-stage output, it does not take that come from VQEs to VQEs.

An example of collecting STVs is illustrated in Figure 6.16. The image of addition of

VQEs is described in Figure 6.17. In this addition, LBG algorithm is used for grouping

of STVs.

6.4.2 LBG Algorithm

LBG (Linde-Buzo-Gray) algorithm is a typical technique of vector quantization

algorithm and it looks like a clustering algorithm which takes a set of input vectors as

input and generates a representative subset of vectors with a quantization vector. The

vector quantization is a classical quantization technique from signal processing and

image compression which allows the modeling of probability density functions by the

distribution of prototype vectors. It was originally used for data compression. It works

by dividing a large set of points (vectors) into groups having approximately the same

number of points closest to them. Each group is represented by its centroid point. Since

data points are represented by the index of their closest centroid, commonly occurring

data have low error, and rare data high error. This is why vector quantzation is suitable

Figure 6.17 ： An image of addition of VQEs in model I

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

65

for lossy data compression. It can also be used for lossy data correction and density

estimation. It assists to project a continuous input space on a discrete output space,

while minimizing the loss of information.

The modification of adaptive vector quantization method was introduced enhanced

Figure 6.18 ：Initial state of LBG algorithm

Figure 6.19 ：Deciding the cluster of input vectors

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

66

LBG (Patane & Russo, 2001) [6], and adaptive incremental LBG (Shen & Hasegawa,

2006) [7]. A simple LBG algorithm for our simulation is expressed as follows:

Step 1: Collect set of input vectors and put quantization vector (QV) at random (Fig.

6.18)

Step 2: Decide the cluster of input vectors that belongs to the nearest QV.

Step 3: Move QV towards the centroid of input vector by a small fraction of the

distance. (Fig. 6.19)

Step 4: Repeat step 2 and 3 until the QV do not change.

Figure 6.18 describes an initial state of vector quantization algorithm. The input

vectors are marked with a red +, and QVs are marked with blue *. Since the number of

QV in clustering problem is not known a priori, the number of QV which has smallest

measurement error rates in group is determined by changing the number of QV, and

seeks the minimum distance of QV at a given time. Thus, the total measurement error

is getting smaller. However, since one group is represented by two QVs, and two

groups are represented by one QV, the QV of smallest measurement error is moved to

the position of the largest measurement error if the standard deviation is large. A large

standard deviation indicates the data are spread out or widely scatter condition in

group. Figure 6.20 obtained by using the above mentioned LBG algorithm. Each

Figure 6.20 ：The complete LBG algorithm

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

67

group represents by its center point generally known as QV. Then put on noise and

move QV in random direction again. In algorithm, we first initialize a threshold value

to 0.1 and do repeat this above process in several times until the amount of motion QV

is less than a threshold value. The convergence of LBG algorithm depends on the

initial quantum vector and the threshold in implementation.

6.4.3 The Experimental results of Model I

When using experimental model I which is non-coincidence of state space and

action space model to examine the learning speed of proposed addition method of VQEs,

2-types of simulation experiments are carried out.

Exp-1: Stationary reward-area at the center of the action-space (Fig. 6.21)

Exp-2: Moving reward-area like a circle (Fig. 6.22)

Each of the experiment were investigated using the same environment

(Experimental Model I) described in Section 4.2.1 but the reward-area placed at the

center of the action-space and the reward-area moving like a circle. The parameters for

these tasks were set as described in above Table 6.2. We did an experiment for one time

Figure 6.22：Random feeding-area Figure 6.21：Center feeding-area

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

68

on 10 trials by specifying proper initial seed values and take an average for those 10

trials on each episode. Moreover, we executed for 100 episodes and checked the number

of rewards for each episode. In addition, we compared the learning speed of proposed

Figure 6.23 ： Results for proposed addition method of VQEs and Q-Table in a

13×13 size of lattice in the case of stationary reward-area

Figure 6.24 ： Results for proposed addition method of VQEs and Q-Table in a

13×13 size of lattice in the case of moving reward-area like a circle

CHAPTER 6. A PROPOSITION OF ADDITION METHOD OF VQEs IN

Q-LEARNING___

69

addition method and Q-Table on 13×13 size of lattice when the numbers of created

VQEs have the same number of lattice size. The result of an experiment is depicted in

Figure 6.23, and 6.24. As in the experimental results for Exp-1, the learning efficiency

of proposed addition method is slightly improved than the learning performance of

13×13 size of lattice. On the other hand, in the result of Exp-2, the learning speed has

decreased when the reward-area is moving on the action space. The results show that

the behavior of the agent can be changed depend on the situation.

6.5 Conclusions

In this chapter, addition method of VQEs for position determination has been

proposed and LBG algorithm is applied in this study for adaptive vector grouping of

STVs. And we examined the performance of our proposed method using 2-types of

experimental model in different situations. In the first-stage of VQE’s addition of both

models, VQEs produce in regard to the reward-area on the state space. From the

second-stage, VQEs produce in regard to the created VQEs of first-stage output.

In Model I, VQEs are generated in accordance with the number of control actions

on the state space in the first-stage formation because the action space and the state

space is entirely coincide each other. Moreover, we did 4-experiments using various

actions such as 7, 6, 4, 3 actions. Consequently, the results have shown that the learning

performance of proposed technique is much more developed than lattice in any actions.

In Model II, we examined the performance of proposed method in stationary

(Exp-1) that indicates a reward-area is placed at the center of the action-space in a fixed

position, and non-stationary situations of reward-area (Exp-2). In computer simulations

for the non-stationary situations, it gives the decrease reward learning. Therefore, it

showed that the performance of each strategy strongly depends on the behavior of agent.

According to the result of number of rewards difference of stationary and non-stationary

reward-area conditions, it is shown that the effectiveness of the proposed addition

method in case of stationary condition.

CHAPTER 7. A PROPOSITION OF INTEGRATION METHOD OF VQEs IN

Q-LEARNING

70

Chapter 7

A proposition of integration

method of VQEs in Q-Learning

7.1 Introduction

This chapter describes the integration of VQEs on continuous state space to reduce

the number of states and memory usage in order to realize the position of VQE and to

speed up the learning efficiency since the performance changes according to the

arrangement of VQE. Moreover we investigate the performance and efficiency of our

integration method using Model I also called “Bait View World” model. The key point

of our integration method is to integrate the same optimal actions selection as shown in

Figure 7.1.

7.2 Integration Algorithm

There are 5 conditions to integrate the adjacent VQEs. If

1. Two adjacent VQEs must be new added VQEs.

2. It must take the same optimal action.

CHAPTER 7. A PROPOSITION OF INTEGRATION METHOD OF VQEs IN

Q-LEARNING

71

3. These optimal actions have not changed over the 10,000 action times in 1000,000

integrated timing of new added VQEs.

4. These are not already used for integration.

5. After adding new VQEs to 300 or more.

Then start the integration process and add the integration point to the center of the

adjacent VQEs, and delete those two adjacent VQEs.

Figure 7.1 ： An image of integration of VQEs

Figure 7.2：Image of agent’s action on state space

Red : Straight ahead

Green: Left rotation

Blue : Right rotation

CHAPTER 7. A PROPOSITION OF INTEGRATION METHOD OF VQEs IN

Q-LEARNING

72

7.3 Delaunay Tessellation Algorithm

In the previous section, we discussed about Voronoi diagrams. Now, we consider the

related structure which is Delaunay tessellation technique for integration of VQEs

because we want to integrate the adjacent VQEs therefore we used Delaunay

tessellation technique to find the adjacent VQEs. The Delaunay tessellation is another

fundamental computational geometry structure and dual tessellation of Voronoi diagram.

The Delaunay triangulation is the straight-line dual of the Voronoi diagram obtained by

joining all pairs of points belongs to the set. The triangulation i.e., all triangles of the

Delaunay triangulation are obtained by joining the adjacent points of Voronoi diagram.

Delaunay tessellation algorithm is expressed as follows:

(1) Generate a random point.

(2) Find the closest point and 2
nd

 closest point by measuring the distance from that

random point and connect it.

(3) Repeat this process several times.

Figure 7.3：An example of java applet animation of Delaunay tessellation

CHAPTER 7. A PROPOSITION OF INTEGRATION METHOD OF VQEs IN

Q-LEARNING

73

An example of java applet animation of Delaunay tessellation is illustrated in

Figure 7.3. However, if the distance of point by itself is nearest point, it returns the null.

Finally, all connection between the closest adjacent points is cut.

7.4 Experiments and Results using Model I

This section describes comparative experiments that were conducted on three

different methods in a stationary condition of reward-area. These are given below:

(1) 13×13 size of lattice arrangement

(2) Addition method of VQEs using Model I

(3) Integration method using Model I

Size of action space 100×100

Initial value of Q 01.0),(0  asQ (Random)

Probability of random action 0.3

Probability of optimal action Q-value 0.7

Velocity of agent

Straight ahead, Right rotation, Left rotation 5

Episode numbers 160 Episodes

Control action times for 1 episode 10
5
 continuous action times

Learning rate α 0.1

Discount rate γ 0.9

Experiment times by changing random seed number 10 trials

Amount of agent’s movement 2.0 ~ 5.0

Table 7.4：Experimental parameter for integration of VQEs

CHAPTER 7. A PROPOSITION OF INTEGRATION METHOD OF VQEs IN

Q-LEARNING

74

Each method were investigated using the same environment (Experimental Model

I) as the autonomous mouse robot task described in Section 4.2.1. The experimental

parameters for these 3 tasks were set as described in a Table 7.3. We conducted the

experiments with 100,000 continuous learning action times. It makes one “episode” and

executed for 160 episodes in one “experiment”. After that, we did 10 trials on each

episode and take an average of these 10 trails. The learning rate α was set to 0.1 and

discount rate γ was set to 0.9. Moreover, we checked the learning performance of these

three methods in stationary situation which is the reward-area is placed at the center of

the action space in a fixed position.

Figure 7.4 shows the changes in the number of rewards over 0 to 160 episodes

when each of the methods was used. In Figure 7.4, the average number of rewards first

increase at there is many VQEs but it has decreased at less VQE in the integration

method because the integration process starts after VQEs adds to 300 numbers of VQEs

in the integration algorithm and reduces the number of VQEs to the same number of

lattice size. Furthermore, this is thought that to be the reason that sometimes the agent

may take the wrong action. For example, in the above Figure 7.2, the agent took left

Figure 7.4：Experimental result of 3-methods

CHAPTER 7. A PROPOSITION OF INTEGRATION METHOD OF VQEs IN

Q-LEARNING

75

rotation instead of taking the right rotation. However, we can say that the integration

method develops the learning efficiency than other 2 methods when the numbers of add

VQEs and integration VQEs are same with t with the number of 169 (13×13 lattice

size).

However in this simulation, Q-value is used only one-side of adjacent VQEs, and

the agent did not take the state transition vector. According to the result of experiment, it

is shown that the integration method improves the quality of learning and can reduce the

number of states. Nevertheless, we occurs the over-integration problem in this

integration method though the number of states has decreased shown in Figure 7.5.

Therefore, we are still considering about this problem and will figure out as future

challenges.

Figure 7.5： Image of over-integration of VQEs on continuous state space

CHAPTER 8. CONCLUSIONS

76

Chapter 8

Conclusions

In this thesis, we first presented Voronoi Q-value Element (VQE) using the concept

of Voronoi space division to be able to apply the normal Q-Learning in continuous state

space and to solve the Curse of dimensionality problem that described in Section 2.7.1.

The advantages of VQEs are given in Section 3.2.4. Then the performance of proposed

VQEs with radius on 4-dimensional space is examined by computer simulations on

competitive situations of lattice which is Q-Table with previous work in Section 4.3.

The results have shown that the proposed method is much more efficient than Q-Table

to apply the Q-Learning in continuous state space.

In order to examine the efficiency of the proposed method, we briefly explained

2-types of experimental model which is Model I and Model II. These models are based

on continuous states and discrete actions of feeder mouse. The experimental model I is

non-coincidence of state space and action space model, and the experimental model II is

coincidence of state space and action space model. There is the action space which the

agent is learning toward the goal-area to get as much reward as during a specific period

of time. The state space which is partitioning the continuous state space into Voronoi

regions using the concept of Voronoi diagram, and it demonstrate the reference times of

VQEs, kinds of agent’s action selection with color, and the value of Q.

In Chapter 5, we investigated the effectiveness of VQEs using several strategies of

Model I and Model II, and the simulation results are showed. From these experiments,

we realize that the Q-Learning using VQEs gives a good result but it has a position

determination problem because of the Voronoi diagram has a lot of flexibility. Moreover,

CHAPTER 8. CONCLUSIONS

77

from these experiments of Model II, the optimal position of VQEs is obtained from the

group of state transition vector of each action. Therefore, we have proposed the addition

method of VQEs to solve this position determination problem in Section 6.2, and it also

aims to show the improvement of a learning efficiency. Thus, we checked up the

learning performance of proposed method using 2-types of experimental model in

Section 6.3 and 6.4 which are different environment. Furthermore, it is compared to the

existing method which is lattice. After that, we showed that proposed addition method is

slightly improved than Q-Table. In the addition method, LBG vector quantization

algorithm is used for adaptive state transition vector grouping.

In Chapter 7, we presented the integration method of VQEs to reduce the number of

states and to speed up the learning efficiency. In this integration method, Delaunay

tessellation algorithm is used for integration of adjacent VQEs. Then the performance of

lattice, addition method, and integration method were examined by computer

simulations using only experimental Model I with the reward-area place at the center of

the action space in a fixed position. According to the results of experiment, the

integration method can increase the total amount of rewards and slightly improved than

Q-Table. Moreover, it can reduce the number of states greatly.

SUMMARY

78

Summary

This thesis mainly presents a study on state space partitioning using Vorornoi

diagram based on Q-Learning algorithm with the use of VQE. Here we manly present a

study on solving curse of dimensionality problem conducting the normal Q-Learning on

continuous state space in a single-agent environment. We aim by this research to speed

up the learning efficiency in different situations as well as decrease the learning time. In

order to do that we proposes VQE in various method such as Voronoi space division,

rotating VQE, addition of VQE, addition and integration of VQE, etc. in several

versions. In addition we present a better performance of learning for the algorithm.

Chapter 1 provides an introduction explains briefly the historical development the

ideas to find alternatives to computer simulation and how it leads to think about the

Q-Learning algorithm in continuous state space as a strongly possible alternative and

the motivation for learning. This chapter also describes the aim and objectives of the

study, and specifies the dissertation structure.

Chapter 2 gives an overview or the basic concepts and ideas related to this research

namely the basic principles for the reinforcement learning such as the standard

reinforcement learning model. Section 2.2 defines a technique for people to realize the

learning ability, and to automatically perform what kind of action should take by

computer machine in order to maximize the expected value of future reward in

unknown environment. Section 2.3 describes the problem of reinforcement learning,

and defines some classic model-free algorithms for reinforcement learning from delayed

reward: Markov decision process, and value function. In section 2.4, the most important

aspects of normal Q-Learning algorithm which is a typical technique of reinforcement

learning was described. Section 2.5 also describes the action selection method of agent,

and section 2.6 describes the Q-Table which divides the state space into lattice and the

division method of Q-Table. Moreover, section 2.7 discusses the curse of dimensionality

which increases the number of states exponentially in high dimensions. Furthermore,

SUMMARY

79

section 2.8 gives and shows the result of Q-Block that execution times takes about twice

than Q-Table when we used Q-Block to solve the curse of dimensionality problem.

Chapter 3 describes the VQE (Voronoi Q-value Element) which divides the state

space using the concept of Voronoi space division in order to solve the above problem,

and also gives the idea of Voronoi diagram, and how Voronoi diagram could be used to

partition the state space. Although Q-Table needs to prepare Q-value in all states

beforehand, VQE can be added to the state space as required. Section 3.1 describes the

Voronoi division which is the division method of space whether arbitrary points being

the closest to which mother point with respect to the mother point located on space.

Section 3.2 presents the creation method of VQE, a reference method of VQE, method

of space division using VQEs, and the advantages of Q-Learning that used VQE are

enhanced learning speed and reliability for this task, and the essential characteristics of

VQEs in a continuous state space are also described. This chapter also explains several

methods of nearest neighbor search.

Chapter 4 evaluates the effectiveness of proposed Q-Learning technique by using

VQEs, and performs the computer simulations as a comparison experiment of Q-Table

that described in previous section 2.6 and VQEs. And 2-types of experimental models

which are Model I and Model II are explained in Section 4.2 for full details. These

2-models are based on continuous states and discrete actions of feeder mouse (Esa-Hiroi

Mouse). After that, we show the better performance using VQEs on continuous states

and discrete actions for 4-dimensional spaces by comparing the normal Q-Learning

(Q-Table) and Q-Learning with the use of VQEs. In addition, the conclusions are

considered.

Chapter 5 examines the learning performance of various strategies using 2-types of

experimental model I and model II with reward-area in a stationary situation in

single-agent environment and decide how to act in certain state. In order to test our

hypotheses, we experimented by rotating the angles of agent’s actions, angles of VQEs

by the angle in 5 times interval between 0 degrees and 90 degrees in which VQEs are

arranged in a lattice structure. Moreover, a random arrangement of VQEs experiment

SUMMARY

80

also conducted to correctly evaluate the optimal Q-values for state and action pairs in

order to deal with continuous-valued inputs. As a result of experiments using

experimental model II, the learning speed has most increased when the angles of VQEs

and angles of actions is just 45 degrees out of alignment in case of 4-actions.

Chapter 6 presents the addition method of VQEs which is a position determination

method to decide the position of VQEs in order to realize a Voronoi region since the

performance of Q-Learning changes according to the arrangement of VQE. Moreover,

the simulation was performed in both experimental models and the learning

performance was examined. And also presents block-counting method and a new

adaptive segmentation of continuous state space based on vector quantization algorithm

such as LBG (Linde-Buzo-Gray) for high-dimensional continuous state spaces. The

objective of adaptive state space partitioning is to develop the efficiency of learning

reward values with an accumulation of state transition vector (STV) in a single-agent

environment. Moreover, the study of the resulting state space partition reveals in a

Voronoi tessellation. In addition, the experimental results show that this proposed

method can partition the continuous state space appropriately into Voronoi regions

according to not only the number of actions, and achieve a good performance of reward

based learning tasks compared with other approaches such as square partition lattice on

discrete state space.

Chapter 7 describes an algorithm of integration of VQEs to reduce the number of

states, the memory usage and the learning time. It also aims to improve the performance

of learning efficiency. Then it proceeds and described the topological structures of

Delaunay network to find the adjacent VQEs for integration on continuous state space.

We add VQEs on state space, and integrate which has the same optimal action selections.

A computer simulation has been performed using experimental Model I, and the

simulation results are explained compared with 3-methods such as lattice of a previous

method which is Q-Table, addition method of VQEs, and integration method of VQEs

with the reward-area in a stationary condition only

BIBLIOGRAPHY

81

Bibliography

[1] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction

Bradford Books, MIT Press, Cambridge, USA, 1998.

[2] Watkins CJCH, Dayan P. Technical notes: Q-learning. Machine Learning, 1992;

8:279-292.

[3] Chris Gaskett, David Wettergreen, Alexander Zelinsky, Er Zelinsky; Q-Learning in

Continuous State and Action Spaces: 12
th

 Australian Joint Conference on Artificial

Intelligence, ISBN:3-540-66822-5, Vol-1747, 1999.

[4] Tomoki Hamagami, Seiichi Koakutsu, and Hironori Hirata, An adjustment Method

of the Number of States on Q-Learning Segmenting State Space Adaptively 電気情

報通信学会論文詩, D-I Vol.J86-D-I, No.7, pp.490-499, 2003.

[5] Christopher J.C.H Watkins, Learning from Delayed Rewards; Ph.D thesis,

University of Cambridge, 1989.

[6] G.Patane and M.Russo, The enhanced LBG algorithm, In Proceeding of Neural

Networks, 2001. pp. 1219-1237.

[7] F.Shen, O.Hasegawa, An adaptive incremental LBG for vector quantization, Neural

Networks, 2006, 694-704.

[8] Goto R, Matsui T,k Matsuo H. State generalization with support vector machines in

reinforcement learning. 4
th

 Asia-Pacific Conference on Simulated Evolution and

Learning, 2002; I:51-55.

BIBLIOGRAPHY

82

[9] Christopher J. C. H Watkins: “Q-Learning”, Kluwer Academic Publishers, Boston.

Manufactured in The Netherlands. Machine Learning, 8, 279-292, 1992.

[10] Gavin Adrian Rummery; Problem solving with reinforcement learning: Ph.D thesis,

Cambridge University, 1995.

[11] Juan C. Santamaria, Richard S. Sutton and Ashwin Ram; Experiments with

reinforcement learning in problems with continuous state and action spaces

Adaptive Behavior, 1998.

[12] Baird, L.C. and Klopf, A.H, Reinforcement learning with high-dimensional

continuous actions, Technical Report WL-TR-93-1147, 1993.

[13] Ivan S.K. Lee, Henry Y.K. Lau, Adaptive state space partitioning for reinforcement

learning, Engineering application of Artificial Intelligence 17, 2004, 577-588.

[14] Takahashi Y, Asada M. State-action space construction for multi layered learning

system. J Robot Soc Japan, 2003; 21: 164-171.

[15] Kazuyuki Fujita and Hiroshi Matsuo, Multi-agent reinforcement learning with the

partly high-dimensional state space, System and Computers in Japan, Vol.37, No.9,

2006.

[16] Kazuo Kiguchi, Hui He, and Kenbu Teramoto, A study on multi-dimensional Fuzzy

Q-learning for intelligent robots; International Journal of Fuzzy Systems, Vol. 9, No.

2, June 2007.

[17] Kathy Thi Aung, Takayasu Fuchida, “Reinforcement learning using Voronoi space

division”, Vol-15, Artificial Life and Robotics, 2010.

