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Abstract

The Hedgehog pathway is activated in various types of malignancies. We previously reported that inhibition of SMO
or GLI prevents osteosarcoma growth in vitro and in vivo. Recently, it has been reported that arsenic trioxide (ATO)
inhibits cancer growth by blocking GLI transcription. In this study, we analyzed the function of ATO in the
pathogenesis of osteosarcoma. Real-time PCR showed that ATO decreased the expression of Hedgehog target
genes, including PTCH1, GLI1, and GLI2, in human osteosarcoma cell lines. WST-1 assay and colony formation
assay revealed that ATO prevented osteosarcoma growth. These findings show that ATO prevents GLI transcription
and osteosarcoma growth in vitro. Flow cytometric analysis showed that ATO promoted apoptotic cell death. Comet
assay showed that ATO treatment increased accumulation of DNA damage. Western blot analysis showed that ATO
treatment increased the expression of γH2AX, cleaved PARP, and cleaved caspase-3. In addition, ATO treatment
decreased the expression of Bcl-2 and Bcl-xL. These findings suggest that ATO treatment promoted apoptotic cell
death caused by accumulation of DNA damage. In contrast, Sonic Hedgehog treatment decreased the expression of
γH2AX induced by cisplatin treatment. ATO re-induced the accumulation of DNA damage attenuated by Sonic
Hedgehog treatment. These findings suggest that ATO inhibits the activation of Hedgehog signaling and promotes
apoptotic cell death in osteosarcoma cells by accumulation of DNA damage. Finally, examination of mouse xenograft
models showed that ATO administration prevented the growth of osteosarcoma in nude mice. Because ATO is an
FDA-approved drug for treatment of leukemia, our findings suggest that ATO is a new therapeutic option for
treatment of patients with osteosarcoma.
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Introduction

Osteosarcoma is the most common malignant bone tumor in
children and adolescents [1,2]. Osteosarcoma is a highly
aggressive neoplasm that is resistant to current therapeutic
approaches, including radiation, chemotherapy, and surgical
treatment. The survival rate of patients treated with
neoadjuvant chemotherapy and local control therapy is 60–
80% [3]. The predicted outcome is poor in patients with lung
metastasis at first diagnosis, with long-term survival rates
ranging between 10% and 40% [4]. Therefore, more effective

treatments and more personalized therapies (i.e., treatments
targeting a specific signaling pathway or gene) are essential for
patients with osteosarcoma.

The Hedgehog pathway is involved in various aspects of
development. The Hedgehog pathway is activated via the
PATCHED (PTCH1) and SMOOTHENED (SMO) Hedgehog
receptors. Activation of SMO promotes the activation of GLI
family transcription factors (GLI1, GLI2, and GLI3) to regulate
the transcription of target genes [5–7]. Aberrant activation of
the Hedgehog pathway is associated with malignant tumors
(reviewed in ref [8].). We have previously reported that aberrant
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activation of the Hedgehog pathway is involved in the
pathoetiology of osteosarcoma. Inhibition of the Hedgehog
pathway by knockdown of SMO or GLI2 prevents
osteosarcoma growth in vitro and in vivo [9,10]. Although
several SMO inhibitors have been developed, they have
several limitations, including constitutive activation of SMO,
spontaneous mutation of SMO that impairs its binding to the
drug, and constitutive activation downstream of SMO [11–21].
Arsenic trioxide (ATO) is an FDA-approved drug used for the
treatment of patients with acute promyelocytic leukemia (APL)
who show relapse after first-line chemotherapy (reviewed in 22.
ATO promotes complete remission without myelosuppression
and causes few adverse reactions. Recently, it has been
reported that ATO prevents human cancer cell growth by
inhibiting activation of the Hedgehog pathway [23–25]. In the
present study, we examined the effect of ATO treatment on GLI
transcription and osteosarcoma growth in vitro and in vivo. Our
findings show that ATO inhibits Hedgehog pathway signaling
and prevents human osteosarcoma cell growth via
accumulation of DNA damage.

Materials and Methods

Cell culture
The osteosarcoma cell line 143B, Saos-2, and U2OS were

purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA). The HsOs1 cell line was purchased from
the Riken cell bank (Tsukuba, Japan). Osteosarcoma cell lines
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum, penicillin (100 U/
mL), and streptomycin (100 µg/mL). For analyzing DNA
damage, recombinant Sonic Hedgehog protein (R&D Systems,
Minneapolis, MN, USA), ATO (Nihon Shinyaku, Kyoto, Japan),
and cisplatin (CDDP) (LKT Laboratories, Minneapolis, USA)
were used. Cell lines were cultured in a humidified incubator
with 5% CO2 at 37°C.

Real-time polymerase chain reaction
Human osteosarcoma cells were cultured with or without 1

µM ATO. A vehicle (aqueous sodium hydroxide and
hydrochloric acid to adjust to pH 7.5) was used as the control.
Primer sets amplified amplicons of 150 to 200 bp in size.
Polymerase chain reactions (PCRs) were performed using
SYBR Green (BIO-RAD) on a MiniOpticonTM machine (BIO-
RAD). The comparative Ct (ΔΔCt) method was used to
evaluate the fold change in mRNA expression using β-actin as
the reference gene. All PCR reactions were performed in
triplicate, with 3 different concentrations of cDNA. All primers
were designed using Primer3 software (http://frodo.wi.mit.edu/
cgi-bin/primer3/primer3.cgi). The following primers were used:
PTCH1: 5′-TAACGCTGCAACAACTCAGG-3′, 5′-
GAAGGCTGTGACATTGCTGA-3′; GLI1: 5′-
GTGCAAGTCAAGCCAGAACA-3′, 5′-
ATAGGGGCCTGACTGGAGAT-3′, GLI2: 5′-
CGACACCAGGAAGGAAGGTA-3′, 5′-
AGAACGGAGGTAGTGCTCCA-3′; β-actin: 5′-
AGAAAATCTGGCACCACACC-3′, 5′-
AGAGGCGTACAGGGATAGCA-3′.

Each experiment was performed in triplicate, and all
experiments were performed 3 times.

WST-1 assay
Human osteosarcoma cells were cultured with or without 1

µM or 3 µM ATO. An equivalent volume of vehicle (aqueous
sodium hydroxide and hydrochloric acid to adjust to pH 7.5)
was used as the control. The cells were treated with WST-1
substrate (Roche, Basel, Switzerland) for 4 h, washed with
phosphate-buffered saline, and lysed to release formazan.
Then, the cells were analyzed on a microplate reader (BIO-
RAD, Hercules, CA, USA). Each experiment was performed in
triplicate, and all experiments were performed 3 times.

Colony formation assay
Cells were cultured in DMEM containing 0.33% soft agar and

5% fetal bovine serum, and plated on 0.5% soft agar layer.
Cells were cultured in 6-well plates at a density of 5 × 103 cells
per well. Human osteosarcoma cells were cultured with or
without 3 µM ATO. An equivalent volume of vehicle was used
as the control. Fourteen days later, the number of colonies was
evaluated. Each experiment was performed in triplicate, and all
experiments were performed 3 times.

Cell cycle analysis
Human osteosarcoma cells were cultured with or without 1

µM ATO. An equivalent volume of vehicle was used as the
control. Cell cycle analysis was performed as previously
reported [9]. Cells were collected, fixed with 70% ethanol for 2
h at 4°C, washed with phosphate-buffered saline, and treated
with 500 µL staining buffer containing RNase A and 50 µg/mL
propidium iodide (Wako Chemicals, Kanagawa, Japan). The
DNA content was examined by flow cytometry using CyAnTM

ADP (Beckman Coulter, CA, USA) and Summit software
(Beckman Coulter). Each experiment was performed in
triplicate, and all experiments were performed 3 times.

Comet assay
Human osteosarcoma cells were cultured with or without 3

µM ATO. An equivalent volume of vehicle was used as the
control. Cells were trypsinized and electrophoresed on agarose
gels as previously reported [26]. Tail moment (TM) and tail
length (TL) were used to evaluate DNA damage in individual
cells. Image analysis and quantification were performed using
NIH ImageJ software. TM = % DNA in the tail × TL, where % of
DNA in the tail = tail area (TA) × tail area intensity (TAI) ×
100/(TA × TAI) + [head area (HA) × head area intensity (HAI)].

Western blotting
Human osteosarcoma cells were cultured with or without 3

µM ATO. An equivalent volume of vehicle was used as the
control. The cells were dissolved in NP40 buffer containing
0.5% NP40, 10 mM Tris-HCl (pH 7.4), 150 mM NaCl, 3 mM
pAPMSF (Wako Chemicals, Kanagawa, Japan), 5 mg/mL
aprotinin (Sigma, St. Louis, MO, USA), 2 mM sodium
orthovanadate (Wako Chemicals), and 5 mM EDTA. Sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and
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immunoblotting were performed subsequently. The following
antibodies were used: phospho-histone H2AX (Ser139)
(γH2AX) (Cell Signaling Technology, MA, USA), cleaved
caspase-3 (Asp175) (Cell Signaling Technology), poly (ADP-
ribose) polymerase (PARP) (Cell Signaling Technology), Bcl-2
(Cell Signaling Technology), Bcl-xL (Cell Signaling
Technology), SAPK/JNK (Cell Signaling Technology),
Phospho-SAPK/JNK (Thr183/Tyr185) (Cell Signaling
Technology), NF-κB p65 (Cell Signaling Technology), phospho-
NF-κB p65 (Ser468) (Cell Signaling Technology), and tubulin
(Santa Cruz, California, USA). Bands were visualized using the
ECL chemiluminescence system (Amersham, Giles, UK).

Xenograft model
143B cells (1 × 106) and 100 µL Matrigel (BD, NJ, USA)

suspension were subcutaneously inoculated into 5-week-old
nude mice. The mice were randomly allocated to treatment with
either ATO (10 µg/g) or an equivalent volume of vehicle (30
mM NaOH, pH 7.0). ATO and vehicle were administered
intraperitoneally every day. ATO and vehicle treatment was
started at 1 week after inoculation, at which time, the tumors
had grown to a visible size. The tumor size was measured
using the formula LW2 /2 (L and W represent the length and
width of tumors, respectively). This study was carried out in
strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of Kagoshima
University. The animal experiment protocol was approved by
the Institutional Animal Care and Use Committee, Graduate
School of Medical and Dental Sciences, Kagoshima University
(Permit Number: MD11017). All surgeries were performed
under general anesthesia, and every effort was made to
minimize the number of animals used and animal pain.

Immunohistochemistry
ApopTag® Peroxidase In Situ Apoptosis Detection Kit was

used for TUNEL staining according to the supplier’s protocol
(MerckMillipore, Billerica, MA, USA). The sections were stained
with methyl green (Merck-Chemicals, Darmstadt, Germany) to
identify nuclei.

Statistical analysis
All examinations were performed 3 times, except where

otherwise stated, and all samples were analyzed in triplicate.
All results are presented as mean (SD). Statistical differences
between groups were assessed by Student’s t-test for unpaired
data using Microsoft Office Excel (Microsoft, Albuquerque, NM,
USA) and Kaplan 97.

Results

ATO prevents GLI transcription and proliferation of
osteosarcoma cells

To determine whether ATO prevents GLI transcription in
osteosarcoma cells, real-time PCR was performed for ATO-
treated cells. Four human osteosarcoma cell lines showing
upregulation of GLI transcription were examined [9,10]. The
human osteosarcoma cell lines were treated with ATO at

previously reported concentrations, which inhibit human cancer
cell proliferation by inhibiting activation of the Hedgehog
pathway [25]. Real-time PCR revealed that ATO prevented the
transcription of GLI target genes, including PTCH1, GLI1, and
GLI2, in human osteosarcoma cell lines (Figure 1). The WST-1
assay showed that proliferation of the 143B, Saos2, HsOs1,
and U2OS cell lines was inhibited by ATO (Figure 2). We next
evaluated the effects of ATO on anchorage-independent
growth of osteosarcoma cells. The colony formation assay
showed that ATO treatment decreased the number of colonies
in soft agar (Figure 3). These findings showed that ATO
treatment prevents GLI transcription and growth of
osteosarcoma cells in vitro.

ATO promotes DNA damage and apoptotic cell death
To examine whether ATO treatment promoted cell death or

cell cycle arrest, we performed flow cytometric analysis. The
results showed that ATO treatment increased the population of
sub-G1 cells (Figure 4). These findings show that ATO
treatment promotes apoptotic cell death in osteosarcoma cells.
To examine whether ATO promotes DNA damage, we
performed a comet assay, which can be used to detect single
cell DNA damage by the cellular elution pattern through
agarose gels. The comet assay showed that ATO treatment
altered the elution profiles (Figure 5). These findings show that
ATO treatment promotes the accumulation of DNA damage in
osteosarcoma cells. In addition, we used western blotting to
examine the expression of DNA damage markers and
apoptosis-related proteins after ATO treatment. Western blot
analysis showed that ATO treatment increased the expression
of γH2AX, a marker of double-strand breaks, cleaved poly
(ADP-ribose) polymerase (PARP), and cleaved-caspase 3. In
contrast, ATO treatment decreased the expression of Bcl-2 and
Bcl-xL (Figure 6A). These findings suggest that ATO treatment
promotes apoptotic cell death caused by accumulation of DNA
damage.

It has been reported that ATO promotes apoptotic cell death
and phosphorylation of JNK [27]. Although western blot
analysis showed that ATO treatment increased the amount of
phosphorylated JNK, inhibition of JNK activity had no effect on
osteosarcoma cell proliferation with or without ATO, as seen
with Ewing sarcoma cells (Figure S1) [23]. It has been reported
that ATO treatment decreases the phosphorylation of NF-κB
and promotes cell death [28]. Our findings showed that ATO
treatment did not affect the status of NF-κB phosphorylation
(Figure S1).

Hedgehog signaling prevents DNA damage caused by
CDDP treatment

To examine whether activation of Hedgehog signaling affects
accumulation of DNA damage, we performed western blot
analysis after cisplatin (CDDP) treatment. Western blotting
showed that CDDP treatment upregulated the expression of
γH2AX. Treatment with Sonic Hedgehog attenuated the
upregulation of γH2AX (Figure 6B). In addition, we examined
the effect of ATO treatment on the attenuation of DNA damage
by Hedgehog activation. The attenuation of DNA damage
caused by Hedgehog activation was reversed by ATO
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Figure 1.  ATO prevents the transcription of GLI target genes.  Human osteosarcoma cells were cultured with or without 1 µM
ATO. An equivalent volume of vehicle was used as the control. Total RNA collected from osteosarcoma cell lines was examined by
real-time polymerase chain reaction (PCR). A comparative Ct (ΔΔCt) analysis was performed to examine fold changes in mRNA
expression compared with β-actin. Real-time PCR showed that ATO decreased the transcription of GLI target genes, including
PTCH1, GLI1, and GLI2, in 143B, Saos2, HsOs1, and U2OS cells. The experiment was performed in triplicate with similar results
(error bars represent mean [SD]) (*P < 0.01, **P < 0.05).
doi: 10.1371/journal.pone.0069466.g001
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Figure 2.  ATO prevents human osteosarcoma cell proliferation.  WST assay showed that the growth of 143B, Saos-2, HsOs1,
and U2OS cells was prevented by 1 µM or 3 µM ATO treatment for 96 h. An equivalent volume of vehicle was used as the control.
The experiment was performed in triplicate with similar results (*P < 0.05, **P < 0.01) (error bars represent mean [SD]).
doi: 10.1371/journal.pone.0069466.g002

ATO prevents OS growth by inhibition of GLI

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69466



treatment (Figure 6C). These findings suggest that ATO
promotes the accumulation of DNA damage by inhibiting
Hedgehog signaling.

ATO prevents osteosarcoma growth in vivo
143B osteosarcoma cells were intradermally inoculated into

nude mice, and palpable tumors were formed within 7 days.
Then, ATO or an equivalent volume of vehicle was injected
intraperitoneally. The injections were administered every day.
Compared with vehicle treatment, treatment with ATO
significantly prevented tumor growth (Figure. 7). Kaplan-Meier
analysis showed that ATO treatment provided a significant
survival benefit (Figure 7A). TUNEL staining showed that ATO
treatment induced apoptotic cell death. The number of
apoptotic cells was significantly increased in ATO-treated
tumors (Figure 7B).

Discussion

We and other researchers have previously reported that
inhibition of the Hedgehog pathway prevented the growth of

osteosarcoma cells [9,10,29]. In particular, we showed that
knockdown of GLI2 prevented osteosarcoma cell growth in
vitro and in vivo [9]. ATO prevents Ewing sarcoma,
medulloblastoma, and basal cell carcinoma growth by inhibition
of GLI transcription [23–25]. To apply our previous findings in
clinical settings, we examined the effects of ATO in human
osteosarcoma. We showed that ATO prevents the transcription
of GLI target genes and promotes apoptotic cell death in
osteosarcoma cells as a result of accumulation of DNA
damage. In addition, ATO re-induces the accumulation of DNA
damage attenuated by recombinant Sonic Hedgehog
treatment. These findings suggest that ATO inhibits the
activation of Hedgehog signaling and promotes apoptotic cell
death in osteosarcoma cells as a result of accumulation of DNA
damage. In addition, our findings showed that ATO decreased
the expression of Bcl-2 and Bcl-xL. GLI1 and GLI2 upregulate
the transcription of Bcl-2 and Bcl-xL [30–33]. Inhibition of the
Hedgehog pathway by ATO treatment may downregulate Bcl-2
and Bcl-xL to promote apoptotic cell death in osteosarcoma
cells. Singh et al. reported that ABCG2, a drug transporter
protein, is a direct transcriptional target of Hedgehog signaling
[33]. These findings suggest that activation of Hedgehog

Figure 3.  ATO inhibits anchorage-independent osteosarcoma growth.  Treatment of 143B and Saos2 cells with 3 µM ATO
reduced the number of colonies in soft agar at 14 days. An equivalent volume of vehicle was used as the control. These
experiments were performed in triplicate with similar results (*P < 0.01) (error bars represent mean [SD]).
doi: 10.1371/journal.pone.0069466.g003
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signaling promoted the export of CDDP by the ABCG2
transporter and reduced the accumulation of DNA damage in
osteosarcoma cells. Inhibition of the Hedgehog pathway by
ATO treatment may be useful as an adjunct treatment to
conventional chemotherapy for osteosarcoma. In addition,

several molecular mechanisms have been reported for
inhibition of the Hedgehog pathway by ATO. Kim et al. reported
that ATO prevented growth of medulloblastoma by reducing
stability of GLI2 protein and ciliary accumulation of GLI2 [25].
Elspeth et al. reported that ATO prevents growth of cancer cell

Figure 4.  ATO promotes apoptotic cell death in human osteosarcoma cells.  Human osteosarcoma cells were cultured with or
without 1 µM ATO. An equivalent volume of vehicle was used as the control. Flow cytometric analysis was performed after ATO
treatment for 48 h. ATO treatment significantly increased the Sub-G1 population of 143B and Saos2 cells. These experiments were
performed in triplicate with similar results (*P < 0.01, **P < 0.05).
doi: 10.1371/journal.pone.0069466.g004
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lines and Ewing sarcoma by inhibiting GLI transcription through
direct binding to GLI [23]. Although there were some
discrepancies related to the mechanism of Hedgehog pathway
inhibition by ATO, these studies independently suggest that
ATO inhibits malignant tumor growth by inhibition of the
Hedgehog pathway at the level of GLI transcription factors.
These mechanisms may prevent osteosarcoma growth after
ATO treatment. Because aberrant activation of the Hedgehog
pathway has been implicated in several malignant tumors, the
pharmaceutical industry has invested in the development of
Hedgehog pathway inhibitors. SMO inhibitors have been
evaluated in recent clinical trials [34,35]. However, treatment
with SMO inhibitors showed a lack of efficacy in a portion of
patients. Investigation of the underlying mechanism revealed
that the patient tumors showed a mutation in SMO that
prevented binding of the SMO inhibitors to SMO [15]. Several
genes with potential mutations within SMO and downstream of
SMO have been found [16–21,36]. In addition, non-Hedgehog
pathway-mediated activation of GLI transcription has been

reported [37–41]. In this regard, direct GLI inhibition by ATO is
likely to be useful for treating tumors with mutations within or
downstream of SMO. For example, inhibition of GLI, but not
SMO, inhibited tumor growth in myeloid leukemia, colon
carcinoma, hepatocellular carcinoma, and osteosarcoma
[9,42–44]. Originally, arsenic was used in the 17th century to
treat leukemia. ATO has been approved for the treatment of
intractable acute promyelocytic leukemia in Japan. Our findings
suggest that ATO is one of the most suitable molecular target
reagents for inhibiting the Hedgehog pathway in human
osteosarcoma. We have now obtained approval from the ethics
committee for clinical research, Kagoshima University, to use
ATO for treating patients with intractable osteosarcoma.

We examined whether the inhibitory effect of ATO on
osteosarcoma growth is mediated, at least in part, by JNK or
NF-κB [45–47]. As previously reported, treatment with ATO
increased JNK phosphorylation. However, treatment with a
JNK inhibitor did not prevent osteosarcoma growth. In contrast,
treatment with ATO did not affect NF-κB activation. These

Figure 5.  ATO elicits DNA damage in human osteosarcoma.  COMET assay was performed to detect DNA damage in single
cells after ATO treatment. 143B cells were treated with ATO (3 µM) or an equivalent volume of control vehicle for up to 48 h and
analyzed by performing the COMET assay. Graphs represent DNA damage by tail length and tail moment, evaluated as described
in the Materials and Methods section. These experiments were performed in triplicate with similar results (*P < 0.01).
doi: 10.1371/journal.pone.0069466.g005
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Figure 6.  ATO elicits DNA damage and apoptosis.  Human osteosarcoma cells were cultured with or without 3 µM ATO. An
equivalent volume of vehicle was used as the control. Western blot analysis was performed 48 h and 72 h after ATO treatment. (A)
Western blot analysis revealed that ATO treatment increased the protein levels of γH2AX, cleaved PARP, and cleaved caspase-3.
ATO treatment decreased the protein levels of Bcl-2 and Bcl-xL. (B) Western blot analysis performed after cisplatin (CDDP) and
recombinant human Sonic Hedgehog (rSHH) treatment showed that CDDP treatment upregulated the expression of γH2AX.
Addition of Sonic Hedgehog decreased the expression level of γH2AX protein, which was upregulated by CDDP treatment. (C)
Western blot analysis was performed following CDDP and recombinant human Sonic Hedgehog (rSHH) or ATO treatment. Addition
of Sonic Hedgehog decreased the expression level of γH2AX protein, which was upregulated by CDDP treatment. Addition of ATO
restored the γH2AX expression attenuated by rSHH treatment. These experiments were performed in triplicate with similar results.
doi: 10.1371/journal.pone.0069466.g006

ATO prevents OS growth by inhibition of GLI
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findings indicate that JNK or NF-κB activation does not affect
the cytotoxicity of ATO in human osteosarcoma.

For in vivo examinations, we administered ATO
intraperitoneally at 10 mg/kg body weight, as previously
reported [25]. Kim et al. examined the ATO levels in mouse
sera collected after ATO administration by injection at 10 mg/kg
body weight. The peak concentration following intraperitoneal
injection at 10 mg/kg was 2.6-fold higher than the peak plasma
levels in human patients following intravenous ATO injection at
a dose of 0.15 mg/kg body weight [48]. Area under the curve
calculations revealed that the total exposure to ATO in mice at
the 10 mg/kg dose was 2-fold higher than that in patients. To
decrease the ATO concentration, combinations of drugs that

inhibit other Hedgehog signaling components, including SMO
inhibitors, were used to achieve greater pathway inhibition at
lower ATO concentrations [25]. In addition, Kim et al. reported
that combined use of ATO and itraconazole, a commonly used
antifungal that inhibits SMO by a mechanism distinct from that
of cyclopamine and other known SMO antagonists, decreases
the dose of ATO and itraconazol required to prevent
medulloblastoma and basal cell carcinoma growth associated
with acquired resistance to SMO antagonists [24].

In summary, our findings showed that ATO inhibits the
Hedgehog pathway and human osteosarcoma cell growth in
vitro and in vivo. The combined administration of conventional

Figure 7.  ATO prevents osteosarcoma growth in vivo.  143B cells (1 × 106) were subcutaneously inoculated into nude mice.
Tumor volume was calculated weekly using the formula LW2 /2 (where L and W represent the length and width of tumors). Seven
days after inoculation, the tumor volume was set as 1 and was evaluated at different time points. (A) ATO treatment inhibited tumor
growth as compared with control (*P < 0.05 or **P < 0.01) (error bars represent mean [SD]). Kaplan-Meier analysis revealed that
ATO treatment provided a significant survival benefit (**P < 0.01). (B) Apoptotic cell death in the tumors was analyzed by TUNEL
staining, which showed that ATO treatment increased apoptotic cell death in vivo (*P < 0.05 or **P < 0.05) (error bar indicates SD).
doi: 10.1371/journal.pone.0069466.g007
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anticancer agents or other Hedgehog pathway inhibitors with
ATO may be valuable for treating osteosarcoma patients.

Supporting Information

Figure S1.  Western blot analysis showed that ATO
treatment decreased the expression of phosphorylated
JNK.  Western blot analysis showed that ATO treatment did
not affect the expression levels of NFκB and phosphorylated
NFκB proteins. WST assay showed that JNK inhibitor did not
affect the proliferation of osteosarcoma cells.

(TIF)
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