アンドレーエフ反射法によるハーフメタル型ホイス ラー合金Co_{2}MnSiのスピン分極率測定

著者	西迫 裕也,大久保 亮成,春森 浩平,重田 出,梅 津 理恵,伊藤 昌和,小山 佳一,貝沼 亮介,廣井 政彦	
雑誌名	鹿児島大学理学部紀要=Reports of the Faculty of	
	Science, Kagoshima University	
巻	46	
ページ	1-8	
別言語のタイトル	Spin polarization measurements of	
	half-metallic Heusler alloy Co_{2}MnSi by the	
	Andreev reflection technique	
URL	http://hdl.handle.net/10232/00011607	

アンドレーエフ反射法によるハーフメタル型ホイスラー合金 Co₂MnSi の スピン分極率測定

Spin polarization measurements of half-metallic Heusler alloy Co₂MnSi by the Andreev reflection technique

西追裕也¹⁾·大久保亮成²⁾·春森浩平¹⁾·重田出¹⁾·梅津理恵³⁾·伊藤昌和¹⁾·小山佳一¹⁾·貝沼亮介²⁾· 廣井政彦¹⁾

Yuya NISHISAKO¹), Akinari OKUBO²), Kohei HARUMORI¹), Iduru SHIGETA¹), Rie Y. UMETSU³), Masakazu ITO¹), Keiichi KOYAMA¹), Ryosuke KAINUMA²) and Masahiko HIROI¹)

Abstract: We have measured the spin polarization of half-metallic Heusler alloy Co_2MnSi by the Andreev reflection technique. The differential conductance G(V) of Co_2MnSi/Pb junctions was measured in the temperature range between 1.5 K and 10 K. The structure of G(V) became gradually smaller with the increase of temperature and disappeared above the superconducting critical temperature T_c of Pb thin films. Temperature dependence of the superconducting energy gap Δ (meV) coincides with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The obtained G(V) was able to be fitted very well by the modified Blonder-Tinkham-Klapwijk (BTK) model up to the T_C . We have found the spin polarization of 52.5% for Co_2MnSi .

Keywords: Co, MnSi, half-metal, Heusler alloy, spin polarization, Andreev reflection

1. はじめに

近年,電荷の性質だけでなく,スピンの性質を制御する「スピントロニクス」と呼ばれる分野の基礎から応用に渡る幅広い研究がなされている¹⁾。1998年に巨大磁気抵抗(GMR)素子を組み込んだ読み出し磁気ヘッドを使ったハードディスクドライブ(HDD)が製品化され,さらにトンネル磁気抵抗(TMR)素子の読み出し磁気ヘッドが開発されたことで記録密度は飛躍的に向上した。一方で,スマートフォンやタブレット PC の誕生により消費電力は飛躍的に急増している。したがって,省エネルギーの観点からも消費電力を低減するために,揮発性メモリであるダイナミックランダムアクセスメモリ(DRAM)に代わる不揮発性メモリの開発が必要不可欠である。その次世代メモリとして磁気抵抗ランダムアクセスメモリ(MRAM)の開発も行われており,DRAMと代替え可能な新型MRAMであるスピントランスファーMRAM(STT-MRAM)も実用化されるレベルにまで達している。これらのスピントロニクス素子の高性能化を実現するためには、電気伝導に寄与する電子のスピン分極を高める必要がある。そのスピントロニクス分野の機能性材料としてハーフメタルという特性が注目されている。ハーフメタルとは、少数スピンのフェルミ面のみにおいてエネルギーギャップが存在する物質であり、多数スピンの電子が金属的であるのに対し、少数スピンの電子は半導体的である。すなわち、ハーフメタルではフェルミ面における上向きスピン D_1 と下向きスピン D_1 の電子状態密度を用いて表されるスピン分極率Pの値

¹⁾ 鹿児島大学 大学院理工学研究科 物理 · 宇宙専攻 〒890-0065 鹿児島県鹿児島市郡元1-21-35

Department of Physics and Astronomy, Graduate School of Science Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan 2) 東北大学 大学院工学研究科 金属フロンティア工学専攻 〒980-8579 宮城県仙台市青葉区荒巻青葉6-6-02

²⁾ 泉北大学 大学院工学师先祥 並属 プロンプィ プエ学导攻 「1980-8579 宮城県面白市 月東区元 登月 東6-6-02 Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan

³⁾ 東北大学 金属材料研究所 特異構造金属・無機融合高機能材料開発共同研究プロジェクト 〒980-8577 宮城県仙台市青葉区片平 2-1-1

Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

 $P = (D_{\uparrow} - D_{\downarrow})/(D_{\uparrow} + D_{\downarrow})$ が100%の物質のことである。その材料として、ダブルペロブスカイト Sr₂FeMoO₆²⁾、遷移金属酸化物 CrO₂³⁾、Fe₃O₄⁴⁾、閃亜鉛鉱型 MnAs⁵⁾、CrAs⁶⁾、ホイスラー合金 NiMnSb⁷⁾ や Co₂MnSi⁸⁾ などがある。その中でも X₂YZ の分子式もつ典型的規則合金であるホイスラー合金⁹⁾ は、ハー フメタル¹⁰⁾ や熱電素子¹¹⁾、形状記憶合金¹²⁾ などの応用に有望な物質である。Fig. 1(a) に示すように、ホイ スラー合金 X₂YZ は X、Y 原子が遷移元素で Z 原子が sp 元素であり、L2₁型構造(空間群 *Fm3m*)を持ち、 X 原子が (0 0 0) と (1/2 1/2 1/2)、Y 原子が (1/4 1/4 1/4)、Z 原子が (3/4 3/4 3/4) の座標にある4つの面心立方 副格子からなる。また、原子サイトの不規則性により、Fig. 1(b) のような Y 原子と Z 原子がランダムに サイトを占有する B2型構造(空間群 *Pm3m*)や、構成元素が完全にランダムに配列した Fig. 1(c) のよう な A2型構造(空間群 *Im3m*)という規則度が低くなった構造を取る場合もある。

ハーフメタル特性をもつ材料を実現するためには、キュリー温度 T_c が室温よりも十分に高い必要があ る。そこで、我々はキュリー温度が室温よりも十分に高く、第一原理バンド計算からハーフメタルである ことが予測されているホイスラー合金 Co₂MnSi に注目した⁸⁾。ホイスラー合金 Co₂MnSi は、桜庭らが Co₂MnSi/Al-O/Co₂MnSi 構造の磁気トンネル接合(MTJ)を作製し、2 K において560%(スピン分極率に 換算すると89%)という巨大な TMR 比を報告したハーフメタル材料である¹³⁾。本研究の目的は、L2₁規則 性をもつ多結晶体 Co₂MnSi の磁化特性を明らかにし、そのスピン分極率を求めることである。多結晶体 Co₂MnSi を合成し、粉末 X 線回折や磁化の測定を行う。次いで、Andreev 反射法を用いて Co₂MnSi/Pb 接 合の微分コンダクタンスの測定を行い、拡張 Blonder-Tinkham-Klapwijk(BTK)モデルを用いた解析から ホイスラー合金のスピン分極率を見積もる¹⁴⁾。

Fig. 1. ホイスラー合金の規則・不規則構造。(a) L2₁型構造。(b) B2型構造。(c) A2型構造。

2. 実験

多結晶体 Co₂MnSi は、Ar 雰囲気中で高周波溶解炉を用いて作製した。その後、1000℃で3日間アニール した試料を水中でクエンチした。合成した試料の結晶構造を評価するために、粉末 X 線回折を行った。X 線の線源は CuKa 線を用い、20°~120°の2 θ の範囲で測定を行った。磁化 M の測定には、超伝導量子干渉 計(SQUID)と試料振動式磁束計(VSM)を使用し、磁場0 $\leq B \leq 7 T$ および温度5 $\leq T \leq 1073$ K の範囲で行っ た。次いで、以下の手順でアンドレーエフ反射法によりスピン分極率を決定した。Co₂MnSi の表面を研磨 し、直径0.8 & のメタルマスクを用いて、その研磨面に厚さ150 nm の Pb 薄膜を成膜することで Co₂MnSi/Pb 構造の積層型接合を作製した。そして、交流変調法によって Co₂MnSi/Pb 接合の微分コンダクタンスを 測定した。スピン分極率 P は、交流変調法によって得られた微分コンダクタンスに関する拡張 BTK モデ ルを用いた解析によって決定した。

3. 結果と考察

多結晶体 Co₂MnSi の室温での粉末X線回折の結果を Fig. 2に示す。一般的にホイスラー合金は、温度の 上昇に伴い L2₁型構造から B2型構造に相変態する。(111) と (200) に代表される規則格子線を含むものは L2₁型構造,(111) で代表される回折線が消失したものは B2型構造(Fig. 1(b)),全ての規則格子線が消失 したものは完全無秩序化した A2型構造(Fig. 1(c))であると判断できる¹⁾。したがって、Fig. 2からわかる ように、合成した多結晶体 Co₂MnSi では(111) と (200)の規則格子線が観測されていることから、Fig. 1(a) に示すような L2₁型の結晶構造であり、不純物相を含まない単相の試料が合成されていることが確認でき た。また、Fig. 2の粉末 X 線回折データから見積もられた多結晶体 Co₂MnSi の格子定数は、a = 0.5653 nm であった。

Fig. 2. Co₂MnSi の粉末 X 線回折パターン。全ての回折ピークに L2₁構造の指数付けができることから, 合成された Co₂MnSi は L2₁構造の単相試料である。

多結晶体 Co₂MnSi の磁化の磁場依存性と温度依存性の測定を行った。Fig. 3に温度 T = 5 K,磁場0 $\leq B \leq$ 7 T の条件下での磁化曲線 M(B) を示す。T = 5.0 K での磁化曲線は、B = 0.5 T でほぼ飽和し、飽和磁化は4.99 μ_{B} /f.u. であることがわかった。Fig. 3に示すように、B = 0.5 T で飽和し、磁化曲線M(B) に履歴がないこと から、多結晶体 Co₂MnSi は軟強磁性体であるとがわかる。次に、飽和磁場である B = 0.5 T のもとで測定 した1070 K までの磁化M(T)の温度依存性を Fig. 4に示す。キュリー温度 T_{C} は、磁化曲線の一階微分の極 小値から $T_{C} = 1025$ K と見積もることができた。合成した Co₂MnSi は室温より十分高い T_{C} をもち、その 飽和磁化の値は第一原理バンド計算からハーフメタル特性をもつ Co₂MnSi で予想された5 μ_{B} /f.u. に近く、Slater-Pauling 則¹⁵⁾ に従うことが明らかになった。この磁化特性の測定結果は、合成した Co₂MnSi がハー フメタルである可能性を強く示唆している。

Fig. 3. Co₂MnSiの T = 5.0 K における磁化曲線 *M*(*H*)。Co₂MnSi は B = 0.5 T で磁化がほぼ飽和しており, 磁化曲線 *M*(*T*) に履歴がない軟強磁性体である。

Fig.4. Co₂MnSiのB = 0.5Tにおける磁化Mの温度依存性。キュリー温度 $T_c = 1025$ Kと見積もられる。

次いで、アンドレーエフ反射法を用いて、ハーフメタルになると予想されている多結晶体 Co₂MnSi の スピン分極率 Pを測定した。液体ヘリウムをポンピングして到達できた最低温度 T = 1.5 K から Pb 薄膜の 超伝導転移温度 $T_c = 7.2$ K までの温度範囲で、測定から得られた規格化微分コンダクタンス $g(V) \equiv G(V)/G_n$ と、拡張 BTK 理論による解析結果を Fig. 5に示す。ここで、G(V)は各測定温度での微 分コンダクタンスを、また G_n は常伝導状態の微分コンダクタンスを表す。Fig. 5において、白丸は実験デー タを、赤線は拡張 BTK 理論による解析結果を示している。ここで、解析に利用した拡張 BTK 理論の式は、 非スピン分極成分(N)と完全スピン分極成分(H)に分けて考える必要があり、詳細は以下の通りである¹⁴。 有限温度 T におけるバイアス電圧 V の関数としての非スピン分極成分(N)の電流 $I_N(V)$ は、フェルミーディ ラック分布関数fをエネルギーEで積分することによって得られる。つまり、

$$I_{N}(V) = 2eSN_{v_{F}} \int_{-\infty}^{\infty} \left[f(E - V, T) - f(E, T) \right] \left[1 + A_{N}(E, \Delta, Z) - B_{N}(E, \Delta, Z) \right] dE$$

と表される。ここで、Aはアンドレーエフ反射の確率、Bは通常反射の確率、 Δ は超伝導エネルギーギャッ プ、Zは界面でのバリアの強さ、eは電子の電荷、Sは接合の有効断面積、Nはフェルミエネルギーでの 電子の状態密度、 v_F はフェルミ速度である。さらに、非スピン分極成分の電流 $I_N(V)$ をバイアス電圧Vで 微分して得られる非スピン分極成分の微分コンダクタンス $G_N(V)$ は、

$$G_N(V) = \int_{-\infty}^{\infty} \frac{df(E-V,T)}{dV} \left[1 + A_N(E,\Delta,Z) - B_N(E,\Delta,Z)\right] dE$$

となる。ゆえに,絶対零度での非スピン分極成分のコンダクタンスG_{N|T=0}(E)は,

$$G_N|_{T=0}(E) = 1 + A_N - B_N$$

である。同様に, 完全スピン分極成分(H)の電流 I_H(V)は,

$$I_{H}(V) = 2eSN_{v_{F}} \int_{-\infty}^{\infty} \left[f(E - V, T) - f(E, T) \right] \left[1 + A_{H}(E, \Delta, Z) - B_{H}(E, \Delta, Z) \right] dE$$

と表される。さらに、完全スピン分極成分の微分コンダクタンス $G_H(V)$ は、

$$G_H(V) = \int_{-\infty}^{\infty} \frac{df(E-V,T)}{dV} \left[1 + A_H(E,\Delta,Z) - B_H(E,\Delta,Z)\right] dE$$

となるため、絶対零度での完全分極成分の微分コンダクタンスG_H|_{T=0}(E)は、

$$G_H|_{T=0}(E) = 1 + A_H - B_H$$

である。ゆえに, 強磁性体のスピン分極率をPとおくと, 非スピン分極成分の微分コンダクタンス $G_N(V)$ と完全スピン分極成分の微分コンダクタンス $G_H(V)$ を足し合わせた全微分コンダクタンスG(V)は,

$$G(V) = (1 - P)G_N(V) + PG_H(V)$$

と表される。ここで、絶対零度での非スピン分極成分の微分コンダクタンスG_N|_{T=0}(E)と完全分極成分の 微分コンダクタンス $G_{H|T=0}(E)$ を Table 1に示す。Fig. 5からわかるように、実験結果と拡張 BTK 理論の計 算結果は良い一致を示した。拡張 BTK 理論の解析から、スピン分極率 P について最低温度 T = 1.5 K で P = 52.5% という値を得た。さらに,Pb 薄膜の超伝導エネルギーギャップΔは,報告されているバルクの値 Δ=1.36 meV¹⁶ より小さいΔ=0.77 meV であった。この理由として、成膜した Pb 薄膜の膜厚150 nm がコー ヒーレンス長 ζ = 87 nm¹⁷⁾ と同じオーダーのため, Pb 薄膜の超伝導エネルギーギャップΔが本質的にバル クの値より小さくなってしまったことが考えられる。加えて、ハーフメタル型ホイスラー合金 Co,MnSi と超伝導体 Pbの接合界面における超伝導近接効果によってもΔの値が抑制された可能性も挙げられる。 さらに,接合界面のポテンシャルバリアー Z=0.05,実験データと理論計算の差の規格化された2乗和 χ²= 1.1×10⁻⁶であった。Fig. 5の微分コンダクタンスの温度依存性が示しているように、低温で見られる微分 コンダクタンスの構造は、T_cより高温で消失した。したがって、微分コンダクタンスに現れる構造は、 Pb 薄膜の超伝導性に起因した現象であることが明らかになった。ゆえに、Pb 薄膜とホイスラー合金の界 面で生じるアンドレーエフ反射に起因した構造であると結論付けることができる。Fig. 6は、超伝導ギャッ プΔの温度依存性を示している。黒丸は超伝導転移温度 T。までの拡張 BTK モデルの解析から得られたΔ の値,赤線は超伝導の Bardeen-Cooper-Schrieffer (BCS) 理論¹⁸⁾の∆の値を示す。Fig. 6からわかるように, 拡張 BTK モデルと BCS 理論の値は良い一致を示した。Fig. 7は, Pの接合界面でのポテンシャルバリアー Zの依存性を示している。Fig. 7が示しているように、Z=0のとき P=52.7% になることが解析から明らか になった。ここで、Z=0でのPの値は、Co₂MnSi/Pb 接合の界面において Andreev 反射が100% 生じたとき の理想的なスピン分極率の値に対応することに注意が必要である。

Fig. 5. Co₂MnSi の微分コンダクタンス *G*(*V*)/*G*_n の温度依存性。Pb 薄膜の超伝導転移温度 *T*_c = 7.2 K 付近で 微分コンダクタンスの構造が消失した。

Table 1. 絶対零度での非スピン分極成分の微分コンダクタンス $G_N|_{T=0}(E)$ と完全分極成分の微分コンダクタンス $G_H|_{T=0}(E)$ 。ただし、 $\beta = E/\sqrt{|\Delta^2 - E^2|}$ である。

	$ E < \Delta$	$ E \ge \Delta$
$G_N _{T=0}(E) = 1 + A_N - B_N$	$\frac{2\left(1+\beta^2\right)}{\beta^2+\left(1+2Z^2\right)^2}$	$\frac{2\beta}{1+\beta+2Z^2}$
$G_H _{T=0}(E) = 1 + A_H - B_H$	0	$\frac{1 + \beta \left(1 + 2Z^2\right)}{(1 + \beta) \left(1 + 2Z^2\right) + 2Z^4}$

Fig. 6. Co₂MnSiの超伝導エネルギーギャップムの温度依存性。実験から得られた超伝導エネルギーギャップムの 温度依存性は, BCS 理論と良い一致を示した。

Fig. 7. Co₂MnSi のスピン分極率 P の界面ポテンシャル Z 依存性。ここで、Z = 0での P の値は、Co₂MnSi/Pb 接合の界面において Andreev 反射が100% 生じたときの理想的なスピン分極率の値に対応する。

今回の実験では、第一原理バンド計算から予想されているほどの高いスピン分極率は得られなかった。 その原因として、原子配列の乱れや近接効果による接合界面での Pb の超伝導性の抑制などの可能性が考 えられる。一方で、アンドレーエフ反射法と TMR 比という測定手法によってもスピン分極率には大きな 違いがある。アンドレーエフ反射法で見積もられるスピン分極率は最大でも70% 程度に留まるが¹⁹⁾、 TMR 比から見積もられるスピン分極率は90%を超える²⁰⁾。それぞれの測定手法によって強磁性体/超伝 導体接合の形成過程が異なるため、接合界面の状態がスピン分極率に大きく依存している可能性がある。 したがって、今後は接合界面の状態とスピン分極率の関係についても調べる必要があると思われる。

4. 結論

ハーフメタル型ホイスラー合金 Co₂MnSi の磁化測定とスピン分極率測定を行った。T = 5.0 K での飽和 磁化は4.99 $\mu_{\rm B}$ /f.u. であり,第一原理バンド計算で予想される5 $\mu_{\rm B}$ /f.u. に近い値になった。Co₂MnSi/Pb 接合 のアンドレーエフ反射法により見積もられたスピン分極率 P は, P = 52.5% になることが明らかになった。 また、実験から得られた超伝導ギャップ Δ の温度依存性は、BCS 理論と良い一致を示した。

謝辞

本研究の磁化測定は、東北大学の超伝導量子干渉計(SQUID)と試料振動式磁束計(VSM)を用いて 行いました。

参考文献

- 1) 鹿又武:機能材料としてのホイスラー合金(内田老鶴圃,東京, 2011).
- 2) K. L. Kobayashi, T. Kimura, H. Saweda, K. Terakura and Y. Tokura: Nature **395** (1998) 677.
- Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, G. Xiao and A. Gupta: Phys. Rev. Lett. 86 (2001) 5585.
- 4) P. Seneor, A. Fert, J.-L. Maurice, F. Montaigne, F. Petroff and A. Vaures: Appl. Phys. Lett. 74 (1999) 4017.
- 5) H. Akai: Phys. Rev. Lett. 81 (1998) 3002.
- 6) H. Akinaga, T. Manago and M. Shirai: Jpn. J. Appl. Phys. 39 (2000) L1118.
- 7) R. A. de Groot, F. M. Muller, P. G. van Engen and K. H. J. Buschow: Phys. Rev. Lett. 50 (1983) 2024.
- 8) S. Ishida, S. Fujii, S. Kashiwagi and S. Asano: J. Phys. Soc. Jpn. 64 (1995) 2152.
- 9) Fr. Heusler: Verhandl. deut. physik. Ges. 5 (1903) 219.
- 10) J. Kubler, A.R. Williams and C.B. Sommers: Phys. Rev. B. 28 (1983) 1745.
- 11) Y. Nishino: Mater. Trans. 42 (2001) 902.
- 12) P. J. Webster, K. R. A. Ziebeck, S. L. Town and M. S. Peak: Phil. Mag. 49 (1984) 295.
- Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma and T. Miyazaki: Appl. Phys. Lett. 88 (2006) 192508.
- 14) Y. Ji, G. J. Strijkers, F. Y. Yang and C. L. Chien: Phys. Rev. B 64 (2001) 224425.
- 15) I Galanakis, P. H. Dederichs and N. Papanikolaou: Phys. Rev. B. 66 (2002) 174429.
- 16) C. Kittel: Introduction to Solid State Physics 8th edition (McGraw-Hill, Singapore, 2005).
- 17) C. K. Poole, H. A. Farach and R. J. Creswick: Handbook of Superconductivity (A Harcourt Science and Technology Company, San Diego, 2000).
- 18) J. Bardeen, L. N. Cooper and J. R. Schrieffer: Phys. Rev. 108 (1957) 1175.
- 19) B. S. D. Ch. S. Varaprasad, A. Rajanikanth, Y. K. Takahashi and K. Hono: Acta Mater. 57 (2009) 2702.
- 20) T. Ishikawa, H. Liu, T. Taira, K. Matsuda, T. Uemura and M. Yamamoto: Appl. Phys. Lett. 95 (2009) 232512.