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Abstract

This paper proposes recursive least-squares (RLS) Wiener fixed-point smoothing and
filtering algorithms with uncertain observations for colored observation noise in linear
discrete-time stochastic systems. The observation equation is given by y(k) = y(k)z(k) +
v.(k), z(k) = Hx(k), where {y(k)} is a binary switching sequence with conditional
probability, which satisfies (3). The estimators require the following information. (1)
The system matrix @ for the state vector x(k). (2) The observation matrix H. (3) The
variance K(k k) of the state vector x(k). (4) The variance K. (k, k) of the colored
observation noise. (5) The system matrix @, for the colored observation noise v, (k). (6)
The probability p(k) = P{y(k) = 1} that the signal exists in the uncertain observation
equation and the (2,2) element [P(k|j)],. of the conditional probability of y(k), given
v(), 1=j<k.

Keywords: Uncertain observations, RLS Wiener fixed-point smoother, Conditional

probability, Discrete-time stochastic systems

1. Introduction

The estimation problem given uncertain observations has been an important research
in the area of detection and estimation problems in communication systems [1]. Nahi [2],
assuming that the state-space model is given, proposes the RLS estimation method with
uncertain observations, when the uncertainty is modeled in terms of independent
random variables, and the probability that the signal exists in each observation is
available. By uncertain observations it is meant that some observations do not contain
the signal and consist only of observation noise. In Hadidi and Schwartz [3], the work of

Nahi is extended to the case where the variables modeling the uncertainty are not
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necessarily independent.

In the above researches, it is assumed that the state-space model for the signal is
given. However, to use the state-space model, the state-space model must be modeled
and its modeling errors might cause the degradation of estimation accuracy. In [4], the
RLS Wiener fixed-point smoothing and filtering algorithms are derived, based on the
invariant imbedding method, from uncertain observations with the uncertainty
modeled by independent random variables. In the RLS Wiener estimators, the system
matrix @, the observation matrix H, the variance K(k k) of the state vector x(k), the
variance R(k) of the observation noise v(k) and the observed values y(k) are used.
Also, in [5], based on the innovation approach, the RLS Wiener fixed-point smoother
and filter are proposed in linear discrete-time stochastic systems. Here, the observation
equation is given by y(k) = y(k)z(k) + v(k), z(k) = Hx(k), where {y(k)} is a binary
switching sequence with conditional probability, which satisfies (3). The innovation
process is given by v(s) =y(s) —=P(s,s —1), J(s,s —1) = Py,(s) HPR(s —1,s — 1) in
terms of the (2,2) element [P(k|j)],. of the conditional probability of y(k), given y(j).
This expression for the innovation process is shown in [5], [6]. Similarly, in Nakamori et.
al. [7], the RLS Wiener prediction algorithm is proposed.

In this paper, with the same assumptions for the observation equation as in [5], the
algorithms for the RLS Wiener fixed-point smoother and filter are derived based on the
invariant imbedding method. Namely, the observation equation is given by y(k) =
y(K)z(k) + v.(k), z(k) = Hx(k), where {y(k)} is a binary switching sequence with
conditional probability, which satisfies (3). The estimators require the following
information. (1) The system matrix @ concerned with the state vector x(k). (2) The
observation matrix H. (3) The variance K(k, k) of the state vector x(k). (4) The variance
K.(k,k) of the colored observation noise. (5) The system matrix @, concerned with the
colored observation noise v,(k). (6) The probability p(k) = P{y(k) = 1} that the signal
exists in the uncertain observation equation and the (2,2) element [P(k|j)],, of the
conditional probability of y(k), giveny(j), 1 <j<k. The RLS Wiener fixed-point
smoothing and filtering algorithms are proposed in Theorem 1 and its proof is shown in

the Appendix in details.

2. Problem formulation
Let an observation equation be given by

y(K) = y(K)zk) + v.(k), z(k) = Hx(K), 6))
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where z(k) is a signal, x(k) the nx 1 zero-mean state vector and H is the m xn

observation matrix.

e The sequence {v.(k)} is colored noise with its mean zero and the variance of v.(k) is
K.(k, k), that is,

K.(k+ 1,k +1) = &.K.(k, )BT + Ry (k). (2
v (k + 1) = d.v.(k) + ulk), Efu(k)u’(s)] = R, (k)6 (k — s).

Here, R,(k) denotes the input variance of white noise u(k). For the wide-sense
stationary-stochastic systems, from the relationship K.(k+ 1,k+ 1) = K.(k, k), R, (k)
is calculated by R, (k) = K (k, k) — ®.K.(k,k)®T. Also, we assume that the signal z(-) is

uncorrelated with the colored observation noise v.(-).

e The random sequence {y(k)}, which describes the uncertainty in the observations,
has the following stochastic properties (Hadidi and Schwartz (1979)):
(P-1) y(k) is a discrete-time random variable which takes on the values 0 or 1 with
P{y(k) = 1} = p(k). So, p(k) represents the probability that observed value y(k)
contains the signal z(k), and we will assume that this probability is nonzero.
(P-2) The noise {y(k)} is a sequence of random variables with initial probability
vector (1 —p(0),p(0))" and conditional probability matrix P(k|j). The (2,2) element
of the conditional probability matrix of y(k) given y(j), is independent of j, for j < k,
that is

N1 _ EyGy®) _ o
[PID]22 = Zp 50 = Pee(R), i =0, k—1. ®3)
e The state process {x(k)} and the sequences {y(k)} and {u(k)} are mutually

independent.

Let us introduce the system matrix @ in the state-space model for the state vector
x(k) and the variance K(s,s) of the state vector x(s). Then the autocovariance function

K,(k,s) of the signal z(k) is factorized as

K,(k,s) = HK(k,s)HT,
K(k,s) = A(K)BT(s), A(k) = &%, BT(s) = d5K(s,s), 0<s <k. (4)

Let the fixed-point smoothing estimate %(k,L), at the fixed point k, of x(k) be
given by
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2k, L) = ¥k, h(k, i, L)y (i) (5)

as a linear transformation of the observed values y(i), 1 <i<L. Let us consider

least-squares fixed-point smoothing problem, which minimizes the criterion
J = E[(x(k) = 2(k, L))" (x(k) — 2(k, L))]. (6)

The optimum impulse response function h(k,s,L), which minimizes the cost function (6),

satisfies the Wiener-Hopf equation

E[x(Qy(s)] = Zioy ik, i, YE[y(D)y(s)] (7)
in terms of the orthogonal projection lemma [8]

x(k) = #(k,L) Ly(@), 1 <i<L. (8
From P{y(k) = 1} = p(k), the left hand side of (7) is written as

E[x(K)y(s)] = K(k,s)HTp(s). (9)

Let E,[]denote the statistical expectation with respect toy(). Then, from the

observation equation (1) and the covariance function (2) for colored observation noise
ve(k), E[y()y(s)] is reduced to

Ely®y" ()] = E,[y()y(s)IHK(G, s)HT + K. (i,s), (10)
K.(i,s) = @K (1, )DL + PKypy, (i, 5) + Ky (i, )L + Ry (DSk (i — ),
K.(k,s) = A. (k)BT (s), 0 <s<k.

Substituting (9) and (10) into (7), we have

h(k,s,L)R,(s) = p(s)K (k,s)H" — Xi_y h(k, i, L)Y{E, [y (Dy(s)]HK (i, s)H" + ®K (i, 5)P +
D Ky (i, 8) + Ky (i, )L 3,
Ky (i,8) = E[u(i)vg(s)]: K (i,s) = E[vc(i)uT(S)]~

(11

In section 3, the RLS Wiener fixed-point smoothing and filtering algorithms are

presented in linear discrete-time stochastic systems.

3. RLS Wiener fixed-point smoothing and filtering algorithms

In [5], [6], based on the innovation approach, in the case of the white observation noise,

the algorithms for the fixed-point smoothing and filtering estimates are proposed. The
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innovation process is expressed as
v(s) =y(8) = F(s,s — 1), 9(s,s = 1) = Po(s)HPR(s — 1,s — 1).

Theorem 1, under the preliminary assumptions in section 2, proposes the RLS
Wiener algorithms for the fixed-point smoothing and filtering estimates of the signal
z(k) and the state vector x(k). The algorithms are derived, starting with (11), by

iterative use of the invariant imbedding method.

Theorem 1. Let us consider the observation equation (1). Let the probability P(k) and
the (2,2) element P,,(k) of the conditional probability matrix P(k|j) be given. Let the
system matrix @, the observation matrix H, the autovariance function K(s,s) of the
state vector x(s), the variance R(k) of the white observation noise v(k) and the
observed value y(k) be given. Then the RLS Wiener algorithms for the fixed-point
smoothing estimate Z(k,L) of the signal z(k) and the fixed-point smoothing estimate
%(k,L) of the state vector x(k), at the fixed point k, consist of (12)-(35).
Fixed-point smoothing estimate of the signal z(k) at the fixed point k: Z(k, L)
2(k,L) = H&(k, L) (12)
Fixed-point smoothing estimate of the state vector x(k) at the fixed point ki X(k, L)
2(k, L) = 2(k,L — 1) + h(k, L, L)(y (L) = Pop(L)HPL (L = 1) — (@)L (L — 1) — @ l3(L — 1))
(13)

(L) = Sl (L — 1) + 6y (L, L) (y(L) — Ppp(DHEL (L — 1) — (@)?ly(L — 1) — @l (L — 1)),

L,(0)=0 (14)

(L) = ly(L = 1) + Go(L, 1) (y(1) = Pop(WHOL (L — 1) = (@)L (L — 1) = @cly(L — 1),

L,(0)=0 (15)

(L) = @y (L = 1) + G (L, 1) (y(L) = Pp(DHOZ, (L = 1) = (B)2%, (L — 1) — @ %5 (L — 1),
15(0) = 0 (16)

Smoother gain: h(k,L,L)
h(k, L, L) = (p(LK(k, k)(@T)E*HT — Py, (L) fu(k, L — D@THT
— ok, L = 1D)®F = fo(k, L — 1DPDHR(L) ! )
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R(L) = Ry(L) + p(LYHK (L, LYHT — Py, (L)(P,2(LYH®S; 1 (L — DT + @25, (L — 1)o7 +
& SL(L— DOT)HT + & K (L, L)DI — (Pyp(L)H®S;5(L — DL + &2Sy, (L — DL +

BS3o(L = DOF )] + Ry(L) = (Poo(LH®S 3(L — DO! + BZSy5(L — DO] + B S33(L —
Dol (18)

Gy (L L) = (p(L)K(L, L)HT — Pz,z(L)‘pc§11(L - 1)o"HT - DS, (L - 1)(¢’CT)2 —®S,(L -
DOR(L)? (19)

Go(L, L) = (Kc(L, L)BT = Py p(L)BST(L = DOTHT — &S5 (L = 1)(PF)? — PcSps(L —
DOL)RL)™ (20)

Gs(L, L) = (Ry(L) — P (L)@ STH(L — DOTHT — &S5, (L — 1)(DT)? — @cSps(L — DOT)R(L)?
(21)

f(k, L) = f(k, L — 1)@T + h(k, L, L)@ K (L, L) — h(k, L, L)(P, o (L)H®S;, (L — D&F +
D2S5,(L — 1) + B:S3, (L — 1)¢’cT): fy(k, k) = S1(k) (22)

f3(k L) = f3(k, L — 1P + h(k L, L)R, (L) — h(k,L, L)(PZ,Z(L)H¢313(L — D] + &Sy (L -
DT + DS33(L — D@F), f5(k, k) = S13(k) (23)

f,(k L) = f,(k, L — 1)@ + p(L)h(k, L, L)HK(L, L) — h(k, L, L) (P, (L)H®S;, (L — 1)@ +
P2SL(L— 1T + & SH(L— 1)@T),f,(k k) = Sy; (k) (24)

Filtering estimate X(k, k) of the state vector x(k)
R(k k) = R(k— 1,1 = 1) + h(k, K, K) (y(K) = P (k) H®L (k — 1,k — 1) = (9)*L,(k — 1,k —
1) — &l (k — 1,k — 1)),%(0,0) = 0 (25)

Filter gain: h(k,k, k)
h(k k k) = (p(NK(k K)HT — P, , (k)PS5 (k — 1)@ THT — @S, (k — 1)(@F)? — #Sy5(k —
DR(K)™? (26)

S11(k) = p(L)G; (k WHK, (k, k) + @S;1(k — 1)@T — Gy (k, k) (P, (WHPS; (k — DT +
(@) k- DT + &Sk — 1D@T), 5,;,(0) =0 @7

ST, (k) = p(k)G, (k K)HK(k k) + ST, (k — DT — G, (k k) (P, (WH®S, 1 (k — DT +
(@)*SL (k= D" + & S5T3(k — 1)@"), S,(0) =0 (28)

131 = p()Gs (k, ) HK(k k) + @S5 (k = DOT — G5 (k k) (P2 WOHPS; (k — D™ +
(@)*ST(k = D@ + &S5k — D@T), 51;(0) =0 (29)

S1z(k) =
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Gy (k@K (I K) + DSy, (k — DOT — Gy (k1) (P2 (HBS, 5 (k — DT + (8.)2S5, (k —

DO + @S5,k = D), 51,(0) =0 (30)
Sz (k) =

G (kKD K (K K) + DSz, (k — DO — G, (k, k)(pz,z(k)H‘pSlz(k — DO + (D,)2S,,(k —
DO + DSz, (k — 1)‘ch), S22(0) =0 (31)
Sz (k) =

G K PK(k K) + S (k — DOT — G0, K) (P (HDSy (k — DT + (0,)2,(k —
DOF + DSz (k — 1)¢g), S32(0) =0 (32)

S13(K) = G1 (K KRy (K) + ®S13(k — DT — Gy(K K) (P2 (RHDS 3(k — 1)DT + (D:)2S,3(k —
DO + DSz3(k — 1)‘ch), S13(0)=0 (33)

S23(K) = Go(k, KRy (K) + @Sp3(k — NPT — Gy (K, k)(Pz,z(k)Hd’Sm(k — DO + (D,)?S3(k —
DO + DS33(k — DBT), S23(0) =0 (34)

S33(k) = G3(k, KR, (K) + @S33(k — DBT — G3(k k) (P, (WHPS 3(k — DT + (@,)2S53(k —
DO + S33(k — D@T), S33(0) =0 (35)
Proof of Theorem 1 is deferred to the Appendix.

From Theorem 1, it is found that the innovation process v(k) is represented by

v(k) = y(k) — P, (K)H®L (k — 1) — (0,)%,(k — 1) — & L3 (k — 1). (36)

4. A numerical simulation example

In order to show the estimation characteristic of the RLS Wiener fixed-point smoothing
algorithm proposed in Theorem 1, we consider to estimate a scalar signal z(k) whose

autocovariance function K,(m) is given as follows [9].

KZ(O) = 0-23
K,(m) = o*{a;(aj — Dai*/[(a, — a;)(aza; + 1)]
—ay(af — Dad/[(a, — ay)(aza, +1)], 0 <m, 37)

a,a, =(—a t M)/Z, a; =—-0.1, a, =-0.8, 0 =0.5.

The covariance function (387) corresponds to a signal process generated by a
second-order AR model. Then, according to [4], the observation vector H, the variance
K(k, k) = K(0) of the state vector x(k) and the system matrix @ in the state equation are

as follows:
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H=[1 0], K(kk) = K, (0) Kz(l)] o0 1 ]

Kz(l) Kz(o) ’ B —a; —a;
K,(0) = 0.25, K,(1) = 0.125. (38)

As in [7], we consider that the signal z(k) is transmitted through one of two

channels, each characterized by its observation equation as follows:

Channel 1: y(k) = z(k) + v.(k),
Channel 2: y(k) = U(k)z(k) + v.(k), &, = 0.91,

where v.(k) is a colored observation noise and {U(k)} is a sequence of independent
random variables taking values 0 or 1 with P{U(k) = 1} = p = 0.8, for all k.

We suppose that channel 1 is chosen at random with probability 1 —q = 0.7 and,
hence, channel 2 is selected with probability q = 0.3. Then, the observation equation is

described by
y(k) = y(K)z(k) + v(k), (39

where y(k) =(1—-a)l+aU(k) and a is a random variable, independent of {U(k)},
taking values 0 or 1 with P{a = 1} = q = 0.3. It can be shown that {y(k)} is a sequence
of random variables, which take values 0 or 1 with p(k) = P{y(k) = 1} = P{a = 1,U(k) =
1} + P{a = 0} = pq + (1 — q) = 0.94, for all k, and conditional probability matrix
1-p 14
P(klj) =| gp(1-p) 1-q(1-p%)
1-q(1-p) 1-q(1-p)

[ 02 0.8
0.0510638 0.9489362/

for all k,j=0,1,--,k— 1. From (3), it is clear that [P(k|j)],, = P;,(k) = 0.9489362, for all
kj=01,-k—1.

Substituting H, Kk k), ®, K.(k, k), @., p(k) and P,,(k) into the estimation
algorithms of Theorem 1, we can calculate the fixed-point smoothing and filtering
estimates of the signal recursively.

Fig.1 illustrates the colored observation noise process for the values of the input
noise variance, R, (k) = 0.12, 0.152%, 0.22. As R, (k) becomes large, it is seen that the
variance of the colored observation noise process tends to be large. Fig.2 illustrates the
sequences of the fixed-point smoothing estimate 2(k,k +5) and the filtering estimate
2(k, k) of the signal z(k) for the input noise variance R, (k) = 0.12. Fig.3 illustrates the

mean-square values (MSVs) of the filtering and fixed-point smoothing errors in the



NAKAMORI Seiichi : Recursive Least-Squares Wiener Fixed-Point Smoother with Uncertain Observations for Colored Observation Noise in Linear Discrete-Time Stochastic Systems 17

certain and uncertain observation cases for the values of the input noise variance as
Ry(k) = 0.1%2, 0.152, 0.22. It is found that the estimation accuracy of the fixed-point
smoother is better than the filter for each input noise variance both for the uncertain
and certain observation cases. Also, the estimation accuracy for the certain observed
value sequence is better than that for the uncertain observation sequence in each input
noise variance.

Here, the certain observations correspond to the relationship p(k) = P,,(k). The
MSVs of the fixed-point smoothing errors are evaluated by Y229°(z(i) — 2(i, i + L))?/2000,
L=1,2,--,5. The case of L =0 corresponds to the calculation of the MSV of the filtering
errors.

For references, the autoregressive (AR) model, which generates the signal process, is

given by

z(k+1) —ayz(k) —ayz(k — 1) + w(k + 1), E[wk)w(s)] = 028, (k — s). (40)

5. Conclusions

Under the preliminary assumptions of section 2, for the observation equation (1)
with additive colored noise, this paper, by iterative use of the invariant imbedding
method, has proposed the RLS Wiener algorithms for the fixed-point smoothing and
filtering estimates of the signal z(k) and the state vector x(k). The fixed-point
smoothing and filtering algorithms take into accounts of the stochastic properties of the
random variables {y(k)} in the observation equation (1) such as the probability
p(k) = P{y(k) = 1}, that the signal exists in the uncertain observation equation, and the
(2.2) element [P(k|j)],. of the conditional probability of y(k), given y(j), j < k.

A numerical simulation example in section 4 shows that the fixed-point smoothing

and filtering algorithms proposed in this paper are feasible.
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variance R, (k) = 0.12.
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Fig.3 Mean-square values of the filtering and fixed-point smoothing errors for the
certain and uncertain observation cases when the values of the input noise variance are

R, (k) = 0.1%2, 0.152, 0.22.

Appendix A. Proof of Theorem 1

Subtracting the equation obtained by putting L = L — 1 in (11) from (11), we have

(h(k, s,L) — h(k,s, L — 1))Ru(s) = —h(k, L, L){E, [y (L)y(s)]HK (L, SHT + &K (L, s)®F +
DPeKyy (L, $)+ Ky (L, )T} = T (A(k, i, L) — h(k, i, L — D){E, [y (Dy()IHK (i, s)HT +
DK (i, $)DT + D Ky (i, 8) + Ky (i, )BT} (A-1)

From E,[y(L)y(s)] = P,,(L)p(s), Kup(L,s) =0, Ky (L, s) = ®E757 R (s), we rewrite (A-1)

as
(h(k s, L) = h(k,s,L — 1))Ry(s) = —h(k, L, L){P,2(L)p(s)HK (L, s)HT + ®.K (L, s)PT +

ODLTIR, ()} — LIt (h(k, i, L) — h(k,i,L — D)E, [y(Dy()IHK (i, )HT + &K (i, )L +
@K, (1,5) + Ky (i, )T (A-2)
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Let us introduce following equations.

J1(s, L = DR, (s) =
p()®~*K(s,)H" = X121 J1 (i, L — D{E, [y Dy ()IHK (i, )HT + DK (i, )BT + DKy, (i, 5) +
Ky (@, s)d)LT} (A-3)

JZ(SrL - 1)Ru(s) =
DK, (s, )P — it 1, (6, L — DLE, [y Dy ($)IHK (i, )HT + @K (i, )L + oKy (i, 5) +
Kuv(i' S)d)Z} (A'4)

Ja(s,L — DRy(s) = DRy (s) — Xi=t J3 (i, L — D{E, [y (Dy ()IHK (i, )HT + ®K (i, )L +
DK, (i, 5) + Ky (G, S)(DCT} (A-5)

From (A-2) with (A-3)-(A-5), we obtain

h(k,s,L) — h(k,s,L — 1)
= _h(kr L, L)(PZ,Z(L)Hq)L]l(sﬂL - 1) + (DCL+1]2(31L - 1) + q—”é‘]g(S,L - 1))
(A-6)

Subtracting the equation obtained by putting L =L — 1 in (A-3) from (A-3), we have

(1(s,L) = J1(s, L = IR, (s) = —J1 (L, LY{E, [y L)y ()IHK (L, )HT + &K (L, )®T +
DKy (L, $) + Ky (L, $)OL} — BiZt J1 (i, L — D{E, [y (DY ()IHK (i, )HT + ®K (i, )T +
D Ky, (i, 5) + Ky (i, S)(DCT}' A-7)

From (A-7) with (A-3)-(A-5), we obtain

J1(s, L) = J1(s, L = 1) = =J3(L, L) (P2, (L)HP ], (s, L — 1) + @L* (s, L — 1) + @fJ5(s, L — 1)).
(A-8)

Similarly, we obtain

J2(s,L) = Jo(s,L = 1) = =], (L, L) (P, (L HP 1 (s, L — 1) + @ ,(s, L — 1) + ®FJ3(s, L — 1)).
(A-9)

]3(SrL) _]3(S!L - 1) = _]B(L’L)(PZ,Z(L)H¢L]1(S!L - 1) + ¢CL+1]2(S!L - 1) + ¢CL]3(SrL - 1))
(A-10)

By putting s — t in (A-3), we get
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JiL—1,L—1DR,(L—1)
=p(L— 1o VKL -1,L-1DHT

L-1

- Zh(i'L - 1){Ey[y(i)y(L — DIHK(G, L — DHT + &K (i, L — 1)@
i=1

+ @Ky (i, L — 1) + Ky (i, L — D@7}
=p(L - 1O~ VK(L - 1,L - DH" = T2 G L — DIE, [y Dy (L — DIHB@MAT(L — DHT +
(pch(i)A’E (L - 1)(ch + Buv(i)(¢g)L_2¢g}' (A'].l)
Here, we used the relationships
Ky (i,L —1) =0,

Kuw(i, L = 1) = E[u(@v! (L — 1)] = Ry() (@)~ (@F)-2
= uv(i)(¢’g)L_2: B, () = Ru(i)((ch)_i, 1<i<L-1.

(A-12)
Introducing functions
ri(L—1) = X E [y @Dy (L — D11 L — DHB(D), (A-13)
r12(L = 1) = $iZ 1 G, L — 1) @B, (D), (A-14)
r3(L = 1) = XiZi 16 L — 1) By (D, (A-15)

we rewrite (A-11) as

JiL—1,L—DR,(L—1) = p(L — D&~ CVK(L —1,L — 1)HT — 1,4 (L — DAT(L — DHT —
ri2(L = D)@ —ri5(L — 1) (@) (A-16)

From (A-13), we have
r1(L—1) = E,[y(L — Dy(L — DV,(L —1,L — DHB(L — 1)
+ Lz_? E [y(@y(L — DIJ1G L - DHB(®)
=p(L L—=11)]1(L —1,L—1HB(L - 1)+ Y22 Py, (L — Dp(i) J1(i, L — DHB().
By use of (A-8) and introducing functions
i1 (L = 1) = X1 p() 1 (i, L — DHB(), (A-17)
(L —1) = Xkt p() Jo (i, L — DHB(), (A-18)

(L —1) = X1 p() J3(, L — DHB(), (A-19)
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we get

m1(L—1)=p(L—1));(L —1,L—1)HB(L - 1) + Po,(L — D{f(L —2) = J;(L - 1,L —
D[Py (L — DHOL T (L — 2) + DLEFL (L — 2) + &L L (L — 2)]}, 714(0) = 0. (A-20)

In a similar fashion, from (A-17) and (A-8), we derive

1 (L—1D) =pL-DJ;L-1LL-1DHBL -1 +#,(L—-2)—];(L—1,L—1)[P,(L—
DHOL R (L —2) + OEFL (L — 2) + &L L (L — 2)]3, 711(0) = 0. (A-21)

From (A-18) and (A-9), we derive

7oL —1) =p(L—1)),(L —1,L = DHB(L — 1) + 7,(L — 2) = J,(L = 1,L = D[P, (L —
DHPL 7, (L — 2) + BLFL (L — 2) + S 1L (L — 2)]}, 75,(0) = 0. (A-22)

From (A-19) and (A-10), we derive

(L —1) =p(L—1J3(L—1,L—1DHBL - 1) + 75(L —2) = J3(L = 1,L — 1)[P,,(L —
DHOL R (L —2) + OEFL(L — 2) + oL~ L (L — 2)]3, 75(0) = 0. (A-23)

Similarly, from (A-14) and (A-8), we obtain

rp(L—1) =
JiL=1,L—1D®B(L—1) +71,(L—2) = J;(L—1,L — 1)[Pyp(L — DHPL 115 (L — 2) +
DLy (L —2) + DLy, (L — 2), 11,(0) = 0. (A-24)

Here, we introduced functions
r22(L—1) = X121 ), (i, L — 1) @B, (i), (A-25)
r32(L — 1) = X151 )3, L — 1) @B, (). (A-26)

From (A-15) and (A-8), we get

r3(L—1) =
J1(L—1,L =By, (L=1) +13(L —2) = J;(L = 1,L — D)[Poo(L — DHP ry5(L — 2) +
Df1y3(L —2) + DL rz(L — 2), 143(0) = 0. (A-27)

Here, we introduced the functions
13(L — 1) = X151 )G, L — 1) By, (), (A-28)
r33(L —1) = X151 J3 (i, L — 1) By, (0). (A-29)

Now, putting s —» L — 1 in (A-4), similarly to the derivation of (A-16), we get



NAKAMORI Seiichi : Recursive Least-Squares Wiener Fixed-Point Smoother with Uncertain Observations for Colored Observation Noise in Linear Discrete-Time Stochastic Systems 23

Jo(L=1,L—DRy(L —1) = &, " VK(L —1,L — )BT — 1y (L — DAT(L — DHT — 1 (L —
DAL — DPF —1p3(L — (@) (A-30)

Here, we introduced the function

(L —1) = TP E [y (Dy(L — D1/, L — DHB(D). (A-31)

From (A-31) with (A-9), we get

121(L—1) =p(L—1)J,(L—1,L—1HBL —1) + P,(L — D{FL,(L—2) - J,(L —1,L —
D[Py (L — DHOL T (L — 2) + LR (L — 2) + LR (L — 2)]}, 171(0) = 0.  (A-32)

From (A-25) with (A-9), we get

(L —1) =
Jo(L=1,L = 1)®B(L — 1) +155(L = 2) = Jo(L = 1,L = D[P, (L — DH® 15 (L - 2) +
ey (L = 2) + B¢ rgp (L — 2), 1,(0) = 0. (A-33)

From (A-28) with (A-9), we get

r3(L—1) =
Jo(L=1,L=1)By,(L—=1) +1r3(L = 2) = J,(L = 1,L = D[P,(L — DHP  'ry3(L - 2) +
DLrys (L —2) + DL M5 (L — 2), 1,5(0) = 0. (A-34)

By putting s - t in (A-4), similarly to the derivation of (A-30), we get

Js(L=1,L = DR, (L —1) = & “ PR, (L — 1) — 15, (L — DAT(L — DHT — 15, (L — DAL(L —
DBL — 155(L — 1)(@DH)E L. (A-35)

Here, we introduced the function
r31(L = 1) = T E [y Dy (L — D153, L — DHB (). (A-36)
From (A-36) with (A-10), we get

(L -1 =pL—-D5(L-1L-DHBL—1) +Pyp(L - D{FEL—-2) —Js(L—1,L—
D[Pyo(L — DHOM ' (L — 2) + BLFL(L — 2) + GE G (L — 2)]}, 13,(0) =0.  (A-37)

From (A-26) with (A-10), we get

r3(L—1) =
Js(L=1,L = 1)®B(L — 1) +135(L —2) = J3(L = 1,L = D[P, (L — DHO 1y, (L - 2) +
DLy (L —2) + DL, (L — 2), 13,(0) = 0. (A-38)
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From (A-29) with (A-10), we get
r33(L—1) =
Js(L—1,L —1)B,,(L—1)+1r3535(L—2)—J3(L—1,L — 1)[P2_2(L - 1)H<I7L—1T13(L -2)+
ey (L — 2) + & ry3(L — 2), 133(0) = 0. (A-39)

Substituting (A-20), (A-24) and (A-27) into (A-16), after some manipulations, we get

JiL—1,L-1) = (p(L— D@L YK(L—1,L— DHT — P, (L — D7, (L — 2)AT(L — DHT -
r12(L = 2)(@)E =1, (L = 2)(@DH R - D7

(A-40)
Here, by introducing the following functions, R(L) is given by (18).
Sl =1) ="' (L - DAT(L - 1), SLH(L - 1) = &} 'L (L — DAT(L - 1),
SHUL—1) =& L - DAT(L - 1), Sip(L—1) = &4 (L — (@D,
Sa2(L = 1) = @¢ M1 (L — (P, S32(L — 1) = f g, (L — D(@H,
Si3(L = 1) = & 15 (L — (@M, Sp3(L — 1) = @f (L — (@D,
Sz3(L —1) = ®F g5 (L — D(F)E L (A-41)

Similarly, substituting (A-32), (A-33) and (A-34) into (A-30), after some manipulations,

we get

L(L—-1L-1)= (qbc‘“‘l)KC(L —1,L — 1)@ — Py, (L — 1)FL(L — 2)AT(L — 1)HT —

raa(L = 2)(@]) = 135 (L — 2) (@D ) R(L - D™ (A-42)
Substituting (A-26), (A-29) and (A-36) into (A-35), after some manipulations, we get
J(L—1L—-1) = (¢;(L‘1)Ru(L —1) = Py, (L — DFEG(L — 2)AT(L — 1)HT — 75, (L —

2)(@N) =L - 2@ RL - 1) (A-43)

Let us introduce functions G;(L—1,L—1) =& (L-1,L—-1), G,(L—1,L—1) =
&L (L—-1,L—1) and G3(L —1,L —1) = ®t7YJ5(L — 1,L — 1). From (A-40), we see that

G (L—1,L—1) = (p(L = DKL~ 1,L — DHT — P, (L — 1)S,(L — 2)PTHT — &S;,(L —
2)(@1)? = @S1,(L — 2)®T)R(L - 1),
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(A-44)
Similarly, from (A-42) and (A-43), we get
Go(L=1,L = 1) = (Ko(L = 1,1 = DBT = Py (L = DBST(L — )PTHT — 0,5y, (L —
2)(@0)? — DSy (L — 2)@T)R(L — D7, (A-45)

Gs(L—1,L—1) = (Ry(L — 1) = Ppp(L— DO ST (L — 2)PTHT — &S5, (L — 2)(P7)? —
®cS33(L — 2)@T)R(L — 1)L (A-46)

From (A-41) with (A-21), we get

Sl -1 =pL-1GL-1,L-1DHKL-1,L—1)+ &5, (L —2)®T — G, (L —1,L —
D[Py, (L — DHPS;1 (L — 2)DT + d2S,(L — 2)PT + &.ST(L — 2)9T], $1,(0) = 0.
(A-47)

From (A-41) with (A-22), we get

SLAL—-1) =p(L-1)G,(L—1,L —1HK(L—1,L — 1) + &S, (L — 2)dT — G,(L — 1,L —
D[Py(L — DHPS (L — 2)@T + ¢2ST,(L — 2)@T + &.5T5(L — 2)@T], §1,(0) = 0.
(A-48)

From (A-41) with (A-23), we get

SL(L-1)=p(L-1G;(L—1,L—1DHK(L—-1,L—1) + &.SL(L - 2)®T — G3(L —1,L —
D[Py(L — DHPS (L — 2)@T + O2ST,(L — 2)0T + &.ST5(L — 2)@T], §15(0) = 0.
(A-49)

Now, let us introduce a function
S (L—1) = &L 1ry, (L — 1) (@T)M 1. (A.50)
From (A-50) with (A-20), we get

S (L—1) =p(L—1G(L—1,L—DHK(L —1,L — 1) 4+ P5(L — 1)®Sy; (L — 2)@T —
Py(L—1)G (L —1,L — D[Pyo(L — DHDS (L — 2)®T + $25,(L — )07 + &S5 (L — 2)@7],
$1,(0) = 0. (A-51)

From (A-41) with (A-24), we get

So(L—-1)=6,L—-1,L-1)P.K(L—1,L—1)+PS;,(L — 2)(17CT -G, (L—1,L—- 1)[P2'2(L -
DH®S ,(L = 2)PF + BESy5(L — 2)BF + D,S3,(L — 2)PF), S12(0) = 0.
(A-52)
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From (A-41) with (A-27), we get

Sis(L—1)=6,(L—-1,L—- 1)Ru(L —1) + ®&S;3(L — 2)<DCT -G (L—-1L- 1)[P2,2(L -
DHDPS 3(L — 2)PF + (D)*S23(L — 2)PF + D.S33(L — 2)PF), S13(0) = 0.
(A-53)

From (A-41) with (A-33), we get

Sy (L—1)=6G,(L—1,L-1)®.K.(L—1,L— 1)+ (DCSZZ(L - 2)(PCT —G,(L—-1,L - 1)[P2'2(L -
DHDPS 5(L — 2)PL + (D)*S2(L — 2)PL + &,S33(L — 2)PF), S,,(0) = 0.

(A-54)
From (A-41) with (A-34), we get
523(L - 1) b Gz(L - 1,L - 1)Ru(L - 1) + ¢CSZ3(L - 2)‘1’3‘ - Gz(L - 1,L - 1)[P2’2(L -
DH®S;3(L = 2)PF + (D)*Sz3(L — 2)PF + B S33(L — 2)@]), S,3(0) = 0.

(A-55)

From (A-41) with (A-38), we get

Ss,(L—1)=6;(L—1,L—1D)P.K(L—1,L —1) + PS5, (L — 2)¢>CT —-G3(L—-1,L - 1)[P2'2(L -
DHDPS (L — 2)PL + (D)*S(L — 2)PL + &,S3,(L — 2)PF), S3,(0) = 0.
(A-56)

From (A-41) with (A-38), we get

Ss,(L—1)=6G3;(L—-1,L—-1)®.K(L—1,L—1) + D.S3,(L — 2)¢>CT —G;(L—-1,L - 1)[P2'2(L -
DHDPS 5(L — 2)PF + (D)*S2(L — 2)PL + &,S3,(L — 2)PF), S3,(0) = 0.

(A-57)
From (A-41) with (A-39), we get
S33(L—1)=G3(L—1,L— DR, (L — 1) + &,S55(L — 2)¢>CT —G;(L—-1,L - 1)[P2’2(L —
DH®S;3(L = 2)DF + (D)*Sz3(L — 2)DF + B S33(L — 2)@]), S33(0) = 0.

(A-58)

Now, the fixed-point smoothing estimate of x(k) is given by (5). Subtracting
#(k,L —1) from %(k,L) and using (A-6), we obtain

2(k, L) — 2(k,L — 1) = h(k, L, L)(y(L) — Pop(L)H® e; (L — 1) — dt+le, (L — 1) — dley(L —
1)). (A-59)

Here, we introduced the following equations.
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er(L) = Xk, 1 (@, Dy () (A-60)
ex(L) = Xty (i, L)y (D) (A-61)
e3(L) = Xi, Js (i, L)y (i) (A-62)

Subtracting e; (L — 1) from e;(L) and using (A-8), we obtain

eg(L) —es(L—1) =J;(L,L)(y(L) — Pz,z(L)H¢Le1(L -1 - ‘chHez(L -1 - ¢CLe3(L - 1),
e;(0) = 0. (A-63)

Subtracting e,(L — 1) from e,(L) and using (A-9), we obtain

ey(L) —e,(L—1) = (L, L)(y(L) — Pz,z(L)H‘DLe1(L -1 - (chHez(L -1)- d>cLe3(L - 1)),
e,(0) = 0. (A-64)

Subtracting e;(L — 1) from e;(L) and using (A-10), we obtain

es(L) —es(L—1) =]3(L:L)(}’(L) - Pz,z(L)H‘DLe1(L -1 - (DCLHez(L -1)- d>cLe3(L - 1)),
e3(0) = 0. (A-65)

Let us introduce functions I, (L) = @le;(L), I,(L) = dle,(L) and I3(L) = ®Le;(L). From
(A-63)-(A-65), we obtain

L(L) = ®L(L—1) + G (L L)L) = Pra(DHPL (L — 1) = (@)?L(L — 1) — Pl3(L — 1)),
1,(0) =0, (A-66)

(L) = @l (L = 1) + Go (L, LY(Y(L) — Poo(HPL (L — 1) = (@)* (L — 1) — @3 (L — 1)),
12(0) = 0> (A'67)

I3(L) = @I3(L — 1) + G3(L, L) (Y (L) — P (L)H®L (L — 1) — (P)*1(L — 1) — Pcl3(L — 1)),
1,(0) = 0. (A-68)

By the way, putting s> L in (11) and using the relationships K,,(i,L) =0,
K., (i,L) = RL (D) (@) 74 (@)1 with (4) and (10), we get

h(k, L, L)R, (L) =
p(LK (k, k)(@T)-"kHT — Fy(k, L)(@T)HT — F,(k, L)AL(L)®T — F3(k, L) (D)~
(A-69)

Here, we introduced
Fy(k, L) = ¥ty E,{rDy(L)}h(k, i, L)B(D), (A-70)

Fy(k,L) = ¥F_, h(k,i, L)®.B.(i), (A-71)
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F3(k,L) = X%, h(k,i, L)RE () (1)L (A-72)

Also, introducing

fl(k! L) = Fl(kr L)AT(L)3 (A'73)

we can rewrite (A-69) as
h(k,L,L)R, (L) = p(L)K(k, k) ((DT)L_kHT — filk, AT = f,(k, L)®T — f3(k, L). (A-76)
From (A-70) and (A-6), we get

Fi(k L) = p(Lh(k, L, L)HB(L) + P, (L)F4(k L — 1) — P2 (L)h(k, L, L) (P, (L)YH® Ty, (L —
1) + O (L — 1) + oL (L - 1)). A-77)

Here, we introduced the function
Fy(k,L) = Y5 p()h(k,i, LYHB(D). (A-78)
From (A-71) and (A-6), we get

Fy(k L) = h(k, L, L)®.B.(L) + F,(k L — 1) — h(k, L, L) (P2 (L)H® 1y, (L — 1) + &F+ 1y, (L —
1) + @Lrs, (L — 1)). (A-79)

From (A-72) and (A-6), we get

F3(k L) = h(k L, L)By, (L) + F3(k L — 1) — h(k, L, L) (P, (L)H® 13 (L — 1) + ®F+irys (L —
1) + @l (L — 1)). (A-80)

From (A-78) and (A-6), we get

F4(k L) = p(L)h(k L, L)HB(L) + F4(k, L — 1) — h(k, L, L) (P, (L) H® 1, (L — 1) + O L (L —
1) + oLt (L — 1)). (A-81)

Now, let us introduce a function
fullke, L) = Fy(k, L)AT(L). (A-82)
From (A-73) with (A-77), we get

fl (k! L) = p(L)h(k! L, L)HK(L' L) + PZ,Z(L)fél—(k! L— 1)¢T - PZ,Z (L)h(k! L' L)(PZ,Z (L)H¢§11(L -
DPT + @25 (L — 1D)@T + & S5 (L — 1)o7). (A-83)
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From (A-74) with (A-79), we get

£2001) = (i L LHK, (L, L) + £, (kL = DO = h(k, L, L) (P, (LY H®S, 5 (L — 1T +
PESy (L — D! + @.S3,(L — DPY). (A-84)
From (A-75) with (A-80), we get

fs(k L) = h(k L, L)RL(L) + f3(k L — D@L — h(k, L, L) (P, (LYHPS;5(L — 1)®] + &2S,3(L —
DO + &.S53(L — D). (A-85)

From (A-82) with (A-81), we get

fy(k, L) = p(L)h(k, L, LYHK(L, L) + f, (k, L — 1)@ — h(k, L, L) (P, (L)H®S;1 (L — D@T +
P2ST(L — DT + ¢ SE(L — 1)P7). (A-86)

In (11) putting L - k, we have

h(k,s,K)R,(s) = p(s)K(k, k)HT — T h(k,i, LY{E, [y Dy (K)IHK (i, k)HT + &K (i, k)PF +
d)chu(iJ k) + Kuv(iv k)(ch} (A'87)

From (A-87) with (A-3), we obtain
h(k, s, k) = Ak)J, (s, k). (A-88)
Initial conditions of f;(k L), fo(k L), f3(k,L) and f,(k,L) at L =k are as follows.

filk,k) = Fy(k, AT (k) = X, E iy Dy (K)}YA(K)] (k, ) B(D)AT (k) = A(k)ry, (K)AT (k) =
S11(k) (A-89)

Here, we used (A-13).

fo(k, k) = Fy(k, k)AL (k) = Xy h(k, i, k)@ B (DAL (k) = A(k)ri, (K)AL (k) = S;,(k)
(A-90)

Similarly,

fs(k, k) = F3(k, k) (@D = Tiy h(k, i, K)RL (D) (@)1 (@)F = Ak)ri3(K) (@) = Sy3(k).
(A-91)

Finally,

falk, k) = Fy(k, K)AT (k) = T2, p(D)h(k, i, K)HB() AT (k) = A(k)T1; (k) AT (k) = 5,4 (k).
(A-92)

Substituting (A-83)-(A-86) into (A-76), we obtain (17) and (18) after some
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manipulations.

By the way, from (A-59), the fixed-point smoothing estimate is updated by

2(k,L) = 20k, L — 1) + h(k, L, L)(¥(L) — Pyo(LYHOL (L — 1) — (@)%, (L — 1) — @cl5(L — 1)) .

(A-93)
Also, from (5), the filtering estimate is given by
2(k, k) =X h(k, i, k)y (D). (A-94)
From (A-88) with (A-60), we have
2k, k) = 3E AL GR)Y () = AK)e; (k). (A-95)

Substituting (A-63) into (A-95) and using (A-88), we obtain

2(k, k) = A(K)ey(k — 1) + h(k, k, k) (y(k) — Py, (K)H®¥ e, (k — 1) — @k e,k — 1) —
dkey(k — 1)) = @Rk — 1,k — 1) + h(k, k, k) (¥(L) — P, ()H®L (k — 1) — (¥,)?l,(k — 1) —
@ ls(k — 1)), 2(k, k) = 0.

(Q.ED)
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