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Abstract

This thesis mainly comprises of two parts of contents, direct-kinematics and

movement accuracy improvement of parallel mechanisms.

In Chapter 1, the background, purpose and necessity of this study will be intro-

duced. As well-known mechanisms, parallel mechanisms have many outstanding

advantages, such as high payload ability, high accuracy, high structural rigidity and

high movement speed, however some drawbacks, smaller movement space and com-

plicated kinematics, also limits their further applications and developments. A good

idea to enlarge movement space by adding redundant joints has been seen, however

it is hardly applied widely because of lack of a set of universal methods to do with

direct-kinematics of parallel mechanisms with redundancy. Then again, due to the

inherent defect of multi-joint mechanisms, the heterogeneity of movement accuracy

in the movement space, accuracy deterioration will make some areas in the move-

ment space unable to be used and the narrow workspace more narrow.

Based on the above, the purpose of this study will be set as follows,

1. To give a set of universal methods to establish direct-kinematic relations of

parallel mechanisms. Especially they will be demanded to apply to parallel

mechanisms with redundancy.

2. To provide a set of methods to improve movement accuracy of parallel mecha-

nisms by using the movement information from passive joints. Workspaces of

parallel mechanisms will be expanded in some accuracy deteriorating areas.
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In Chapter 2, kinematics of parallel mechanisms will be discussed and a set of

direct-kinematic relations applicable to parallel mechanisms with redundancy will

be derived. Active joints which can determine and describe all movements of parallel

mechanisms will be strictly defined. Mechanism DOF and end-effector DOF will be

distinguished, a set of numerical approaches to calculate them will be provided and

the definition of mechanism redundancy will be given. Joints in parallel mechanisms

will be divided into two parts by selection matrices, active joints and passive joints,

the movement relation between them will be derived. Finally the movement relation

between active joints and end-effector will be presented. In the end of this chapter,

manipulability of parallel mechanisms will be discussed, the conclusion will be used

in the next chapter.

In Chapter 3, a set of approaches to improve movement accuracy of parallel mech-

anisms will be introduced. Kinematic sensors will be amounted to these joints, some

active joints with better error performances will be picked out as sensing joints by

evaluation measures, their accuracy movement information will be converted and

delivered to driving joints to improve movement accuracy of parallel mechanisms.

In Chapter 4, Two numerical examples will be presented to verify some deriva-

tions and conclusions in chapter 2, high accuracy movement of parallel mechanisms

will be simulated by using methods in chapter 3. Selection and use of sensing joints

will be concretely introduced, and some significant improvements in some accuracy

deteriorating areas will be seen from results of simulations.

In Chapter 5, A summary about works in the thesis will be given.
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Chapter 1

Introduction

1.1 Parallel Mechanisms

In recent years, Parallel Mechanisms have attracted more and more interests on

robotics research and application. A parallel mechanism (PM) shown in Fig.1.1 is a

multi-DOF (degree of freedom) mechanism composed of one moving platform (or

end-effector) and one base connected by at least two serial kinematic chains with

multiple joints. All kinematic chains are parallel to each other, any of them can be

looked as one single serial mechanism from the base to the end-effector, and they

are also called legs or limbs.

The first application of PMs is in 1954, when a six-legged PM with six prismatic

actuators was invented and used as a tire testing machine shown in Fig.1.2 by V. E.

Gough. Its design later was publicized in a 1965 paper by D.Stewart, so it is called as

Gough-Stewart platform. Compared to conventional serial mechanisms (SMs), PMs

have many outstanding advantages such as higher payload ability, higher accuracy

and higher structural rigidity, as well as high speed [1][2].

In term of these good properties of PMs, lots of applications have been devel-

oped, such as flight simulators shown in Fig.1.3, satellite dish positioning shown in

Fig.1.4, machine tool shown in Fig.1.5, haptic devices shown in Fig.1.6, medical
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1.2. Background Research on Parallel Mechanisms 2

robots shown in Fig.1.7, alignment devices shown in Fig.1.8, coordinate measuring

machines as well as force sensors even weapon systems shown in Fig.1.9. Some

of PMs have been popular mechanism, such as the Gough-Stewart platform and the

Delta robot shown in Fig.1.10. Now they have covered a wide range of application

fields, for instance, assembly, inspection, processing etc. [3]-[7].

1.2 Background Research on Parallel Mechanisms

Though many types of PMs have been proposed and lots of them have been also

applied to many fields, due to some drawbacks such as smaller workspace, compli-

cated kinematics, many further works are still needed to be done.

Now researches on PMs mainly focused on the following a few aspects:

1. New structure, new applications and optimization of architecture

2. Kinematics, movement planning, control and algorithm

3. Movement accuracy and error evaluation

Fig. 1.1: Schematic representation of a parallel mechanism

2



1.2. Background Research on Parallel Mechanisms 3

Fig. 1.2: Original Gough-Stewart platform Fig. 1.3: Flight simulator

Fig. 1.4: Satellite antenna Fig. 1.5: Variax from Giddings & Lewis

4. Stiffness, vibration

Exploration of the new structure is in order to generate desired movements, achieve

better movement requirements and architecture optimization is to obtain bigger move-

ment space, best movement quality or higher movement accuracy. Some new struc-

tures are being continually developed, such as lower-mobility parallel mechanisms

[8]-[13], serial-parallel mechanisms [14] and hybrid kinematic mechanisms. Lower-

mobility PMs have been used to achieve some particular movements. Hybrid kine-

3



1.2. Background Research on Parallel Mechanisms 4

Fig. 1.6: A 3-DOF Spherical Haptic Device Fig. 1.7: Medical robot

Fig. 1.8: A active secondary mirror for Telescope from IPA

matic machine tools, where two PMs are used cooperatively, are to realize flexible

motions. Moreover some attempts, which add redundant joints to kinematic chains

of PMs to avoid singularity and enlarge workspace, have been also seen [15].

Kinematics are essential in all researches of PMs, no matter architecture opti-

mization, movement planning, or others, kinematic relations must be firstly estab-

lished.

In former researches, some works about kinematic relation of parallel structures

4



1.2. Background Research on Parallel Mechanisms 5

Fig. 1.9: a lightweight steerable gun mount based on a Stewart platform from Terra Engineering

Fig. 1.10: Delta robot from ABB

have been done. Stefan Dutr ´e provided one closed-form expression about the ve-

locity closure, then derived a analytical Jacobian for 6-DOF parallel manipulator by

using selection-matrices [16]. Doik kim suggested a approach to obtain the instan-

taneous kinematic relation by extending screw theory [17][18]. C.M.Gosselin and

J.Angeles gave one Jacobian of parallel manipulator for singularity analysis [19].

5



1.2. Background Research on Parallel Mechanisms 6

However the PMs with redundancy has not still been touched in these researches,

and a set of kinematic relations capable to be applied to PMs with redundancy has

not been found. It will limit applications and developments of PMs and some good

ideas,such as [15] will be hardly applied widely because of lack of a set of universal

methods to do with direct-kinematics of parallel mechanisms with redundancy. So it

is very necessary to find a set of universal and effective methods to build kinematic

relations, especially capable to be used to PMs with redundancy.

As another important aspect of researches about PMs, the accuracy analysis, er-

ror model and error compensation also drew greatly attention, especially when PMs

were applied to machine tools, medical robots, alignment devices, coordinate mea-

suring machines as well as force sensors.

The accuracy of PMs relies on many factors, such as manufacturing tolerances

and clearances, assembly errors, the actuator control errors, movement planning and

algorithms, even imperfections from the architecture design, elastic deformations

and thermal deformations also will degrade it. Some of these error sources can be

calibrated, analyzed and evaluated by establishing effective error models.

Some papers have discussed the accuracy of PMs. In [20] the error analysis

to a serial-parallel hybrid type PM was done and an error model caused by link

dimensions was derived by using the differential vector. In [21] an error model was

established, then the efficient particle swarm optimization approach was used to a

translational 3-PUU on the base of this model. A set of algorithm to estimate the

pose error of PMs was contributed, which was derived from some basic models of

joint clearances and clearance constraints in [22]. The influence of manufacturing

error on the accuracy of a Steward platform was discussed in [23]. Several papers

also introduced the accurate movement control on PMs [24].

However studies on improving the movement accuracy of a given PM is very

6



1.3. Purpose of This Research 7

rare. Better accuracy is always expected to a given PM, so it is very necessary to

find new methods to improve the movement accuracy of PMs. Moreover accuracy

deterioration also will cause some movement areas of PMs unable to be used and

the cost of the whole mechanism will also rise significantly with using of precision

machining technology and high precision control components for seeking a good

accuracy. If ways to improve the movement accuracy of PMs can be found without

any modifications of the hardware, the workspace of PMs will be expanded and the

cost will be reduced too.

The paper [24] introduced an error compensation method by using a PSD sensor

amounted to the end-effector. which can directly provide the movement information

of the end effector to the controller without any kinematic or dynamic inaccuracy.

Unfortunately this method can not be completely used in many cases like a work

condition full of smoke, although this method achieved a quite high movement ac-

curacy.

However the paper disclosed a fact that if more accurate movement information

is obtained, movement accuracy of PMs can be improved. Fortunately structure of

PMS provide possibility for obtaining more accurate information, because they are

with lots of passive joints, accurate movement information can be probably gotten

from these joints.

1.3 Purpose of This Research

In this thesis we will discuss the two things:

1. To find a set of universal method to establish direct kinematic relations of par-

allel mechanisms. Especially they will be demanded to apply to parallel mech-

anisms with redundant joints.

7



1.4. Organization of This Thesis 8

2. To provide a set of approaches to improve movement accuracies of parallel

mechanisms by using more accurate movement information from joints.

1.4 Organization of This Thesis

This thesis will be organized as follows:

1. In chapter 2, kinematics of parallel mechanism will be discussed. A set of

universal kinematic relations applicable to parallel mechanisms with redundant

joints will be derived. Active joints that can determine all movements of par-

allel mechanisms will be strictly defined. Mechanism DOF and end-effector

DOF will be distinguished. The definition of mechanism redundancy will be

given. Then joints of parallel mechanisms will be divided into two parts, active

joints and passive joints, the kinematic relation of them will be derived. Finally

the kinematic relation between active joints and end-effector will be presented.

In the end of this chapter, manipulability of parallel mechanisms will be dis-

cussed, its result will be used in the next chapter as a base of discussions.

2. In chapter 3, some approaches to improve movement accuracy of parallel mech-

anisms will be discussed by using more accurate movement information from

joints. Kinematic sensors will be amounted to passive joints and some joints

with better error performances will be picked out as sensing joints by evalu-

ation measures, their accuracy movement information will be converted and

delivered to driving joints to improve movement accuracy of parallel mecha-

nisms. The chapter will firstly discuss error performances on the end-effector

of different active joints, then selection and usage of sensing joints will be in-

troduced.

3. In chapter 4, a 2-DOF planar PM and 3-DOF spatial PM with redundancy as

8



1.4. Organization of This Thesis 9

numerical examples will be provided to demonstrate how to use equations in

chapter 2 and verify their validity. And high accuracy movement of parallel

mechanisms will be simulated by using methods in chapter 3 and selections

and usage of sensing joints will be concretely introduced. Some outstanding

improvement in some areas of accuracy deterioration will be seen.

4. Finally, a summary about the thesis will be given.

9



Chapter 2

Kinematics of Parallel Mechanisms

2.1 Introduction

In robotic mechanism, movements of the end-effector are realized by joints, or

they are decided by movements of joints. Different from SMs, because all kinematic

chains were rigidly connected together on the end-effector, movements of kinematic

chains are affected each other in PMs. All kinematic chains will own the same

position and velocities on the end-effector, movements of the end-effector and joints

can be decided by only a part of joints. Movement relations in PMs can be divided

into the one from the part of joints to other joints (or all joints) and the one from the

part of joints to the end-effector.

It can be also explained from the viewpoint of movement space. Movements of

all joints can be seen as one space, called as the joint movement space, movements

of end-effector can be seen as another space, called as the movement space of end-

effector. If there are no constraints, movements of all chains and joint movements

on each of kinematic chains are free and independent, and movement relations will

be mappings from the subspace of the joint movement space from each of kinematic

chains to the movement space of the end-effector. Because all kinematic chains

were rigidly connected together on the end-effector and own a common end-effector,

10



2.2. Movements and DOFs of Parallel Mechanisms 11

movements of kinematic chains are affected each other, movements of joints are not

independent, and movements from a part of joints can determine movements of other

joints and end-effector, or all movements in PMs can and only need be decided or

described by part joint movements. This part of joints will be called asActive Joints,

the rest part of joints will be called asPassive Joints. Movement relations in PMs

will be mappings from the subspace of the joint movement space from part joint

movements to the movement space of the end-effector and from the subspace to the

joint movement space. The dimensionality of the subspace of the joint movement

space will be decided by the quantity of part joints, such subspaces are not unique.

In this chapter, DOFs, redundancies, movement relations and the manipulability

of PMs will be discussed in sequence.

2.2 Movements and DOFs of Parallel Mechanisms

2.2.1 Symbols and Definitions in this chapter

Some basic definitions about PMs will be firstly given with reference to Fig.1.1.

Kinematic chain refers to one assembly of rigid bodies connected by joints, all of

them begin from the base and end at the end-effector in PMs, own the same position

and velocities (or displacements) on the end-effector. The displacement vector on

the end-effector can be written as:

∆⃗xe=
[

∆xe ∆ye ∆ze ∆αe ∆βe ∆γe

]T
(2.1)

If the PMs containsm kinematic chains, the joint displacement vector of theith

kinematic chain can be written as follows:

∆θ⃗i =
[

∆θi1 ∆θi2 ... ∆θini

]T
(2.2)

The symbol,∆θi j , means one joint displacement locating to the jth joint of the ith

11



2.2. Movements and DOFs of Parallel Mechanisms 12

chain,θi j , andni is the quantity of joints on this chain. Joint displacements of all

chains composed one joint displacement vector,

∆θ⃗ =
[

∆θ⃗1
T

∆θ⃗2
T

... ∆θ⃗m
T
]T

. (2.3)

The total quantity of joints in PMs is

N =
m

∑
t=1

n j . (2.4)

2.2.2 Position and Velocity Constraints

In PMs, all serial kinematic chains are rigidly connected together, all serial kine-

matic chains own the same position and movements on the end-effector. It is called

asStructural Constraint, or respectively called asPosition ConstraintandVelocity

Constraint[16].

Position constraint can be described as a set of nonlinear transition matrix rela-

tions, and written as:

Te = T11 T12 ... T1n1

= ... ... ... ...

= Tm1 Tm2 ... Tmnm

(2.5)

The symbolTe is the transition matrix from the base to end-effector along any

serial chain, and the symbolTi j is the transition matrix over thejth joint of the ith

chain. Position constraint is mainly used to do with the inverse kinematics of PMs,

it will be used to calculate original positions of all kinematic chains.

Velocity constraint can be described by the following kinematic relation.

∆ x⃗e = J1 ∆θ⃗1

= J2 ∆θ⃗2

= ... ...

= Jm ∆θ⃗m

(2.6)

12



2.2. Movements and DOFs of Parallel Mechanisms 13

The symbolJi is the Jacobian matrix of theith chain, it can be obtained by many

methods, D-H coordinate method will be used [25] in this study. From Eq.2.6, the

closed-form expression of velocity constraint can be obtained as follows:

J1 −J2 0 ... 0

J1 0 −J3 ... 0

... ... ... ... ...

J1 0 0 ... Jm




∆ θ⃗1

∆ θ⃗2

...

∆ θ⃗m


∆= A ∆θ⃗ = 0 (2.7)

All discussions and derivations in this study will be based on velocity constraint

to do.

2.2.3 Mechanism DOF and End-effector DOF

In practical robotic mechanism all the movements should be knowable and con-

trollable. Different from SMs, PMs contains at least two kinematic chains and joint

movements in every chains are dependent because of the structural constraint, and

movements of the mechanism can be realized by controlling movements of active

joints.

The quantity of active joints by which all movements of PMs can and only need be

decided is namedMechanism DOF. It is equal to the dimensionality of the subspace

from the joint movement space.

Mechanism DOF can be calculated by many methods, the most well-known one

among them is:

Na = λ (nl −n j −1)+Σn j (2.8)

the symbolNa is the mechanism DOF of the PM,nl is the quantity of links,n j is

the quantity of joints, andNj is DOF of the jth joint, the symbolλ is 6 in spatial

13



2.2. Movements and DOFs of Parallel Mechanisms 14

mechanisms or 3 in planar mechanisms. This equation is so simply and widely used,

but it can’t apply to all PMs [26].

Mechanism DOF can also be calculated from the movement space of joints. From

velocity constraint, the displacement vector∆θ⃗ can be obtained as follows:

∆ θ⃗ =
(

IN −A+A
)

k⃗ (2.9)

The symbol⃗k is an arbitrary N dimensional coefficient vector, the right of Eq.2.9

is a set of total solutions of joint displacements. Because velocity Constraint is only

one factor to restrict joint movements, the dimensionality of the solution space in

Eq.2.9 must be the quantity of active joints, the mechanism DOF can be decided by

the equation as follows,

Na = Rank
(
IN −A+A

)
= N−Rank(A) (2.10)

Here the matrix in the Eq.2.9 will be written asAk for using conveniently it later.

Ak =
(

IN −A+A
)

(2.11)

The quantity of movements of the end-effector able to be realized in the whole

movement space of PMs is namedEnd-effector DOF. It is impossible that the quan-

tity of movements is greater than end-effector DOF on one position. If the quantity

of movements is less than the end-effector DOF, the end-effector is locating at a

singular position.

Movements on end-effector need to be realized by active joints. From Eq.2.6 the

following equation can be obtained:
I6(3)

I6(3)

...

I6(3)

 ∆⃗xe=


J1 0 0 ... 0

0 J2 0 ... 0

... ... ... ...

0 0 0 ... Jm

∆θ⃗ (2.12)

14



2.2. Movements and DOFs of Parallel Mechanisms 15

[ I6(3) I6(3) · · · I6(3) ]
T is a 6m× 6 matrix (or 3m× 3 in a planar PM) and its

rank is 6 (or 3), so the Eq.2.12 call be rewritten as follows,

∆⃗xe=


I6(3)

I6(3)

...
I6(3)



+
J1 0 0 ... 0

0 J2 0 ... 0

... ... ... ... ...

0 0 0 ... Jm

∆θ⃗ (2.13)

Substituting Eq.2.9 into Eq.2.13, Eq.2.14 can be obtained. It can be considered

as one total solutions of displacements on the end-effector.

∆ x⃗e=


I6(3)

I6(3)

...

I6(3)



+
J1 0 0 ... 0

0 J2 0 ... 0

... ... ... ... ...

0 0 0 ... Jm


[

IN −A+A
]

k⃗ (2.14)

The matrix of Eq. 2.14 will also be written asJk for using conveniently.

Jk =


I6(3)

I6(3)

...

I6(3)



+
J1 0 0 ... 0

0 J2 0 ... 0

... ... ... ... ...

0 0 0 ... Jm


[

IN −A+A
]

(2.15)

Eq. 2.14 is also derived from structural sonstraint which is the only one condition

to restrict all movements in the PMs. Hence, end-effector DOF can be calculated as

follows,

Ne= Rank(Jk) . (2.16)

2.2.4 Redundancies in Parallel Mechanisms

Movements able to be realized on the end-effector can not exceed three-dimensional

space, so end-effector DOF of the robotic mechanism must be equal to 6 or less than

15



2.2. Movements and DOFs of Parallel Mechanisms 16

6. And all movements on the end-effector are determined and realized by joint move-

ments of PMs, so mechanism DOF or the quantity of active Joints must be equal to

or greater than the dimensionality of the movement space on the end-effector.

When the quantity of active joints or mechanism DOF is greater than the dimen-

sionality of movement space on the end-effector or end-effector DOF, the mechanism

will be called withMovement redundancyor Mechanism redundancy.

All movements in PMs need be realized by a certain quantity of active Joints. But

sometimes movements of the end-effector in PMs with redundancy can be realized

by the insufficient quantity of joints. For example, in the PMs shown in Fig.2.1, five

joints will be needed to make up active joints to control all movements of the mech-

Fig. 2.1: A 3-DOF spatial PM with 2 redundant joints

16



2.3. Direct Jacobian of Parallel Mechanisms 17

anism, but movements of the end-effector can be realized by the first three joints

in every chains. Of course, it will make movements of all chains to be uncontrol-

lable. But in some type mechanisms, such as Steward platform which is made up by

prismatic joints and ball-joints, the mechanism will be redundant if ball-joints were

used on both ends of prismatic joint in every kinematic chain, but movements on the

end-effector are still controllable and realizable by controlling all prismatic joints.

Movements of joints are executed by actuators, all accurate movements on the

end-effector are also realized by controlling actuators of active joints. But it do not

mean that only actuators equal to quantity of active Joints are permitted to use. More

actuators can be applied to PMs, but the redundant part of them must be controlled

cooperatively with active joints to move.

When the quantity of actuators applied to PMs is greater than the quantity needed

to realize movements of the end-effector, the PMs will be called withDriving redun-

dancy.

Obviously, driving redundancy does not mean the mechanism with mechanism

redundancy. but if all movements of PMs with Mechanism redundancy can be con-

trolled, it must mean the mechanism with Driving redundancy. It is the one of rea-

sons that this thesis distinguishes joints of PMs as active joints and driving joints to

avoid confusions.

2.3 Direct Jacobian of Parallel Mechanisms

As well known from section 2.2, movements of joints in PMs are dependent, all

movements of the PMs can be realized by controlling movements of active joints.

In this section, the displacement relation from active joints to end-effector will be

established.

17



2.3. Direct Jacobian of Parallel Mechanisms 18

2.3.1 Selection Matrices

Marking displacements of active joints as one vector∆θ⃗a and its quantity of joints

asNa, writting displacements of passive joints as one vector∆θ⃗u, its quantity of joints

asNu (= N−Na), joint displacements in PMs can be written as follows [16],

∆θ⃗ = IN ∆θ⃗

= φa ∆θ⃗a + φu ∆θ⃗u

=
[

φa φu

] ∆θ⃗a

∆θ⃗u

 (2.17)

The matrixIN is a identity matrix withN dimension.φa ∈ RN×Na, Rank(φa) =

Na, is the matrix built by extracting the column vectors fromIN with correspondence

with displacements of active joints.φu ∈ RN×Nu, Rank(φu) = Nu, is the remaining

part of the identity matrixIN extracted. They are called as selection matrices.

Selection matrices,φa andφu, are a pair of orthogonal matrices and following

relations can be obtained [16]. ∆ θ⃗a = φT
a ∆ θ⃗

∆ θ⃗u = φT
u ∆ θ⃗

(2.18)

2.3.2 Movement Relation between Joints in Parallel Mechanisms

Multiplying matrix A to both sides of Eq.2.17, the equation

A ∆ θ⃗ = Aφa∆ θ⃗a+Aφu∆ θ⃗u = 0 (2.19)

can be gotten. It can be rewritten as follows,

Aφu∆ θ⃗u = −Aφa∆ θ⃗a (2.20)

In this equation,Aφu ∈ R6(m−1)×Nu(∈ R3(m−1)×Nu) and Rank(Aφu) = Nu, so the

following equation can be obtained.

∆ θ⃗u = − (Aφu)
+Aφa∆ θ⃗a (2.21)

18



2.3. Direct Jacobian of Parallel Mechanisms 19

Substituting Eq.2.21 to Eq.2.17, the displacement mapping from active joints to

all joints can be obtained:

∆ θ⃗ = [φa−φu(Aφu)
+Aφa]∆ θ⃗a

= AΦ∆ θ⃗a

(2.22)

2.3.3 Direct Jacobian of Parallel Mechanisms

Substituting Eq.2.22 to Eq.2.13, the next equation can be gotten:

∆ x⃗e=


I6(3)

I6(3)

...

I6(3)



+
J1 0 0 ... 0

0 J2 0 ... 0

... ... ... ... ...
0 0 0 ... Jm

Aφ ∆θ⃗a (2.23)

It is an equation determined the instantaneous kinematic relation from active

joints to the end-effector. Obviously, Jacobian matrix in the PMs can be written

as:

Ja =


I6(3)

I6(3)

...

I6(3)



+
J1 0 0 ... 0

0 J2 0 ... 0

... ... ... ... ...

0 0 0 ... Jm

Aφ (2.24)

The Jacobian matrixJa (∈ RNe×Na), Rank(Ja) = Ne is a mapping matrix from

movement space of active joints to the movement space on the end-effector.

At the initial design stage, it is often needed to know which set of joints can be

used as active joints. Here one method to identify will be provided. As is metioned

above, because the mechanism DOF of PMs is always equal to the quantity of active

joints, joints can be chosen arbitrarily, the sub-matrix can be extracted from the

matrix in Eq.2.13 with correspondence to active joints. Examining its rank, if this

19



2.4. Manipulability of Parallel Mechanism 20

rank is equal to mechanism DOF, this set of joints will be able to be used as active

joints.

2.4 Manipulability of Parallel Mechanism

Manipulability indicates the level of difficulty to realizes movements on the end-

effector in all directions of the movement space by controlling joints. In SMs, Ma-

nipulability is unchanged at any a given position. But in PMs, it will be able to to be

changed by choosing different active joints. Now the ellipsoid of manipulability in

PMs will be given.

Similarly to SMs, the ellipsoid of manipulability in PMs can be written as follows:

(∆X⃗e)
T(J+a )TJ+a ∆X⃗e≤ 1 (2.25)

Singular value decomposition can be done toJ+a ,

J+a =VΣ+UT , (2.26)

matrices U∈ RNe×Ne and V∈ RNa×Na are two orthogonal matrices.

The matrixΣ+ is Na×Ne matrix, it can be written as:

Σ+ =



σ−1
1 0 ... 0

0 σ−1
2 ... 0

... ... ... ...

0 0 ... σ−1
e

0 0 ... 0

... ... ... ...

0 0 ... 0


(2.27)

theσi is the ith axial length of ellipsoid. Axises of the manipulability ellipsoid can

be written as follows:

[ σ1⃗u1 σ2⃗u2 ... σe⃗ue ] (2.28)

20



2.5. Conclusion 21

It gave all directions of movement realizable on end-effector and the level of

difficulty to realize these movements in these directions of movement space.

2.5 Conclusion

In PMs, all movements of mechanism can be realized by controlling movements

of active joints. This chapter distinguished DOFs of PMs, derived two the instanta-

neous kinematic relations applicable to all PMs, the one is from active joints to all

joints and the other is from active joints to the end-effector. In final the manipulabil-

ity of the PMs was given.

A significant fact about PMs is disclosed that manipulability of PMs can be

changed by choosing different active joints. It made it possible to realize better

movement control on the end-effector by selecting different active joints [28].
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Chapter 3

Movements Accuracy Improvement of

Parallel Mechanisms

3.1 Introduction

The chapter will discuss the movement accuracy improvement of PMs. Lots of

sensors will be amounted to passive joints, the movement information of joints will

be obtained and recognized. Usable information will be converted into real-time po-

sitions and velocities of driving joints, then they will be transfered to driving joints

to realize desired movements of PMs. It can be seen as another redundancy,Infor-

mation Redundancy. Error performances will vary with variety of the position of the

end-effector and active joints with better or more accurate movement information

can be found at any a given position.

3.2 Error Performance on End-effector of Different Active Joints

and Evaluation

As well known, actuators can be allocated to any joints possible in PMs, but tak-

ing into account the good dynamic response and high-speed movements of the end-
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3.2. Error Performance on End-effector of Different Active Joints and Evaluation 23

effctor, they were usually fixed to those joints relatively near the base. In this study

allocation of driving joints will not be changed, but accuracy of movement informa-

tion will be promoted by using sensors of different active joints. Error performances

on end-effector of different active joints will firstly be discussed.

3.2.1 Establishment of Error Models

Joint errors are transfered by links and joints along each kinematic chains in PMs.

Regardless of manufacturing and assembly errors from links and joints, the transition

matrix of actuator control errors will be same as the Jacobian from active joints to

the end-effector. It can be derived in a variety of ways, here the algebraic method in

chapter 2 will be used, and its derivation will be introduced in brief as follows.

Firstly all coordinate frames in PMs will be set along kinematic chains from the

base to end-effector with the D-H coordinate method, the Jacobian of each kinematic

chain will derived by referring to [25], the error formula ofi th kinematic chain can

be written as

δXe = Ji δΘi, (3.1)

where the symbol,δXe =(δxe, δye, δze, δαe, δβe, δγe )
T is one error vector on

the end-effector, andδΘi = (δθi1, δθi2, · ··,δθini )
T is joint error vector of thei th

kinematic chain.

Error formulas from all kinematic chains,

δXe = J1 δΘ1

= J2 δΘ2

= · · ·

= Jm δΘm

(3.2)

can be obtained.
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3.2. Error Performance on End-effector of Different Active Joints and Evaluation 24

It can be rewritten as

δXe=


I6(3)

I6(3)

...

I6(3)



+
J1 0 0 · · · 0

0 J2 0 · · · 0

... ... ... ... ...

0 0 0 · · · Jm

δΘ, (3.3)

whereδΘ =
[

δΘ1
T δΘ2

T · · · δΘm
T
]T

.

From Eq.3.2, the next formula can be derived
J1 −J2 0 · · · 0

J1 0 −J3 · · · 0

... ... ... ... ...

J1 0 0 · · · Jm




δ Θ1

δ Θ2

...

δ Θm

= A δ Θ = 0. (3.4)

Using a pair of selection matrices,φa andφp, to PMs, the joint error vector will

be divided into two parts,δΘa from active joints andδΘp from passive joints,

δ Θ =

=

=

IN δ Θ

φa δ Θa + φp δ Θp[
φa φp

] δ Θa

δ Θp

 .

(3.5)

From Eq.3.4 and 3.5, error projections on passive joints of active joints can be

gotten,

δΘp = − (Aφp )
+Aφa δΘa. (3.6)

From Eq.3.5 and 3.6, the error formula from active joints to all joints can be

obtained,

δΘ =
[
φa−φp(Aφp)

+Aφa
]

δΘa = AΦ δΘa. (3.7)
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3.2. Error Performance on End-effector of Different Active Joints and Evaluation 25

AΦ is error transition matrix from active joints to all joints, error performances on

the driving joints of active joints can be discussed by this matrix.

Finally substituting Eq.3.7 to Eq.3.3, the error model from active joints to the

end-effector will be obtained,

δXe=


I6(3)

I6(3)
...

I6(3)



+
J1 0 0 · · · 0

0 J2 0 · · · 0

... ... ... ... ...

0 0 0 · · · Jm

 AΦ δΘa

= Ja δΘa.

(3.8)

Error model from active joints to the end-effector has been built, it will be used

to analyze error performances of different active joints.

3.2.2 Error Performances on the End-effector from Different Active Joints

The discussion will be begun from a 1-DOF PM, it is shown in Fig.3.1 and can

produce one movement along the rod. Before this discussion,HypothesisI in this

thesis will be firstly given, that is all senors used in the discussion are assumed at the

same level of accuracy.

Because any one of joints can be used as active joints, the joint 1, 2 and 3 will

be respectively selected to study. Setting coordinate frames as shown in Fig.3.1,

Jacobians from the 1st and 2nd kinematic chain can be respectively given as follows,

J1=


−sin(θ1) l1−sin(θ1+θ2) l2 −sin(θ1+θ2) l2 0

cos(θ1) l1+cos(θ1+θ2) l2 cos(θ1+θ2) l2 0

1 1 1

 (3.9)

J2 =
[

1 0 0
]T

. (3.10)
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If joint 1 is selected as active joints, error transition matrix from the joint 1 to all

the joints can be gotten from Eq.3.7,

AΦ =


1

−1− l1cos(θ1)sec(θ1+θ2)/l2

l1cos(θ1)sec(θ1+θ2)/l2

l1sec(θ1+θ2)sin(θ2)

 . (3.11)

Using Eq.3.8, the error formula from the joint 1 to the end-effector,

δXe=
[

l1sec(θ1+θ2)sin(θ2) 0 0
]T

δθ1, (3.12)

can be obtained

In the same way, error transition matrices and error formulas of all other active

Fig. 3.1: A 1-DOF PM of type 3RRR-P
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joints can be also obtained. Here error formulas of joint 2 and 3 are given respec-

tively as follows,

δXe=

[
−l1l2 sin(θ2)

l1 cos(θ1)+ l2 cos(θ1+θ2)
0 0

]T

δθ2 (3.13)

δXe=
[

l2 sec(θ1)sin(θ2) 0 0
]T

δθ3. (3.14)

Setting the margin of the joint error as|δθi|<= 0.001, denotingl1 = 140 [mm]、

l2 = 120 [mm] andH = 140 [mm], when the end-effector locates atPx = 50
√

3/2

[mm], errors on the end-effector of different active joints can be calculated by Eq.3.12

∼ 3.14 and listed at table 3.1.

Table 3.1: Errors from different active joints for the PM in Fig.3.1

Active Joint θ1 θ2 θ3

Error (|δXe|) 6 0.1936 6 0.5391 6 0.1424

Obviously errors are different when different active joints are selected at a certain

position.

Referring to Fig.3.2, Errors from different active joints also vary with the variety

of end-effector’s position in the workspace, error difference is very enormous at

some regions. At any position, joints with the more accurate movement information

can be found by evaluating their error performances on the end-effector.

3.2.3 Error Ellipsoid and Evaluation Functions

It is easy to find joints with the more accurate movement information for 1-DOF

PM and only need to compare magnitudes of errors on the end-effector of different

joints. For a multi-DOF PM, it will be difficult because error owns both magnitudes
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Fig. 3.2: Varieties of errors in workspace for the PM in Fig.3.1

and directions on the end-effector. A often used way is to evaluate error perfor-

mances on the end-effector of different active joints by their error ellipsoids.

If the error margin of each joint is limited, errors on the end-effector can only

emerge in a certain region in the movement space of the end-effector. The region

can be called as theerror region of the end-effector, and the region formed by joint

errors in the joint movement space can be named as theerror region of joints. When

joint errors from active joints is defined in one spheroid, errors on the end-effector

will be limited in one error ellipsoid in the movement space of end-effector.

Error ellipsoid can be built by Eq.3.8. Before beginning to build, the normaliza-

tion to δΘa andδXe is needed. Assuming normalized errors are respectivelyδX̂e

andδΘ̂a, from Eq.3.8, the normalized error transformation equation can be rewritten

as

δX̂e= Ĵa δΘ̂a. (3.15)

Similarly to manipulability ellipsoid, if errors of active joints are set as

δΘ̂T
a δΘ̂a ≤ 1,

the error ellipsoid can be written as

(δX̂e)
T(Ĵ+a )T Ĵ+a δX̂e≤ 1. (3.16)
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Making a singular value decomposition toĴ+a , two orthogonal matricesU , V and

all singular values can be obtained.

Ĵ+a =VΣ+UT , (3.17)

From Eq.3.16 and 3.17, the error ellipsoid can be rewritten as

(UTδX̂e)
TD iag(σ−2

1 ,σ−2
2 · · ·σ−2

na
)UTδX̂e≤ 1. (3.18)

The singular valueσi denotes magnitudes of errors along different directions de-

fined by the matrixU .

From the error transition matrix,̂Ja, three evaluation functions, also called as

Error Amplification Factors (EAF), can be obtained [27]

EAF1 =
na

∏
i=1

σi (3.19)

EAF2 = M ax(σ1,σ2· · ·σna) (3.20)

EAF3 = M ax(σ1,σ2 · · ·σna)/M in(σ1,σ2 · · ·σna) (3.21)

Three EAFs defined receptively the volume of the error ellipsoid, the maximum

singular value and the condition number. The smaller EAF means the smaller er-

ror on the end-effector. Therefore, Any one of them can be used as a criterion to

measure the accuracy. One example will be used to explain how to evaluate error

performances of different active joints by EAFs.

A 2-DOF planar PM with 5 revolute joints is shown in Fig.3.3. It has two kine-

matic chains from the base to the end-effector and two joints will be needed to realize

movements of the end-effector. Because any two of all joints can be assigned as ac-

tive joints, 10 pairs of active joints can be applied.

Error models from different active joints will be built by Eq.3.1∼3.8. Jacobians

from two kinematic chains
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Fig. 3.3: A 2-DOF planar PM of type RRR-RR

J1 =


−l1S1− l2S12− l3S123 −l2S12− l3S123 −l3S123

l1C1+ l2C12+ l3C123 l2C12+ l3C123 l3C123

1 1 1

 (3.22)

J2 =


−l4S4− l5S45 −l5S45

l4C4+ l5C45 l5C45

1 1

 (3.23)

can be derived. Here the symbol “S” and “C” respectively represent the “sin” and

“cos” function, for example, the “S12−3” means as “sin(θ1+θ2−θ3)”.

If joint 1, 4 are selected as active joints, the error transition matrix from active

joints to all joints
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AΦ =



1 0

AΦ(2,1) AΦ(2,2)

AΦ(3,1) AΦ(3,2)

0 1

AΦ(5,1) AΦ(5,2)


(3.24)

AΦ(2,1) =− l1l3S23+ l1l5S1−4−5+ l2l3S3+ l2l5S12−4−5

l2l3S3+ l5l2S12−4−5

AΦ(2,2) =
l3l4S123−4− l4l5S5

l2l3S3+ l2l5S12−4−5

AΦ(3,1) =
l1l2S2+ l1l3S23+ l1l5S1−4−5

l2l3S3+ l2l5S12−4−5

AΦ(3,2) =− l2l4S12−4+ l3l4S123−4− l4l5S5

l2S3l3+ l2l5S12−4−5

AΦ(5,1) =
l1S2

l3S3+ l5S12−4−5

AΦ(5,2) =− l3S3+ l4S12−4+ l5S12−4−5

l3S3+ l5S12−4−5

and the error transition matrix from active joints to the end-effector can be obtained.

Ja =



− l1l5S2S45

l3S3+ l5S12−4−5

−l3l4S3S4+ l4l5S12S5

l3S3+ l5S12−4−5

l1l5C45S2

l3S3+ l5S12−4−5

l3l4C4S3− l4l5C12S5

l3S3+ l5S12−4−5

l1S2

l3S3+ l5S12−4−5
− l4S12−4

l3S3+ l5S12−4−5


(3.25)

Error transition matrices of other active joints can be also derived in the same way.

Setting the margin of joint error as|δθi| <= 0.001 and denotingl1 = l2 = l3 =

l5 = 75 [mm], l4 = 75
√

3 [mm] andH = 150 [mm], when the end-effector locates at
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the position,Px = 75 [mm] andPy = 75
√

3 [mm], all EAFs and maximum errors on

the end-effector from different active joints can be calculated and active joints with

best error performances can be selected. They are listed at table 3.2.

Table 3.2: EAFs and selections of active joints for the PM in Fig.3.3

Active Joint EAF1 EAF2 EAF3

1 & 2 3247.60 107.657 3.5688

1 & 3 1948.56 58.0948 1.7321

1 & 4 9742.79 206.836 4.3911

1 & 5 3247.60 67.5591 1.4054

2 & 3 2435.70 91.8559 3.4641

2 & 4 4871.39 135.638 3.7767

2 & 5 3247.60 97.5539 2.9304

3 & 4 4871.39 135.638 3.7767

3 & 5 9742.79 307.607 9.7120

4 & 5 9742.79 155.573 2.4842

Selected Joint 1 & 3 1 & 3 1 & 5

Adjusting the order of items in table 3.2 in accordance with evaluation function

values, a new table can be gotten.

Table 3.3: Adjusting the order of items in table 3.2 in accordance with EAFs

EAF1 1948.56 2435.70 3247.60 3247.60 3247.60 4871.39 4871.39 9742.79 9742.79 9742.79

Active Joint 1&3 2&3 1&5 2&5 1&2 2&4 3&4 4&5 1&4 3&5

EAF2 58.0948 67.5591 91.8559 97.5539 107.657 135.638 135.638 155.573 206.836 307.607

Active Joint 1&3 1&5 2&3 2&5 1&2 2&4 3&4 4&5 1&4 3&5

EAF1 1.4054 1.7321 2.4842 2.9304 3.4641 3.5688 3.7767 3.7767 4.3911 9.7120

Active Joint 1&5 1&3 4&5 2&5 2&3 1&2 2&4 3&4 1&4 3&5

As is seen from Table 3.2 and 3.3, active joints with the smallest EAF can be
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found, however active joints found by different EAFs are not same and several dif-

ferent active joints own the same value of evaluation function in some EAFs.

3.2.4 Comparison Method of Error Ellipsoids (CMEE)

Evaluation of error performances from different active joints can be also done by

directly comparing their error ellipsoids on the end-effector. If the error ellipsoid of

a set of active joints is embodied wholly by the one of other sets, this set of active

joints will own better error performance on the end-effector.

Selecting active joints 1,3 and 4,5 in the PM of Fig.3.3, their error ellipsoids and

the comparison of error ellipsoids can be given in Fig.3.4. The condition above is

one very strict, and can not be met in many cases.

Fig. 3.4: Error ellipsoid and new ellipsoid after transformation

Some inclusions between error ellipsoids are extremely subtle and hardly to be

distinguished. To be easily observed or compared by computer, coordinate conver-

sion can be used to error ellipsoids, which is firstly to transform a error ellipsoid into

one spheroid by coordinate transformation, then to apply the matrix transformation

to other error ellipsoids and obtain new ellipsoids for comparisons.

With reference to Eq.3.16 and 3.17, the error ellipsoid of any active joints can be

written as (δX̂e)
T(Ĵ+i )T Ĵ+i δX̂e= (Σ+

i UT
i δX̂e)

TΣ+
i UT

i δX̂e≤ 1 (3.26)

Setting a new coordinate frameΣW , and the mapping relation of displacements

33



3.2. Error Performance on End-effector of Different Active Joints and Evaluation 34

between two coordinates

δW = Σ+
i UT

i δX̂e, (3.27)

the error ellipsoid in Eq.3.26 will be transformed into one spheroid,

δW TδW ≤ 1. (3.28)

Applying the transformation to the other error ellipsoid, a new error ellipsoid

δW T(Ĵ+a UiΣi)
T Ĵ+a UiΣiδW ≤ 1. (3.29)

can be gotten in the coordinate frameΣW .

Comparisons of error ellipsoids between active joints to driving joints in the PM

of Fig.3.3 have been made and are listed at Fig.3.5∼Fig3.13 .

Fig. 3.5: Comparison error ellipsoids for active joints 1,2

Fig. 3.6: Comparison error ellipsoids for active joints 1,3
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Fig. 3.7: Comparison error ellipsoids for active joints 1,5

Fig. 3.8: Comparison error ellipsoids for active joints 2,3

Fig. 3.9: Comparison error ellipsoids for active joints 2,4

None of error ellipsoids is included by the one of driving joints. It means error

regions of all other active joints have transcended the boundary of the error ellipsoid

of driving joints.

In fact a allowable error is often given, it can be described as a spheroid (or a

ellipsoid if accuracy requirements in directions are different) and called asallowable

error spheroid(or allowable error ellipsoid) in the movement space of the end-
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Fig. 3.10: Comparison error ellipsoids for active joints 2,5

Fig. 3.11: Comparison error ellipsoids for active joints 3,4

Fig. 3.12: Comparison error ellipsoids for active joints 3,5

effector.

Inclusions of two error ellipsoids can be divided into two cases, which is to be

holden wholly or not. As mentioned above, the evaluation of error performances

from different active joints is intend to find active joints with better accuracy than

driving joints, so comparison of error ellipsoids should be done between driving

joints and active joints.
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Fig. 3.13: Comparison error ellipsoids for active joints 4,5

Taking into account allowable error spheroid, inclusions will be distinguished

into three cases if other two cases, which error ellipsoids are included entirely by

allowable error spheroid or allowable error spheroid are holden fully by all error

ellipsoids, are disregarded,

1. the error ellipsoid is embodied wholly by the one of driving joints and allowable

error spheroid.

2. the error ellipsoid is include partly by the one of driving joints and holden

wholly by the allowable error spheroid.

3. the error ellipsoid transcended boundaries of the one of driving joints and al-

lowable error spheroid

Setting the allowable error,|errorallow| <= 0.1, comparisons of error ellipsoids

from different active joints with driving joints have been made and results will be

shown in Fig.3.14. Case 1 does not emerge, Case 2 appears in Fig.(b), (c), (d) and

(f), Case 3 is shown in Fig.(a), (e), (g), (h) and (i).

Error ellipsoids of active joints 1,3, 1,5, 2,3 and 2,5 are wholly embodied by

allowable error spheroid, hence errors from them are less than the allowable error,

they are considered with better error performances than driving joints in most regions

and meet the accuracy requirement.
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Fig. 3.14: Comparison of ellipsoids

3.2.5 Comparison Method of Error Polyhedrons (CMEP)

When all joints are set at the same accuracy level, the error region of active joints

can be described as a hypercube in joint movement space. If the hypercube is pro-

jected into the movement space of end-effector, the error region of the will be formed

on the end-effector and it will be a polyhedron with consideration of the PM with

redundancy.

Error mapping relations from the diving joints 1,4 to the end-effector is shown in

Fig.3.15, some correspondences can be seen.
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Fig. 3.15: Joint error region and error region of the end-effector

Error evaluations can be done by error polyhedrons of different active joints. Er-

ror ellipsoids and error polyhedrons from all other active joints of the PM shown in

Fig.3.3 have been drawn and shown in Fig.3.16.

Fig. 3.16: Error ellipsoids and error polyhedrons
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From Fig.3.16, it can be well known that error ellipsoids are wholly included

by error polyhedrons, and they can be determined from given error polyhedrons,

conversely error polyhedrons can not be decided by error ellipsoids.

Vertexes of the polyhedron are from projections of vertexes from the hypercube,

and the maximum error on the end-effector can be directly calculated by Eq.3.8.

So a evaluation of error performance can be done by comparing maximum errors at

vertexes of polyhedrons instead of EAF2.

Evaluations of error performances can also be done from comparisons of error

polyhedrons. When the error polyhedron on the end-effector of a set of active joints

is embodied wholly by the one of driving joints, its error performances on the end-

effector will be better than driving joints. all comparisons of error polyhedrons have

been done and shown in Fig.3.17.

From Fig.3.17, it can be known that error polyhedrons of active joints 1,2, 1,3

and 1,5 are holden totally and they can be considered with better error performances

on the end-effector.

3.3 Accuracy Improvement of Parallel Mechanisms Using the

Information of Passive Joints

In Section 3.2, error performances on the end-effector of different active joints

were discussed, some evaluation methods have been presented. Some active joints

with better error performances or more accurate movement information can be found

by these methods. In this section it will be discussed how to used these joints to

improve the movement accuracy of PMs.

A direct way is to allocate actuators and sensors to all joints, then move joints

with better error performances by switching control in different work area to realize
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Fig. 3.17: Comparisons of error polyhedrons

movements of end-effector. But the redundant weight will affect the rapid movement

of PMs, and the cost will also rise with usage of more actuators and components.

A more realistic idea is to only equip sensors to passive joints without any other

modifications, then obtain and discriminate their movement information, convert and

transfer good movement information to driving joints to realize movements.

Firstly error causes and transmission will be discussed. The otherhypothesis II

in this thesis will be given, that is movement accuracies of actuators are higher than

sensors. It means that the impact on accuracy of the actuator will be ignored.
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3.3.1 Error Causes and Transmissions

The joint error is caused by the precision of the sensor. If the accuracy of the

sensor is set at∆, the error of any joint i,δi, can be defined as

δθi = ∆θi − [
∆θi

∆
]∆ (3.30)

the symbol, [ ], represents the round function. If the precision of the sensor ap-

proaches infinity,∆ → 0, its measured result will is close to the true value,

[
∆θi

∆
]∆ → ∆θi

and the joint error will be near to zero,δθi → 0.

Movement errors of the end-effector are resulted from errors of driving joints,

can be written as

δXe= JdδΘd (3.31)

whereJd is the Jacobian of driving joints andδΘd is a vector comprises of joint

errors from driving joints.

If the projection on active joints j of joint errors from driving joints is set as∆Θ j ,

the equation

δXe= JdA j∆Θ j (3.32)

can be obtained from Eq.3.7, where the symbol,A j , is the corresponding sub-matrix

extracted from the matrixAΦ j .

From Eq.3.30, one joint error vector caused by accuracies of sensors,

δΘ j = ∆Θ j − [[
∆θ j

∆
]∆] (3.33)

can be obtained, where[[
∆θ j
∆ ]∆] is one vector from measured values of sensors.
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Measured values of sensors will be transfered to driving joints as error compen-

sations,

δc j =−A j [[
∆θ j

∆
]∆] (3.34)

Displacements of the end-effector which result from error compensations of driv-

ing joints can be written as

∆c j =−JdA j [[
∆θ j

∆
]∆] (3.35)

Rest errors on the end-effector after the compensation,

∆r j = δXe−JdA j [[
∆θ j
∆ ]∆]

= δXe−JdA j∆Θ j +JdA jδΘ j

= JdA jδΘ j

= JjδΘ j

(3.36)

can be obtained, it is equal to errors on the end-effector of active joints j and can also

be seen as projections on the end-effector of joint error from active joints j.

Due to accuracies of joints, rest errors will persist after error compensations are

made. From Eq.3.36, the error vector,δd,

δd = A jδΘ j (3.37)

can be obtained. It is comprised of projections on driving joints of joint errors from

active joints and different fromδΘd above.

Derivations above have given error causes and shown their transmission, and the

relation between joint errors and accuracies has been built. In fact, Error perfor-

mances, ellipsoids, error regions and error polyhedrons can be also discussed or

explained from the accuracy point of view. As well known, the equation

δΘ̂T
j δΘ̂ j ≤ 1 (3.38)
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represents one spheroid (or ellipsoid) in joint movement space. It can be called as

the error region of active joints, the projection of it on the movement space of the

end-effector is the error ellipsoid.

If the sphere,

δΘ̂T
j δΘ̂ j = 1 (3.39)

is looked as the boundary that the precision of sensors on active joints can reach

and named asaccuracy sphereof active joints, it will divide the movement space

of active joints into two parts, the interior and exterior of the sphere. Its interior is

the region where errors can not be measured, so they will not be detected by sensors

when errors on the end-effector are projected into the region.

The error ellipsoid and sphere above can be also defined from Eq.3.33 respec-

tively as

∥ ∆Θ j − [[
∆θ j

∆
]∆] ∥≤ 1 (3.40)

and

∥ ∆Θ j − [[
∆θ j

∆
]∆] ∥= 1 (3.41)

From Eq.3.36, 3.40, the rest error ellipsoid

(∆r j )
T(J+i )TJ+i ∆r j ≤ 1 (3.42)

can be obtained. From Eq.3.41, the projection on the end-effector ofaccuracy sphere

from active joints can be written as,

(∆r j )
T(J+i )TJ+i ∆r j = 1. (3.43)

The projection of the accuracy sphere on the end-effector will be the surface of the

error ellipsoid. It also divides the movement space of the end-effector into two parts,
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errors within the surface will be projected onto the interior of the accuracy sphere

and errors without the surface will be projected onto the exterior. Only errors outside

error ellipsoid can be measured by sensors of active joints. So the relation between

accuracies of sensors and error ellipsoids have been built.

When two error ellipsoids are compared, the movement space of the end-effector

can be distinguished into several regions shown in Fig.3.15.

Fig. 3.18: Different region in the error region of the end-effector

Setting a few positions in region A, B, C and D, projections on several different

active joints can be gotten and listed at table 3.4.

From Fig.3.15 and table 3.4, positionPa in region A is without all error ellipsoids,

so its errors can be captured by sensors of all active joints,Pb in region B is inside the

error ellipsoid of active joints 3,5 and outside the one of driving joints, so its errors

can be detected by sensors of driving joints but can not be done by sensors of active

joints 3,5. ContrarilyPc in region C is included by the error ellipsoid of driving joints

and outside active joints 3,5, so its errors can be detected by sensors of active joints

3,5 but can not be done by sensors of driving joints.Pd in region D is within all error

ellipsoids, so its errors can not be measured by sensor of any active joints.
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Table 3.4: Projections on different active joints from errors of the end-effector

Position
δx,δy

(×10−3mm)

Active Joints Active Joints Active Joints

1 4 1 3 3 5

Pa 200,170
-0.005

(-0.005346)

-0.001

(-0.001540)

-0.005

(-0.005346)

-0.002

(-0.002994)

-0.002

(-0.002994)

0

(-0.000727)

Pb -150,-60
0.003

(0.003110)

0.001

(0.001155)

0.003

(0.003110)

0

(0.000445)

0

(0.000445)

0

(-0.000355)

Pc -80,110
0

(-0.000235)

0

(0.000616)

0

(-0.000235)

-0.003

(-0.003550)

-0.003

(-0.003550)

-0.002

(-0.002083)

Pd -60,40
0

(0.000041)

0

(0.000154)

0

(0.000041)

0

(-0.000687)

0

(-0.000687)

0

(-0.000421)

It needs to be noted that round-down function has been used in calculations in

table 3.4, if round function is used, some reactions of errors on sensors will need to

be ignored because they are on the accuracy sphere, and errors maybe come from

the interior of the ellipsoids.

3.3.2 Two Ways to Improve Movement Accuracy of Parallel Mechanisms

Active joints that present accurate movement information to driving joints are

called asSensing Joints. Errors measured by sensors of sensing joints will be con-

verted, then transfered to driving joints as error compensations to modify movements

of driving joints. Movement information can be provided by one set or several sets

of sensing joints. It can be also seen as two ways to improve movement accuracy of

PMs.

W1 is to use active joints with the best error performance on the end-effector as

sensing joints, obtain their joint errors measured by sensors, convert and transfer

joint errors to driving joints to modify movements of the end-effector. It is shown in

Fig.3.19.

From Eq.3.34, the compensation equation from sensing joints to driving joints
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Fig. 3.19:W1: Using a optimum set of sensing joints

can be rewritten as,

δc =−As[[
∆θs

∆
]∆] (3.44)

the matrix,As, is the corresponding sub-matrix extracted from the mapping matrix

AΦs from sensing joints, the vector,[[∆θs
∆ ]∆], is a vector comprised of measured val-

ues of projections on sensing joints of errors on the end-effector.

Setting joint errors from driving joints,δθ1 = 0.00015 andδθ4 = −0.00042 in

the PM shown in Fig.3.3, errors on the end-effector and their projections on other

active joints can be calculated from Eq.3.7 and 3.8.

Table 3.5: Errors on the end-effector and their projections on joints

Original Error(|δXe|) δxe (mm) δye (mm) δθ1 δθ2 δθ3 δθ4 δθ5

0.09214 0.05456 -0.07425 0.00015 -0.00156 0.0024 -0.00042 0.00141

Setting the precision of joints∆ = 0.001, measured values of sensors from all

joints can be listed at table 3.6

Referring to Table 3.2, Fig.3.14 and 3.17, some optimum joints can be selected

as sensing joints by using different evaluation methods. Joint error compensations

to driving joints, error compensations on the end-effector and rest errors can be cal-
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Table 3.6: Measured values of sensors

[∆θ1
∆ ]∆ [∆θ2

∆ ]∆ [∆θ3
∆ ]∆ [∆θ4

∆ ]∆ [∆θ5
∆ ]∆

0.000 -0.002 0.002 0.000 0.001

culated from Eq.3.34∼ 3.36,

Table 3.7: Joint error compensations, error compensations and rest errors usingW1

Sensing joints 1,2 1,3 1,5 2,3 2,5

δc {0., 0.0006667} {0., 0.0004} {0., 0.0003333} {-0.001, 0.} {-0.001, 0.}

∆c {-0.0866025, 0.1} {-0.0519615, 0.06} {-0.0433013, 0.05} {0., 0.075} {0., 0.075}

∆r {-0.03204, 0.02575} {0.00260, -0.01425} {0.01126, -0.02425} {0.05456, 0.00075} {0.05456, 0.00075}

| ∆r | 0.04111 0.01448 0.02674 0.05456 0.05456

As well known from table 3.7, rest errors from all sensing joints are less than

original errors and movement accuracies of the end-effector have been improved by

error compensations.

W2 is to use all active joints or a part of active joints with better error performance

on the end-effector, obtain their joint errors measured by sensors, convert joint errors,

average and transfer them to driving joints to modify movements of the end-effector.

It is shown in Fig.3.20.

Fig. 3.20:W2: Using several sets of sensing joints
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Joint error compensations to driving joints,

δc=− 1
m

Σm
j=1{A j [[

∆θ j

∆
]∆]} (3.45)

can be obtained from Eq.3.34.

Error compensations on the end-effector,

∆c=−Jd
1
m

Σm
j=1{A j [[

∆θ j

∆
]∆]} (3.46)

can be gotten from Eq.3.35.

Rest errors can be written as

∆r = δXe−Jd
1
m

Σm
j=1{A j [[

∆θ j

∆
]∆]}. (3.47)

Selecting all active joints and a part of active joints as sensing joints respectively,

joint error compensations, error compensations on the end-effector and rest errors,

can be gotten.

Table 3.8: Joint error compensations, error compensations and rest errors usingW2

All of joints
Part of joints

1,2∥1,3∥1,5∥2,3∥2,5

δc {-0.006, 0.0014} {-0.002, 0.0014}

∆c {-0.0181865, 0.066} {-0.0363731, 0.072}

∆r {-0.03637, 0.00825} {-0.01819, 0.00225}

| ∆r | 0.03730 0.01833

As well known from table 3.8, movement accuracies of the end-effector have been

improved by error compensations. As is noted, when sensors of all joints are used in

W2, error performances of different active joints will not need to be evaluated.

The main process can be summarized as follows,

1. To find all sets of active joints from joints with sensors, then building error

models for them.

49



3.4. Conclusion 50

2. To disperse the workspace into points(xi, yi, zi), build information maps. When

W1 is used, active joints with the best error performance will be picked out by

evaluation methods and identifiers of joint selected will be recorded to the file.

WhenW2 is used, active joints with better error performances will be picked

out and saved to the file. These files can be called as theInformation Maps,

they will be different with different evaluation methods.

3. To decide sensing joints by scanning information maps when a target position

is given.

4. To convert movement information of sensing joints, transfer them to driving

joints to produce movement compensations.

3.4 Conclusion

Improvement of movement accuracy has been discussed, and better movement

accuracy on the end-effector can be achieved by using more accurate movement

information to driving joints to compensate their movements. Several evaluation

methods have been provided to find sensing joints. Error causes and transmissions,

the relation between accuracy sphere and error regions have been also discussed.

Finally two ways to improve the accuracy of the end-effector have been provided for

obtaining better movement accuracy on the end-effector.
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Chapter 4

Two Numerical Examples for Kinematics

and Movement Accuracy Improvement of

Parallel Mechanisms

4.1 Introduction

In the chapter kinematics of two PMs will be calculated by equations in chapter

2 to verify the validity of related conclusions. Then two movement simulations will

be done by using methods in chapter 3.

Detailed contents are listed as following,

1. For kinematics of PMs

(a) Calculating mechanism DOF and end-effector DOF, judging the redun-

dancy of PMs.

(b) Calculating Jacobians of PMs

(c) Discussing the manipulability with using different active joints.

2. For movement accuracy improvement of PMs

(a) Finding sensing joints and making Sensing map
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One procedure flow will be presented in Fig. 4.1, it demonstrates the way

to find sensing joints.

(b) Simulating one accurate movement of PMs along the given trajectory by

usingW1

Referring Fig.4.2, a movement simulation will be made by usingW1.

(c) Simulating one accurate movement of PMs along the given trajectory by

usingW2 with reference of Fig.4.3

4.2 Numerical Example for a 2-DOF Planar Parallel Mecha-

nism

In this section, one planar example will be done. It is a 2-DOF PM without

redundant joints.

1. For kinematics of the PM

(a) Mechanism DOF, end-effector DOF and mechanism redundancy.

Firstly Jacobians of two kinematic chains will be derived.

The PM in Fig. 3.3 is a planar structure, Jacobians of two kinematic chains

can be easily gotten by differentiating their position equations. Their posi-

tion equations and Jacobians can be respectively written as following,

i. Kinematic chain 1:{
x= l1cos(θ1)+ l2cos(θ1+θ2)+ l3cos(θ1+θ2+θ3)

y= l1sin(θ1)+ l2sin(θ1+θ2)+ l3sin(θ1+θ2+θ3)
(4.1)

J1 =


−S1l1−S1+2l2−S1+2+3l3 −S1+2l2−S1+2+3l3 −S1+2+3l3

C1l1+C1+2l2+C1+2+3l3 C1+2l2+C1+2+3l3 C1+2+3l3

1 1 1

 (4.2)
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Fig. 4.1: One procedure flow for finding sensing joints
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Fig. 4.2: One control and simulation flow to improve movement accuracy byW1
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Fig. 4.3: One control and simulation flow to improve movement accuracy byW2
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ii. Kinematic chain 2: x= l4cos(θ4)+ l5cos(θ4+θ5)

y= l4sin(θ4)+ l5sin(θ4+θ5)
(4.3)

J2 =

 −S4l4−S4+5l5 −S4+5l5
C4l4+C4+5l5 C4+5l5

1 1

 (4.4)

Setting lengths of linkages

l1 = 75 [mm], l2 = 75 [mm], l3 = 75 [mm],

l4 = 75
√

3 [mm], l5 = 75 [mm], H = 150 [mm],

if the end-effector locates at the position

Px = 75 [mm], Py = 75
√

3 [mm],

all angles of joints can be calculated by using the inverse kinematics,

θ1 = 120◦, θ2 =−60◦, θ3 =−60◦, θ4 = 90◦, θ5 = 90◦.

Substituting angles of joints, lengths of links to Eq.4.2 and 4.4, the matrix

AK can be gotten from Eq.2.7 and 2.11

Ak =



38
71 −27

71 − 2
71

20
71 −11

71

−27
71

36
71 −21

71 − 3
71 − 9

71

− 2
71 −21

71
30
71 −16

71
23
71

20
71 − 3

71 −16
71

18
71 −17

71

−11
71 − 9

71
23
71 −17

71
20
71


,

and its rank can be calculated,

Rank(Ak) = 2.

Scanning the whole movement space of the PM, the same result can be

gotten, so mechanism DOF of the PM is 2.
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The matrixJK can be obtained from Eq.2.15,

Jk =


−1500

√
3

71
225

√
3

71
1200

√
3

71 −1350
√

3
71

1275
√

3
71

−675
71

900
71 −525

71 −75
71 −225

71

9
71 −12

71
7
71

1
71

3
71

 ,

and its rank can be calculated,

Rank(Jk) = 2.

Scanning the whole movement space, the same result can be gotten, so

end-effector DOF of the PM is 2.

Because mechanism DOF of the PM is equal to its end-effector DOF, the

PM is not with mechanism redundancy.

(b) Calculating Jacobian of the PM

Select a pair of joints as active joints. Because the joint 1 and 4 have been

used in chapter 2, so a different pair, the joint 2 and 4, will be selected in

the chapter.

Selection matrices with correspondence to selected joints can be written

as

φa =


0 0

1 0

0 0

0 1

0 0



φu =


1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

 .
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From Eq.2.22, the displacement mapping matrix from active joints to all

joints,

Aφ14=



Aφ14[1,1] Aφ14[1,2]

1 0

Aφ14[3,1] Aφ14[3,2]

0 1

Aφ14[5,1] Aφ14[5,2]


Aφ14[1,1] =− l2(S3l3+S1+2−4−5l5)

l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Aφ14[1,2] =
l4(S1+2+3−4l3−S5l5)

l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Aφ14[3,1] =− l1(S2l2+S2+3l3+S1−4−5l5)
l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Aφ14[3,2] =− l4(S1−4l1+S1+2−4l2+S1+2+3−4l3−S5l5)
l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Aφ14[5,1] =− S2l1l2
l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Aφ14[5,2] =− l1(S2+3l3+S1−4l4+S1−4−5l5)+ l2(S3l3+S1+2−4l4+S1+2−4−5l5)
l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

can be derived.

Finally from Eq.2.24, the displacement mapping matrix from active joints

to the end-effector,

Ja14=


Ja14[1,1] Ja14[1,2]

Ja14[1,1] Ja14[1,2]

Ja14[1,1] Ja14[1,2]


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Ja14[1,1] =
S2S4+5l1l2l5

l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Ja14[1,2] =
l4(l1(−S2+3S4l3+S1S5l5)+ l2(−S3S4l3+S1+2S5l5))

l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Ja14[2,1] =− C4+5S2l1l2l5
l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Ja14[2,2] =
l4(l1(C4S2+3l3−C1S5l5)+ l2(C4S3l3−C1+2S5l5))

l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Ja14[3,1] =− S2l1l2
l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

Ja14[3,2] =− (S1−4l1+S1+2−4l2) l4
l1(S2+3l3+S1−4−5l5)+ l2(S3l3+S1+2−4−5l5)

,

can be gotten.

(c) Manipulability of the PM

The manipulability ellipsoid can be gotten from Eq.2.25∼2.27. Making a

singular-value decomposition to the Jacobian, axes of the manipulability

ellipsoid,Σ+, and their direction matrix,U , can be gotten.

Firstly if the joint 1 and 4 are selected as active joints,

Ua14=


−0.601065 −0.7992 0.

0.799129 −0.601012 0.0133321

−0.0106551 0.00801349 0.999911



Σ+
a14=

 0.00483447 0. 0.

0. 0.021229 0.


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Then if the joint 2 and 4 are selected,

Ua24=


−0.954453 −0.298361 0.

0.298334 −0.954368 0.0133321

−0.00397779 0.0127249 0.999911



Σ+
a24=

 0.00737251 0. 0.

0. 0.0278415 0.


Finally if the joint 3 and 4 are selected as active joints,

Ua34=


−0.954453 −0.298361 0.

−0.298334 0.954368 0.0133321

0.00397779 −0.0127249 0.999911



Σ+
a34=

 0.00737251 0. 0.

0. 0.0278415 0.


Obviously axes of manipulability ellipsoid and its direction matrix are

completely different. It verified the conclusion in chapter 2 that the ma-

nipulability of PMs will be different when different active joints are used.

2. For movement accuracy improvement of the PM

(a) i. Setting the trajectory in workspace

The movement space of the PM is shown in Fig.4.4, it was computed

by algebraic methods. The workspace will be set inside it. Here the

whole movement space will be seen as workspace. A trajectory has

been set in the workspace.
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Fig. 4.4: A target trace in the workspace of a 2-DOF PM shown in Fig.3.3

ii. Decided sensing joints by usingW1

By using the evaluation fuction, EAF1, EAF2, or EAF3, sensing joints

on each discretized point in movement space can be found, they will

be recorded to the file and form the information map of the whole

movement space with reference of the procedure flow in Fig.4.1.

A map can be gotten by one evaluation function and one using way,

so six maps will be made. All sensing joints can be found along the

trajectory from information maps.

UsingW1, all sensing joints along the trajectory have been determined

and shown in Fig.4.5. They are three sets of optimum sensing joints by

using different EAFs, only one set of active joints is selected on any a

position as sensing joints.

iii. Decided sensing joints by usingW2

Using W2, all sensing joints along the trajectory can be gotten and

shown in Fig.4.6. Several sets of active joints with better error perfor-

mances are selected on a position as sensing joints.
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Fig. 4.5: Sensing joints selected along the target trace by usingW1

Fig. 4.6: Sensing joints selected along the target trace by usingW2
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(b) Improving movement accuracy of the PM byW1

Movement Errors are offsets from the actual position to the target. Its

amplitude can be calculate from the following equation.

Error =∥ X⃗tar − X⃗act ∥ (4.5)

It will be used to measure movement accuracy as a criterion.

A movement simulation will be made along the trajectory shown in Fig.4.4.

By W1, optimum sensing joints will be used. Referring to Fig.4.2, angles

of sensing joints will be used to calculate angles of other joints by in-

verse kinematics. Displacements of sensing joints will be converted into

displacements of driving joints, then delivered to driving joints to realize

Fig. 4.7: Error on the end-effector by using theW1
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movements of the end-effector.

Movement errors are shown in Fig.4.7, the gray line is errors from driving

joints and amplitudes of errors after compensation are marked by the red

line, green line and blue line. Obviously movement accuracies have been

improved significantly.

Referring to Fig.4.8, if the end-effector at the position is located at (x=74.2mm,

y=100.37895mm) of the trajectory, angles of joints can be listed as follows,

θ1 = 150.464◦, θ2 =−121.507◦, θ3 =−6.95571◦,

θ4 = 94.6584◦, θ5 = 107.344◦

Setting the precision of joints,∆ = 0.001, when joint errors of driving

joints,δθ1→ 0.0005 andδθ4→−0.0005, they will be detected by sensors

of driving joints. Errors on the end-effector and measured values of joint

errors from sensors can be listed at table 4.1,

Selecting each set of active joints as sensing joints, joint error compensa-

Fig. 4.8: A new position for the 2DOF PM
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Table 4.1: Errors on the end-effector and measured values from sensors

Error (|δXe|) δxe (mm) δye (mm) [∆θ1
∆ ]∆ [∆θ2

∆ ]∆ [∆θ3
∆ ]∆ [∆θ4

∆ ]∆ [∆θ5
∆ ]∆

0.40062 0.20576 -0.34374 0 -0.011 0.015 0 -0.006

tions,δc, error compensations on the end-effector,∆c, and rest errors,∆r ,

can be gotten respectively from Eq.3.34∼ 3.36,

Table 4.2: Joint error compensations, error compensations and rest errors byW1

1,2 1,3 1,4 1,5 2,3

δc {0., 0.000805709} {0., 0.000743662} {0, 0} {0., 0.000798097} {-0.001197, 0.000150}

∆c {0.25188, -0.35668} {0.23248, -0.32921} {0., 0.} {0.24950, -0.35331} {0.16552, -0.35992}

∆r {-0.04611, 0.01294} {-0.02672, -0.01453} {0.20576, -0.34374} {-0.04373, 0.00957} {0.04024, 0.01618}

| ∆r | 0.04790 0.03041 0.40062 0.04477 0.04337

2,4 2,5 3,4 3,5 4,5

δc {-0.00147336, 0.} {-0.00009684, 0.000752} {-0.00150209, 0.} {0.002028, 0.001748} {-0.00170446, 0.}

∆c {0.14573, -0.36066} {0.24490, -0.35694} {0.14857, -0.36769} {0.34575, -0.27727} {0.16859, -0.41723}

∆r {0.06003, 0.01692} {-0.03914, 0.01320} {0.05720, 0.02400} {-0.13999, -0.06647} {0.03717, 0.07349}

| ∆r | 0.06237 0.04130 0.06200 0.15496 0.08236

Referring to Fig.4.5, active joints 1,3 and 1,5 will be respectively selected

as sensing joints in this movement simulation byW1. As well known from

table 4.2 or Fig.4.7, movement accuracies on of the end-effector have been

greatly improved by compensating joint errors of driving joints.

(c) Improving movement accuracy of the PM byW2

By W2, several sets of sensing joints will be used. Referring to Fig. 4.3,

angles of sensing joints will be summed, then averaged to calculate angles

of other joints. Displacements of sensing joints will be converted into

displacements of driving joints, they will be averaged, then delivered to

driving joints to realize movements of the end-effector.

Movement errors are shown in Fig.4.9, obviously movement accuracies

have also been improved greatly.

Referring to Fig.4.6, if the evaluation function, EAF1, is used, nine sets of

active joints will be selected as sensing joints, if the evaluation function,
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Fig. 4.9: Error on the end-effector by using theW2

EAF2, is used, all active joints will be selected,if the evaluation function,

EAF3, is used, four sets of active joints will be selected. Joint error com-

pensations, error compensations of the end-effector and rest errors can be

calculated from Eq.3.43∼ 3.45.

Table 4.3: Joint error compensations, error compensations and rest errors byW2

δc ∆c ∆r | ∆r |

EAF1 {-0.00224321, 0.00499801} {-0.19826, 0.30685} {0.00750, -0.03686} 0.037641

EAF2 {-0.00394767, 0.00499801} {-0.19530, 0.31789} {0.01047, -0.02585} 0.02789

EAF3 {-0.00170446, 0.00154176} {-0.1626, 0.2749} {0.04312, -0.06880} 0.08120

As well known from table 4.3 or Fig.4.9, movement accuracies on of the
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end-effector have been greatly improved by error compensations to driving

joints byW2.

From Fig.4.8 and 4.9, movement errors before compensations are very

enormous in some regions, it will make these regions unusable for the

accuracy degradation and the workspace narrower. After compensations,

movement accuracy have gotten great improvement in these areas, the

workspace will be expanded with accuracy improvement.

4.3 Numerical Example for 3-DOF Spatial Parallel Mechanisms

In this section, one spatial example will be given. It is a 3-DOF PM with 2

redundant joints.

1. For kinematics of the PM

(a) Mechanism DOF, end-effector DOF and mechanism redundancy

Referring to Fig.2.1, lengths of all linkages in the PM are set at 120 [mm],

and origins of initial coordinate frames of every kinematic chain are shown

as follows,

Σi = ΣO + [ 240 0 0 ]T .

Σii = ΣO + [ 0 240 0 ]T .

Σiii = ΣO + [ 0 240 320]T .

A set of angles of joints can be set as:

θ⃗ = [ θ11 θ12 θ13 θ14 t1 θ21 θ22 θ23 θ24 t2 θ31 θ32 θ33 t3 ]

= [ 25.8253◦ −32.1680◦ −120.0573◦ 36.4001◦ −34.2373

13.5270◦ −32.0570◦ −109.774◦ −38.3040◦ −32.4311

−0.0318◦ −119.731◦ 29.7628◦ 28.0700 ]
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From Eq.2.11, the matrixAk can be gotten as follows.

Ak =



0.1970 −0.3031 0.2272 −0.1212 0 0 0

−0.3031 0.4663 −0.3496 0.1864 0 0 0

0.2272 −0.3496 0.2622 −0.1398 0 0 0

−0.1212 0.1864 −0.1398 0.0746 0 0 0

0 0 0 0 0.9998 0.0045 −0.0005

0 0 0 0 0.0045 0.1801 −0.2983

0 0 0 0 −0.0005 −0.2983 0.4943

0 0 0 0 −0.0043 0.2198 −0.3642

0 −0.0001 0 0.0001 0.0003 −0.1016 0.1682

−0.0045 −0.0009 0.0036 0.0017 0 0 0

0 0 0 0 0.0083 0 0

0 0 0 0 −0.0083 0 0

0 0 0 0 0 0 0

−0.0003 0.0062 0.0035 −0.0094 0 0.0001 0.0052

0 0 −0.0045 0 0 0 −0.0003

0 −0.0001 −0.0009 0 0 0 0.0062

0 0 0.0036 0 0 0 0.0035

0 0.0001 0.0017 0 0 0 −0.0094

−0.0043 0.0003 0 0.0083 −0.0083 0 0

0.2198 −0.1016 0 0 0 0 0.0001

−0.3642 0.1682 0 0 0 0 0.0052

0.2684 −0.1240 0 0 0 0 0.0031

−0.1240 0.0574 0 0 0 0 −0.0085

0 0 0.9998 −0.0048 −0.0048 0.0096 0

0 0 −0.0048 0.0001 0 0 0

0 0 −0.0048 0 0.0001 0 0

0 0 0.0096 0 0 0.0001 0

0.0031 −0.0085 0 0 0 0 0.9998


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It needs to be ranked for calculating mechanism DOF of the PM. A singu-

lar value decomposition to the matrix is recommended to use for avoiding

errors with numerical calculations. The results is written below,

[ 1 1 1 1 1 0 0 0 0 0 0 0 0 0] T .

so the rank of the matrix is 5.

Scanning the whole movement space, the same result can be gotten, so the

mechanism DOF of the PM is 5.

From Eq.2.15, the matrixJk can be obtained as follows,

Jk =



−0.0003 0.0062 0.0035 −0.0094 0 0.0001 0.0052

0.0045 0.0009 −0.0036 −0.0017 0 0 0

0 0 0 0 0.9998 0.0045 −0.0005

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.0031 −0.0085 0 0 0 0 0.9998

0 0 −0.9998 0.0048 0.0048 −0.0096 0

−0.0043 0.0003 0 0.0083 −0.0083 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


Making a singular value decomposition to this matrix, the result below can

be obtained,

[ 0.9999 0.9999 0.9999 0 0 0] T

so the rank of this matrix is 3. The same result can be obtained by scanning

the total movement space, so the end-effector DOF of the PM is 3.

Comparing the end-effector DOF and mechanism DOF, the PM is with

mechanism redundancy.
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(b) Calculating Jacobian of the PM

Referring to Fig. 2.1, a set of joints

{θ12,θ13,θ22,θ23,θ31}

can be selected.

Extracting row vectors from the matrix,Ak, according to displacements of

selected joints, a sub-matrix can be gotten as following,

As=



−0.3031 0.4663 −0.3496 0.1864 0 0 0

0.2272 −0.3496 0.2622 −0.1398 0 0 0

0 0 0 0 −0.0005−0.2983 0.4943

0 0 0 0 −0.0043 0.2198−0.3642

0 0 0 0 0.0083 0 0

0 −0.0001 −0.0009 0 0 0 0.0062

0 0 0.0036 0 0 0 0.0035

−0.3642 0.1682 0 0 0 0 0.0052

0.2684 −0.1240 0 0 0 0 0.0031

0 0 0.0048 0.0001 0 0 0


Its rank is 5, so this set of joints can be used as active joints.

From Eq.2.17, selection matrices of selected joints can be given as follows,

φs=



0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0



T
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φu =



1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1



T

From Eq.2.24, the Jacobian can be obtained,

Jd =



46.8602 −122.6959 70.1629 0 0 0

62.4954 −163.6341 93.5731 0 0 0

52.0736 141.1727 −80.7287 0 0 0

70.6716 191.5922 −109.5608 0 0 0

39.3882 106.7824 58.9752 0 0 0



T

.

Designating a set of joint displacements

[ 0.02◦ 0.04◦ 0.06◦ 0.03◦ 2.86◦ ]T

to active joints

[ ∆θ12 ∆θ13 ∆θ22 ∆θ23 ∆θ31 ]T

all joint displacements,

∆θ⃗ = [ ∆θ11 ∆θ12 ∆θ13 ∆θ14 ∆ t1 ∆θ21 ∆θ22

∆θ23 ∆θ24 ∆ t2 ∆θ31 ∆θ32 ∆θ33 ∆ t3]

= [ 2.01◦ 0.02◦ 0.04◦−2.07◦ 2.90

1.06◦ 0.06◦ 0.03◦−1.15◦−5.43

2.86◦ 0.12◦−2.99◦ 2.12 ]

can be gotten from Eq.2.22.
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Displacements of the end-effector,

∆X⃗e= [ 2.1209 5.4302 2.8967 0 0 0] T

can be obtained from Eq.2.23.

At the same position, selecting

{θ11,θ13,θ22,θ24,θ32}

as active joints, their joint displacements have been calculated and can be

rewritten as,

[ ∆θ11 ∆θ13 ∆θ22 ∆θ24 ∆θ32]

= [ 2.01◦ 0.04◦ 0.06◦−1.15◦ 0.12◦ ],

the Jacobian of this set of active joints can be gotten as follows,

Jd =



3.3521 132.3514 76.7297 0 0 0

−2.9060 −114.7371 −66.5180 0 0 0

33.5371 14.6720 8.5060 0 0 0

−98.5089 −43.0962 −24.9847 0 0 0

−5.2995 −2.3184 −121.3055 0 0 0



T

Displacements of the end-effector

[ 2.1209 5.4302 2.8967 0 0 0] T

can be calculated from Eq.2.23.

Obviously displacements of the end-effector from two sets of active joints

are same, it proved that direct kinematic relations derived in chapter 2 are

correct.

(c) Manipulability of the PM

Manipulability ellipsoid can be gotten from Eq.2.25∼2.27.

Selecting the set of joints,
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{θ12,θ13,θ22,θ23,θ31}

as active joints, axes of the manipulability ellipsoid,

{ 368.2712 129.9061 91.6928 0 0}

and their direction matrix,

0.0695 0.8920−0.4467 0 0

−0.8651−0.1691−0.4722 0 0

0.4967−0.4192−0.7599 0 0

0 0 0 −0.7581−0.2296

0 0 0 −0.0994−0.8844

0 0 0 0.6445−0.4064


can be gotten.

Selecting the set of joints

{θ11,θ13,θ22,θ24,θ32}

as active joints, axes of the manipulability ellipsoid and their direction

matrix will be,

{ 223.5614 101.3582 95.4276 0 0}

and their direction matrix is:

−0.1690−0.7585−0.6294 0 0

0.7186 0.3422−0.6054 0 0

−0.6746 0.5546−0.4872 0 0

0 0 0 −0.5201 0.8498

0 0 0 −0.3508 −0.3035

0 0 0 0.7787 0.4309


can be gotten.

Obviously manipulability ellipsoids from different active joints are com-

pletely different. It verified the conclusion in chapter 2 once again.
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2. For movement accuracy improvement of the PM

(a) i. Setting the trajectory in workspace

For a PM with redundancy, extra movement conditions must be pro-

vided in order to control movements of redundant joints. It is in favor

of movement planing and keeping away from singular positions, but it

will make calculation more complicated and does not need to be dis-

cussed in the chapter.

To avoid complicated calculation, the PM in Fig.2.1 will be simpli-

fied, a 3-DOF PM without redundancy can be obtained and shown in

Fig.4.10.

Fig. 4.10: A 3-DOF spatial PM without redundant joints
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Fig. 4.11: A Target Trace in the Workspace of a 3-DOF PM

A trajectory is set as shown in Fig.4.11, movement simulations will be

made along this trajectory. Referring to Fig.4.2 and 4.3, error compen-

sations can be done on every position by usingW1 andW2.

Sensing joints will be decided by evaluation functions, EAF1, EAF2

and EAF3. Referring Fig.4.1, information maps, which hold identifi-

cation numbers of sensing joints selected, have been made in advance.

All identification numbers and corresponding sets of active joints have

been listed at table 4.4.

When a movement simulation is made, sensing joints on every position

along the trajectory can be decided from information maps. Identifi-

cation numbers of sensing joints on every position can be shown by

graphes along the trajectory.
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Table 4.4. Sets of active joints and their identification numbers

ID NO. Active Joints ID NO. Active Joints ID NO. Active Joints ID NO. Active Joints ID NO. Active Joints

1 1,2,3 2 1,2,4 3 1,2,5 4 1,2,6 5 1,2,7

6 1,2,8 7 1,2,9 8 1,2,10 9 1,2,11 10 1,2,12

11 1,3,4 12 1,3,5 13 1,3,6 14 1,3,7 15 1,3,8

16 1,3,9 17 1,3,10 18 1,3,11 19 1,3,12 20 1,4,5

21 1,4,6 22 1,4,7 23 1,4,8 24 1,4,9 25 1,4,10

26 1,4,11 27 1,4,12 28 1,5,6 29 1,5,7 30 1,5,8

31 1,5,9 32 1,5,10 33 1,5,11 34 1,5,12 35 1,6,7

36 1,6,8 37 1,6,9 38 1,6,10 39 1,6,11 40 1,6,12

41 1,7,8 42 1,7,9 43 1,7,10 44 1,7,11 45 1,7,12

46 1,8,9 47 1,8,10 48 1,8,11 49 1,8,12 50 1,9,10

51 1,9,11 52 1,9,12 53 1,10,11 54 1,10,12 55 1,11,12

56 2,3,4 57 2,3,5 58 2,3,6 59 2,3,7 60 2,3,8

61 2,3,9 62 2,3,10 63 2,3,11 64 2,3,12 65 2,4,5

66 2,4,6 67 2,4,7 68 2,4,8 69 2,4,9 70 2,4,10

71 2,4,11 72 2,4,12 73 2,5,6 74 2,5,7 75 2,5,8

76 2,5,9 77 2,5,10 78 2,5,11 79 2,5,12 80 2,6,7

81 2,6,8 82 2,6,9 83 2,6,10 84 2,6,11 85 2,6,12

86 2,7,8 87 2,7,9 88 2,7,10 89 2,7,11 90 2,7,12

91 2,8,9 92 2,8,10 93 2,8,11 94 2,8,12 95 2,9,10

96 2,9,11 97 2,9,12 98 2,10,11 99 2,10,12 100 2,11,12

101 3,4,5 102 3,4,6 103 3,4,7 104 3,4,8 105 3,4,9

106 3,4,10 107 3,4,11 108 3,4,12 109 3,5,6 110 3,5,7

111 3,5,8 112 3,5,9 113 3,5,10 114 3,5,11 115 3,5,12

116 3,6,7 117 3,6,8 118 3,6,9 119 3,6,10 120 3,6,11

121 3,6,12 122 3,7,8 123 3,7,9 124 3,7,10 125 3,7,11

126 3,7,12 127 3,8,9 128 3,8,10 129 3,8,11 130 3,8,12

131 3,9,10 132 3,9,11 133 3,9,12 134 3,10,11 135 3,10,12

136 3,11,12 137 4,5,6 138 4,5,7 139 4,5,8 140 4,5,9

141 4,5,10 142 4,5,11 143 4,5,12 144 4,6,7 145 4,6,8

146 4,6,9 147 4,6,10 148 4,6,11 149 4,6,12 150 4,7,8

151 4,7,9 152 4,7,10 153 4,7,11 154 4,7,12 155 4,8,9

156 4,8,10 157 4,8,11 158 4,8,12 159 4,9,10 160 4,9,11

161 4,9,12 162 4,10,11 163 4,10,12 164 4,11,12 165 5,6,7

166 5,6,8 167 5,6,9 168 5,6,10 169 5,6,11 170 5,6,12

171 5,7,8 172 5,7,9 173 5,7,10 174 5,7,11 175 5,7,12

176 5,8,9 177 5,8,10 178 5,8,11 179 5,8,12 180 5,9,10

181 5,9,11 182 5,9,12 183 5,10,11 184 5,10,12 185 5,11,12

186 6,7,8 187 6,7,9 188 6,7,10 189 6,7,11 190 6,7,12

191 6,8,9 192 6,8,10 193 6,8,11 194 6,8,12 195 6,9,10

196 6,9,11 197 6,9,12 198 6,10,11 199 6,10,12 200 6,11,112

201 7,8,9 202 7,8,10 203 7,8,11 204 7,8,12 205 7,9,10

206 7,9,11 207 7,9,12 208 7,10,11 209 7,10,12 210 7,11,12

211 8,9,10 212 8,9,11 213 8,9,12 214 8,10,11 215 8,10,12

216 8,11,12 217 9,10,11 218 9,10,12 219 9,11,12 220 10,11,12
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ii. Decided sensing joints by usingW1

Identification numbers of sensing joints on every dispersed position

along the trajectory in Fig. 4.11 will be shown in Fig. 4.12 whenW1

is used.

Fig. 4.12: Sensing joints selected along the trajectory by usingW1
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iii. Decided sensing joints by usingW2

Identification numbers of sensing joints on every dispersed position

along the trajectory in Fig. 4.11 will be shown in Fig. 4.13 whenW2

is used.

Fig. 4.13: Sensing joints selected along the trajectory by usingW2
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Six information maps can be gotten, but EAF3 can not be used as evalua-

tion measure in this PM, because displacements of the end-effector,δXe,

δYe and δZe, are always equal to ones of prismatic joints,δP2, δP1 and

δP3, in this PM and EAF3 will be invalid.

When

δP1 = δP2 = δP3

is set, their error ellipsoids on the end-effector will be a ball and

EAF3= M ax(σ1,σ2 · · ·σna)/M in(σ1,σ2 · · ·σna)

will be 1 forever and only one set of active joints can be selected.

A line can be seen in Fig.4.12 or 4.13, it means only one set of active joints

will be selected along the trajectory.

(b) Improving movement accuracy of the PM byW1

In W1, sensing joints will be active joints with the best error performance.

Referring to Fig.4.2, angles of sensing joints will be used to calculate an-

gles of other joints by inverse kinematics. Displacements of sensing joints

will be converted, then delivered to driving joints to realize movements of

the end-effector.

The amplitude of movement errors can be calculated by Eq.4.17. When

EAF1 is used, movement errors on the end-effector are shown in Fig.4.14.

When EAF2 is used, movement errors on the end-effector are shown in

Fig.4.15. Original errors from Diving Joints are marked by gray line and

errors after compensations are indicated by red line.

As well known from Fig.4.14 and 4.15, movement accuracies of the PM

have been improved, and compared to EAF1, EAF2 is more effective.
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Fig. 4.14: Error on the end-effector by using theW1 and EAF1

Fig. 4.15: Error on the end-effector by using theW1 and EAF2
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(c) Improving movement accuracy of the PM byW2

In W2, all joints with better error performances will be used. Referring to

Fig.4.3, angles of sensing joints will be used to calculate angles of other

joints, results of calculation will be averaged to use. Displacements of

sensing joints will be converted into displacements of driving joints, then

averaged, finally delivered to driving joints to realize movements of the

end-effector.

When EAF1 is used, movement errors on the end-effector are shown in

Fig.4.16. When EAF2 is used, movement errors on the end-effector is

shown in Fig.4.17. Similarly original errors from driving joints are marked

by gray line and errors after compensations are indicated by red line. It will

be known from Fig.4.16 and 4.17 that movement accuracies of the PM

have been improved byW2. Compared to EAF1, EAF2 is more effective.

Fig. 4.16: Error on the end-effector by using theW2 and EAF1
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Fig. 4.17: Error on the end-effector by using theW2 and EAF2
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Chapter 5

Conclusions

This thesis discussed direct kinematics and movement accuracy of PMs. Firstly

it presents a set of methods to establish universal direct kinematic relations, which

is to distinguish active joints and passive joints by using a pair of selection matrices,

then derive the kinematic relation from active joints to all joints from the velocity

constraint of PMs, finally get the direct kinematic relation from active joints to the

end-effector. In the kinematics discussion, mechanism DOF, end-effector DOF, re-

dundancy and manipulability of PMs have been already defined and discussed. Two

main contributions in this part are a set of direct kinematic relation and a conclusion

with reference to the manipulability of PMs, which the manipulability of PMs can

be changed by selecting different active joints. The former can be applied to all PMs

and will be utilized in kinematic analysis, design and optimization of architecture,

decision of workspace in PMs, and the later gave one wide prospect for new research

and new application of PMs.

Then one set of methods to improve movement accuracy of PM was presented,

which is to equip redundant sensors to joints, pick out active joints with better move-

ment information, convert their movement information, then transfer them to driving

joints to realize movements of the end-effector. Error evaluation to different active

joints, selections of sensing joints and use have been discussed. By movement simu-
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lations, the validity of this set of methods has been verified. The movement accuracy

of PMs has been improved, and some regions unusable for accuracy deterioration

can be reused by using this set of methods. It is also expect to reduce the cost from

design, manufacture for realization of accurate movements.
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