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Abstract 

In tsunami waveform inversions that use a conventional Green’s function 

technique, an optimal solution can be difficult to obtain for a number of reasons. This 

study proposes a new method to both optimize the determination of the unknown 

parameters and introduce computational intelligence for tsunami waveform inversion. 

The main objective is to enhance the traditional least squares inversion used for two 

different applications. A genetic algorithm combined with a pattern search method is 

used for the first application (tsunami source estimation), and an extreme learning 

machine is used for the second application (forecasting tsunami waveforms). Based on 

the results, computational intelligence methods have been found to successfully 

enhance the standard least squares inversion both for estimating the tsunami source and 

for forecasting the tsunami waveforms. 

In the first part of this study, estimation of tsunami source is conducted using a 

genetic algorithm and pattern search. The method aims to either find a suitable 

distribution of unit source locations or optimal least square parameters prior to the 

inversion. The method has been tested using both an artificial tsunami source and the 

real tsunami that occurred during the 2011 Tohoku event. Unlike the conventional 

method, which is characterized by equidistant unit sources, the proposed method 

generates random and scattered unit sources inside the inverse region or the source-

influenced area. This leads to a better approximation of the initial profile of a tsunami. 

Additionally, it significantly reduces the number of parameters and suppresses the 

negative effects of regularization schemes that decrease the plausibility of the model. 

Furthermore, the stochastic approach used to derive the time delays (in the real case) is 

a more flexible strategy for simulating actual phenomena that occur in nature. In 

general, the proposed method has improved the ability of such models to reveal the 

underlying physics associated with the tsunami generating processes. 
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The second part of this study introduces an extreme learning machine to produce 

rapid forecasts of tsunami waveforms in coastal areas using tsunami signals recorded 

at specified locations. The remarkable training speed of the algorithm means that it can 

run in real-time, and therefore it is suitable for early warning systems in near-field 

tsunami events. Additionally, as a universal function approximator, the proposed 

method can capture nonlinearities exhibited by the tsunami. Therefore, it provides 

advantages over the standard inversion analysis used in many existing studies that are 

typically developed under a linear assumption. The proposed method is applied to the 

2011 Tohoku tsunami. The results demonstrate that the proposed method is more 

accurate and does not significantly increase the computation time when compared with 

the standard method based on a tsunami waveform inversion. Furthermore, the model 

uncertainty analysis proves that the method is robust and reliable, despite its 

dependency on random input weights and biases. 
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Chapter 1  

Introduction 

Tsunamis are catastrophic natural events that can cause tremendous destruction 

of property and loss of lives. They can be categorized as one of the most destructive 

forces in nature, threatening vulnerable areas with little warning. There are several 

causes of tsunamis, including submarine earthquakes, landslides, volcanic eruptions, 

meteorite impacts, and other disturbances to the equilibrium state of oceanic 

hydrodynamics. However, a distinct proportion (> 80%) of tsunamis are generated by 

earthquakes (http://www.ngdc.noaa.gov/hazard/tsu.shtml, last accessed, July 19, 2015). 

Over the last few decades, there have been several major earthquake-generated 

tsunamis that have greatly affected coastal communities and subsequently stimulated 

new tsunami research. Various methods and measures have been proposed that have 

led towards a better understanding of tsunami behaviors (e.g., those associated with 

generation, propagation, run-up, and inundation stages). Computer-based modeling and 

simulations are one of the most popular approaches used in tsunami research (e.g., 

Imamura et al., 2006; Wang, 2009). Such approaches can be effective in addressing the 

challenges associated with the tsunami disaster countermeasures. However, many of 
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these have been developed based on conventional computation methods, and thus are 

unable to reach the full potential of modern computer technologies.   

  Recent developments in computing have resulted in a new paradigm of 

modeling and data-handling techniques that help to reveal the underlying dynamics of 

natural phenomena, which are sometimes not accessible by conventional approaches. 

Such methods are known as “computational intelligence”, and they have been 

extensively developed and used within scientific and engineering communities. 

Unfortunately, the applications of such methods in tsunami research are limited. 

Motivated by that fact, this study proposes novel approaches for estimating the initial 

tsunami source and forecasting tsunami waveforms using computational intelligence. 

Although both of these goals use different methods, the cores of the algorithms are 

actually similar; both are based on a least-squares tsunami waveform inversion (TWI) 

that is further enhanced by computational intelligence approaches. Genetic algorithm 

(GA) and pattern search (PS) methods are used for the first goal (tsunami source 

estimation), and an extreme learning machine (ELM) is used for the second goal 

(tsunami waveform forecasting). 

1.1 Tsunami Source Estimation  

Direct observations of an initial tsunami source or sea surface deformation 

following the occurrence of an earthquake are rarely possible; therefore, estimations of 

such movements are often performed by considering relevant seismic information or 

the hydrodynamic response of the sea determined from recorded tsunami waveforms. 

More specifically, such estimations can be made by characterizing co-seismic 

deformations of the ocean floor, using either an analytical solution of the stationary 

problem in elastic theory, or the development of detailed inverse models of geodetic, 

seismic, or tsunami waveforms. 
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Determination of the initial tsunami source generated by earthquakes is crucial 

to the success of tsunami modeling. One of the most frequently used methods is to 

presume it from a fault model based on the elastic theory (Okada, 1985). However, this 

model assumes an average uniform slip, which is probably adequate only for far-field 

simulations. A more realistic approach was proposed by Satake (1987), who analyzed 

recorded waveforms to infer earthquake source parameters, or particularly coseismic 

slip, using the Green’s function technique. Even though the fault model is still required, 

the division of a fault into smaller sub-faults allows the slip to be estimated in a 

heterogeneous manner, which leads to a better approximation of seafloor displacement.  

The main limitation of using fault models to estimate an initial tsunami source 

is that they typically require a general assumption that is related to energy conversion 

processes. That is, they assume that the initial sea surface profile is similar to the vertical 

component of the seafloor displacement caused by the fault rupture. Such an 

assumption is relevant and appropriate for large interplate events occurring on gently 

dipping faults, but may not be adequate for tsunamigenic earthquakes characterized by 

a steep dip angle (Saito and Furumura, 2009). A study by Nosov and Kolesov (2007) 

contradicted this assumption by considering the effect of water compressibility. 

Furthermore, tsunami excitation is sometimes triggered by other parameters that are 

independent of seismic moment (Geist, 2002).  

We should, therefore, develop a method that directly captures the signature of 

the tsunami generating processes using the recorded tsunami waveforms to accurately 

estimate the tsunami source. A simpler method was actually introduced earlier by Aida 

(1972) for which no prior assumption of a fault model was needed. The basic premise 

is to replace the fault model by an auxiliary basis function with unit sources, which is 

equivalent to the sub-fault approach by Satake (1987). More recently, several studies 

have been widely developed using tsunami waveform inversion to estimate the tsunami 

source without fault model assumptions (Baba et al., 2005; Satake et al., 2005; Saito et 
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al., 2010). This study is in line with those previously mentioned because the main 

interest here is to estimate sea surface deformation, rather than a slip on the fault plane. 

1.2 Tsunami Waveform Forecasting 

Reliable forecasting of a tsunami generated by a submarine earthquake is a 

difficult process to undertake. This is particularly true for near-field events, where there 

is limited time to execute a warning system and disseminate useful information. Even 

though the current global network of sensors can be used to immediately retrieve 

information on earthquake parameters, they do not always explain the exact 

characteristics of the resultant tsunami (Geist, 2002; Tsushima et al., 2009). Therefore, 

a tsunami early warning system (TEWS) based solely on seismic data will produce a 

relatively large number of false-positive warnings (Behrens et al., 2010).  

The best way to identify a tsunami is from its incident waves as detected by 

water level gauges. Subsequently, we can assimilate the truncated data to forecast the 

tsunami waveforms at other locations. However, we must consider the trade-off 

between forecasting accuracy and speed. Additionally, the spatial coverage of the 

deployed tsunami gauges also has an important impact on the effectiveness of the 

forecast. 

Standard tsunami forecasting methods based on recorded waveforms use the 

TWI. In general, this method can be independent of seismic information, and very 

accurately estimate the possibility of a tsunami. It can also produce a complete series 

of waveforms rather than only extracting certain wave features such as maximum 

amplitudes and arrival times. Many others have proposed different TWI methods using 

various designs and settings to develop both far-field and near-field TEWSs (e.g., Koike 

et al., 2003; Tsushima et al., 2009; Yasuda and Mase, 2013). A more advanced TEWS 

can even provide site-specific inundation forecasts within a reasonable time (Gusman 
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et al., 2014). However, this requires intensive computational efforts to construct a high-

resolution inundation database, which is beyond the scope of this study. Aside from 

their effectiveness in detecting tsunamis, most TWI methods are not applicable to 

nonlinear processes because they impose a linear assumption. Therefore, a method that 

captures the nonlinearities in tsunamis should be introduced, particularly in coastal 

areas where nonlinear effects prevail. 

The second part of the thesis discusses the application of a recent neural network 

algorithm (ELM) to produce rapid forecasts of tsunami waveforms in coastal areas 

using tsunami signals recorded at specified locations. The remarkable training speed of 

the algorithm means that it can run in real-time, and therefore it is suitable for a TEWS 

in near-field tsunami events. Additionally, as a universal function approximator, the 

proposed method can capture nonlinearities exhibited by the tsunami. Therefore, it 

provides advantages over the standard linear inversion analysis used in many existing 

studies. 

1.3 Thesis Outline 

Chapter 1 explains the general backgrounds, motivations, and expected 

contributions of the study. The chapter also establishes the main framework of the thesis 

that is divided into two parts: the estimation of tsunami sources and forecasting tsunami 

waveforms.     

Chapter 2 explains the fundamental theory of the TWI method, which is the 

core of the algorithm used in the both parts of this study (estimation of tsunami source 

and waveform forecasting). The description also includes a general formulation of a 

regularization scheme that is typically incorporated into the TWI to maintain stable 

solutions. Additionally, mathematical expressions for single and multiple time window 

inversions are presented.      
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Chapter 3 describes the general theories of the CI comprised of a GA and an 

ELM. A brief introduction to the PS routine as a supplement for the GA is also 

described. For the GA and PS, the descriptions are mainly in generalized forms, and 

thus may not be directly related to the TWI. Details on the connections of the GA-PS 

algorithms to particular TWI applications are discussed separately in chapters Chapter 

4 and Chapter 5.          

Chapter 4 discusses the first attempt to apply the proposed method using GA 

and PS to estimate the tsunami source. In this chapter, all data (i.e., tsunami source, 

waveforms) are artificial except for bathymetry. The GA-PS algorithm is first tested 

using the same design parameters as in the TWI. The purpose of this test is simply to 

compare the performance of the proposed GA-PS method with the traditional least 

squares inversion in the same model design and environment. The second design 

parameters are actually the essence of the study. The design aims to find the optimal 

locations of unit sources that, at the initial state, are distributed randomly around the 

tsunami source. The use of the artificial data in an ideal case allows assessment of the 

advantage of the proposed method in a more detailed manner. 

Chapter 5 is an extension of Chapter 4. Here, the GA-PS algorithm is applied 

to the real case of the 2011 Tohoku tsunami. However, there are several additional steps 

which were previously not included in the ideal case. For example, the determination 

of the source area uses backward-propagated tsunami arrival times and a multiple time 

window inversion that includes the computation of time delays. Other than those, in the 

real case, instead of using randomly distributed unit sources, the model uses a very 

dense set of unit sources and selects the optimal ones. Therefore, in the real case, 

waveform interpolation is not required.   

Chapter 6 is the second part of the study, in which the use of the ELM is 

described in relation to tsunami waveform forecasting. The descriptions are started by 

a brief review of existing studies of tsunami forecasting using neural networks, and 



 7

followed by explaining the potential application of the ELM, which has never been used 

before. Various statistical analyses are conducted to assess the performance of the 

proposed model. Furthermore, an uncertainty analysis is also performed to ensure that 

the ELM has a consistent predictive power in spite of the random characteristics of the 

network parameters.    

Chapter 7 presents an overall summary of the conclusions of the study, then 

goes on to provide detail for each of the chapters (Chapter 4, Chapter 5 and Chapter 

6).  
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Chapter 2  

Tsunami Waveform Inversion 

2.1 Basic Formulation of Tsunami Waveform Inversion 

A TWI is based on the principle of linear superposition of predefined segments 

discretizing the tsunami source-influenced area. These segments can be represented by 

either a fault model or an auxiliary basis function. The main goal of the TWI is to 

determine the magnitude of the slip on a fault plane or to directly infer the initial 

displacements that excite the tsunami. The advantage of using tsunami waveforms over 

seismic waves is that the bathymetry data is relatively easy to obtain and more accurate 

compared to the seismic velocity structure (Satake, 1987). Therefore, effects on the 

wave propagation path can be accurately evaluated using numerical computation 

(forward modeling). 

When an earthquake occurs, seismic waves originating from the source radiate 

through the solid body of the earth. These waves recorded at seismometer contain 

information about the earthquake source. Similarly, imprints of the tsunami generating 

process exist in the recorded tsunami waveforms. Therefore, this information can be 

used to infer the tsunami source, as a proxy for a direct observation, which is difficult 

to obtain. It should be noted, however, that the recorded tsunami waveforms may 
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exhibit other patterns besides the source information. For instance, interferences from 

harbors or local bathymetric effects usually exist in the waveform readings. Therefore, 

it is necessary to conduct a pre-analysis and thorough investigation prior to the 

application of the method.  

 

Figure 2.1 Tsunami waveform inversion using the Green’s function technique. 

The first step of the TWI development is to divide the source area into segments. 

This segments are typically termed as subfaults if one uses fault model, or in this study, 

the term unit sources is more relevant because the method requires no fault model. 

These unit sources represent the displacement of water surface in the source area after 

the earthquake. Then, compute the Green’s function that is the synthetic waveforms 

recorded at measurement stations originating from each unit source with a certain initial 

amplitude or water height (for simplicity, it is usually set to 1 m). The actual water 

height on each unit source is obtained by an inversion; assuming that the observed 

tsunami waveforms are a linear superposition of the Green’s function. A schematic 
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diagram on the development of a tsunami waveform inversion using the Green’s 

function technique is presented in Figure 2.1      

According to superposition theory, the measured tsunami waveforms at 

observation stations can be approximated using a superposition of the Green’s function. 

That is, 

     
1

0
M

j ij i
i

t G t w t T


   ,     (2.1) 

where  j t  is the observed waveform at the j-th location;  ijG t  is Green’s 

function (which is a synthetic waveform originating from the i-th unit source, recorded 

at the j-th location); iw  is the displacement of the i-th unit source (the model parameter 

to be determined by the inversion); M is the number of unit sources; t is the time; and 

T is the maximum inversion time range, which defines the length of data used for the 

inversion at each observation station. 

In vector form, we can write Eq. (2.1) as 

Gw ,        (2.2) 

where m nG �  and m n . To find w , then minimize the norm of residual 

 Gr w  , that is, 

2
2T T T T  G G Gr w w w   ,     (2.3)   

setting the gradient with respect to w  to zero, we have 

2
2 2 0T T   G G Gw r w  .     (2.4) 

Equation (2.4) leads to a normal equation T TG G Gw  . Assuming that 

TG G  is invertible, we can get the least squares solution for w , 
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  1T T
 G G Gw  .      (2.5) 

TWIs without the fault model assumption typically require a high spatial 

resolution to properly capture the complexity of the heterogeneous initial water profile. 

It therefore needs a large number of model parameters, which are proportional to the 

degrees of freedom in the optimization. To obtain a stable solution, we must 

accordingly apply a proper treatment such as regularization schemes. An example of a 

well-known regularization is the Tikhonov’s regularization (Honerkamp and Weese, 

1990). After introducing the regularization scheme, we now minimize both the norm of 

the residual and the additional regularization term, that is, 

2 2
min   w

r w ,      (2.6) 

where 0    is the regularization parameter. The solution of Eq. (2.6) is 

  1T T


 G G S Gw  ,      (2.7) 

where S  can be either the identity matrix or a matrix that represents the derivative 

operator that measures spatial smoothness. 

2.2 Computation of Tsunami Waveforms 

Generally, the characteristics of tsunami propagation in deep water are linear. 

According to Satake (1987), even in shallow coastal areas, the first leading waves 

recorded at coastal tide gauges are still well simulated by the linear long wave model. 

Therefore, a typical linear non-dispersive shallow water equation is used in the forward 

modeling to compute time histories of sea surface elevation at the specified observation 

points, that is, 
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  

g
t

d
t



 

    
   
 

V

V

,      (2.8) 

where   is the water elevation of the tsunami,  ,u vV  is the depth-averaged 

horizontal fluid velocity vector, d  is the water depth, and g  is gravitational 

acceleration. Equation (2.8) is completed with two types of boundary conditions, as 

follows 

0

g

c
  


  

V n

V n
,        (2.9) 

where  c g d     is the wave speed and n  is the unit vector normal to the 

boundary. The upper and lower expression in Eq. (2.9) represent open and closed 

boundary respectively. These set of equations can be solved numerically using various 

numerical schemes. 

The propagation stage of a tsunami covers the most extensive area, and is 

presently the better understood stage that can be explained by a relatively simple theory 

and analysis. Detailed numerical models of tsunami propagation are available in the 

literatures. The finite difference methods are probably the most common method to 

solve the governing equation of the tsunami propagation. There are several tsunami 

propagation models developed based on the finite difference methods, for instance, 

Tohoku University’s Numerical Analysis Model for Investigation of Near-field 

tsunamis (TUNAMI) by Imamura et al. (2006), and Cornell Multi-grid Coupled 

Tsunami Model (COMCOT) by Wang (2009).   

In this study, COMCOT model is used to compute the synthetic waveforms for 

the Green’s function. COMCOT is able to solve both linear and nonlinear shallow water 

equations in Cartesian or Spherical coordinate systems, and it also supports the nested 
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grid system that allows the finer grid to be placed on a coarser grid to increase local 

resolution. It has been widely used to study many historical tsunami events (Liu et al., 

1995; Wang and Liu, 2006).  

2.3 Single Time Window Inversion 

A TWI typically assumes an infinite rupture velocity for relatively small rupture 

areas or limited temporal resolutions of tsunami waveforms. This approach considers 

that the water surface deformation occurs instantaneously with the earthquake. The 

validity of this assumption can be briefly analyzed by comparing the tsunami celerity 

and rupture velocity. For example, the speed of a tsunami propagated on a depth of 

3000 m is approximately 0.17 km/s (using the long wave approximation). The rupture 

velocity of a relatively small earthquake with 100 km fault length and the source process 

time of 30 s is 3 km/s. Therefore, the source process is finished before the tsunami starts 

to propagate.   

For the above mentioned case, the temporal variation due to the source process 

can be neglected. The inversion for the case is straightforward by means of a single 

time window inversion, which is the original and standard TWI as derived from Eq. 

(2.1) to Eq. (2.7). To easily differentiate between a single and multiple time window 

inversion, it is better to rewrite Eq. (2.7) in matrix form, that is 

   
1

2

0

M

w

t tw

w



 
              
 

G

S 


.        (2.10) 
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2.4 Multiple Time Window Inversion  

For large tsunami events, the rupture velocity should affect the generated 

tsunami waveforms. In such cases the rupture start time (often called the time delay) 

varies throughout the fault plane. In this study, the rupture velocity is considered to be 

comparable to the propagation speed of the water surface perturbation. Note that the 

water surface perturbation term used here is different from the water wave propagation, 

because it is considered as a direct projection of the rupture process onto water surfaces. 

The time delay can easily be determined by assuming a constant rupture velocity 

(Tanioka et al., 2006; Satake et al., 2013). A different and more complex approach was 

proposed by (Piatanesi and Lorito (2007), where the rupture velocity was considered as 

a model parameter together with the slip distribution. This results in a nonlinear inverse 

problem. 

If the temporal resolution of the recorded tsunami waveforms is adequate, a 

time-dependent model is applicable to simulate the transient deformation of large 

tsunamis. In such cases, we can calculate multiple time window inversion by shifting 

the initial Green’s function for a certain time span. The start times of the Green’s 

functions ( ) should also be taken into account. With the addition of a damping 

constraint, the single time window in Eq. (2.10) is modified to 
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



, (2.11) 

where t  is the time span, K is the number of time windows,   is the damping 

parameter, and I  is the identity matrix. The number of Green’s function used in each 

window may vary according to the estimated rupture/perturbation front, which also 
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affects the size of the matrix S  and I . This aids the analysis of the time-dependent 

variations of the water surface throughout the duration of the rupture. 
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Chapter 3  

Computational Intelligence 

3.1 Various Methodologies in Computational Intelligence  

Computational intelligence (CI) is a set of nature-inspired computational 

methodologies and approaches that can provide a practical alternative for solving 

intractable and complex real-world problems. The main advantages and mathematical 

power of the CI are commonly attributed to their ability in avoiding local optimum 

solutions, and the neural-like system architecture that allows to address a considerable 

complexity of problems that do not have an algorithmic solution. The former advantage 

is possessed by evolutionary computations (such as GA), and the latter refers to neural 

networks.  

A GA is used in the first part of the study, which is to estimate the tsunami 

source, particularly to find optimum locations of unit sources prior to the inversion. 

GAs are global optimization methods that do not require the gradient of the problem to 

be optimized and are part of the CI. However, in some cases, GA alone may not be 

sufficient, because a global optimization method can explore a broad search space, but 

is not appropriate for fine tuning the approximation of the expected solution. Therefore, 

a hybrid approach based on a combination of a global and local search algorithms is 
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generally preferable. To that end, PS is employed as a local search algorithm to locate 

other nearby solutions that could possibly be better than the result of the previous search 

by the GA. 

In the second part, an ELM is utilized to produce rapid forecasts of tsunami 

waveforms in coastal areas using tsunami signals recorded at specified locations. The 

ELM has a remarkable training speed compared to gradient-based methods such as back 

propagation, and produces better generalizations. Additionally, neural network models 

are well known for their ability to approximate most nonlinear functions demanded by 

practical applications. Therefore, the ELM can be used as a better alternative to the 

standard inversion analysis that is strictly constrained by a linear assumption.  

3.2 Optimization algorithms 

3.2.1 Genetic Algorithm 

 

Figure 3.1 Schematic illustration of a GA. 

GAs are optimization methods that search for an optimal value of a complex 

function by adopting the process of natural evolution (Goldberg, 1989). It can be 

categorized as a type of stochastic optimization method and as a part of CI. In GA, the 

model parameters or decision variables in the optimization are first transformed into a 

chromosome-like data structure that later evolves to form a better offspring. The most 

common representation of design parameters in GA is their encoding into a binary 
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string. There are three basic genetic operators in GA: selection, crossover, and mutation 

(Figure 3.1). 

Selection process in a GA equates to survival of the fittest. Two individuals are 

chosen randomly based on a certain probability function corresponding to their fitness 

level. There are many types of selection in GA, but the most common one is probably 

the roulette wheels selection, also known as fitness proportionate selection. The 

probability of selection for individuals can be formulated as, 

1

i
i N

j
j

f

f








,        (3.1) 

where   is the selection function, if  is the fitness function of individual i  in the 

population, N  is the number of individual in the population.  

Crossover operator merges or swaps genetic information of two individuals to 

produce a new and different individual (offspring). The main purpose of the crossover 

is to generate a better individual, which can be achieved if it takes the best 

characteristics from each of the selected parents. This feature is a prime distinguished 

factor of GAs from other optimization techniques. 

The last genetic operator is mutation. During the mutation, genes of individuals 

are altered from its initial state. The mutation process is able to avoid the loss of a 

particular piece of information, and maintain the diversity within the population. 

Therefore it inhibits premature convergence.  

Mathematical formulations and procedures of GA is clearly described in Wetter 

and Wright (2003). In the GA, the finite lower and upper bounds of X  are discretized 

to the mesh  ,1lM , and all operators are such that the real value of any point is an 

element of  ,1l XM . Given a non-empty set nX R , and non-zero M N , 

MX  is the set of all sequence X  with M elements, 
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    1
, 1,...,

M
M i ii

i M


  X x x X .    (3.2) 

Let B  be the set containing all elements of  ,1l XM . Similarly, MB  is 

the set of all sequences in B  with M elements, 

    1
, 1,...,

M
M i ii

i M


  B χ χ B .    (3.3) 

Denoting kN  as the generation number, M N  as the population size, 

k Mx X as the M  points in the k-th generation, Mk
χ B as the binary 

representation of kx , and ,k i  denotes the i-th element of 
k
χ  for  1,...,i M , 

which is a binary representation of a point in 
nR , the step-by-step operation of the GA 

is described in the following: 

Step 1: Randomize the initial population Mo
χ B of M  randomly generated 

points. Then, evaluate all 
k
χ according to the specified fitness function; thus, 

a fitness function : M
M  BN R computes a fitness value of 

k
χ . 

Step 2: Select a pair of individuals with the selection function 2: M  B BN . 

Individuals with better fitness values have a higher probability of being 

selected. 

Step 3: Perform crossover by swaping the bits (genes) between the selected 

individuals (chromosomes) to produce a new offspring, 

 2 2: 0,1   B BN with the crossover probability  0,1rp  . 

Step 4: The final genetic operator is the mutation that aims to maintain genetic 

diversity. The mutation function  : 0,1   B BN  alters a bit on 

individuals from its initial state. 

The algorithm stops when one of the stopping criteria is met. These stopping 

criteria can be based on the predefined maximum number of generation or the average 

relative change in the fitness function value over a certain generation. 
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3.2.2 Patterns Search Method 

PS is also a derivative-free optimization method, although it may not be 

categorized as part of the CI. It was first introduced by Hooke and Jeeves (1961). Later, 

Torczon (1997) proved the convergence of PS using the theory of positive bases. The 

algorithm of PS used in this study is similar to that of Wetter and Write (2003), while 

the design parameters are identical to the GA optimization, because the output of the 

GA optimization result is treated as the initial condition for the PS optimization.  

For the same optimization problem as solved by the GA, the algorithm searches 

a lower cost function value than  kf x , where kx X  denotes a solution at the 

current iterate and k N  denotes the iteration number. The search takes place on the 

points in the set 

  , 1,...,i
k k k is e i n    γ x X x x ,    (3.4) 

where 0k   is the mesh size factor, 
nsR  is fixed and scales the parameters, and 

e is the unknown approximation error. The rule to select a finite number of points in 

X  on a mesh can be defined by: 

    0 , 1, ..., ,i
k k im s e i n m     x xM Z ,   (3.5) 

where 0x X  is the initial iterate, and Z  is the set of nonnegative integers. 

The overall procedures of PS optimization can be elaborated as follows: 

Step 1: Initialize 0x X  and 0 0  , for which in our case, 0x  is obtained from 

the GA’s output.  

Step 2: If    ' kf fx x  for some  0' , k x xM , then set 1 'k x x  and 

1k k  . 
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Step 3: If    ' kf fx x  for all ' kx γ , the search continues with 1k k x x  

and reduced mesh factor 1 2
k

k


  . 

The search continues until a stopping condition is satisfied (e.g., the mesh size 

or changes are less than a given tolerance). Thus, the smallest x  satisfies 

   f f x x  for all   , 1,...,i
min is e i n     x x X x x , where min  is the 

smallest mesh size factor. 

3.3 Extreme Learning Machine 

A completed ELM method was proposed by Huang et al. (2006). It has received 

a growing amount of attention from scientific and engineering communities because of 

its remarkably fast training speed, when compared to classical training algorithms. The 

ELM can be trained up to 170 times faster than gradient-based methods such as back 

propagation, and produces better generalizations. In this study, computing speed is very 

important because it enables immediate forecasts of tsunami waveforms. However, 

unlike conventional neural networks, ELM may require more hidden neurons because 

of the random determination of the input weights and biases (Zhu et al., 2005). 

Using the same variables as in TWI, the training set for the ELM is  

  , , , 1, 2, ...,M m
i i i iL i N   � �    ,   (3.6) 

where  1 2, ,...,
T

i i i iM    is the synthetic wave originating from the M unit sources 

used to construct the Green’s function in the TWI, and m is the number of output 

neurons (in this study, there is only one node). An ELM with N  hidden neurons and 

activation function g can be analytically modeled as 

 
1

, 1,...,
N

j j i j i
j

g b i N 


    w


  ,    (3.7) 
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where  1 2, ,...,
T M

j j j jMw w w w    �  is the weight vector connecting the input layer 

to the j-th hidden neuron (we modified the symbol to distinguish between TWI weights 

and ELM input weights), jb  is the bias of the j-th hidden neuron, and j  is the 

output weight connecting the j-th hidden neuron to the output layer. A sigmoid transfer 

function  

    1/ 1 expg x x   ,       (3.8) 

is used in the hidden layer, which introduces nonlinearities to the network. 

Rewriting Eq. (3.7) in matrix form we get 

T H  ,        (3.9) 

where 
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,   (3.10) 

and  

1

2

T

T

T
N







 
 
 

  
 
 
 


 , and  1 2 N    .    (3.11) 

Because N N , the output weights can be calculated using the least squares 

solution of Eq. (3.9), that is,  

†H  ,        (3.12) 
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where †H  is the Moore-Penrose generalized inverse matrix of H  (Rao and Mitra, 

1971). If H  is nonsingular, Eq. (3.12) can be written as 

  1T T
 HH H  .      (3.13) 

We can see that the output weights of the ELM are very similar to the unknown 

parameters in the TWI (Eq. (2.5)). The difference between the two methods is that 

ELM incorporates input weights and biases, and a nonlinear transfer function. 

The ELM requires an additional regularization to suppress erratic small-scale 

variations that are probably induced by the complex network structure. Therefore the 

graph regularization (Peng et al., 2015) is used in addition to the Tikhonov’s 

regularization scheme. The final objective function that must be solved is 

 2 2
min TrT T      

H HLH


     ,    (3.14) 

where  Tr T HLH   is the graph regularization term, L  is the graph Laplacian, 

and   is the additional regularization parameter (  =1 in this paper). The solution to 

Eq. (3.14) is 

  1T T T 


  HH HLH I H  .     (3.15) 

Details on the mathematical derivation on the graph regularization can be found in 

Smola and Kondor (2003).  
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Chapter 4  

Tsunami Source Estimation in an 
Artificial (Ideal) Case 

4.1 Problem Description 

Recently, several studies using tsunami waveform inversion to estimate the 

tsunami source without fault model assumptions have been widely developed. For 

instances, Baba et al. (2005) used a simplified fault model by disregarding actual 

earthquake parameters to produce the initial profile on each unit source, whereas Satake 

et al. (2005) proposed a more direct approximation using a pyramidal shape with a flat 

top. Other studies by Liu and Wang (2008) and Saito et al. (2010) demonstrated 

attempts to use Gaussian function, whereas Wu and Ho (2011) adopted a top-hat small 

unit source to represent the initial profile. The same approach was proposed by 

Tsushima et al. (2011) and Yasuda and Mase (2013) for the more practical purpose of 

a tsunami early warning system. However, this inversion method for tsunami 

waveforms possesses a limitation, in that the inverse matrix does not always exist 

because of the non-uniqueness of the solution. In addition to the large number of 

unknown parameters, which might produce many local optima on the misfit function 
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measure, the search towards optimality is confined by the uniform distance of unit 

sources used in the regular Green’s function. 

TWI sometimes falls into an ill-posed problem, in which small errors in the 

observed waveforms are exceptionally amplified in the solution. Therefore, both the 

uniqueness and the stability of solutions are sometimes difficult to attain without 

appropriate treatments. The most frequently employed techniques to maintain a stable 

solution is to use a smoothing constraint (Saito et al., 2010; Gusman et al., 2013). Other 

than that, Koike et al. (2003) suggested reducing the unknown parameters using the 

wavelet base to guarantee the uniqueness of the solution. However, they found later that 

the selection of the wavelet base was not straightforward. Another effort to overcome 

the issue was discussed by Voronina (2011). The study promoted a method to control 

numerical stability for the ill-posed problem in tsunami waveform inversion by means 

of singular value decomposition and r-solutions techniques. 

This study proposes a new approach to tackle the same problem by determining 

the optimal position or spatial distribution of unit sources located around the source 

area or epicenter. A GA as a global optimization method, combined with a PS method, 

is employed to search the mentioned positions prior to the inversion. As the selected 

positions are probably located in between the initial unit sources, interpolations are 

performed during the optimization. Therefore, the Green’s function evolves 

dynamically at each generation of the GA and PS iteration.  

The ultimate purpose of a global optimization method is to find the extreme 

value of a given non-convex function in a certain feasible region. Following the growth 

of computer science, new types of optimization based on CI have been developed 

extensively and used by scientific and engineering communities. The reason for this is 

that the new optimization methods possess the interesting feature of being able to avoid 

local optimum solutions, which is something classical methods fail to do. 
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4.2 Numerical Experiments 

 

Figure 4.1 Study area and bathymetry profile. Red dots indicate unit sources 

located throughout the inverse region. Green triangles with numbers are 

artificial observation stations. 

Numerical experiments using an artificial tsunami source propagated on an 

actual bathymetry profile have been conducted. An area extending from 140–145°E and 

35–41°N is chosen as the domain of interest (Figure 4.1). The selected domain 

resembles that used in most studies of tsunami waveform inversion for the 2011 Tohoku 

tsunami. The resolution of the numerical model is 1 arc minute, which is consistent with 

the resolution of the bathymetry data obtained from the ETOPO1. ETOPO1 is a global 

relief model of the earth’s surface, which includes ocean bathymetry, available from 

the National Geophysical Data Center of the National Oceanic and Atmospheric 

Administration (Amante and Eakins, 2009). There are eight artificial observation 
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stations associated with the actual location of gauges within the study area. The tsunami 

source is divided into 28 unit sources that are distributed uniformly around the actual 

epicenter of the 2011 Tohoku tsunami (Figure 4.1). 

4.2.1 Design Parameters 

The use of global optimization methods in tsunami waveform inversion is not 

new, relevant discussions can be found in Piatanesi and Lorito (2007) and Romano et 

al. (2010). They used a simulated annealing technique to solve the inverse problems. 

This study proposes a different algorithm based on a hybrid optimization of GA and 

PS. The hybrid technique is preferred because global optimization methods, such as 

GA, are capable of exploring broader search space, but not as good in fine tuning the 

approximation of the expected solution. Therefore, PS is employed as a local search 

algorithm to locate other nearby solutions that could possibly be better than the result 

of the previous search by GA (Payne and Eppstein, 2005; Costa et al., 2010). 

The hybrid algorithm proposed in this study works by simply treating the output 

of the GA optimization result as the initial condition for the PS optimization. The 

technique is proven effective even though more fitness function evaluation is required; 

hence, it costs extra computational efforts. However, parallelization of either GA or PS 

can be easily implemented to expedite the computing time and gain substantial 

performance enhancement. 

The formulation of an optimization problem can be expressed as 

 min f
x X

x ,         (4.1) 

where x X  is the vector of parameters, and :f X R  is the cost function. 

nX R  is the constraint set or bounds defined as 
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  , 1,...,n i i il x u i n    X x R ,    (4.2) 

where 
i il u  , for all  1,...,i n , and l  and u are the lower and upper 

bounds. 

In this study, the proposed algorithm is developed with two different design 

parameters. First, is simply to search the water elevation of each unit source without 

including a search of the optimum locations, thus similar to that of the ordinary least 

squares method. This experiment aims to gauge the significance of the global 

optimization method applied to a linear system compared to the conventional method 

using least squares. Second, is to search for the optimal spatial distribution of unit 

sources, which is the main topic of this study.    

The TWI is basically an optimization problem. Therefore, by rearranging the 

Eq. (2.2), the first design parameter can be expressed as an optimization problem as 

follow: 

 min f


 G
x X

x - x ,       (4.3) 

where x  is the unknown parameters w  in the Eq. (2.2) and X  is the constraint 

or bounds representing plausible values of subsidence and uplift of the water surface 

acted as lower and upper bounds respectively. 

The purpose of the second design parameters is to search the optimal location 

of unit sources, while the initial water heights are calculated using the least squares 

inversion. The formulation of the optimization problem for the second design 

parameters can be expressed as 

   min f


 G
x X

x - w x ,      (4.4) 
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where w  is the calculated water elevations using least squares without a 

regularization, Eq.(2.5), and x  define a unique identification for the computational 

grid of the forward model located inside the inverse region X  (Figure 4.2). In this 

part, the combination of the algorithm with the least squares method is necessary to 

save the computational efforts. 

 

Figure 4.2 Example of a unique identification number of the forward model 

computational grid used for the second design parameters. 

4.2.2 Fitness Function 

The selection of a fitness function or cost function is essential because it directs 

the fate of the optimization towards the optimal solution. Here, a combination of root 

mean square error (RMSE) and Pearson correlation coefficient (r) is used. While the 

RMSE is sensitive to amplitude matching, the correlation coefficient is more sensitive 

to phasing between the compared series (Barnston, 1992).   

The RMSE serves to aggregate the individual differences of data points into a 

single measure of predictive power, which is defined as  
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 2
1

1 n

i i
i

RMSE d y
n 

  ,      (4.5)  

where y  is the predicted value by the model, d  is the measurement data for each 

i-th data point, or in our case, the waveform generated by the artificial tsunami source, 

and n  is the total number of data.  

The Pearson correlation coefficient is defined as a division of the covariance of 

the two variables by the product of their standard deviations, that is 
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where d  and y  represent the means of d  and y , respectively. The correlation 

or relevance of the data is measured using the value  0.5 1R r   to avoid negative 

values in the case of a decreasing linear relationship between the compared series. 

The fitness evaluation is subject to noise from various factors that might lead 

the optimization towards unexpected solutions. The easiest technique to overcome such 

problems is by means of explicit averaging over a number of samples to smooth the 

cost function (Jin and Branke, 2005). As the best solution or closest fit is indicated by 

0RMSE   and 1R  , the final cost function is a summation of the mean of the t-

th sample over the time window T  of Eqs. (4.5) and (4.6), which can be written as 

 
1 1

1
1

N T

t t
k t k

E RMSE R
T 

 
   

 
  ,     (4.7)  

where k denotes the respective time window and N  is the total number of 

windows. 
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4.2.3 Auxiliary Basis Function 

 

Figure 4.3 Gaussian basis function. 

A Gaussian shape with 1-m amplitude is used as the basis function for each unit 

source (Liu and Wang, 2008). Providing iA  as the amplitude of a unit source with the 

centroid positions of ix  and iy , the basis function can be written as 

     2 2

2
, exp

2
i i

i i

x x y y
z x y A

L

   
  
  

,    (4.8) 

where  ,iz x y  is the initial water surface corresponding to the i-th unit source, x and 

y are the locations of the computational grid points, L is the spread of the basis function 

with a length of 40 km. The specified length should satisfy the long wave assumption, 

where the wavelength should be greater than 20 times the average water depth. An 

example of the Gaussian profile used as the auxiliary basis function to replace the fault 

model is shown by Figure 4.3. 
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4.2.4 Waveform Interpolation 

Since the selected positions are likely located in between the initial unit sources, 

interpolations are performed as a substitute for the numerical forward model to produce 

the synthetic waveforms. This is necessary because performing numerical computation 

during the optimization is too time consuming. The waveform interpolation has two 

stages. First is interpolation of the arrival time, and then followed by waveform 

amplitude interpolation. In the first stage, the arrival time of the selected unit sources 

are interpolated based on the four nearest unit sources in the initial Green’s function. A 

nearest neighbor weighted interpolation is used to estimate the properties of interest. 

The general form of the method is given by 
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 (4.9) 

where P is the property of interest (either the arrival time or wave amplitude), i is the 

index of the nearest data points (which has a total of N=4), and x and y represent the 

position of the unit source.  

After computing the arrival time of the selected unit source location, the 

waveforms of the four nearest unit sources are shifted according to the estimated arrival 

time. As a result, the waveforms of the four nearest unit sources then have the same 

phase. Subsequently, the wave amplitude is interpolated using the same algorithm. The 

phase-shifting process was necessary because it is difficult to perform a direct 

interpolation of waveforms with different phases. 
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4.3 Model Development 

For the first design parameters, the optimization is performed merely to search 

the water elevation or initial amplitudes of each unit source. For this case, the Green’s 

function is constructed based on the initial 28 unit sources, separated by a uniform 

distance of 60 km, which is identical to that used in the least squares inversion. 

Hereafter, the first model will be termed the Genetic Algorithm Pattern Search for 

uniform source distribution (GAPSu). The purpose of this model is simply to compare 

the performance of the proposed global optimization method with the traditional least 

squares method in the same model design and environment. 

The second design parameters aim to find the optimal locations of unit sources 

that, at the initial state, are distributed randomly around the tsunami source. The second 

model will be termed the Genetic Algorithm Pattern Search for random source 

distribution (GAPSr). In the GAPSr model, the amplitudes are computed using the least 

squares inversion and therefore, the second model is actually a combination of a 

deterministic and stochastic optimization. This approach increases the flexibility of the 

Green’s function to better approximate any complex water surface profiles. However, 

interpolations are required to produce the synthetic waveform at the selected locations.    

 An example of the interpolation results, complete with statistical evaluations 

in terms of RMSE and r, is shown in Figure 4.4. Despite the satisfying results, based 

on the measure of fitness shown by the interpolation method (overall RMSE < 0.048 m 

and r > 0.966), the small errors might be amplified in the solution because of the ill-

posed problem. Consequently, further improvements should be made to suppress the 

generated errors. 
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Figure 4.4 Waveform interpolation. Left-hand figure shows selected location of 

a unit source indicated by a black square. Blue dots represent the four 

nearest unit sources used in the interpolation. Right-hand figures are 

comparisons of waveforms between numerical model (solid black line) 

and interpolation (dashed red line) at the artificial gauges. 

An artificial tsunami source is used to test the method (Figure 4.6a). Instead of 

using a simpler profile produced by the Okada’s solution, a more complex shape is 

generated from a superposition of 10 unit sources with random amplitudes and positions 

located inside the inverse region. The number of unit source is limited to avoid 

generating shorter wavelengths than the prescribed long wave assumption. For the 

regular Green’s function (first design parameter), using only 10 unit sources is 

insufficient to reconstruct the target profile. Consequently, the number of unit source 

should be increased. The decision of using 28 unit sources in both design parameters is 

for the purpose of model performance comparisons that will be further discussed in the 

next section. The approximation of this initial profile is performed using unconstrained, 

traditional least squares inversion, GAPSu, and GAPSr. However, GAPSr is the most 

important part in this study and therefore, the discussion will be focused on the GAPSr 

model. 
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Figure 4.5 Flowchart of model development procedure. 

 The development of the GAPSr model depicted in the flowchart (Figure 4.5) 

can be summarized as follows: 

Step 1: Construct the initial Green’s function.  

Step 2: Initialize the GAPSr model by randomly distributing the unit source 

locations. The search of the optimal location is bounded by the area of the 

inverse region. 

Step 3: Perform interpolation and update the Green’s function. 

Step 4: Evaluate the fitness by performing the least squares inversion. 

Step 5: After reaching the stopping criteria, the forward numerical modeling is run 

again for each of the optimized unit sources to avoid errors generated from 

the interpolation result. Subsequently, the inversion is performed for the final 

time.  
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4.4 Results and Discussion 

Overall, all models can produce a relatively good estimation of the targeted 

tsunami source. This is likely because they are applied to an ideal case with artificial 

conditions and settings, except for bathymetry. For instance, the target source was 

generated from the same Gaussian shape as that used to construct the Green’s function. 

Therefore, the task is more straightforward as less complexities are encountered. 

Nevertheless, in this study, the use of the ideal case has allowed us to assess the 

advantage of the proposed method in a more detailed manner. 

The GAPSu model yields a slightly better fit of waveforms compared with the 

least squares method (Table 4.1). This means that the global optimization method 

locates a better minimum value in the cost function, which is situated beyond the reach 

of the least squares method. However, the slight refinement by the GAPSu model over 

the least squares method makes it difficult to gauge the benefits of employing the 

method. This should not be a surprise because the model is applied to determine the 

coefficients in a linear system, which is relatively easy to solve using a conventional 

method. Moreover, the waveforms used to invert the initial tsunami source are 

generated from an artificial tsunami source instead of real measurements. Therefore, 

the linearity is well conserved and thus, the use of more advanced methods becomes 

redundant and unnecessary. In the study by Piatanesi and Lorito (2007), a global 

optimization method was successfully promoted for the case of tsunami waveform 

inversion. This was because the optimization method was applied to a nonlinear inverse 

problem of actual measurement data. Accordingly, the appraisal of such a method can 

be clearly defined. 
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Table 4.1 Summary of statistical evaluations based of the proposed cost 

function. 

Station 

Least squares GAPSu GAPSr 

RMSE 

(meter) 
r 

RMSE 

(meter)
r 

RMSE 

(meter)
r 

Gauge 1 0.0260 0.9973 0.0256 0.9974 0.0094 0.9996 

Gauge 2 0.0375 0.9876 0.0375 0.9877 0.0099 0.9992 

Gauge 3 0.0822 0.9744 0.0792 0.9761 0.0250 0.9976 

Gauge 4 0.0646 0.9809 0.0643 0.9811 0.0203 0.9982 

Gauge 5 0.0600 0.9829 0.0591 0.9835 0.0180 0.9984 

Gauge 6 0.0659 0.9854 0.0653 0.9857 0.0241 0.9981 

Gauge 7 0.0937 0.9954 0.0940 0.9954 0.0417 0.9992 

Gauge 8 0.0354 0.9879 0.0346 0.9885 0.0114 0.9987 

 

Spurious uplifts and subsidence of the water surface profile are generated in 

both the least squares and GAPSu model results (see Figure 4.6b and Figure 4.6c). One 

may argue that the specified spatial resolution of the unit sources is too coarse to 

represent the complete form of the target source. A denser distribution of unit sources 

should improve the results; however, it might also introduce other problems. A large 

number of model parameters (unknown parameters), which are proportional to the 

degrees of freedom in the optimization, are liable to cause the solution to become easily 

entrapped in a local optimum. Without a smoothing constraint, the result of the tsunami 

waveform inversion might be bumpy and non-physical, especially for cases with high 

spatial resolution (Wu and Ho, 2011). In other studies on tsunami waveform inversion 

by Baba et al. (2005) and Wu and Ho (2011), an equality constraint was imposed to 

maintain the smoothness of the inverted parameters to satisfy the long wave 

assumption, while by Saito et al. (2010) the constraint was used to obtain stable 
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solutions. However, such constraint might restrict the exploration throughout the 

feasible search space and render the discovery of an optimum solution more difficult. 

Another plausible explanation for the unsatisfactory results of the least squares and 

GAPSu model is simply that the equidistant unit sources in the regular Green’s function 

confines the search for optimality. This can be proven by the result of the GAPSr model, 

for which the same number of model parameter (28 unit sources) with random and 

scattered locations yields a much better estimation. 

The different design parameters in the GAPSr model have considerably 

improved the inversion accuracy. For instance, at Gauge 1, where the best fit of the 

waveform is attained, the measurement of accuracy as RMSE is 0.0260, 0.0256, and 

0.0094 m, and as r is 0.9973, 0.9974, 0.9996, for the least squares, GAPSu, and GAPSr 

models, respectively (Table 4.1). For further qualitative or visual assessments, 

comparisons of time series of the waveforms at each gauge are presented in Figure 4.7. 

In addition, statistical evaluation results for the waveforms at all gauges are shown by 

scatter plots in Figure 4.8. Overall, the statistical analyses on the waveforms suggest 

that the GAPSr model shows very good agreement with the target. These results 

conform to the inverted tsunami source resulted by the GAPSr model, which can be 

seen in Figure 4.6. The random and scattered location of the unit sources allows the 

approximation to capture the exact profile of the target source. Other than this, despite 

no smoothing constraint being used, the inverted sea surface deformation remains 

smooth and coherent. 
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Figure 4.6 Tsunami initial wave sources. Gray dots indicate the centroid of unit 

sources. (a) Artificial tsunami source as the target to be approximated, (b) 

inverted source using least squares method, (c) GAPSu model, (d) GAPSr 

model. 
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Figure 4.7 Comparison of waveforms at Gauges. Gray bar above the time axis 

indicates the time range for the inversion. 
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Figure 4.8 Scatter plots of each method with respect to the waveforms of the target 

source at all gauges. 

The search for the optimal locations of the unit sources allows the least squares 

method to find the unique and optimal solution. Such an approach is difficult to achieve 

deterministically using conventional gradient methods, because there is the possibility 

that the constructed design parameters in the GAPSr model produce a discontinuous or 

non-differentiable error surface owing to the random characteristics exhibited by the 

artificial tsunami source (target source). The same characteristic is very likely to occur 

in nature. A high degree of uncertainty has been observed in tsunami sources leading 

to significant variations in the nearshore tsunami amplitude (Geist, 2005). Therefore, 

the use of the model in real case applications is encouraged to reveal the underlying 

dynamics in tsunami generation. However, as with typical stochastic methods, the 

proposed model cannot ensure a constant optimization response time. The solution and 

convergence are strongly dependent on the random initial state. 
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Chapter 5  

Tsunami Source Estimation in a 
Real Case – the 2011 Tohoku 
Tsunami 

5.1 Problem Description 

Reconstructing the tsunami source caused by an underwater earthquake is the 

important first stage that determines the fate of subsequent tsunami models. Combined 

with other prominent factors that contribute to the tsunami’s behavior, the initial wave 

source defines the characteristics of the tsunami. It is particularly important in near-

field events, where the tsunami impact is more dependent on the source geometry (Okal 

and Synolakis, 2004). The initial tsunami source can be considered a hydrodynamic 

response to the perturbed seafloor caused by the earthquake. The response defines the 

source characteristic and can be revealed from the recorded tsunami waveforms.  

This chapter discusses the application of the proposed method to the 2011 

Tohoku tsunami, which uses near-field recorded tsunami waveforms that contain 

important information regarding the characteristics of the initial tsunami-generated 

wave profile. The waveforms are first used to identify the source area using a backward-
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propagated travel time, and are later used for the inversion. Here, GA-PS algorithm is 

used to determine the optimal least squares model parameters and time delays. The time 

delays determination is performed because in the real case of the 2011 Tohoku tsunami, 

the time dependent variation of the tsunami generating process is not negligible (Satake 

et al., 2013; Hossen et al., 2015). The computed time delays are part of the components 

of the multiple time window inversion, which indicate the time response of the unit 

sources to perturbed seafloor. This approach helps the traditional least squares inversion 

method to find a unique and global optimum solution, and reduces problems caused by 

the regularization scheme.  

5.2 Brief Reviews on the 2011 Tohoku Tsunami 

According to the Japan Meteorological Agency, a great earthquake occurred on 

March 11, 2011 at 5:46:18 UTC with the epicenter at 38.104o N and 142.861o E off the 

east coast of Tohoku. Its moment magnitude (Mw) was 9.0, which was probably one of 

the largest earthquakes ever recorded in Japan. The earthquake located in the Japan 

Trench subduction zone where the Pacific plate subducts beneath the Okhotsk plate, 

generating an extremely large tsunami. Maximum tsunami runup heights of nearly 40 

m were measured along the Pacific coast of Tohoku (Mori et al., 2011). The National 

Police Agency of Japan has confirmed casualties of about 16,000 deaths, 3000 people 

missing, and 6000 injured (http://www.npa.go.jp/archive/keibi/biki/higaijokyo_e.pdf, 

last accessed, October 10, 2015). Other than that, the tsunami also hit four nuclear 

power stations located at Fukushima. 

 The Pacific coasts of Tohoku have suffered from large tsunamis in the past. 

For example, the 869 Jogan earthquake (Minoura and Nakaya, 1991), the 1896 Sanriku 

earthquake (Kanamori, 1972), and the 1933 Sanriku earthquake (Kanamori, 1971). 

However, the 2011 earthquake possessed unique characteristics that responsible for the 



 44

unprecedented high tsunamis along the northern Sanriku coastline. Several studies have 

proposed various explanations on the cause for the said occurrence. Gusman et al. 

(2012) reported a motion of sedimentary wedge generating an additional uplift near the 

trench during the earthquake, while Kawamura et al. (2012) and Tappin et al. (2014) 

suggested a submarine mass failure.  Other study by Satake et al. (2013) proposed that 

the occurrence can be explained by a delayed shallow slip to the north of the largest 

slip. This study is expected to describe the aforementioned issue in terms of water 

surface displacements initiating the tsunami. 

5.3 Waveforms and Bathymetry Data 

The 2011 Tohoku tsunami was probably one of the most well-documented 

megathrust events in history. The tsunami waveforms were recorded at many locations 

by various instruments, i.e., ocean-bottom pressure (OBP) gauges, global positioning 

system (GPS), coastal tide/wave gauges, and other sophisticated devices. This study 

mainly focuses on the measurements from deep water instruments. This is to avoid 

interferences from harbors or local shelf effects. There is only one coastal wave gauge 

included at Tomakomai Port (W602) to confine the source area in the north (Figure 

5.3). Other than that, the waveforms are obtained from two OBP gauges off the coast 

of Tokachi (KPG1 and KPG2), two OBP gauges off the coast of Iwate (TM1 and TM2), 

ten GPS buoys (801, 802, 803, 804, 806, 807, 811, 812, 813, 815), and four Deep-ocean 

Assessment and Reporting of Tsunamis (DART) buoys (21401, 21413, 21418, 21419). 

All the data were pre-processed to remove signals from other sources (i.e., tides, wind 

waves, and noise), and resampled into 15-s intervals for numerical purposes. 

The model domain covers an area between 133–158°E and 28–48°N (Figure 

5.3). Three different grid resolutions are used to compute the tsunami propagation and 

simulate synthetic waveforms at the wave gauge (10 arc sec), OBP and GPS buoys (30 
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arc sec), and DART buoys (90 arc sec). For the smallest grid (10 arc sec), the 

bathymetry data are resampled from the J-EGG500, which is a 500-m gridded 

bathymetric data set provided by the Japan Oceanographic Data Center. The bathymetry 

data for the 30 and 90 arc sec grids are obtained and resampled from the GEBCO_08 

Grid, which is available for public access from the British Oceanographic Data Center. 

5.4 Determination of the Source Area 

Magnitude (M) to area (A) scaling is often used to estimate earthquake sizes. 

For instance, Well and Coppersmith [1994] found a linear relation between M and 

10log A . Assuming a simple rectangular fault model, the fault length (L) and width (W) 

are calculated from the estimated rupture area using L=2W. These parameters can 

alternatively be calculated from the aftershock distributions. This approach is required 

for tsunami waveform inversions that use the fault model assumption to derive the 

rupture-influenced area projection onto the sea surface, called the source area. Another 

approach that can be used with and without the fault model assumption is to restrict the 

source area according to the rupture velocity and duration (Takagawa and Tomita, 

2012). 

In this study, only information from the recorded waveforms are used to 

determine the source area, so that it can avoid making assumptions that are not 

necessarily true. Based on the Huygen’s principle, a finite region of the source area can 

be identified using backward-propagated tsunami arrival times from each observation 

station. Hayashi et al. (2011) and Haidarzadeh and Satake (2014) successfully 

implemented this method using commercial software called Geoware Tsunami Travel 

Times (TTT. v. 3). Here, a simpler ray tracing algorithm is developed using a 16-dot 

template for calculating tsunami travel times on a rectangular computational grid 

(Marchuk, 2008).  
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According to the Huygen’s principle, the wave energy radiates 

omnidirectionally from its source. Therefore, the algorithm searches through all 

adjacent points to generate wave front and determines the minimum travel time among 

these points to be used in the subsequent computation. Simple rectangular 

computational grids with known water depth values can be used to compute the tsunami 

travel time throughout the area of interest. An example of the grid system and travel 

time computing scheme is shown Figure 5.1 (Marchuk, 2008). The black squares 

indicate points on the grid, where the wave has arrived and the travel time values at 

these points are known.    

 

Figure 5.1 The scheme of travel time computation. 

 Point A is the location where the travel time will be computed, whereas points 

B, C, D, E, F, G, and H are the neighboring points, in which the travel time are known. 

Assuming that the depth between adjacent points ( 1d  and 2d ) is varied linearly, and 
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L  is the distance between those points, the angle of bottom declination can be 

expressed as, 

   2 1 /tg d d L   .      (5.1) 

The tsunami travel time can be computed based on the long wave approximation, that 
is, 
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 (5.2) 

Denoting the tsunami travel time at the neighboring points B to H as BT , CT , 

DT , ET , FT , GT , and HT , the travel time from each of this point with respect to the 

point A can be computed as follow, 
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, (5.3) 

where x  and y are the grid size. The travel time at point A is the minimum values 

obtained from the 1T  to 7T . 

 

Figure 5.2 The 16-dot template for tsunami travel time computation. 
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 The above description is just an example of the travel time computation 

procedure, and it does not represent the actual system. The real computation comprises 

of a certain template for determining the neighboring points. The 16-dot template used 

in this study is shown in Figure 5.2, where the travel time at the center of the template 

is computed based on the 16 surrounding points using Eq. (5.3). 

 

Figure 5.3 Model domain and source area (yellow). The black star indicates the 

location of the epicenter of the 2011 Tohoku earthquake. The contour lines 

are the backward-propagated tsunami arrival times from their 

corresponding observation stations. 

To determine the source area, each observation station is considered as the 

source of the wave. The travel time is computed from all stations, and the duration is 

taken from the arrival time information on the recorded tsunami waveforms. The 

waveforms from GPS buoys (801, 802, 803, and 804) and OBP gauges (TM1 and TM2) 
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are excluded from the calculations, because the arrival times of the seismic and tsunami 

waves at those locations are almost identical (Hayashi et al., 2011). In other words, 

these stations are located inside the source area. Figure 5.3 shows the source area 

bounded by the back-propagated lines. 

5.5 Green’s Function 

The surface deformation is expected to occur throughout the source area, so 

equidistant unit sources at 15-km intervals are distributed inside the area. Five hundred 

and twenty-eight unit sources are required to develop the initial Green’s function. The 

same auxiliary basis function as in the ideal case is used, which is based on the 2D 

Gaussian shape to represent the initial water height of each unit source. 

The COMCOT model is employed to calculate the synthetic waveforms. It uses 

an explicit staggered leap-frog finite difference scheme to solve the linear shallow water 

equation in spherical coordinates (Wang, 2009). The linear model is used for the three 

different nested grid system resolutions of 90, 30, and 10 arc sec. This is motivated by 

the general notion that the tsunami propagation characteristics in deep water are linear. 

The linear assumption was also validated by the fact that both the linear and nonlinear 

models produced similar waveforms at the OBP and GPS gauges (Satake et al., 2013). 

5.6 Regularization Scheme 

In the real case, a high spatial resolution of unit sources is used. Therefore, to 

obtain a stable solution, we must accordingly apply a proper treatment such as 

regularization schemes, although this can also cause other problems (Minson et al., 

2013). Several studies have proposed various techniques and regularization schemes to 

overcome such issues. The most tractable method uses a smoothing constraint to 

maintain the stability of the solution (e.g., Baba et al., 2005; Gusman et al., 2013). 
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Koike et al. (2003) introduced a more advanced method that reduces the model 

parameters using wavelets. Singular value decomposition has also been used to control 

the numerical stability of the tsunami waveform inversion (Voronina, 2011; Takagawa 

and Tomita, 2012). 

For simplicity, the smoothing constraint by Tsushima et al. (2009) is used, 

which is based on a type of Laplacian derivative operator. Traditionally, the extent of 

the regularization parameter   in Eq. (2.7) is often calculated using a trial-and-error 

approach, which is somewhat subjective. Here, the L-curve criterion is utilized to 

determine the optimal regularization parameter that balances the fitting error and 

regularization error (Hansen, 1992).  

The L-curve plot is a plot of the (semi)norm 
2

Iw  of the regularized solution 

versus the corresponding residual norm 
2

-Gw  . The subscripts correspond to what 

is known in the literature as the L2 norm. The L-curve displays the compromise between 

minimization of these two quantities, which is the essence of regularization methods. 

The optimal value of the weighting quantity is shown by a distinct corner separating 

the vertical and horizontal part of the curve.  

5.7 Selection of Model Parameters  

In the ideal case (Chapter 3), the algorithm was used to find the optimal spatial 

distribution of unit source locations. The unit sources were randomly distributed inside 

the source area to broaden the search space, so that they can provide any possible 

complex shapes of the water surface profile. However, this approach requires an 

accurate interpolation to synthesize waveforms that originated from the optimized unit 

sources located between the initial Green’s functions. The forward model was re-run 

for each optimized unit source to avoid interpolation errors, which was computationally 

expensive. In the real case application, instead of using randomly distributed unit 
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sources, a very dense spatial resolution is developed, which produces a large number of 

model parameters. However, only the optimal ones are selected. 

To find the optimal least squares model parameters, an identification number is 

assigned for each unit source to be either included (1) or excluded (0) from the 

inversion. The aim of the GA-PS optimization is to determine the set of vectors 

containing these numbers that yields the best least squares fit. It is expected to reduce 

the number of model parameters by removing duplicate information from adjacent unit 

sources, while still maintaining the model’s ability to capture the heterogeneous water 

surface profile. Fewer model parameters are analogous to lower degrees of freedom, 

which means the unique and optimal solution is more likely to obtain than when using 

the initial Green’s function. The following algorithm selects the optimal model 

parameters. 

Set the initial random vector to  0,1x X . The length of the vector is equal to the 

number of the initial unit sources (528). 

while stopping criteria is not met do 

Apply the vector as an index for the initial Green’s function Gxw .  

Use only the selected component on the Green’s function  1x  .  

Perform the single time window least squares inversion,   1T T
    G G Gw  , 

where 1G G .  

Evaluate the fitness function in Eq. (4.7). 

Update x  using the genetic operators/pattern search optimization. 

The optimized model parameters ( w ) are expected to be the unique and optimal 

solutions with smaller vector dimensions than the initial parameter vector, w .  
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The optimization settings and parameters for the GA and PS are presented in 

TABLE, which are the default values used in many applications. However, slight 

modifications are introduced in the stopping criteria for both GA and PS. 

Table 5.1 GA and PS default parameter values. 

Genetic 
algorithm 

    

Population size Elite count Crossover 
function 

Mutation 
function 

Stopping 
criteria 

20 for model 
parameters 
selection, and 50 for 
time delays 
determination 

0.05 times 
population 
size 

 Scattered  
 Crossover 

rate = 0.8  

 Uniform 
 Mutation 

rate = 0.01 

 Maximum 
generation > 
500 

 Average fitness 
change over 50 
generations <= 
1e-6 

Pattern Search     

Mesh size Mesh size 
factor 

Stopping criteria  

Initial = 1, and 
maximum allowed 
size =  

 Contraction 
= 0.5 

 Expansion = 
2 

 

 Mesh tolerance <= 1e-6 
 Maximum iteration > 1500 
 Minimum fitness change 

between two consecutive 
iterations <= 1e-6 

 

   

5.8 Time Delays Determination 

The time delays can be calculated using three different approaches. The first 

(Model 1) uses a constant perturbation velocity of 2 km/s originating from the epicenter, 

which is based on the rupture velocity used by Satake et al. (2013). In the second 

approach, the time delays are directly considered as model parameters in the GA-PS 

optimization (Model 2). According to the Satake et al. (2013), a delayed large slip 

occurred at approximately 3 min after the earthquake, so the optimization of this 

parameter is bounded between 0 and 180 s. This approach is independent of the source 
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origin, because the time delay is randomly assigned for each of the parameters 

optimized in the previous stage. The last approach computes the time delays from 

spatially varied velocity values (Model 3). Similarly to the second approach, the values 

are first randomly distributed throughout the selected parameters, and then the time 

delays are calculated using the ray tracing algorithm used in the travel time 

computation. Therefore, the time delays are constrained to start at the epicenter and 

form a systematic path through the source area. A minimum velocity of 1 km/s and a 

maximum of 3 km/s as bounds for the optimization are considered. 

 The algorithms for determining the optimal time delays using Models 2 and 3 

are very similar. The only difference is that Model 3 uses a ray tracing computation. 

Set the initial random vector to x X , where 

  , 1,...,n i i il x u i n    X x R . For Model 2, l=0 and u =180, and for Model 

3, l=1 and u =3. The vector length (n) is equal to the number of optimized 

parameters in the previous stage.  

while stopping criteria is not met do 

For Model 2, the time delay is τ=x.   

For Model 3, compute the time delay τfrom x  using ray tracing.   

Apply the vector to the optimized Green’s function,    G t τ w .  

Perform the multiple time window inversions,   1T T
    G G Gw  , where 

  t   G G t τ . 

Evaluate the fitness function in Eq. (4.7). 

Update x  using the genetic operators/pattern search optimization. 

The final model parameters ( w ) are the solutions obtained from the parameters 

selected in the previous stage based on their respective time delays.  
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5.9 Results and Discussion 

The rough estimate of the source area using backward-propagated arrival times 

helps to avoid the laborious route of finding suitable parameterizations of the rupture 

process, which often have large uncertainties. The method is actually a simplified 

version of the reciprocity principle for harmonic waves applied to a tsunami (Korolev, 

2011 ), because it locates the source without giving any information on the amplitude. 

Unfortunately, it also possesses some drawbacks. For instance, we should modify the 

actual arrival times to account for the time interval between the main shock and the 

generation of the tsunami in a large earthquake event (Hayashi et al., 2011; Heidarzadeh 

and Satake, 2014). Additionally, the probable nonlinearity of the phase velocity is not 

considered in the standard long wave velocity approximation used to calculate the 

tsunami travel time. Therefore, the result may be slightly inconsistent with previous 

studies (e.g., Maercklin et al., 2012; Fujii et al., 2011). In this study, the estimated 

source area cannot cover all of the immediate aftershocks of the 2011 Tohoku-Oki 

earthquake, especially in the north and the midway between the 806 GPS buoy and the 

coastline.  

The L-curve plot (Figure 5.4) shows that the optimal quantity of the spatial 

regularization factor is  =1.833. However, the model results show that we can still 

improve the accuracy using the proposed method without adjusting the resulted 

regularization quantity displayed by the L-curve. This is one of the benefits of the 

method that is related to the reduction of the spatial smoothing effect, which will be 

further discussed in the next subsection.   
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Figure 5.4 The L-curve plot used to choose an appropriate spatial smoothing 

quantity in the inversion (  =1.833).   

5.9.1 Selected Model Parameters 

The inverted tsunami source using the initial Green’s function (528 unit sources) 

has a very smooth profile, and a maximum uplifted area of approximately 7 m located 

east of the epicenter near the trench (left of Figure 5.5a). Despite the difference in 

amplitude, the location of this maximum water surface height corresponds to the 

maximum vertical seafloor displacement reported in previous studies (Fujii et al., 2011; 

Gusman et al., 2012; Satake et al., 2013). Adjacent to the uplifted area, the troughs of 

the initial waveform are distributed to the west of the epicenter along the coastline, and 

have a smallest value of approximately −1.5 m. The accuracy of the inverted waveforms 

at all gauges is calculated using the root mean square error (RMSE=0.5138 m) and the 
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Pearson correlation coefficient (r=0.8549), as shown in the right of Figure 5.5a. 

Comparisons of observed and inverted waveforms in time series plot is shown in Figure 

5.6. Although it is difficult to quantitatively compare the result, it resembles other 

inferred surface deformations produced by tsunami waveform inversions without the 

fault model assumption (e.g., Saito et al., 2011; Takagawa and Tomita, 2012). However, 

the lack of spatial heterogeneity in the water profile (which is probably caused by the 

imposed regularization scheme) may mean that it is not considered a plausible model. 

In contrast, GA-PS reduced the number of parameters to 200 and improved the 

accuracy (RMSE=0.4781 m and r=0.8798), as shown in Figure 5.5b (left). This 

improvement suggests that the excess model parameters were redundant and constituted 

a higher degrees of freedom, which limited the search for an optimal solution. It may 

also imply that the spatial smoothing constraint has been suppressed, because more than 

half of the model parameters were removed. This is a desirable gain, because using such 

a regularization without a proper and thorough analysis may reduce the methods ability 

to distill the underlying physics of the tsunami generating process (Minson et al., 2013). 

Traditionally, we often modify the extent of the regularization scheme using a trial-and-

error approach, which is somewhat subjective. This study uses the L-curve criterion to 

determine the optimal regularization parameter that balances the fitting error and 

regularization error. However, further improvement can be achieved using the proposed 

method without adjusting the resulted regularization quantity displayed by the L-curve 

(  =1.833).   

Figure 5.5b (left) shows that the location of the maximum uplifted area remains 

the same, but it is more distinct and has a higher amplitude of more than 8 m. Ito et al. 

(2011) and Hayashi et al. (2011) suggested that the uplift at this particular site was 

responsible for the impulsive crest observed in TM1 and TM2. The subsidence of water 

surfaces are distributed near the coast, which are consistent with the geodetic data 

(Nishimura et al., 2011). The minimum subsidence inside the source area is now less 
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than −2 m. This range increment is probably because of the reduced regularization. 

Overall, the selected model parameters produces a rougher sea surface profile. This is 

more realistic according to Satake et al. (2013), because a large horizontal displacement 

of the seafloor that generated shorter wavelength components was responsible for 20–

40% of the 2011 Tohoku-Oki tsunami amplitudes. A similar finding was also reported 

in Gusman et al. (2012), where an additional uplift caused by a co-seismic horizontal 

displacement excited a short wavelength and high peak movement in the sea surface 

near the trench. This cannot be observed in the initial Green’s function, where the 

spatial smoothing influences the entire source area. Other studies have also implied that 

inaccuracies in inferring the tsunami source may be attributed to smoothing of water 

surface perturbations (Saito and Furumura, 2009; Nosov and Kolesov, 2007). 
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Figure 5.5 Inverted sea surface deformation (left) and corresponding statistical 

measures of the waveforms fit at all gauges (right). (a) Initial Green’s 

function based on 528 unit sources. (b) After GA-PS optimization with 

200 unit sources. The gray dots in the left figures indicate the centroids of 

the unit sources. The broken and continuous black contour lines show 

subsidence (0.5 m interval) and uplift (2 m interval). The green contour 

lines indicate the 0 m elevation inside the source area. 
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Figure 5.6 Comparisons of observed (black) and inverted waveforms at all gauges 

obtained using the initial Green’s function based on 528 unit sources (red) 

and after GA-PS optimization with 200 unit sources (blue). Solid black 

lines indicate the time interval of the data being used for the inversion. 
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5.9.2 Results for Different Time Delays 

The accuracy significantly improved after incorporating the time delays, which 

suggests that the transient deformation is not negligible in a large earthquake such as 

the 2011 Tohoku-Oki event. Referring to Eq.(2.11), the spatial smoothing quantity (

=1.833) and damping parameter (  =0.5) are used. Determining the time delays using 

a constant velocity of 2 km/s (Model 1) resulting in an RMSE=0.3874 m and r=0.9243. 

Figure 5.7 (left) shows the assumed constant velocity invoked from the estimated 

rupture front radiation formed circular patterns. However, not all unit sources produce 

substantial values after the inversion. Drawing the outer boundary of only the affected 

unit sources images the actual effective perturbation/rupture front (broken green 

contours). From the figure and comparison with other models, we can see that the 

simplification of constant velocity may not describe the actual physics of the rupture, 

because several factors cause variations in the rupture velocities (Zhao et al., 2011; Lay 

et al., 2012; Wei et al., 2012). Gusman et al. (2012) reported a motion of sedimentary 

wedge near the trench during the 2011 Tohoku-Oki earthquake. This region is usually 

characterized by a low rigidity area that caused a very slow rupture expansion (Lay et 

al., 2012). Another complexity of this event was reported in Maercklin et al. (2012), 

who noted that the earthquake originated from twin ruptures at different locations. 

Therefore, a more detailed parametrization to determine the time delays is required. 
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Figure 5.7 Cumulative inverted sea surface deformation after 180 s, overlaid with 

estimated time delay contours (continuous black) and effective 

perturbation front contours (broken green) at 30-s intervals (left), and the 

corresponding statistical measures of the waveforms fit at all gauges 

(right). (a) Using a constant velocity of 2 km/s (Model 1); (b) using a direct 

GA-PS optimization of the time delays (Model 2); and (c) using varied 

velocities from the GA-PS optimization (Model 3).  
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Model 2 is the most accurate (RMSE=0.3384 m and r=0.9430). This suggests 

that the tsunami generating process was too complex to assume a constant velocity. 

However, it is difficult to relate the distribution of time delays or effective perturbation 

fronts depicted in Figure 5.7b (left) with the actual physical phenomena, because the 

design parameter allows the water surface response to be simultaneously initiated at 

different locations with random directions of perturbation. The only decipherable image 

is of the relatively wide contour intervals in the highly uplifted areas, which indicate 

faster radiations than other locations. Model 2 is more appropriate than the other models 

for cases where there are simultaneous responses at distance locations. However, 

without any supporting evidence (e.g., a direct measurement of the sea surface 

deformation during the rupture), we cannot determine if there are any physical 

correlations or if the results are only the best in a statistical sense. 

Model 3 yields more realistic results; the perturbation starts at the epicenter and 

multi-directionally propagates with different velocities (Figure 5.7c (left)). The 

accuracy (RMSE=0.3682 m and r=0.9317) indicates that the spatially varied velocity 

is better than the constant velocity used in Model 1. Statistically, Model 2 is the best 

model (in terms of RMSE and r), but the Model 3 result is more relevant to the physical 

processes. Furthermore, our visual inspection suggests that the slow perturbation 

velocities shown by Model 3 (narrow contour intervals for both the time delays and 

effective perturbation fronts) occur to the north of the source near the trench. Although 

the estimated time delays may not explicitly explain the actual response time of the unit 

sources, they can facilitate the inversion to find a better solution. This is shown by the 

figure, where the effective perturbation front patterns follow the estimated time delays. 

An example can be seen at the location very close to the small portion of the highly 

uplifted area to the north. Therefore, this may confirm the movement of sedimentary 

wedge suggested by Gusman et al. (2012) because a rupture at a shallow depth in low 

rigidity material enhances the uplift of the seafloor (Lay and Bilek, 2007). 
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Figure 5.8 Cumulative inverted sea surface deformation at 180 s for 30-s time 

intervals, obtained from the optimized model parameters and time delays 

(Model 3). The broken and continuous black contour lines show 

subsidence (0.5 m interval) and uplift (2 m interval). The green contour 

lines indicate the 0 m elevation inside the source area. 

Based on the previous discussion, Model 3 produces the most reasonable 

representation of the tsunami source. Therefore, the cumulative transient deformations 

shown in the snapshots of time-dependent variations are taken from Model 3 (Figure 

5.8). The water surface uplift starts to move from the east of the epicenter, and then 

propagates bilaterally northwards and southwards along the trench axis, while the 

subsidence appears near the coast. At the period between 60-90 s, the positive water 

surface displacement extends westwards across the epicenter toward the coast. The 

model also captures a few distinctive patterns that are similar to previous studies.   For 

example, P1 shows a northern extension of the source that may be responsible for the 
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high tsunami along the Sanriku coastline (Wei et al., 2013; MacInnes et al., 2013). The 

disturbance at this particular location was interpreted by Gusman et al. (2012) as an 

additional uplift caused by a motion of a sedimentary wedge, whereas Kawamura et al. 

(2012) and Tappin et al. (2014) suggested a submarine mass failure. The delayed 

rupture proposed by Satake et al. (2013) appeared at 180 s is also observed in the result 

(P2). However, the location of the large uplift due to the delayed rupture is closer to the 

epicenter compared to the Satake et al. (2013). The cause of this discrepancy was 

discussed in Tappin et al. (2014), which compared the rupture centroids from many 

publications (for the 2011 Tohoku-Oki earthquake) and showed that there were 

significant variations clustered within a 30-km radius. 

The inverted tsunami waveforms using the optimized parameters and time 

delays obtained from Models 1, 2, and 3 are shown in Figure 5.9. All models 

significantly underpredict the maximum height of the observed waveforms at the 

northern GPS buoys (804 and 807). MacInnes et al. (2013) concluded that an additional 

source is needed to explain such high tsunamis. Tappin et al. (2014) resolved this 

problem by performing rigorous parameterizations of submarine mass failures located 

northeast of the epicenter. The secondary source in their simulation can reproduce high 

amplitude and frequency waves recorded at GPS buoys off Sanriku. The sea surface 

profile of this additional source is also captured in the proposed model, but has smaller 

dimensions (P1). At DART buoy 21418, all models are unable to approximate the later 

phases or dispersive wave train of the observed waveform, because of limitations to the 

non-dispersive forward model. Saito et al. (2011) and Tappin et al. (2014) confirmed 

that the dispersive properties of the waveform recorded at this site (situated 

approximately 600 km from the source) cannot be reproduced by a non-dispersive 

model.  
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Figure 5.9 Comparisons of observed (black) and inverted waveforms at all gauges 

obtained using Model 1 (red), Model 2 (green), and Model 3 (blue). Solid 

black lines indicate the time interval of the data being used for the 

inversion. 

Therefore, a more sophisticated forward model is required to reveal the multi-scale 

phenomena exhibited by the tsunami. Furthermore, at DART buoys, Model 1 shows 
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poor estimations of the waveform phases compared to Model 2 and Model 3. This 

should not be a surprise, because Model 1 assumes the constant perturbation velocity. 

We can adjust the velocity value to obtain better fits at the mentioned stations, but it 

will reduce the accuracy at the other stations. For that reason, it further confirms the 

previous discussion that we can enhance the model performance by incorporating the 

spatially varied velocity. 

 All model results at TM1 and TM2 underpredict the observation. This is 

probably because, in this study, the observed waveforms at OBP gauges are treated as 

surface gauges, such as GPS buoys and DART buoys. This is relevant for far-field 

tsunami or when the OBP gauges located outside the source area. During the 2011 

Tohoku tsunami, TM1 and TM2 were located inside the source area (Hayashi et al., 

2011). Therefore, the OBP sensors records not only pressure variations due to the 

resultant tsunami, but also those due to permanent seafloor deformation. This 

permanent seafloor deformation should be incorporated in the Green’s function to 

obtain more accurate results at these particular stations (Tsushima et al., 2012). 

5.9.3 Effects of the Hybrid Optimization 

 

Figure 5.10 Surface errors of the GA (blue) and PS (red) according to the 

specified design parameters. (a). Least squares model parameters 
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selection. (b). Time delays selection in Model 2. (c). Time delays selection 

in Model 3. 

To determine the benefit of the hybrid approach, the surface errors are plotted 

based on the proposed cost function against the generation or iteration of GA-PS 

optimization (Figure 5.10). Comparing the model parameters selection (Figure 5.10a) 

and time delays determination using Model 3 (Figure 5.10c) reveals that the GA is the 

predominant factor, and contributed to 85.98% and 61.46%  of the overall reduction 

in error, respectively. However, further refinement by PS indicates that the optimal 

solution is still situated beyond the reach of the GA. When selecting the time delays 

using Model 2 (Figure 5.10b), PS has a larger effect and reduces the error by 71.16%, 

but take longer to converge. This is because of the broader search space of Model 2, 

where the time delays are not constrained to certain behaviors as in Model 3. Based on 

the above discussion, the hybrid algorithm is necessary, because GA explores 

promising areas in the nonconvex function so that it can avoid local minima, but its 

search is confined by their exploration through the global structure of the cost function. 

The PS algorithm does not have this characteristic, therefore it can get trapped in a local 

minimum if used from the beginning of the optimization. 
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Chapter 6  

Real-time Forecasting of Tsunami 
Waveforms  

6.1 Problem Description 

Neural networks are part of the growing artificial intelligence branch classified 

as CI, and are known for their ability in approximating most practical nonlinear 

functions. Neural networks have been applied to tsunami forecasting in previous 

publications (Romano et al., 2009; Hadihardaja et al., 2010; Mase et al., 2011). 

However, the triggering mechanisms for those methods rely on estimates of the 

earthquake parameters. Namekar et al. (2009) proposed a better solution by 

incorporating tsunami waveforms (as in the TWI) to forecast coastal waveforms and 

the run-up. Their method requires no (or minimal) earthquake information. The only 

drawback is that the back propagation algorithm requires iterative training, which 

results in a considerable computation time. Consequently, it may not be appropriate for 

near-field tsunami events. 

This study proposes using a recent neural network algorithm called ELM. The 

ELM can be trained significantly faster than gradient-based methods such as back 

propagation, and produces better generalizations. Therefore, it is a promising 
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alternative tool for future TEWS. The method is applied to near-field tsunami 

predictions of the 2011 Tohoku event, which was recorded at various measurement 

devices (offshore and onshore) covering the Tohoku and Hokkaido areas. To assess the 

performance of the proposed method, comparisons with the standard TWI results are 

made and rigorous statistical evaluations are also performed. Additionally, this study 

also conducts a model uncertainty analysis to ensure the consistency of the method, by 

observing the variability of several test runs. This last assessment is necessary because, 

as with any typical neural network methods, the resulting forecasts are subject to 

uncertainties caused by the random network parameters. 

The limitation of this method is that we cannot interpret any physical meaning 

from the optimized network parameters, which is why this type of model is often called 

a black-box model. In TWI, the optimized model parameters represent the initial 

displacement of the tsunami, or the slip distribution. However, for forecasting purposes, 

speed and accuracy are the most important factors, therefore such an information is not 

necessarily required. 

6.2 Tsunami Data and Bathymetry 

This study uses tsunami waveforms recorded by four types of measurement 

devices: ocean bottom pressure (OBP) gauges, global positioning system (GPS) buoys, 

wave gauges, and tidal gauges. Data from four OBP gauges are used: two are deployed 

off the coast of Iwate (TM1 and TM2) and operated by The University of Tokyo and 

Tohoku University, and the other two are located off the coast of Tokachi (PG1 and 

PG2) and are operated by the Japan Agency for Marine-Earth Science and Technology. 

The other gauges used are six GPS buoys (G801, G802, G803, G804, G806, and G807), 

six wave gauges (W202, W203, W205, W219, W602, and W613), and three tide gauges 

(T618, T624, and T625), which are operated by the Ministry of Land, Infrastructure, 
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Transport, and Tourism. The locations of all the gauges are shown in Figure 6.1. All 

the data were pre-processed to remove signals from other sources (i.e., tides and wind 

waves), and resampled into 15-s intervals. 

 

Figure 6.1 Bathymetry profile of the study area and gauge locations. The red dots 

are the OBP gauges, the green squares are the GPS buoys, and the blue 

triangles are the coastal gauges (T: tide gauges and W: wave gauges). The 

black star is the epicenter of the 2011 Tohoku earthquake. 

To generate the synthetic waves used in the forecast algorithm, this study uses 

a numerical simulation with nested grid systems that covers an area between 140–148°E 

and 35–44°N. The grid size of the model for the offshore stations is 30 arc sec, and 10 

arc second for the coastal gauges. For the larger grid size, the bathymetry data are 

obtained from the General Bathymetric Chart of the Oceans (GEBCO_08 Grid) 

provided by the British Oceanographic Data Center. The bathymetry for the smaller 
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grid (10 arc sec) is resampled from the J-EGG500, which is a 500-m gridded 

bathymetric data set provided by the Japan Oceanographic Data Center. 

The availability of high-quality data with sufficient temporal resolution allows 

us to investigate dynamic rupture information of the 2011 Tohoku earthquake 

characterized by a relatively slow rupture propagation (Satake et al., 2013). However, 

this study assumes an instantaneous deformation to maintain the efficiency of the 

forecast algorithm when applied to smaller tsunamis or to events where high-temporal 

resolution data is unavailable. Moreover, the goal of this study in part is to compare the 

performance of the proposed method with the standard TWI using the same inputs, 

settings, and computational resource. 

6.3 Model Development 

The main goal of conventional TWI is to determine the magnitude of the slip on 

a fault plane or to infer the initial displacements that excite the tsunami. However, it 

can also be extended to estimate waveforms outside the inversion time range. The same 

two-dimensional Gaussian shape as in the Subsection 4.2.3 is used instead of a fault 

model to represent the initial water surface deformation. This is more practical for 

TEWS, because we do not need information about the fault geometry of the earthquake. 

Equidistant unit sources at 20-km intervals are distributed throughout the study area 

(Figure 6.2). Then, for each unit source, computation of the tsunami propagations is 

performed using the COMCOT model based on the linear shallow water equation 

(Wang, 2009). The resulting synthetic waveforms are stored for all the gauge locations. 
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Figure 6.2 Equidistant unit sources at 20-km intervals, which are used to develop 

the synthetic waveforms database. The dots are the centroids of the unit 

sources. Orange dots indicate the unit sources selected for the 35-min 

training period. The black star is the epicenter of the 2011 Tohoku 

earthquake. 

The number of unit sources in the inversion is limited by confining the source-

influenced area using a very simple approach. Only  w t  unit sources is included, 

where  /t r T  , r (in km) is the radius from the unit sources to the epicenter, and 

 is a constant that adjusts the size of the source-influenced area relative to the 

inversion time range. After running some trial and error tests,  =0.07 km/s is 

selected. Note that   is not similar to the rupture velocity. Using this technique, the 

only information we need about the earthquake is the location of the epicenter. This 

approach helps to reduce the number of unknown parameters in the inversion, so that 

we can decrease the degrees of freedom and redundancy. 
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As mentioned in the Section 3.3 that unlike conventional neural networks, ELM 

may require more hidden neurons because of the random determination of the input 

weights and biases (Zhu et al., 2005). Various methods have been proposed for finding 

the optimum number of hidden neurons (Hunter et al., 2012; Mulia et al., 2013), but 

they are not suitable for online training. For simplification purposes, the optimal 

number of hidden neurons for this case is assumed to be approximately two thirds of 

the input vector dimension. 

Although in theory, it is not necessary to normalize inputs or outputs of the 

neural networks, some applications have shown that a normalization can yield more 

efficient training processes (Kim, 1999). In this study, the output values are normalized 

in a range of -1 to 1, while the inputs remain unchanged, since they already have the 

same range [-1,1]. The input weight and bias values are also limited between -0.5 to 

0.5. Both the output normalization and the value limitations for the network parameters 

are expected to facilitate the ELM training process, so that it can produce a consistent 

predictive power. 

6.4 Model Evaluations 

To objectively assess the quality of the proposed method, this study 

quantitatively compares the observed and modeled waveforms using standard statistical 

measures: the mean absolute error (MAE, [0 to +∞], optimal value=0), which indicates 

the average magnitude of the model error (Willmott et al., 1985); the mean square 

derivative error (MSDE, [0 to +∞], optimal value=0), which measures the first-order 

derivatives of the modeled and observed values and is the difference in residuals 

between successive time steps (de Vos and Rientjes, 2008); the percent error in peak 

(PEP, [0 to +∞], optimal value=0), which evaluates the discrepancy between the highest 

modeled and observed values (Hauduc et al., 2011); the Pearson correlation coefficient 
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(r, [-1 to 1], optimal value=1), which measures the strength and direction of a linear 

relationship between two variables; and the balance criterion (BC, [-∞ to 1], optimal 

value=1), which measures the ability of the model in reproducing the same cumulative 

values as observed (Perin et al. 2001).  

In addition to these statistical measures, this study also calculates a single point 

difference between the observed and modeled waveforms at the coastal gauges in terms 

of the maximum wave amplitude of the first leading waves and its arrival time (the 

ELM results represented by a mean value from several runs). These two criteria are 

crucial information for TEWS, although they do not necessarily reflect the maximum 

impact of a tsunami, because in some cases, the succeeding tsunamis were significantly 

higher than the first ones.    

6.5 Uncertainty Analysis 

Both TWI and ELM are subject to uncertainty due to various factors. However, 

in an earthquake-induced tsunami, the uncertainty is mainly attributed to the incomplete 

knowledge of the source process. Detailed analyses on such uncertainty using stochastic 

source models can be found in Fukutani et al.  (2015). This study only quantifies the 

uncertainty in terms of lower and upper bounds of a 95% confidence interval of the 

predicted waveforms using a “delete-1” jackknife resampling technique (Sanchez and 

Cheung, 2007). Each jackknife sample produces different waveforms at the observation 

points that determines the correlation between observed and computed waveforms.   

Another source of uncertainty exists in the ELM modeling. In ELM, the input 

weights and biases are not adjusted in the same way as gradient-based algorithms. They 

are defined using random values with a certain distribution. Therefore, it is more 

probable that each run produces different results (from different random seeds). This 

study analyzes the results from 20 consecutive runs and visualizes their distribution 
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using boxplots. This is a standard technique for summarizing uncertainties, and contains 

the median (mid-point of the data, represented by lines inside the boxes), the inter-

quartile range (the middle 50% of the data, represented by the boxes), the bottom 25% 

and the top 25% of the data values (represented by the whiskers that extend from either 

side of the box), and the outliers (which indicate abnormalities, represented by the black 

dots). For comparison purposes, the TWI results are included using red bars. The plot 

uses the absolute relative error of the same variables as in the second statistical 

evaluation shown in Table 6.1.   

6.6 Results and Discussion 

In typical data assimilation processes, the forecast accuracy improves when we 

increase the amount of data used to calibrate the model parameters. Melgar and Bock 

(2013) demonstrated this by gradually increasing the inversion time range from 10 to 

50 min. Tsushima et al. (2009) also conducted the same test and obtained similar results. 

For the sake of compactness, this study only show one forecasting result using 35 min 

data for the inversion, because the method behaves the same as the aforementioned 

studies. The 35 min truncated data were sufficient for the Tohoku 2011 tsunami, and 

produced accurate and timely forecasts in a well-balanced manner (Tsushima et al., 

2011; Gusman et al., 2014). Hereafter, this inversion time period will be called the 

training period, which is the general term used in neural network modeling. The unit 

sources selected for the 35-min training period are shown in Figure 6.2. 
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6.6.1 General Results 

 

Figure 6.3 Comparison of waveforms from the observations, TWI, and ELM. 

Vertical dashed lines separate the 35-min training period from the 

subsequent forecasting period. Light red and light blue shadings indicate 

the 95% confidence interval for the TWI and ELM, respectively. The left 

figures are the offshore gauges and the right figures are the coastal gauges. 

Comparisons of the observed waveforms with the TWI and ELM results are 

shown in Figure 6.3. Overall, the ELM produces a more reasonable fit to the 

observations. In this study, the fitting at the training period is purposely limited to 
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maintain the generalization ability of the models. Using the Tikhonov’s regularization 

quantity (=3), the TWI forecasts at W203 and W205 produce very low troughs in the 

third and first wave respectively. The troughs will drop unrealistically if we further 

reduced the regularization quantity. In this case, where the observed waveforms are 

limited to 35 min, forcing the TWI to fit the observation by reducing the regularization 

amount would cause an overfitting issue with severe consequences. On the other hand, 

the ELM forecasts at the two stations are more plausible. Although, unfortunately there 

are no observed waveforms to confirm these occurrences. Furthermore, the synthetic 

waveforms are generated using the linear shallow water equation, therefore the TWI 

can only produce linear approximations. On the contrary, the ELM provides a nonlinear 

transformation of the input networks for the forecasted waveforms through the 

nonlinear transfer function (Namekar et al. 2009). The sigmoid transfer function in Eq. 

(3.8) transforms the linear inputs into nonlinear patterns if the nonlinearity exists in the 

observed waveforms. Therefore, the ELM can capture nonlinear patterns in the training 

dataset. However, the ELM requires an additional regularization (the graph 

regularization) to suppress erratic small-scale variations that are probably induced by 

the complex network structure. 

Tsunami nonlinearities mostly occur at coastal areas and are caused by several 

factors, for example local bathymetric effects, coastal geometry, etc. An advanced 

numerical model derived from nonlinear equations must be used to spatiotemporally 

simulate such an occurrence, but this is computationally expensive (Saito and 

Furumura, 2009). In term of inversion analysis, the law of superposition is no longer 

valid for the nonlinear equation. Therefore, the TWI is not applicable for such cases. 

However, these nonlinearities can be represented by the ELM, because they are 

accessible through the knowledge acquired in the training process, which is not possible 

when using TWI. This may also imply that the offshore records contain somewhat 

nonlinear patterns, because the training datasets mainly consist of water fluctuations at 
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the offshore gauges. The superiority of the ELM over the TWI is not significantly 

reflected in the computational effort, because more complex and accurate models 

typically take more time. In this case, the computing time for the ELM is only 0.35 s, 

which is slightly longer that the TWI (0.2 s). 

Table 6.1 Statistical evaluation results. 

 
MAE  MSDE PEP (%)  r  BC 

TWI ELM  TWI ELM TWI ELM TWI ELM  TWI ELM 

Training 0.471 0.323 0.017 0.020 28.79 23.29 0.920 0.915 -0.594 -1.98 

Forecasting 0.630 0.587 0.038 0.036 27.01 18.44 0.694 0.736 -14.14 -9.46 

 

The model performances are quantified using statistical indexes (Table 6.1). 

Based on these statistical measures, the ELM performs better in the training period than 

TWI, except for in terms of the MSDE (which was 0.020 for ELM and 0.017 for TWI). 

This is most likely because the MSDE specifically penalizes timing errors and noise (de 

Vos and Reintjes, 2008). As discussed previously, we know that ELM results contain 

more small-scale variations, therefore they are prone to increased MSDE values. The 

BC and r values for the TWI in the training period are also better than the ELM values, 

but not in the more important forecasting period. The accuracy of the ELM extends to 

the forecasting period as shown by all statistical measures. This proves that the ELM 

has a better generalization compared to the TWI, as it can produce more accurate 

forecasts for the unseen patterns in the training period. 

To further assess the advantages of the ELM method, the differences between 

the observed and modeled maximum amplitude in the first leading waves and their 

arrival times are compared. These are two of the most important factors in TEWSs 

(Table 6.2). The ELM results are based on mean values from several consecutive test 

runs used in Figure 6.4. This study only focus on analyzing the coastal gauges 

distributed along the Tohoku and Hokkaido coastlines. In terms of the maximum 
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amplitude, the TWI results at all gauges have considerably larger errors (with respect 

to the observations) than the ELM, and most of them underestimates the observations. 

In terms of the arrival time, both methods produce relatively comparable forecasts. The 

ELM estimates are only obviously poor at gauge W219, which is also observed in the 

TWI result. Satake et al. (2013) produced a better result at this station, because they 

used more than 35 min data in their inversion time period. Therefore, the water level 

change was properly captured by their model. 

Table 6.2 Maximum amplitude and arrival time discrepancies at coastal gauges. 

Negative original values indicate underestimates and positive values 

indicate overestimates. Gauge names with brackets are the stations with 

incomplete data. 

 Original values Absolute relative error (%) 

Gauges 

Max. amplitude 

(m) 

Arrival time  

(min) 

Max. 

amplitude  

Arrival time  

TWI ELM TWI ELM TWI ELM TWI ELM

W202 -0.41 0.18 -0.25 0.61 18.06 8.05 0.45 1.09

[W203] -0.77 0.38 1.50 1.03 23.29 11.39 2.53 1.74

[W205] 0.92 -0.49 3.25 -1.71 14.05 7.49 5.22 2.74

[W219] -1.41 -0.61 8.00 7.67 26.24 11.28 19.28 18.47

W602 -0.19 0.09 1.50 0.92 13.24 6.05 1.94 1.19

W613 -0.19 0.15 2.00 1.12 15.17 12.26 3.60 2.02

T618 0.39 0.20 1.25 0.51 31.16 16.34 1.81 0.74

T624 -0.28 0.09 -2.25 -4.06 15.64 5.07 2.61 4.71

T625 -0.25 0.11 0.00 0.69 15.09 6.46 0.00 0.92
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6.6.2 Model Uncertainty 

Even though the ELM has more parameters and higher degrees of freedom, its 

confidence intervals are comparable to the TWI (Figure 6.3). The confidence interval 

spreads for both method can be considered narrow, except for the W205. According to 

Kawai et al. (2013), characteristics of the tsunami waveform recorded at W205 was 

influenced by some unknown crustal movement effects. Therefore, to address this 

problem, we must include additional information on the source generation mechanism. 

For example, Tsushima et al. (2012) incorporated permanent seafloor deformation to 

correct the initial Green’s function and gained substantial improvements in prediction 

accuracy. Other study by Muhari et al. (2012) utilized arrival time information based 

on stopped clocks found in the tsunami affected areas to improve their source model. 

The absolute relative errors of maximum tsunami amplitudes and arrival times 

at coastal gauges from 20 model runs are shown in Figure 6.4. The outputs 

normalization helps the ELM to recognize the patterns in data more efficiently, and thus 

leads to more consistent forecasting results. However, limiting the input weights and 

biases between [-0.5, 0.5] has a more significant effect in reducing the variability of the 

forecasts. Increasing the above range results in a higher probability of obtaining better 

solutions, but concurrently generates higher variabilities. On the other hand, smaller 

ranges would produce less variabilities, but increase the median of the absolute relative 

error. 

For the maximum amplitude, the median values at all gauges are closer to zero 

than the TWI results. The ELM forecasts show various distributions for the gauges, 

indicated by the length of the boxes and whiskers. Nevertheless, in general, the 

variations are still below or close to the TWI scores (indicated by the red bars). The 

largest error of the ELM relative to the TWI is observed at W205, with the discrepancy 

of only approximately 8%. Furthermore, the number of ELM instances with larger 
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errors than the TWI is less than 25%, because the TWI score is located inside the upper 

whisker range. This demonstrates the consistency of the ELM, which results in better 

predictions than TWI.  

 

Figure 6.4 Boxplots that indicate the differences between the observed and 

forecasted maximum amplitudes in the first leading waves and their arrival 

times, for 20 model runs at nine coastal gauges. The red bars represent the 

TWI results. Gauge names with brackets are the stations with incomplete 

data. 

The forecasted arrival times are less variable than the maximum amplitude, and 

most stations have relatively narrow interquartile ranges. This suggests that the arrival 

time pattern is easier to capture than the maximum amplitude, which agrees with results 
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from deterministic models. Therefore, the linear model using TWI can produce 

comparable results to the ELM model. At T264, the TWI result is even better than 

majority of the ELM results. The TWI and ELM results both have the largest errors at 

W219. We can see the distinct lag time in the ELM forecast that results in an 

approximately 18% error (median), and the TWI error of approximately 19%. This 

latency was discussed earlier as the result of the unprecedented recorded waveform at 

this particular gauge. Additionally, the observation at this station is incomplete, 

therefore the value recognized by the detection algorithm may not represent the actual 

arrival time of the maximum amplitude. 

Tsunami source characteristics have a larger impact on the tsunami behavior in 

near-fields (Okal and Synolakis, 2004). Therefore, we need an appropriate method for 

revealing the underlying physics of the tsunami generation processes, to fully 

understand its propagation towards the coastline. The 2011 Tohoku tsunami was a 

complex megathrust event. Several authors have proposed various approaches for 

accurately representing its source or initial wave profile, by either incorporating 

overlooked physical aspects or introducing better models. Gusman et al. (2012) 

included an additional uplift that excited a short wavelength and high initial sea surface 

amplitude near the trench, leading to waveforms that better fit the observations. Tappin 

et al. (2014) suggested a submarine mass failure that may be responsible for the high 

tsunami along the Sanriku coastline. We should not expect to achieve the same 

performance or accuracy as these studies, because this particular case is strictly 

confined by the operational time. Nonetheless, the qualitative and quantitative 

assessments presented in this study have confirmed the reliability of the proposed 

method, and that it is applicable to actual TEWS.  

The 2011 Tohoku had a unique characteristic, where the observed tsunami data 

exhibited dispersive waves, even in the near-field (Tappin et al., 2014). This is likely 

due to the northern extension of the source generating shorter wavelengths that are more 
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dispersive. A dispersive wave was also observed at Deep-ocean Assessment and 

Reporting of Tsunamis buoys number 21418 (not used in this study), which can only 

be captured with dispersive model (Saito et al., 2011). Hossen et al. (2015) confirmed 

the importance of dispersive effects for the 2011 Tohoku event in their inversion 

analysis. Therefore, one of possible improvements for the proposed method that should 

be considered in the future works is to develop a dispersive Green’s function. 
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Chapter 7  

Conclusions 

This study investigates applications of CI to tsunami source estimation and 

waveform forecasting. The first method uses a GA-PS algorithm to estimate an 

idealized tsunami source and that of the 2011 Tohoku tsunami. The second method 

develops an ELM model for real-time tsunami forecasting in coastal areas, and can be 

considered as a potential tool for future TEWS. Overall, these methods are found to 

successfully enhance the standard TWI in both estimating tsunami sources and 

forecasting tsunami waveforms. 

7.1 Tsunami Source Estimation (Ideal case) 

Estimations of tsunami sources using CI with a stochastic nature have been 

conducted. The unique design parameters in the proposed method, applied to determine 

the optimum location of the unit sources prior to the inversion, demonstrate 

considerable improvements in accuracy. The random and scattered locations of unit 

sources have improved the ability of the inversion to produce a more precise 

approximation of the initial tsunami source without violating the general assumption of 

long wave theory.  
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The involvement of stochastic processes in the optimization increases the ability 

to reveal uncertainties in the tsunami source; such uncertainty is difficult to discern 

using deterministic approaches. However, as a signature of typical stochastic 

optimizations, the optimization response time is erratic because of its strong 

dependency on the initial state. Nevertheless, the results have demonstrated the efficacy 

of the method for post-event studies of tsunamis, because it can provide better 

estimations of the coseismic sea surface deformation compared with traditional tsunami 

waveform inversion methods. 

7.2 Tsunami Source Estimation (Real case) 

In the real case, the use of an auxiliary basis function based on a two-

dimensional Gaussian shape enables the capture of tsunami generation processes that 

emanate from sources that are independent of the corresponding seismic characteristics. 

Furthermore, this approach frees us from defining earthquake parameters that are often 

associated with large uncertainties, and avoids the assumption of identical bottom and 

surface deformations. In addition to such improvements on the standard method, 

another objective of this study is to directly infer the initial tsunami source 

corresponding to an underwater earthquake. The main reason for being able to 

characterize the triggering earthquake is to provide an accurate initial condition for 

posterior tsunami models (i.e., propagation, run-up, and inundation models).   

The first step is to select an appropriate number of least-squares model 

parameters, which leads to a reduction in the number of parameters that is proportional 

to the degrees of freedom. This improves the accuracy of the inversion, and decreases 

regularization effects. The second step is to determine the initial water movement time 

for each unit source in response to the perturbation. The stochastic approach provides 

more options for simulating various scenarios in regard to tsunami generating 
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mechanisms. For example, consider a case in which the propagation velocity of the 

surface perturbation spatially varies; similarly, consider a case in which multiple 

simultaneous responses occur at distant locations. In brief, both the model parameters 

and time delays are successfully determined, and provide a better Green’s function for 

the inversion.  

This study concisely analyzed and compared the results of current analyses with 

previously existing results to ensure that the method statistically improves the accuracy 

and that it is physically relevant. The method can describe several tangible processes 

associated with the 2011 Tohoku tsunami, e.g., the low rupture velocity in a low rigidity 

area causing significant uplift near the trench. It may also explain the additional 

northern source that was probably responsible for the high tsunami along the Sanriku 

coastline, as well as the possibilities of twin ruptures and delayed rupture.  

One possible improvement that could be incorporated in the proposed method 

would be consideration of a more advanced numerical model that includes dispersive 

effects, because some observed tsunami waveforms exhibit dispersive characteristics. 

Other than that, additional information regarding the physical evidence of tsunami 

source processes should be included in future studies. For example, by incorporating 

permanent seafloor deformation to correct the initial Green’s function. This will enable 

the model to reveal more meaningful physical aspects of the model and to gain 

substantial improvements in accuracy.  

7.3 Tsunami Waveform Forecasting 

This study proposes a new approach for forecasting near-field tsunami 

waveforms using ELM. Unlike the standard method (TWI), which is based on a linear 

assumption, ELM can capture nonlinearities in a tsunami using nonlinear transfer 

functions in the network. This feature is important, particularly when a tsunami travels 
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through an area of shallow water or complex coastal morphologies. Visual and 

statistical evaluations demonstrate that ELM outperforms TWI. This study shows the 

effectiveness of ELM at coastal gauges, by comparing the forecasted and observed 

maximum amplitudes in the first leading waves and their arrival times. The forecast 

accuracy of the ELM is not proportionally compensated by its computational 

requirement; the speed of the algorithm is only ~0.15 s less than the standard TWI.  

An uncertainty analysis is also conducted, which is necessary to effectively 

interpret the results and usability of the model. In general, TWI and ELM show 

comparable confidence intervals, even though ELM involves many more parameters. 

Furthermore, ELM maintains a consistent predictive power over several consecutive 

test runs, despite its dependency on random network parameters (i.e., input weights and 

biases). A few distinct variances are observed at certain locations, but they are still close 

to (mostly better than) the TWI results with reasonable ranges.  

In future studies, we must further improve the ELM performance by using a 

better numerical model (dispersive model) and incorporating time dependent variations 

of the tsunami generation, assuming that data with sufficient temporal resolution are 

available. This will produce a more realistic synthetic waveform database and facilitate 

the ELM training process. In summary, the speed and accuracy of ELM are important 

and desired features for a reliable and robust TEWS. With a more detailed and enhanced 

database, this is a promising tool that could be applied to actual TEWS. Additionally, 

validation of the method should be undertaken against historical tsunami events that 

occurred in the areas of interest to ensure the effectiveness of the method when applied 

to other locations, especially those with limited number of tsunami gauges. 
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