A gener al ization of the Donnelly-Tavar e^{-}

- Griffiths formul a

著者	Yanat o Haj i me
j ournal or publ i cat i on titl e	Communi cat i ons in st at i st i cs. Theory and net hods.
vol une	26
nunber	8
page range	$2009-2019$
URL	ht t p: //hdl . handl e. net $/ 10232 / 00012176$

A GENERALIZATION OF THE DONNELLY-TAVARÉ-GRIFFITHS FORMULA

Hajime Yamato
Dept of Math, Fac of Sci, Kagoshima University, Kagoshima 890, Japan
Key Words and Phrases: Random partition; Urn model; Waring distribution

Abstract

We give a generalization of the one form of the Donnelly-Tavaré-Griffiths(DTG) formula. It contains not only this DTG formula but also the conditional distribution of the formula given the some first components. We can construct it using an simple urn model. For the generalization of the DTG formula, its probability distributions including marginal and conditional distributions, the related statistics and their asymptotic properties are discussed.

1. INTRODUCTION

Let \mathcal{C}_{n} denote the set of all ordered partitions of a positive integer n, that is,

$$
\mathcal{C}_{n}=\left\{\left(c_{1}, \ldots, c_{k}\right): 1 \leq k \leq n, c_{i}>0(i=1, \ldots, k) \text { and } c_{1}+\cdots+c_{k}=n\right\}
$$

As a probability distribution on \mathcal{C}_{n}, the Donnelly-Tavaré-Griffiths formula is well-known (Ewens (1990)). The one form of this formula is a probability distribution of random ordered partition $C_{n}=\left(C_{n 1}, \ldots, C_{n k}\right)$ on \mathcal{C}_{n} defined by

$$
\begin{equation*}
P\left(C_{n}=\left(c_{1}, \ldots, c_{k}\right)\right)=\frac{\alpha^{k}}{\alpha^{[n]}} \cdot \frac{n!}{c_{k}\left(c_{k}+c_{k-1}\right) \cdots\left(c_{k}+c_{k-1}+\cdots+c_{1}\right)}, \tag{1}
\end{equation*}
$$

where α is a positive constant, $1 \leq k \leq n,\left(c_{1}, \ldots, c_{k}\right) \in \mathcal{C}_{n}$ and $\alpha^{[n]}=\alpha(\alpha+1) \cdots(\alpha+$ $n-1)$. This distribution is obtained by the size-biased permutation of the Ewens sampling formula(Donnelly and Tavaré (1986)). Joyce and Tavaré (1987) uses the linear birth process with immigration to derive the distribution. The distribution can be characterized as the distribution of frequencies of order statistics from GEM distribution (Donnelly (1986),

Donnelly and Tavaré (1991), Sibuya and Yamato (1995)). The distribution can be derived by using Pólya-like urn (Hoppe (1984), Sibuya and Yamato (1995)). It has equivalent models: random clustering process (Sibuya (1993)), urn with a continuum of colors and the sampling from Ferguson's Dirichlet process with a continuous parameter (Blackwell and MacQueen (1973), Yamato (1993)). The distribution can be also derived by using Pitman's Chinese restaurant process(see, for example, Donnelly and Tavaré (1990))

The other is a probability distribution of random ordered partition $D_{n}=\left(D_{n 1}, \ldots, D_{n k}\right)$ on \mathcal{C}_{n} defined by

$$
\begin{equation*}
P\left(D_{n}=\left(d_{1}, \ldots, d_{k}\right)\right)=\frac{\alpha^{k}}{\alpha^{[n]}} \cdot \frac{n!}{d_{1}\left(d_{1}+d_{2}\right) \cdots\left(d_{1}+d_{2}+\cdots+d_{k}\right)} \tag{2}
\end{equation*}
$$

where $\left(d_{1}, \ldots, d_{k}\right) \in \mathcal{C}_{n}$. This distribution is obtained from the n-coalescent with mutation (Donnelly and Tavaré (1986)). Ethier (1990) derives this distribution using diffusion model. Yamato (1996) gives the urn model yielding this distribution and its properties. Distinguishing between the distributions given by (1) and (2), we shall say the distribution given by (2) Donnelly-Tavaré-Griffiths II formula and abbreviate it $\operatorname{DTGII}(n, \alpha)$.

The conditional distribution of $C_{n}=\left(C_{n 1}, \ldots, C_{n k}\right)$ given $\left(C_{n 1}, \ldots, C_{n r}\right)=\left(c_{1}, \ldots, c_{r}\right)$ is the same distribution as $C_{n-c_{0}}$, where a positive integer r is fixed and $c_{0}=c_{1}+\cdots+$ c_{r}. For D_{n} having DTGII, the conditional distribution of $D_{n}=\left(D_{n 1}, \ldots, D_{n k}\right)$ given $\left(D_{n 1}, \ldots, D_{n r}\right)=\left(d_{1}, \ldots, d_{r}\right)$ is not DTG II. We shall introduce a generalization of DTG II such that this conditional distribution and the distribution of D_{n} belong to the same class of distributions. The generalization of DTGII, which we introduce, is given by a probability distribution of random ordered partition $D_{n}=\left(D_{n 1}, \ldots, D_{n k}\right)$ on \mathcal{C}_{n} defined by

$$
(3) P\left(D_{n}=\left(d_{1}, \ldots, d_{k}\right)\right)=\frac{\alpha^{k-1}}{(\alpha+\beta+1)^{[n-1]}} \cdot \frac{(\beta+1)^{[n]}}{\left(\beta+d_{1}\right)\left(\beta+d_{1}+d_{2}\right) \cdots\left(\beta+d_{1}+\cdots+d_{k}\right)}
$$

where α is a positive constant, β is a non-negative constant, $1 \leq k \leq n$ and $\left(d_{1}, \ldots, d_{k}\right) \in \mathcal{C}_{n}$. We shall call this distribution generalized Donnelly-Tavaré-Griffiths II formula and abbreviate it $\operatorname{GDTGII}(n, \alpha, \beta)$. DTGII (n, α) is equal to $\operatorname{GDTGII}(n, \alpha, 0)$. We shall show the properties of GDTG II.

In Section 2, we give a simple urn model and derive the GDTGII formula using this model.

In Section 3, we give the marginal distribution of D_{n} using a simple pure birth chain instead of the distribution (3) itself. Then we give the conditional distribution of $D_{n, r}$ given $D_{n 1}, \ldots, D_{n, r-1}$ for $r=1, \ldots, n-1$. These conditional distributions and the marginal distribution of $D_{n 1}$ are described using Waring distribution.

In Section 4, for the number k of distinct partions in D_{n} which is a random variable, its distribution is derived. For a positive integer r, the probability of $D_{n 1}+\cdots+D_{n r}$ is derived. The asymptotic properties as $n \rightarrow \infty$ of these statistics are also given.

2. Generalized DTG II formula

We consider the following urn model (cf. Yamato (1990), Example 1.1 and Yamato (1997), Section 4). There are many red balls of mass one, a single red ball of mass $\beta \geq 0$ and a single black ball of mass $\alpha>0$. An urn contains the red ball of mass β and the black ball at the beginning. A ball is randomly chosen from the urn in proportion to its mass and replaced along with a red ball of mass one. Let Y_{1} be equal to 0 or 1 , if the color of the ball chosen at the first trial is red or black, respectively. Let Y_{j+1} be equal to Y_{j} or $Y_{j}+1$ if the color of the ball chosen at the $(j+1)$-th trial is red or black, respectively, for $j=1,2, \ldots$ Then we have a pure birth chain $\left\{Y_{j} ; j=1,2, \ldots\right\}$ with states $0,1,2, \ldots$. Its initial state is $Y_{1}=0$ or 1 and the transition probabilities are

$$
\begin{gather*}
P\left\{Y_{j+1}=y_{j} \mid Y_{1}=y_{1}, \ldots, Y_{j}=y_{j}\right\}=\frac{\beta+j}{\alpha+\beta+j} \tag{4}\\
P\left\{Y_{j+1}=y_{j}+1 \mid Y_{1}=y_{1}, \ldots, Y_{j}=y_{j}\right\}=\frac{\alpha}{\alpha+\beta+j}
\end{gather*}
$$

for $j=1,2, \ldots$ and all states $y_{1}, y_{2}, \ldots, y_{j}$. If we take a positive integer m as parameter β, the equivalent model is obtained from a Pólya-like urn after the first m trials and the sampling from Ferguson's Dirichlet process after the first m observations. It also obtained from Pitman's Chinese restaurant process after arriving the first m persons. For Hoppe's Pólya-like urn, we have the equivalent model by letting $Y_{1}=0$ or 1 if we have the previous color or a new color at the $(m+1)$-th trial, respectively and letting Y_{j+1} be equal to Y_{j} or $Y_{j}+1(j=2,3, \ldots)$ if we have the previous color or a new color at the $(m+j+1)$-th trial, respectively, after the first m trials. For Chinese restaurant process, we let $Y_{1}=1$ or 0 if $(m+1)$-th person sits at a new empty table or not, respectively and let Y_{j+1} be equal to $Y_{j}+1$ or $Y_{j}(j=2,3, \ldots)$ if the $(m+j+1)$-th person sits at a new empty table or not, respectively, after the first m persons sat.

For the first n observations Y_{1}, \ldots, Y_{n} of this chain $\left\{Y_{j} ; j=1,2, \ldots\right\}$, we put

$$
\begin{gathered}
D_{n 1}=l \text { such that } Y_{1}=\cdots=Y_{l}<Y_{l+1}, 1 \leq l \leq n \\
D_{n 2}=l \text { such that } Y_{D_{n 1}+1}=\cdots=Y_{D_{n 1}+l}<Y_{D_{n 1}+l+1}, D_{n 1}+l \leq n
\end{gathered}
$$

$$
\begin{aligned}
D_{n i} & =l \text { such that } Y_{D_{n 1}+\cdots+D_{n, i-1}+1}=\cdots=Y_{D_{n 1}+\cdots+D_{n, i-1}+l} \\
& <Y_{D_{n 1}+\cdots+D_{n, i-1}+l+1}, \quad D_{n 1}+\cdots+D_{n, i-1}+l \leq n
\end{aligned}
$$

for $i=3,4, \ldots, n$. That is, $D_{n 1}$ is the number of observations equal to $Y_{1}, D_{n 2}$ is the number of observations equal to the first one which exceeds Y_{1}, and so on.

Proposition 1 For the pure birth chain given by (4), $D_{n}=\left(D_{n 1}, \ldots, D_{n k}\right)$ has GDTG $\mathrm{II}(n, \alpha, \beta)$, where k is the number of distinct observations among $Y_{1}, Y_{2}, \ldots, Y_{n}$. That is, the probability distribution of D_{n} is given by (3).

Proof. For $\left(d_{1}, \ldots, d_{k}\right) \in \mathcal{C}_{n}$, we have

$$
\begin{gathered}
P\left(D_{n 1}=d_{1}, D_{n 2}=d_{2}, \ldots, D_{n k}=d_{k}, Y_{1}=0\right) \\
=P\left(Y_{1}=\cdots=Y_{d_{1}}=0, Y_{d_{1}+1}=\cdots=Y_{d_{1}+d_{2}}=1, \ldots, Y_{d_{1}+\cdots+d_{k-1}+1}=\cdots=Y_{n}=k-1\right)
\end{gathered}
$$

Writing the right-hand side as the products of the conditional probabilities and using the transition probabilities (4), this is equal to

$$
\frac{\beta}{\alpha+\beta} \cdot \frac{\alpha^{k-1}}{(\beta+\alpha+1)^{[n-1]}} \cdot \frac{(\beta+1)^{[n]}}{\left(\beta+d_{1}\right)\left(\beta+d_{1}+d_{2}\right) \cdots\left(\beta+d_{1}+\cdots+d_{k}\right)}
$$

Similarly we have

$$
\begin{gathered}
P\left(D_{n 1}=d_{1}, D_{n 2}=d_{2}, \ldots, D_{n k}=d_{k}, Y_{1}=1\right) \\
=\frac{\alpha}{\alpha+\beta} \cdot \frac{\alpha^{k-1}}{(\beta+\alpha+1)^{[n-1]}} \cdot \frac{(\beta+1)^{[n]}}{\left(\beta+d_{1}\right)\left(\beta+d_{1}+d_{2}\right) \cdots\left(\beta+d_{1}+\cdots+d_{k}\right)}
\end{gathered}
$$

Taking the sum of these two probabilities we get (3).
$\left\{D_{n} ; n=1,2, \ldots\right\}$ is a Markov chain by the construction itself. Its one-step transition probabilities are given by the following.

Proposition $2\left\{D_{n} ; n=1,2, \ldots\right\}$ is a Markov chain whose one-step transition probabilities are

$$
\begin{gathered}
P\left(D_{n+1}=\left(d_{1}, \ldots, d_{k-1}, d_{k}+1\right) \mid D_{n}=\left(d_{1}, \ldots, d_{k}\right)\right)=\frac{\beta+n}{\alpha+\beta+n} \\
P\left(D_{n+1}=\left(d_{1}, \ldots, d_{k}, 1\right) \mid D_{n}=\left(d_{1}, \ldots, d_{k}\right)\right)=\frac{\alpha}{\alpha+\beta+n}
\end{gathered}
$$

for $\left(d_{1}, \ldots, d_{k}\right) \in \mathcal{C}_{n}$ and $n=1,2, \ldots$
Conversely, these transition probabilities determine the distribution of D_{n}, which is given by (3). $\left\{C_{n} ; n=1,2, \ldots\right\}$ having the distribution (1) is consistent (Donnelly and Tavaré
(1991)). $\left\{D_{n} ; n=1,2, \ldots\right\}$ is not consistent except for the case of $\beta=0$. That is, it holds only for $\beta=0$ that

$$
\begin{gathered}
P\left(D_{n-1}=\left(d_{1}, \ldots, d_{k}\right)\right)=\frac{1}{n}\left\{\sum_{j=1}^{n}\left(d_{j}+1\right) P\left(D_{n}=\left(d_{1}, \ldots, d_{j}+1, \ldots, d_{k}\right)\right)\right. \\
\left.+P\left(D_{n}=\left(1, d_{1}, \ldots, d_{k}\right)\right)+\cdots+P\left(D_{n}=\left(d_{1}, d_{2}, \ldots, d_{k}, 1\right)\right)\right\}, \quad\left(d_{1}, \ldots, d_{k}\right) \in \mathcal{C}_{n}
\end{gathered}
$$

2. Marginal and conditional distributions

We shall consider the marginal and conditional distributions of $D_{n 1}, \ldots, D_{n k}$ when $D_{n}=$ $\left(D_{n 1}, \ldots, D_{n k}\right)$ has GDTG II (n, α, β).

Proposition 3 Suppose that D_{n} have GDTG II (n, α, β). Let r be a positive integer such that $1 \leq r \leq n$. Then, for positive integers $d_{1}, d_{2}, \ldots, d_{r}$ satisfying $d(r)=d_{1}+\cdots+d_{r}<n$, $D_{n 1}, D_{n 2}, \ldots, D_{n r}$ has the probability given by

$$
\begin{gather*}
P\left(D_{n 1}=d_{1}, D_{n 2}=d_{2}, \ldots, D_{n r}=d_{r}\right) \tag{5}\\
=\frac{\alpha^{r}}{(\alpha+\beta+1)^{[d(r)]}} \cdot \frac{(\beta+1)^{[d(r)]}}{\left(\beta+d_{1}\right)\left(\beta+d_{1}+d_{2}\right) \cdots\left(\beta+d_{1}+\cdots+d_{r}\right)}
\end{gather*}
$$

For positive integers $d_{1}, d_{2}, \ldots, d_{r}$ satisfying $d_{1}+\cdots+d_{r}=n$, the probability $P\left(D_{n 1}=\right.$ $d_{1}, D_{n 2}=d_{2}, \ldots, D_{n r}=d_{r}$) is given by (3) with r instead of k.

Proof. In order to derive the marginal distributions of D_{n}, we use the pure birth chain defined by (4). For positive integers d_{1}, \ldots, d_{r} satisfying $d(r)<n$, we have $r<k(\leq n)$ and

$$
\begin{aligned}
& P\left(D_{n 1}=d_{1}, D_{n 2}=d_{2}, \ldots, D_{n r}=d_{r}, Y_{1}=0\right)=P\left(Y_{1}=\cdots=Y_{d_{1}}=0, Y_{d_{1}+1}=\cdots\right. \\
& \left.\quad=Y_{d_{1}+d_{2}}=1, \ldots, Y_{d_{1}+\cdots+d_{r-1}+1}=\cdots=Y_{d_{1}+\cdots+d_{r}}=r-1, Y_{d_{1}+\cdots+d_{r}+1}=r\right)
\end{aligned}
$$

We can similarly write the probability $P\left(D_{n 1}=d_{1}, D_{n 2}=d_{2}, \ldots, D_{n r}=d_{r}, Y_{1}=1\right)$ by the random variables $Y_{1}, \ldots, Y_{d_{1}+\cdots+d_{r}+1}$. Thus we get relation (5) by the similar method to the proof of Proposition 1. In case of $d_{1}+\cdots+d_{r}=n$, we have $r=k$ and the probability $P\left(D_{n 1}=d_{1}, D_{n 2}=d_{2}, \ldots, D_{n r}=d_{r}\right)$ is given by (3).

Before giving the corollary, we state Waring and bounded Waring distributions. The Waring distribution is the probability distribution of the random variable W taking the values $0,1,2, \ldots$ such that

$$
P(W=x)=(c-a) \frac{a^{[x]}}{c^{[x+1]}}, \quad x=0,1,2, \ldots
$$

where c, a are positive constants such that $c>a$ (see, for example, Johnson et al. (1992), 6.10.4.). We shall denote this Waring distribution by $\mathrm{Wa}(c, a)$. By grouping the events $\{W=n\},\{W=n+1\},\{W=n+2\}, \ldots$ with respect to W having $\mathrm{Wa}(c, a)$ for a non-negative integer n, we have the probability distribution given by

$$
\begin{gathered}
P(W=x)=(c-a) \frac{a^{[x]}}{c^{[x+1]}}, \quad x=0,1,2, \ldots, n-1, \\
\frac{a^{[n]}}{c^{[n]}}, x=n .
\end{gathered}
$$

We shall call this distribution bounded Waring distribution and denote it by $\mathrm{BWa}(n ; c, a)$ (Yamato(1997)).

Corollary 1 Suppose that $D_{n}=\left(D_{n 1}, \ldots, D_{n k}\right)$ have GDTG II (n, α, β). Then, we have

$$
\begin{gathered}
P\left(D_{n 1}-1=x\right)=\frac{\alpha(\beta+1)^{[x]}}{(\alpha+\beta+1)^{[x+1]}}, \quad x=0,1, \ldots, n-2 \\
\frac{(\beta+1)^{[n-1]}}{(\alpha+\beta+1)^{[n-1]}}, \quad x=n-1 .
\end{gathered}
$$

That is, $D_{n 1}-1$ has the bounded Waring distribution $\operatorname{BWa}(n-1, \alpha+\beta+1, \beta+1)$.
Proposition 4 Suppose that D_{n} have GDTG II (n, α, β). Then given $D_{n 1}=d_{1}, \ldots, D_{n r}$ $=d_{r},\left(D_{n, r+1}, \ldots, D_{n k}\right)$ has GDTG II $(n-d(r), \alpha, \beta+d(r))$, where $r=1,2, \ldots, n-1, d_{1}, \ldots, d_{r}$ $=1,2, \ldots, n-1$ and $d(r)=d_{1}+\cdots+d_{r}<n$. Especially, if D_{n} have DTG II (n, α), then given $D_{n 1}=d_{1}, \ldots, D_{n r}=d_{r},\left(D_{n, r+1}, \ldots, D_{n k}\right)$ has GDTG II $(n-d(r), \alpha, d(r))$.

Proof. Dividing the probability (3) by (5), we get the conditional probability,

$$
\begin{gathered}
P\left(D_{n, r+1}=d_{r+1}, \ldots, D_{n k}=d_{k} \mid D_{n 1}=d_{1}, \ldots, D_{n r}=d_{r}\right) \\
=\frac{\alpha^{k-r-1}}{(\alpha+\beta+d(r)+1)^{[n-d(r)-1]}} \cdot \frac{(\beta+d(r)+1)^{[n-d(r)]}}{\left(\beta+d(r)+d_{r+1}\right) \cdots\left(\beta+d(r)+d_{r+1}+\cdots+d_{k}\right)}
\end{gathered}
$$

We let $D(r)=D_{n 1}+\cdots+D_{n r}$ for a positive integer $r \leq k$. Since the conditional probability of Proposition 4 depends on d_{1}, \ldots, d_{r} only through the sum $d(r)=d_{1}+\cdots+d_{r}$, we have the following.

Corollary 2 Suppose that D_{n} have GDTG II (n, α, β). Then, given $D(r)=d(r)$, $\left(D_{n, r+1}, \ldots, D_{n k}\right)$ has GDTG II $(n-d(r), \alpha, \beta+d(r))$, where $r=2, \ldots, n-1$ and $d(r)<n$. Especially, if D_{n} have DTG II (n, α), then, given $D(r)=d(r),\left(D_{n, r+1}, \ldots, D_{n k}\right)$ has GDTGII $(n-d(r), \alpha, d(r))$

By applying Corollary 1 to Proposition 4 and Corollary 2, we have the followings.
Corollary 3 Suppose that D_{n} have GDTG II (n, α, β). Then given $D_{n 1}=d_{1}, \ldots, D_{n r}$ $=d_{r}, D_{n, r+1}-1$ has the bounded Waring distribution $\mathrm{BWa}(n-d(r)-1 ; \alpha+\beta+d(r)+1$, $\beta+d(r)+1)$, where $r=1, \ldots, n-1, d_{1}, \ldots, d_{r}=1,2, \ldots, n-1$ and $d(r)=d_{1}+\cdots+d_{r}<n$.

Corollary 4 Suppose that D_{n} have GDTG II (n, α, β). Then given $D(r)=d(r), D_{n, r+1}$ -1 has the bounded Waring distribution $\mathrm{BWa}(n-d(r)-1 ; \alpha+\beta+d(r)+1, \beta+d(r)+1)$, where $r=1, \ldots, n-1, d_{1}, \ldots, d_{r}=1,2, \ldots, n-1$ and $d(r)<n$.

3. Related statistics

For D_{n} having GDTG $\operatorname{II}(n, \alpha, \beta)$, in this section we denote k by K_{n} to express explicitly that k is a random variable. K_{n} is equal to $Y_{n}+1$ if $Y_{1}=0$ and Y_{n} if $Y_{1}=1$, where $\left\{Y_{j} ; j=1,2, \ldots\right\}$ is the pure birth chain stated in the first paragraph of Section 2. We shall consider the properties of K_{n}. Using relation derived by the poperties of K_{n}, we give the probability of $D(r)$. Before we derive the distribution of K_{n}, we shall note the relation $(\lambda+y)^{[n]}=\sum_{i=0}^{n}\binom{n}{i} \lambda^{[n-i]} y^{[i]}$, where λ, y are arbitary numbers and n is a positive integer. This relation is shown using that the sum of the probability of the hypergeometric distribution is equal to one (see, for example, Johnson et al. (1992), p.205, (5.16)). Using the unsigned Stirling number of the first kind [], we have $y^{[i]}=\sum_{j=0}^{i}\left[\begin{array}{l}i \\ j\end{array}\right] y^{j}$. Thus we get

$$
\begin{equation*}
(\lambda+y)^{[n]}=\sum_{j=0}^{n} R_{1}(n, j, \lambda) y^{j} \tag{6}
\end{equation*}
$$

where $R_{1}(n, j, \lambda)=\sum_{i=j}^{n}\binom{n}{i}\left[\begin{array}{l}i \\ j\end{array}\right] \lambda^{[n-i]}$.
R_{1} is the function introduced by Carlitz (1980a). For $\lambda=0,1, R_{1}$ is equal to the Stirling number of the first kind,

$$
R_{1}(n, j, 0)=\left[\begin{array}{c}
n \\
j
\end{array}\right], \quad R_{1}(n, j, 1)=\left[\begin{array}{c}
n+1 \\
j+1
\end{array}\right]
$$

(See Carlitz (1980a,b).)
Proposition 5 Suppose that D_{n} have GDTG II (n, α, β). Then for $k=1,2, \ldots, n$

$$
\begin{equation*}
P\left(K_{n}=k\right)=R_{1}(n-1, k-1, \beta+1) \frac{\alpha^{k-1}}{(\alpha+\beta+1)^{[n-1]}} . \tag{7}
\end{equation*}
$$

For $\beta=0$, this probability is given by Ewens (1972).
Proof. From the distribution given by (3), we have

$$
P\left(K_{n}=k\right)=\sum_{\left(d_{1}, \ldots, d_{k}\right) \in \mathcal{C}_{n}} P\left(D_{n}=\left(d_{1}, \ldots, d_{k}\right)\right)=f(n, k, \beta) \frac{\alpha^{k-1}}{(\alpha+\beta+1)^{[n-1]}},
$$

where the summation Σ is taken over all distinct ordered partitions $\left(d_{1}, \ldots, d_{k}\right)$ of n with k fixed and

$$
f(n, k, \beta)=\sum_{\left(d_{1}, \ldots, d_{k}\right) \in \mathcal{C}_{n}} \frac{(\beta+1)^{[n]}}{\left(\beta+d_{1}\right)\left(\beta+d_{1}+d_{2}\right) \cdots\left(\beta+d_{1}+\cdots+d_{k}\right)}
$$

Since $\sum_{k=1}^{n} P\left(K_{n}=k\right)=1$, we have $(\alpha+\beta+1)^{[n-1]}=\sum_{k=1}^{n} \alpha^{k-1} f(n, k, \beta)$. Therefore by (6), we get $f(n, k, \beta)=R_{1}(n-1, k-1, \beta+1)$.

Let T_{i} be the time of appearance of the i-th state among the first n trials, where $i=2,3, \ldots, n$. T_{i} has the following probabilities.

Corollary 5 For $i=2,3, \ldots, n$ and $l=i, i+1, \ldots, n$ we have

$$
P\left(T_{i}=l\right)=R_{1}(l-2, i-2, \beta+1) \frac{\alpha^{i-1}}{(\alpha+\beta+1)^{[l-1]}},
$$

The probability of the event that the i-th state does not occur among the first n trials is

$$
\sum_{j=1}^{i-1} R_{1}(n-1, j-1, \beta+1) \frac{\alpha^{j-1}}{(\alpha+\beta+1)^{[n-1]}}
$$

Proof. By (4) and (7), for $i=2,3, \ldots$ and $n=i, i+1, \ldots$ we have $P\left(T_{i}=n\right)=$ $P\left(K_{n-1}=i-1, Y_{n}=Y_{n-1}+1\right)=P\left(K_{n-1}=i-1\right) E\left[P\left(Y_{n}=Y_{n-1}+1 \mid Y_{1}, \ldots, Y_{n-1}\right) \mid\right.$ $\left.K_{n-1}=i-1\right]=R_{1}(n-2, i-2, \beta+1) \alpha^{i-1} /(\alpha+\beta+1)^{[n-1]}$. Since the event that the i-th state does not occur among the first n trials is written as $\left\{K_{n} \leq i-1\right\}$, by (7) its probability is $P\left(K_{n} \leq i-1\right)=\sum_{j=1}^{i-1} R_{1}(n-1, j-1, \beta+1) \alpha^{j-1} /(\alpha+\beta+1)^{[n-1]}$.
From the proof of Proposition 5, we have the following algebraic relation.

Corollary 6

(8) $\quad R_{1}(n-1, l-1, \beta+1)=\sum_{\left(d_{1}, \ldots, d_{l}\right) \in \mathcal{C}_{n}} \frac{(\beta+1)^{[n]}}{\left(\beta+d_{1}\right)\left(\beta+d_{1}+d_{2}\right) \cdots\left(\beta+d_{1}+\cdots+d_{l}\right)}$.

Using this relation to Proposition 3, we have the probability for $D(r)$.
Proposition 6 Suppose that D_{n} have GDTG II (n, α, β). Let r be a positive integer.

$$
\begin{gather*}
P(D(r)=j, r<k)=R_{1}(j-1, r-1, \beta+1) \frac{\alpha^{r}}{(\alpha+\beta+1)^{[j]}}, \quad j=r, r+1, \ldots, n-1 \tag{9}\\
P(D(r)=n)=R_{1}(n-1, r-1, \beta+1) \frac{\alpha^{r-1}}{(\alpha+\beta+1)^{[n-1]}}
\end{gather*}
$$

Proof. From Proposition 3,

$$
P(D(r)=j, r<k)=\frac{\alpha^{r}}{(\alpha+\beta+1)^{[j]}} \sum_{\left(d_{1}, \ldots, d_{r}\right) \in \mathcal{C}_{j}} \frac{(\beta+1)^{[j]}}{\prod_{l=1}^{r}\left(\beta+\sum_{i=1}^{l} d_{i}\right)}
$$

By (8), we have $\sum_{\left(d_{1}, \ldots, d_{r}\right) \in \mathcal{C}_{j}}(\beta+1)^{[j]} / \prod_{l=1}^{r}\left(\beta+\sum_{i=1}^{l} d_{i}\right)=R_{1}(j-1, r-1, \beta+1)$. For $D(r)=n$, we have $k=r$. From the distribution of D_{n} given by (3) and the relation (8), we have $P(D(r)=n)=R_{1}(n-1, r-1, \beta+1) \alpha^{r-1} /(\alpha+\beta+1)^{[n-1]}$.

For the urn model stated at the first paragraph of section 2 , we let Z_{j} be 0 or 1 if the color of the ball chosen at the j-th trial is red or black, respectively, for $j=1,2, \ldots$ Immediately after the j-th trial $(j=1,2, \ldots)$, the urn contains the black ball of mass α, the red ball of mass β and j red ball of mass one, no matter what the results of the previous j trials are. Thus Z_{j+1} are independent of $Z_{1}, \ldots, Z_{j}(j=1,2, \ldots)$ and

$$
P\left(Z_{j+1}=1\right)=\frac{\alpha}{\alpha+\beta+j}, P\left(Z_{j+1}=0\right)=\frac{\beta+j}{\alpha+\beta+j}, \quad j=1,2, \ldots
$$

We put $Z(n)=Z_{1}+\cdots+Z_{n}$ for $n=1,2, \ldots$ Then by the second Borel-Cantelli lemma, $Z(n)$ diverges to $+\infty$ with probability one(cf. Korwar and Hollander (1973), Corol. 2.2, Donnelly and Tavaré (1986), (6.4)). We can prove the strong law of large numbers for independent random variables Z_{1}, Z_{2}, \ldots and $E(Z(n) / \log n)$ converges to α as $n \rightarrow \infty$, by the similar method to the proof of Theorem 2.3 of Korwar and Hollander (1973). Thus $Z(n) / \log n$ coverges to α with probability one. Since $K_{n}=Z(n)+1$ if $Z_{1}=0$ and $K_{n}=Z(n)$ if $Z_{1}=1$, we have the following.

Proposition 7 Suppose that D_{n} have GDTG II (n, α, β). Then K_{n} diverges to $+\infty$ with probability one and $K_{n} / \log n$ coverges to α with probability one.

For the asymptotic distributions as $n \rightarrow \infty$, by Propositions 3, 6, 7 and Corollaries 1,3 , 5 , we have the following.

Proposition 8 Suppose that D_{n} have DTG II (n, α, β). Let r be a positive integer. Then
(i) $D_{n 1}-1$ has the Waring distribution $\mathrm{Wa}(\alpha+\beta+1, \beta+1)$ asymptotically as $n \rightarrow \infty$.
(ii) $\left(D_{n 1}, \ldots, D_{n r}\right)$ has the asymptotic distribution given by

$$
\begin{gathered}
P\left(D_{n 1}=d_{1}, \ldots, D_{n r}=d_{r}\right) \\
=\frac{\alpha^{r}}{(\alpha+\beta+1)^{\left[d_{1}+\cdots+d_{r}\right]}} \cdot \frac{\left(d_{1}+\cdots+d_{r}\right)!}{\left(\beta+d_{1}\right)\left(\beta+d_{1}+d_{2}\right) \cdots\left(\beta+d_{1}+\cdots+d_{r}\right)}, \quad d_{1}, \ldots, d_{r}=1,2, \ldots
\end{gathered}
$$

(iii) Given $D_{n 1}=d_{1}, \ldots, D_{n, r}=d_{r}, D_{n, r+1}-1$ has the Waring distribution $\mathrm{Wa}(\alpha+\beta+$ $d(r)+1, \beta+d(r)+1)$ asymptotically, where $d(r)=d_{1}+\cdots+d_{r}$.
(iv) $D(r)=D_{n 1}+\cdots+D_{n r}$ has the asymptotic distribution given by

$$
P(D(r)=j)=R_{1}(j-1, r-1, \beta+1) \frac{\alpha^{r}}{(\alpha+\beta+1)^{[j]}}, \quad j=r, r+1, \ldots
$$

(v) T_{i} has the asymptotic distribution given by

$$
P\left(T_{i}=l\right)=R_{1}(l-2, i-2, \beta+1) \frac{\alpha^{i-1}}{(\alpha+\beta+1)^{[l-1]}} i=2,3, \ldots, \quad l=i, i+1, \ldots
$$

For $\beta=0$, the last probability is given by Hoppe (1987), p.141.

BIBLIOGRAPHY

Blackwell, D. and MacQueen, J. (1973). "Ferguson distribution via Pólya urn schemes," Ann. Statist., 1, 353-355.

Carlitz, L. (1980a). "Weighted Stirling numbers of the first and second kind-I," Fibonacci Quart., 18, 147-162.
Carlitz, L. (1980b). "Weighted Stirling numbers of the first and second kind-II," Fibonacci Quart., 18, 242-257.
Donnelly, P. (1986). "Partition structures, Polya urns, the Ewens sampling formula, and the ages of alles," Theor. Popul. Biol., 30, 271-288.
Donnelly, P. and Joyce, P. (1991). "Consistent ordered sampling distribution: Characterization and convergence," Adv. Appl. Prob., 23, 229-258.
Donnelly, P. and Tavaré, S. (1986). "The ages of alleles and a coalescent," Adv. Appl. Prob., 18, 1-19.

Donnelly, P. and Tavaré, S. (1990). Chinese restaurant process, Chap. 2 of unpublished lecture notes.
Ethier, S.N. (1990). "The infinitely-many-neutral-alleles-diffusion model with ages," Adv. Appl.Prob., 22, 1-24
Ewens, W.J. (1972). "The sampling theory of selectively neutral alleles," Theor. Popul. Biol., 3, 87-112.
Ewens, W.J. (1990). "Population genetics theory - the past and the future," In Mathematical and Statistical Developments of Evolutionary Theory, ed. S. Lessard, Kluwer Academic Publishers, Dordrecht, 177-227.
Hoppe, F.M. (1984). "Pólya-like urns and the Ewens sampling formula,J. Math. Biol., 20, 91-99.

Hoppe, F.M. (1987). "The sampling theory of neutral alleles and an urn model in population genetics," J. Math. Biol. 25, 123-159.
Johnson, N.L., Kotz, S. and Kemp, A.W. (1992). Univariate discrete distributions, Wiley, New York.

Joyce, P. and Tavaré, S. (1987). "Cycles, permutation and the structure of the Yule process with immigration," Stoch. Processes Appl., 25, 309-314.
Korwar R.M. and Hollander, M. (1973). "Contribution to the theory of Dirichlet processes," Ann. Probab., 1, 705-711.
Sibuya, M. (1993). "A random clustering process," Ann. Inst. Statist. Math., 45, 459-465.
Sibuya, M. and Yamato, H.(1995). "Ordered and unordered random partitions of an integer and the GEM distribution," Statist. Prob. Letters, 25, 177-183.

Yamato, H.(1990). "A probabilistic approach to Stirling numbers of the first kind," Commun. Statist.-Theory Meth, 19, 3915-3923.
Yamato, H.(1993). "A Pólya urn model with a continuum of colors," Ann. Inst. Statist. Math.,45, 453-458.

Yamato, H. (1996). "On the Donnelly-Tavaré-Griffiths formula associated with the coalescent," to appear in Commun. Statist.-Theory Meth.

