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ABSTRACT

We give a generalization of the one form of the Donnelly-Tavaré-Griffiths(DTG) formula.

It contains not only this DTG formula but also the conditional distribution of the formula

given the some first components. We can construct it using an simple urn model. For

the generalization of the DTG formula, its probability distributions including marginal and

conditional distributions, the related statistics and their asymptotic properties are discussed.

1. INTRODUCTION

Let Cn denote the set of all ordered partitions of a positive integer n, that is,

Cn = {(c1, ..., ck) : 1 ≤ k ≤ n, ci > 0 (i = 1, ..., k) and c1 + · · · + ck = n}.

As a probability distribution on Cn, the Donnelly-Tavaré-Griffiths formula is well-known

(Ewens (1990)). The one form of this formula is a probability distribution of random ordered

partition Cn = (Cn1, ..., Cnk) on Cn defined by

P (Cn = (c1, ..., ck)) =
αk

α[n]
· n!
ck(ck + ck−1) · · · (ck + ck−1 + · · · + c1)

,(1)

where α is a positive constant, 1 ≤ k ≤ n, (c1, ..., ck) ∈ Cn and α[n] = α(α + 1) · · · (α +

n− 1). This distribution is obtained by the size-biased permutation of the Ewens sampling

formula(Donnelly and Tavaré (1986)). Joyce and Tavaré (1987) uses the linear birth process

with immigration to derive the distribution. The distribution can be characterized as the

distribution of frequencies of order statistics from GEM distribution ( Donnelly (1986),
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Donnelly and Tavaré (1991), Sibuya and Yamato (1995)). The distribution can be derived

by using Pólya-like urn (Hoppe (1984), Sibuya and Yamato (1995)). It has equivalent

models: random clustering process (Sibuya (1993)), urn with a continuum of colors and

the sampling from Ferguson’s Dirichlet process with a continuous parameter (Blackwell and

MacQueen (1973), Yamato (1993)). The distribution can be also derived by using Pitman’s

Chinese restaurant process(see, for example, Donnelly and Tavaré (1990))

The other is a probability distribution of random ordered partition Dn = (Dn1, ...,Dnk)

on Cn defined by

P (Dn = (d1, ..., dk)) =
αk

α[n]
· n!
d1(d1 + d2) · · · (d1 + d2 + · · · + dk)

,(2)

where (d1, ..., dk) ∈ Cn. This distribution is obtained from the n-coalescent with mutation

(Donnelly and Tavaré (1986)). Ethier (1990) derives this distribution using diffusion model.

Yamato (1996) gives the urn model yielding this distribution and its properties. Distin-

guishing between the distributions given by (1) and (2), we shall say the distribution given

by (2) Donnelly-Tavaré-Griffiths II formula and abbreviate it DTGII(n,α).

The conditional distribution of Cn = (Cn1, ..., Cnk) given (Cn1, ..., Cnr) = (c1, ..., cr) is

the same distribution as Cn−c0 , where a positive integer r is fixed and c0 = c1 + · · · +

cr. For Dn having DTGII, the conditional distribution of Dn = (Dn1, ...,Dnk) given

(Dn1, ...,Dnr) = (d1, ..., dr) is not DTG II. We shall introduce a generalization of DTG

II such that this conditional distribution and the distribution of Dn belong to the same

class of distributions. The generalization of DTGII, which we introduce, is given by a

probability distribution of random ordered partition Dn = (Dn1, ...,Dnk) on Cn defined by

P (Dn = (d1, ..., dk)) =
αk−1

(α + β + 1)[n−1]
· (β + 1)[n]

(β + d1)(β + d1 + d2) · · · (β + d1 + · · · + dk)
,(3)

where α is a positive constant, β is a non-negative constant, 1 ≤ k ≤ n and (d1, ..., dk) ∈ Cn.

We shall call this distribution generalized Donnelly-Tavaré-Griffiths II formula and abbre-

viate it GDTGII(n,α,β). DTGII(n,α) is equal to GDTGII(n,α,0). We shall show the prop-

erties of GDTG II.

In Section 2, we give a simple urn model and derive the GDTGII formula using this

model.

In Section 3, we give the marginal distribution of Dn using a simple pure birth chain

instead of the distribution (3) itself. Then we give the conditional distribution of Dn,r given

Dn1, ...,Dn,r−1 for r = 1, ..., n− 1. These conditional distributions and the marginal distri-

bution of Dn1 are described using Waring distribution.
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In Section 4, for the number k of distinct partions in Dn which is a random variable,

its distribution is derived. For a positive integer r, the probability of Dn1 + · · · + Dnr is

derived. The asymptotic properties as n → ∞ of these statistics are also given.

2. Generalized DTG II formula

We consider the following urn model (cf. Yamato (1990), Example 1.1 and Yamato

(1997), Section 4). There are many red balls of mass one, a single red ball of mass β ≥ 0

and a single black ball of mass α > 0. An urn contains the red ball of mass β and the black

ball at the beginning. A ball is randomly chosen from the urn in proportion to its mass and

replaced along with a red ball of mass one. Let Y1 be equal to 0 or 1, if the color of the ball

chosen at the first trial is red or black, respectively. Let Yj+1 be equal to Yj or Yj + 1 if

the color of the ball chosen at the (j + 1)-th trial is red or black, respectively, for j = 1, 2,...

Then we have a pure birth chain {Yj ; j = 1, 2, ...} with states 0, 1, 2, .... Its initial state is

Y1 = 0 or 1 and the transition probabilities are

P{Yj+1 = yj | Y1 = y1, ..., Yj = yj} =
β + j

α + β + j
(4)

P{Yj+1 = yj + 1 | Y1 = y1, ..., Yj = yj} =
α

α + β + j

for j = 1, 2, ... and all states y1, y2, ..., yj . If we take a positive integer m as parameter

β, the equivalent model is obtained from a Pólya-like urn after the first m trials and the

sampling from Ferguson’s Dirichlet process after the first m observations. It also obtained

from Pitman’s Chinese restaurant process after arriving the first m persons. For Hoppe’s

Pólya-like urn, we have the equivalent model by letting Y1 = 0 or 1 if we have the previous

color or a new color at the (m + 1)-th trial, respectively and letting Yj+1 be equal to Yj

or Yj + 1 (j = 2, 3, ...) if we have the previous color or a new color at the (m + j + 1)-th

trial, respectively, after the first m trials. For Chinese restaurant process, we let Y1 = 1 or

0 if (m + 1)-th person sits at a new empty table or not, respectively and let Yj+1 be equal

to Yj + 1 or Yj (j = 2, 3, ...) if the (m + j + 1)-th person sits at a new empty table or not,

respectively, after the first m persons sat.

For the first n observations Y1, ..., Yn of this chain {Yj ; j = 1, 2, ...} , we put

Dn1 = l such that Y1 = · · · = Yl < Yl+1, 1 ≤ l ≤ n,

Dn2 = l such that YDn1+1 = · · · = YDn1+l < YDn1+l+1, Dn1 + l ≤ n
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Dni = l such that YDn1+···+Dn,i−1+1 = · · · = YDn1+···+Dn,i−1+l

< YDn1+···+Dn,i−1+l+1, Dn1 + · · · + Dn,i−1 + l ≤ n

for i = 3, 4, ..., n. That is, Dn1 is the number of observations equal to Y1, Dn2 is the number

of observations equal to the first one which exceeds Y1, and so on.

Proposition 1 For the pure birth chain given by (4), Dn = (Dn1, ...,Dnk) has GDTG

II(n,α,β), where k is the number of distinct observations among Y1, Y2, ..., Yn. That is, the

probability distribution of Dn is given by (3).

Proof. For (d1, ..., dk) ∈ Cn, we have

P (Dn1 = d1, Dn2 = d2, ...,Dnk = dk, Y1 = 0)

= P (Y1 = · · · = Yd1 = 0, Yd1+1 = · · · = Yd1+d2 = 1, ..., Yd1+···+dk−1+1 = · · · = Yn = k − 1).

Writing the right-hand side as the products of the conditional probabilities and using the

transition probabilities (4), this is equal to

β

α + β
· αk−1

(β + α + 1)[n−1]
· (β + 1)[n]

(β + d1)(β + d1 + d2) · · · (β + d1 + · · · + dk)
.

Similarly we have

P (Dn1 = d1, Dn2 = d2, ...,Dnk = dk, Y1 = 1)

=
α

α + β
· αk−1

(β + α + 1)[n−1]
· (β + 1)[n]

(β + d1)(β + d1 + d2) · · · (β + d1 + · · · + dk)
.

Taking the sum of these two probabilities we get (3). �

{Dn; n = 1, 2, ...} is a Markov chain by the construction itself. Its one-step transition

probabilities are given by the following.

Proposition 2 {Dn; n = 1, 2, ...} is a Markov chain whose one-step transition probabil-

ities are

P (Dn+1 = (d1, ..., dk−1, dk + 1) | Dn = (d1, ..., dk)) =
β + n

α + β + n
,

P (Dn+1 = (d1, ..., dk, 1) | Dn = (d1, ..., dk)) =
α

α + β + n

for (d1, ..., dk) ∈ Cn and n = 1, 2, ...

Conversely, these transition probabilities determine the distribution of Dn, which is given

by (3). {Cn; n = 1, 2, ...} having the distribution (1) is consistent (Donnelly and Tavaré
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(1991)). {Dn; n = 1, 2, ...} is not consistent except for the case of β = 0. That is, it holds

only for β = 0 that

P (Dn−1 = (d1, ..., dk)) =
1
n
{

n∑
j=1

(dj + 1)P (Dn = (d1, ..., dj + 1, ..., dk))

+P (Dn = (1, d1, ..., dk)) + · · · + P (Dn = (d1, d2, ..., dk, 1))}, (d1, ..., dk) ∈ Cn.

2. Marginal and conditional distributions

We shall consider the marginal and conditional distributions of Dn1, ...,Dnk when Dn =

(Dn1, ...,Dnk) has GDTG II (n,α,β).

Proposition 3 Suppose that Dn have GDTG II (n,α,β). Let r be a positive integer such

that 1 ≤ r ≤ n. Then, for positive integers d1, d2, ..., dr satisfying d(r) = d1 + · · · + dr < n,

Dn1, Dn2, ...,Dnr has the probability given by

P (Dn1 = d1, Dn2 = d2, ...,Dnr = dr)(5)

=
αr

(α + β + 1)[d(r)]
· (β + 1)[d(r)]

(β + d1)(β + d1 + d2) · · · (β + d1 + · · · + dr)

For positive integers d1, d2, ..., dr satisfying d1 + · · · + dr = n, the probability P (Dn1 =

d1, Dn2 = d2, ...,Dnr = dr) is given by (3) with r instead of k.

Proof. In order to derive the marginal distributions of Dn, we use the pure birth chain

defined by (4). For positive integers d1, ..., dr satisfying d(r) < n, we have r < k(≤ n) and

P (Dn1 = d1, Dn2 = d2, ...,Dnr = dr, Y1 = 0) = P (Y1 = · · · = Yd1 = 0, Yd1+1 = · · ·

= Yd1+d2 = 1, ..., Yd1+···+dr−1+1 = · · · = Yd1+···+dr
= r − 1, Yd1+···+dr+1 = r).

We can similarly write the probability P (Dn1 = d1, Dn2 = d2, ...,Dnr = dr, Y1 = 1) by the

random variables Y1, ..., Yd1+···+dr+1. Thus we get relation (5) by the similar method to the

proof of Proposition 1. In case of d1 + · · · + dr = n, we have r = k and the probability

P (Dn1 = d1, Dn2 = d2, ...,Dnr = dr) is given by (3). �

Before giving the corollary, we state Waring and bounded Waring distributions. The

Waring distribution is the probability distribution of the random variable W taking the

values 0, 1, 2, ... such that

P (W = x) = (c − a)
a[x]

c[x+1]
, x = 0, 1, 2, ...,
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where c, a are positive constants such that c > a (see, for example, Johnson et al. (1992),

6.10.4.). We shall denote this Waring distribution by Wa(c, a). By grouping the events

{W = n},{W = n+1},{W = n+2},... with respect to W having Wa(c, a) for a non-negative

integer n, we have the probability distribution given by

P (W = x) = (c − a)
a[x]

c[x+1]
, x = 0, 1, 2, ..., n − 1,

a[n]

c[n]
, x = n.

We shall call this distribution bounded Waring distribution and denote it by BWa(n; c, a)

(Yamato(1997)).

Corollary 1 Suppose that Dn = (Dn1, ...,Dnk) have GDTG II(n, α, β). Then, we have

P (Dn1 − 1 = x) =
α(β + 1)[x]

(α + β + 1)[x+1]
, x = 0, 1, ..., n − 2,

(β + 1)[n−1]

(α + β + 1)[n−1]
, x = n − 1.

That is, Dn1 − 1 has the bounded Waring distribution BWa(n − 1, α + β + 1, β + 1).

Proposition 4 Suppose that Dn have GDTG II (n, α, β). Then given Dn1 = d1, ...,Dnr

= dr, (Dn,r+1, ...,Dnk) has GDTG II (n−d(r), α, β+d(r)), where r = 1, 2, ..., n−1, d1, ..., dr

= 1, 2, ..., n − 1 and d(r) = d1 + · · · + dr < n. Especially, if Dn have DTG II (n, α), then

given Dn1 = d1, ...,Dnr = dr, (Dn,r+1, ...,Dnk) has GDTG II (n − d(r), α, d(r)).

Proof. Dividing the probability (3) by (5), we get the conditional probability,

P (Dn,r+1 = dr+1, ...,Dnk = dk | Dn1 = d1, ...,Dnr = dr)

=
αk−r−1

(α + β + d(r) + 1)[n−d(r)−1]
· (β + d(r) + 1)[n−d(r)]

(β + d(r) + dr+1) · · · (β + d(r) + dr+1 + · · · + dk)
. �

We let D(r) = Dn1 + · · ·+Dnr for a positive integer r ≤ k. Since the conditional probability

of Proposition 4 depends on d1, ..., dr only through the sum d(r) = d1 + · · · + dr, we have

the following.

Corollary 2 Suppose that Dn have GDTG II (n, α, β). Then, given D(r) = d(r),

(Dn,r+1, ...,Dnk) has GDTG II (n−d(r), α, β+d(r)), where r = 2, ..., n−1 and d(r) < n. Es-

pecially, if Dn have DTG II (n, α), then, given D(r) = d(r), (Dn,r+1, ...,Dnk) has GDTGII

(n − d(r), α, d(r))
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By applying Corollary 1 to Proposition 4 and Corollary 2, we have the followings.

Corollary 3 Suppose that Dn have GDTG II (n, α, β). Then given Dn1 = d1, ...,Dnr

= dr, Dn,r+1 − 1 has the bounded Waring distribution BWa(n − d(r) − 1; α + β + d(r) + 1,

β + d(r) + 1), where r = 1, ..., n− 1, d1, ..., dr = 1, 2, ..., n− 1 and d(r) = d1 + · · ·+ dr < n.

Corollary 4 Suppose that Dn have GDTG II(n, α, β). Then given D(r) = d(r), Dn,r+1

−1 has the bounded Waring distribution BWa(n− d(r)− 1; α + β + d(r) + 1, β + d(r) + 1),

where r = 1, ..., n − 1, d1, ..., dr = 1, 2, ..., n − 1 and d(r) < n.

3. Related statistics

For Dn having GDTG II(n, α, β), in this section we denote k by Kn to express explicitly

that k is a random variable. Kn is equal to Yn + 1 if Y1 = 0 and Yn if Y1 = 1, where

{Yj ; j = 1, 2, ...} is the pure birth chain stated in the first paragraph of Section 2. We shall

consider the properties of Kn. Using relation derived by the poperties of Kn, we give the

probability of D(r). Before we derive the distribution of Kn, we shall note the relation

(λ + y)[n] =
∑n

i=0

(
n
i

)
λ[n−i]y[i], where λ, y are arbitary numbers and n is a positive

integer. This relation is shown using that the sum of the probability of the hypergeometric

distribution is equal to one (see, for example, Johnson et al. (1992), p.205, (5.16)). Using

the unsigned Stirling number of the first kind [ ], we have y[i] =
∑i

j=0

[
i
j

]
yj . Thus we

get

(λ + y)[n] =
n∑

j=0

R1(n, j, λ)yj(6)

where R1(n, j, λ) =
∑n

i=j

(
n
i

) [
i
j

]
λ[n−i].

R1 is the function introduced by Carlitz (1980a). For λ = 0, 1, R1 is equal to the Stirling

number of the first kind,

R1(n, j, 0) =
[

n
j

]
, R1(n, j, 1) =

[
n + 1
j + 1

]
.

(See Carlitz (1980a,b).)

Proposition 5 Suppose that Dn have GDTG II (n, α, β). Then for k = 1, 2, ..., n

P (Kn = k) = R1(n − 1, k − 1, β + 1)
αk−1

(α + β + 1)[n−1]
.(7)

For β = 0, this probability is given by Ewens (1972).

Proof. From the distribution given by (3), we have

P (Kn = k) =
∑

(d1,...,dk)∈Cn

P (Dn = (d1, ..., dk)) = f(n, k, β)
αk−1

(α + β + 1)[n−1]
,
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where the summation Σ is taken over all distinct ordered partitions (d1, ..., dk) of n with k

fixed and

f(n, k, β) =
∑

(d1,...,dk)∈Cn

(β + 1)[n]

(β + d1)(β + d1 + d2) · · · (β + d1 + · · · + dk)
.

Since
∑n

k=1 P (Kn = k) = 1, we have (α + β + 1)[n−1] =
∑n

k=1 αk−1f(n, k, β). Therefore by

(6), we get f(n, k, β) = R1(n − 1, k − 1, β + 1). �

Let Ti be the time of appearance of the i-th state among the first n trials, where i = 2, 3, ..., n.

Ti has the following probabilities.

Corollary 5 For i = 2, 3, ..., n and l = i, i + 1, ..., n we have

P (Ti = l) = R1(l − 2, i − 2, β + 1)
αi−1

(α + β + 1)[l−1]
,

The probability of the event that the i-th state does not occur among the first n trials is

i−1∑
j=1

R1(n − 1, j − 1, β + 1)
αj−1

(α + β + 1)[n−1]
.

Proof. By (4) and (7), for i = 2, 3, ... and n = i, i + 1, ... we have P (Ti = n) =

P (Kn−1 = i − 1, Yn = Yn−1 + 1) = P (Kn−1 = i − 1)E[P (Yn = Yn−1 + 1 | Y1, ..., Yn−1) |
Kn−1 = i− 1] = R1(n− 2, i− 2, β + 1) αi−1/(α + β + 1)[n−1]. Since the event that the i-th

state does not occur among the first n trials is written as {Kn ≤ i−1}, by (7) its probability

is P (Kn ≤ i − 1) =
∑i−1

j=1 R1(n − 1, j − 1, β + 1)αj−1/(α + β + 1)[n−1]. �

From the proof of Proposition 5, we have the following algebraic relation.

Corollary 6

R1(n − 1, l − 1, β + 1) =
∑

(d1,...,dl)∈Cn

(β + 1)[n]

(β + d1)(β + d1 + d2) · · · (β + d1 + · · · + dl)
.(8)

Using this relation to Proposition 3, we have the probability for D(r).

Proposition 6 Suppose that Dn have GDTG II (n,α,β). Let r be a positive integer.

P (D(r) = j, r < k) = R1(j − 1, r − 1, β + 1)
αr

(α + β + 1)[j]
, j = r, r + 1, ..., n − 1(9)

P (D(r) = n) = R1(n − 1, r − 1, β + 1)
αr−1

(α + β + 1)[n−1]
.

Proof. From Proposition 3,

P (D(r) = j, r < k) =
αr

(α + β + 1)[j]
∑

(d1,...,dr)∈Cj

(β + 1)[j]∏r
l=1(β +

∑l
i=1 di)

.
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By (8), we have
∑

(d1,...,dr)∈Cj
(β + 1)[j]/

∏r
l=1(β +

∑l
i=1 di) = R1(j − 1, r − 1, β + 1). For

D(r) = n, we have k = r. From the distribution of Dn given by (3) and the relation (8), we

have P (D(r) = n) = R1(n − 1, r − 1, β + 1)αr−1/(α + β + 1)[n−1]. �

For the urn model stated at the first paragraph of section 2, we let Zj be 0 or 1 if the color

of the ball chosen at the j-th trial is red or black, respectively, for j = 1, 2, ... Immediately

after the j-th trial (j = 1, 2, ...), the urn contains the black ball of mass α, the red ball of

mass β and j red ball of mass one, no matter what the results of the previous j trials are.

Thus Zj+1 are independent of Z1, ..., Zj (j = 1, 2, ...) and

P (Zj+1 = 1) =
α

α + β + j
, P (Zj+1 = 0) =

β + j

α + β + j
, j = 1, 2, ...

We put Z(n) = Z1 + · · ·+Zn for n = 1, 2, ... Then by the second Borel-Cantelli lemma, Z(n)

diverges to +∞ with probability one(cf. Korwar and Hollander (1973), Corol. 2.2, Donnelly

and Tavaré (1986), (6.4)). We can prove the strong law of large numbers for independent

random variables Z1, Z2, ... and E(Z(n)/logn) converges to α as n → ∞, by the similar

method to the proof of Theorem 2.3 of Korwar and Hollander (1973). Thus Z(n)/logn

coverges to α with probability one. Since Kn = Z(n) + 1 if Z1 = 0 and Kn = Z(n) if

Z1 = 1, we have the following.

Proposition 7 Suppose that Dn have GDTG II (n,α,β). Then Kn diverges to +∞ with

probability one and Kn/logn coverges to α with probability one.

For the asymptotic distributions as n → ∞, by Propositions 3, 6, 7 and Corollaries 1, 3,

5, we have the following.

Proposition 8 Suppose that Dn have DTG II(n, α, β). Let r be a positive integer. Then

(i) Dn1 − 1 has the Waring distribution Wa(α + β + 1, β + 1) asymptotically as n → ∞.

(ii) (Dn1, ...,Dnr) has the asymptotic distribution given by

P (Dn1 = d1, ...,Dnr = dr)

=
αr

(α + β + 1)[d1+···+dr ]
· (d1 + · · · + dr)!
(β + d1)(β + d1 + d2) · · · (β + d1 + · · · + dr)

, d1, ..., dr = 1, 2, ...

(iii) Given Dn1 = d1, ...,Dn,r = dr, Dn,r+1 − 1 has the Waring distribution Wa(α + β +

d(r) + 1, β + d(r) + 1) asymptotically, where d(r) = d1 + · · · + dr.

(iv) D(r) = Dn1 + · · · + Dnr has the asymptotic distribution given by

P (D(r) = j) = R1(j − 1, r − 1, β + 1)
αr

(α + β + 1)[j]
, j = r, r + 1, ...

9



(v) Ti has the asymptotic distribution given by

P (Ti = l) = R1(l − 2, i − 2, β + 1)
αi−1

(α + β + 1)[l−1]
i = 2, 3, ..., l = i, i + 1, ...

For β = 0, the last probability is given by Hoppe (1987), p.141.
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Hoppe, F.M. (1984). ”Pólya-like urns and the Ewens sampling formula,J. Math. Biol.,

20, 91–99.

Hoppe, F.M. (1987). ”The sampling theory of neutral alleles and an urn model in popu-

lation genetics,” J. Math. Biol. 25, 123–159.

Johnson, N.L., Kotz, S. and Kemp, A.W. (1992). Univariate discrete distributions,

Wiley, New York.

10
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