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Abstract

This paper is a sequel to the authors [2] and the first author [4], [5]. A degree set of a
graph G is the set of degrees of vertices of G. Let n and k be any positive integers with
1 <k <n-1,and DG,(k) be the set of all degree sets D of graphs of order n with the
cardinality |D| = k. We shall characterize any members in DG, (k) for k = 2,3, and n — 2
respectively.
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1 Degree Sets

In this paper the terminology and notation concerning graphs follow Chartrand and Lesniak
[1]. Any graphs mean always simple ones. At first we introduce some convenient notation used
in the paper. As we deal with only positive integers, any variables named small letter express
always positive integers unless otherwise noted. For any non-negative integers m,n with m <n
we use the following:

(m.n]={m,m+1,m+2,---,n—1,n} and [n] = [L.n] (1 < n).
Let any monotone non-increasing n-sequence d = (dy,dy,---,d,). If a number r appears exactly
p times in d, then these terms are shortly denoted by 2*, e.g., (4,3,3,2,1,1.1) = (4,3% 2, 13).
In our discussion the parity of integers plays important roles frequently. So for brevity, by a = b
we write the relation a = b (mod 2), e.g., (a,b) = (0, 1) means that a is even and b is odd.

Let G be any graph of order n, and d(G) = (dy,ds,---,d,) be the degree sequence of G,
which is listed always monotone non-increasing. Moreover let D(G) = {hy,ha,---,ht} be the
degree set of G, i.e., D(G) is the set of mutually distinct numbers in d(G). Then we have

d(G) = (hY",h%?,-- -, hY*) for some k positive integers py,pz,- -, pp With Z;‘-':l p; = n.
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In general any n-sequence (dy,dy,---.d,) of integers with (1.2) is said to be proper, and any
k-set {hy,hy, -+, hi} of integers with (1.3) is called a (n,k)-set. Note that any (n.k)-set is
meaningful for 1 < k& < n — 1. A sequence d is said to be graphical if there exists a graph G
whose degree sequence is d, and a (n,k)-set D is called a (n, k)-degree set if there exists a graph
of order n whose degree set is D. A k-set {dy,dy,---,di} is a (n,k)-degree set if and only if
there exists a collection {p1,p2,---,pkr} of k positive integers with the following properties:
(1.5) Zle pj =n.
(1.6) (d7',d5?,---,dp¥) is graphical.

Let DG,(k) and GS,(k) be the set of all (n,k)-degree sets and the set of all graphical
n-sequences with (n,k)-degree set.

As well known, DG, (1) consists of n singletons {a} for a € [0,n — 1] when n = 0, and of
(n + 1)/2 singletons {a} for even a € [0,n — 1] when n = 1. On the other hand DG,(n — 1)
consists of exactly two (n,n — 1)-sets [n — 1] and [0, n — 2] (e.g., see [4]). The purpose of this
paper is to characterize any members in DG, (k) for £ = 2,3, and n — 2. The following theorem
on degree sets for graphs is due to Kapoor et al. [3, p.190].

Theorem. Any (n,k)-set D = {dy,dy,---,di} with dr >0 is in DG, (k) for n = d; + 1.

This is proved by the construction of graph G with D(G) = D. But in this paper the
criterion of degree sets is due to the construction of graphical sequences.

Lemma 1. Let D = {d;,dy.---.di} be any (n,k)-set.
(1) ifdy =n -1 and dy, =0 then D ¢ DG, (k).
(2) ifn=1andd; =1 for all j € [k], then D ¢ DG, (k).
(3) if D € DG, (k) thene(D)={n—1—dr,n—1~dg_1,---,n—1—dy,n—1—dy} € DG(k).

Proof. (1) is obvious from the basic fact that if a graph of order n has a vertex v with
deg(v) = n — 1, then degree of every vertex is positive. If D satisfies the conditions in (2), then

any n-sequence (d}',d5?,---,d}*) is not proper for any collection {p1,pz,---.px} with (1.5). This
implies (2). (3) follows immediately from the fact that if D is a degree set of a graph G, then
¢(D) is the degree set of the complementary graph of G. o

Now let F,, (k) be the set of all (n,k)-sets D = {di,d2,- - -,dy} with the following properties:

(1.7) if dy = n— 1 then dj > 0.

(1.8) if n =1 then D contains at least one even number.

Then DG, (k) C F,(k) by Lemma 1. As the above mentioned, we have DG, (k) = F,(k)
for the cases £k = 1 and k = n — 1. It seems to be DG,(k) = F,(k) for any n and k£ with
1 <k <n-—1even though we do not yet have the complete proof. But in the next section it is
proved that DG,(2) is a proper subset of F,(2) for even n > 6.

Lemma 2. If any {dy,ds,---,d} € Fo(k) with dy > 0 is in DG,(k), then DGL(k) =
Fo(k).

Proof. Note under the notation in Lemma 1(3) that ¢(D) € Fn(k) if D € F,(k). Let
D = {dy,dy,---,di} € Fr(k) with d, = 0. Thend; <n—1by (1.7)and ¢(D) ={n—-1,n—1—
dig—1,---,n—1—dy} € DG,(k) by the assumption. So D € DG,(k) from Lemma 1(3). O
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2 DG,(2)

In this section we shall characterize any members in DG,(2). Let us begin with some
lemmas. In what follows, let {a,b} € £,(2) , « > b, and for any p € [n — 1] let us define an
n-sequence d(a,b; p) by

d(a,b;p) = (a”,b"7P).

The condition for d(a, b;p) to be proper is expressed in the form:

(P2) pa+(n—-p)b=0.

Moreover we shall consider the condition (H) for d(a,b;p):

(H) b(n—p)—pla—p+1)>0.

Then the next is a key lemma in order to characterize any members in DG, (2), which is derived
from Hasselbarth Criterion of graphical sequences in Sierksma and Hoogeveen [6] (e.g., see the
authors [2]).

Lemma 3. The necessary and sufficient condition for d(a,b;p) to be in GS,(2) is given
as follows:
(1) when the case a < p. d(a,b;p) € GS,(2) if and only if (Py) holds.
(2) when the case b < p < a, d(a,b;p) € GS,(2) if and only if (Py) and (H) hold.
(3) when the case p < b. d(a,b;p) € GS,(2) if and only if (Py) holds. a

Let 2 < b. Then {a,b} belongs to the case (3) in Lemma 3 for p < 2. Further according to
the parity of (n,a,b) we can choose p = 1 or 2 for which (P;) holds. So if 2 < b, it follows from
Lemma 3(3) that d(a,b:p) € GS,(2) for p = 1 or 2. More precisely we have

Lemma 4. Letb > 2 for d(a,b;p). Then

(1) d(a,b;2) € GS,(2) for (n,a,b) = (0,0,1),(0,1,0) or (1,1,0).
(2) d(a,b;1) € GS,(2) for the otherwise (n,a,b). a

Remark 1. Let b > 2. Thén from Lemma 3(3) we also have:

(1) d(a,b;b—1) € GS,(2) for (n,a,b) =(0,0,1).

(2) d(a,b;b) € GS,(2) for the otherwise n,a,b.

Here the assumption b > 2 is necessary for the choice of p = b —1 > 1. O

Lemma 5. Let b =1 ford(a,b;p). Then

(1) d(n —1,1;1) € GS,(2).

(2) dla,1;n—-2) € GS,(2) if a < n—3 and na = 0.

(3) whenn =4, d(2,1;2) € GS4(2).

Proof. (1) is obvious from the fact that d(n—1,1;1) is the degree sequence of the complete
bipartite graph K, _1;. (2) follows from Lemma 3(1) for p = n — 2. When n = 4, d(2,1;2) =
(2,2,1,1) is the degree sequence of the path P4 of order 4. a

Lemma 6. Ifn =0 andn > 6, then d(n — 2, 1;p) ¢ GS,(2) for any p € [n — 1].
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Proof. We suppose that d = d(n — 2,1;p) is graphical for some p € [n — 1]. Then
from (£2), p = 0. Hence the cases (1) and (3) in Lemma 3 do not happen. Therefore d
satisfies (H) for some even p € [2,n — 2]. Let f(p) be the left hand side of (H) for d. Then
f(p)=(n—-p)-pn-p-1)=(p—-%)+n-— ’f‘—z The maximum value of f(p) for p € [2,n—2] is
f(2)=f(n—2)=4—mn. If n >4 then f(p) < 0 for any p € [2,n — 2], which is a contradiction.
This completes the proof. a

Theorem 1.

(1) DGR(2) = Fo(2) ifn = 1.
(2) DG4(2) = Fy4(2).
(3) DGn(2) = Fo(2)\{n—2,1} if n =0 and n > 6.
Proof. Let D = {a,b} € Fo(2) with 6> 0. f 2<b<a<n-lorna=0,b=1la#n-2

then D € DG,(2) by Lemmas 4-5. If na = | then {a,1} ¢ F,(2) by (1.8). Hence (1) follows
from Lemma 2. Moreover (2) and (3) are from Lemmas 5-6. O

3 DG, (3)

In this section we shall characterize any members in DG ,(3). In what follows, let {a,b,c} €
Fo(3),a > b > c and let us define an n-sequence d(a,b,c;p,q) by

d(a,b.c:p,q) = (aP,b%, ™Y,

where p.g € [n —2],t = p+gand ¢t < n - 1. The condition for d(a,b,c;p,q) to be proper is
expressed in the form:

(P3) pa+gb+(n—t)c=0.

Moreover consider the conditions for d(a,b,c;p,¢) as follows:

(H) qb+(n—t)c—pla—p+1)> 0.

(H) (n—t)c—pla—t+1)>0.

(Hz3) (n—t)e—pla—t+1)—qlb—t+1)>0.

Under these notations we have the following conditions for d(a,b,c:p.q¢) to be in GS,(3).
which is also derived from Hasselbarth Criterion (e.g., see [2]).

Lemma 7. The necessary and sufficient condition for d = d(a,b,c;p,q) to be in GS,(2)

18 given as follows:

(1) when the case a < p, d € GSn(3) if and only if (P3) holds.

(2) when the case b < p < a, d € GS,(3) if and only if (P3) and (Hy) hold.

(3) when the case c < p < b<a<t, de GSy(3) if and only if (P3) holds.

(4) when the case c < p<b<t<a,de GS,(3) if and only if (P3) and (H3) hold.

(5) when the case p < c < b<t,de GS,(3) if and only if (P3) holds.
(6) when the case p < c <t <b, de GS,(3) if and only if (P3) and (H3) hold.
(7) when the case t < ¢, d € GS,(3) if and only if (P3) holds. a
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Using the above lemma, we can get actually d(a,b, ¢; p,q) € GSx(3) by the suitable choice
of p,t according to the parity of (n,a,b,c).

Lemma 8. Letn =0 and ¢ > 0. Then we have

(1) d(a,b,c;1,n =2) € GSL(3) if (a,b,¢) = (0,0,0),(0,1,0),(1,0,1) or (1,1,1).
(2) d(a,b,c;1,n = 3) € GSL(3) if (a,b,c)=(0,0,1) or(1,1,0).
(3) d(a,b,¢;2,n —3) € GSA(3) if (a,b,c)=(0,1,1) or(1,0,0).
Proof. In the case (3)let ¢ = 1,p = 2 and ¢ = n — 3. If (a,b) = (0,1), then 3 < b <

a<n-2,t=mn-1and (P3)holds. Since c < p < b < a < ¢t it follows from Lemma 7(3) that
d(a,b,1;2,n — 3) € GSp(3). The other cases follow from Lemma 7(5). a

By the same consideration the next follows from Lemma 7(5).

Lemma 9. Letn =1 andc > 0. Then we have

(1) d(a,b,c;1,n —2) € GSp(3) tf (a,b,¢c) = (0,0,0),(0,1,1),(1,0,1) or (1, 1,0).
(2) d(a,b,c;1,n —3) € GS,(3) if (a,b,c) = (0,0, 1).
(3) d(a,b,¢;2,n —3) € GS,(3) if (a,b,c) = (0,1,0) or (1,0,0). o

Theorem 2. DG,(3) = F,(3).
Proof. Let D = {a,b,c} € F,(3) with ¢ > 0. Then D € DG,(3) by Lemmas 8-9. Hence
the assertion follows from Lemma 2. O

4 DG,(n—2)

Finally we shall show that DG, (n —2) = F,(n —2) for any n > 3. Since it is known already
for the case of n € [3,5], we consider the case n > 6. Any member in Fo(n — 2) is classified into
the three classes as follows:

(4.1) Dp(n — 1;k) = [n— 1]\ {k}, where k € [n — 2]
(4.2) Dn(n — 2;k) =[0,n — 2]\ {k}, where k € [0,n — 3]
(4.3) Dy(n—3)=[0,n - 3].

At first we shall prove that Dn(n — 2;0) = [n — 2] € DG,(n — 2). For any ¢ € [n — 1] we
define an n-sequenceds(t) by

d3(t)=(n—2,n =3, t+ 1,3t —1,---,2,1).

Further for n = 4m — 1 or n = 4m we define an n-sequence dy(m) by

doy(m) = (n—2,n-3,---,2m + 1,(2m)?,(2m — 1)?,2m — 2,---,2,1).

Lemma 10. Let m be any positive integer.

(1) if n =4m + 1 then d3(t) € GSn(n — 2) for any t € [m,3m)].
(2) if n=4m + 2 then d3(t) € GSy(n — 2) for any t € [m,3m + 1].
(3) fn=4m —1 orn=4m then ds(t) ¢ GS,(n —2) for any t € [n — 1].
) if n=4m —1 orn =4m then dy(m) € GS,(n - 2). O
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The assertions (1)-(3) in the above are proved in the first author [5, Theorem 2.11]. (4) is
shown by Hasselbarth Criterion. The above lemma proves that [n — 2] € DG,(n — 2).

Lemma 11. Let D = {dy,dy, -, dr} € Fo(k) with d; < n — 2 and put p(D) = {n,d; +
l,dy +1,---,dp + 1}. If D € DGL(k), then p(D) € DG 41(k + 1).

Proof. Let G be a graph of order n whose degree set is D. Then p(D) is the degree set
of the graph G + Ky, the join of G and the complete graph K of order 1. This completes the
proof. 0O

Let n = 6. From Lemma 1.5 in [5] we see that Dg(5;1), De(5;3), De(4;0), De(4;2), and
Dg(3) are in DGg(4). On the other hand it is seen easily that the following 6-sequences are graph-
ical: {5,4%,3% 1},{5,3%,22,1},and {4,3%,2%,0},{4,22,1%,0}. So Ds(5;2), Ds(5;4), Dg(4;1) and
Dg(4;3) are in DGg(4). Hence we have DGg(4) = Fs(4).

Theorem 3. DG,(n —2)= F,(n - 2) for any n > 2.

Proof. We prove by the induction on n. As the assertion is true for n < 6, let n > 6. We
use the notations in (4.1)-(4.3) and Lemma 11. Note that D,(n—1;k+1) = p(D,_(n—3;k) for
any k € [0,n—4] and Dp(n—1;n—=2) = p(Dnp-1(n —4)). So Dp(n —1;k) € DGy(n — 2) for any
k € [n— 2] by the inductive hypothesis and Lemma 11. Further D,(n—2;0) € DG, (n —2) from
Lemma 10. Therefore we see that if D in F,,(n —2) dose not contain zero, then D € DG,(n —2).
Hence the theorem follows from Lemma 2. a
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