QUASI POLYTOPES AND FI N TE TOPOLOG CAL SPACES

著者	SHI RAK M M sunobu
journal or publ i cat i on titl e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	9
page range	$7-13$
別言語のタイトル	準ポリトープと有限位相空間
URL	ht p：／／hdl． handl e． net $/ 10232 / 00012460$

QUASI POLYTOPES AND FINITE TOPOLOGICAL SPACES

By
Mitsunobu Shiraki*
(Received Sep. 28, 1976)

§ 1. Introduction

We have investigated finite topological spaces and those simplicial structures in [1] and [2]. In [2] we have adopted the concept, called eigen values, which was important for the characterization of finite T_{0}-spaces. Moreover, in [1] we have showed that there is an equivalent correspondence that associates with each finite $T_{0^{-}}$ space a space called a partially polytopes.

In this note we shall consider applications of the conception. We shall state that for a space called a quasi polytope the eigen values also may be defined, and we shall consider to extend each quasi polytope to a partially polytope inclued it.

§ 2. Quasi polytopes.

In an Euclidean space E^{N}, a set of properly joined open simplexes is said to be a quasi simplicial complex here (see [1]).

The geometric carrier of a star-finite quasi simplicial complex K is called a quasi polytope and is denoted by the symbol $|K|$. But, in this note quasi complexes and quasi polytopes shall always be assumed to be finite quasi complexes and finite quase polytopes, respectively.

A topological space X that is homeomorphic to a quasi polytope $|K|$ is called a triangulated space and the quasi complex K is a triangulation of the space X. Next, let K be a quasi simplicial complex, then a set

$$
C l(K)=\{s \mid \exists \sigma \in K: s<\sigma\}
$$

is a simplicial complex, which is said to be induced by K.
Definition 1. Let $f: K \rightarrow L$ be a mapping of a quasi simplicial complex K to a quasi simplicial complex L. Then f is simplicial if there is simplical mapping $f_{0}: C l(K) \rightarrow C l(L)$ such that $f=f_{0} \mid K$.

Definition 2. Two quasi simplicial complexes K and L are said to be isomorphic each other if there is a bijective simplicial mapping φ of one onto the other such that the inverse mapping φ^{-1} also is simplicial, and in such a case we denote by $K \approx L$.

[^0]Evidently we have

$$
K \approx L \Rightarrow|K| \simeq|L| .
$$

A triangulation K of a quasi polytope X is said to be minimal if the cardinality of K is minimum in the cardinalities of all triangulations of X.

From now on, we shall consider only quasi polytopes satisfying the following property: if K and L are two minimal triangulations of such a quasi polytope X, then K $\approx L$.

Now, let X be a quasi polytope, K be a minimal trangulation of X, and K^{0} be the set of vertices belonging to $C l(K)$. Set

$$
K^{0}=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}
$$

and

$$
K=\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{l}\right\}
$$

and for K we define a (k, l) matrix $A=\left[a_{i j}\right]$ as follows:

$$
\begin{aligned}
a_{i j} & =1 \text { if } v_{i}<\sigma_{j} \\
& =0 \text { otherwse } .
\end{aligned}
$$

Such a matrix is said to be a p-matrix of K.
Definition 3. Let X be a quasi polytope, K be a minimal triangulation of X, and A be a p-matrix of K. Then the characteristic polynomial $f(x)$ of $A A^{\prime}$, that is,

$$
f(x)=\left|x E-A A^{\prime}\right|
$$

is the polynomial of the space X. And the eigen values of $A A^{\prime}$ is said to be the eigen values of the space X.

In a matrix $A A^{\prime}=\left[c_{i j}\right], c_{i j}$ is the number of open simplexes belonging to K which have vertices v_{i} and v_{j} as their faces. Because of

$$
c_{i j}=\sum_{r=1}^{k} a_{i r} a_{j r},
$$

and

$$
a_{i r} a_{j r}=1 \Leftrightarrow\left(a_{i r}=1 \text { and } a_{j r}=1\right) \Leftrightarrow\left(v_{i}<\sigma_{r} \text { and } v_{j}<\sigma_{r}\right) .
$$

The following theorem results easily from the matrix theory.
Theorem 1. Let X be a quasi polytope and K be a minimal triangulation of X. Then the eigen values of X have the following properties:
(1) the number of the eigen values is equal to the number of vertices of open simplexes belonging to K;
(2) each eigen value is a non-negative real number;
(3) if there are rational roots, they are non-negative integers.

Proof. For (1), let A be a p-matrix of K, and suppose that the number of open simplexes belonging to K is n. Then $A A^{\prime}$ is a (n, n) square matrix. whence (1) implies.

For (2), $A A^{\prime}$ is a non-negative Hermition matrix. Hence each eigen value is a
non-negative real number.
For (3), the polynomial of X is

$$
f(x)=\left|x E-A A^{\prime}\right|=x^{n}-\cdots+(-1)^{n}\left|A A^{\prime}\right|
$$

and if $f(x)=0$ has rational roots, then they are non-negative integers, since $\left|A A^{\prime}\right|$ is a non-negative integer.

Here, we shall show the eigen values or the characteristic polynomials of simple spaces.
(1) The eigen values of the n-closed ball are $n+1$ integers:

$$
2^{n-1}, 2^{n-1}, \cdots, 2^{n-1},(n+2) 2^{n-1}
$$

In fact, a minimal triangulation of the n-closed ball is the closure K_{1} of a n-simplex. Let A_{1} be a p-matrix of K_{1}, and set $A_{1} A_{1}^{\prime}=\left[c_{i j}\right]$. Each $c_{i j}$ is the number of open simplex belongiog to K, then

$$
c_{i i}={ }_{n} C_{0}+{ }_{n} C_{1}+\cdots+{ }_{n} C_{n}=2^{n},
$$

and for $i \neq j$

$$
c_{i j}={ }_{(n-1)} C_{0}+{ }_{(n-1)} C_{1}+\cdots+{ }_{(n-1)} C_{(n-1)}=2^{n-1}
$$

where ${ }_{m} C_{r}$ is the total number of combinations of m elements taken r elements at a time. Hence

$$
A_{1} A_{1}^{\prime}=\left[\begin{array}{cccc}
2^{n} & & & \\
& 2^{n} & & 2^{n-1} \\
& \ddots & \\
& 2^{n-1} & \ddots & 2^{n}
\end{array}\right]
$$

that is, the diagonal elements are all 2^{n}, and the other elements are all 2^{n-1}. So that the eigen values of the space are

$$
2^{n-1}, 2^{n-1}, \cdots, 2^{n-1},(n+2) 2^{n-1}
$$

(2) The eigen values of n-open ball are $n+1$ integers:

$$
0,0, \cdots, n+1 .
$$

In fact, a minimal triangulation of a n-open ball is a quasi simplical complex K_{2} consisting of one n-open simplex. Let A_{2} be a p-matrix, then elements of $A_{2} A_{2}^{\prime}$ are all 1. Hence the eigen values are $n+1$ elements, $O, O, \cdots, O, n+1$.
(3) The eigen values of the $(n-1)$-sphere are $n+1$ integers which are the difference between (1) and (2).

$$
2^{n-1}, 2^{n-1}, \cdots, 2^{n-1},(n+2) 2^{n-1}-(n+1)
$$

In fact, a minimal triangulation of a ($n-1$)-sphere is clearly $K_{3}=K_{1}-K_{2}$. Now, let A_{3} be a p-matrix of K_{3} and setting $A_{3} A_{3}^{\prime}=\left[c_{i j}\right]$,

$$
\begin{aligned}
& c_{i j}=2^{n}-1, \\
& c_{i j}=2^{n-1}-1 \quad(\text { for } i \neq j),
\end{aligned}
$$

so that $A_{3} A_{3}^{\prime}=A_{1} A_{1}^{\prime}-A_{2} A_{2}^{\prime}$. Hence, the eigen values are $n+1$ elements, $2^{n-1}, 2^{n-1}, \cdots$, $2^{n-1},(n+2) 2^{n-1}-(n+1)$.
(4) The eigen values of the Torus are 7 elements,

$$
10,10, \cdots, 10,31 .
$$

(5) The eigen values of the Möbius band are 6 elements,

$$
5,5, \cdots, 5,23 .
$$

(6) The eigen values of the projective plane are 6 elements,

$$
8,8, \cdots, 8,26 .
$$

§3. Regularization of quasi polytopes.

A finite quasi complex K is said to be a n-partially simplicial complex if K satisfies the following conditions:
(1) if $\sigma, \tau \in K, \operatorname{dim}(\sigma \cap \tau)=k$, then a set $\{\eta \in K \mid \eta<\sigma \cap \tau\}$ has $k+1$ elements,
(2) let K^{0} be the set of vertices of open simplexes belonging to K, then K^{0} has n elements.

The geometric carrier of a partially simplicial complex is called a partially polytope. There exists an equivalent correspondence that assigns to each partially polytope a finite T_{0}-space.

Here, for each quasi polytope we shall consider a minimal dimensional partially polytope which will be called a regularization.

Now, let X be a quasi polytope, K be a minimal triangulation of X, and K^{0} be a set of vertices belonging to $C l(K)$. Set

$$
K=\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{l}\right\}
$$

and

$$
K^{0}=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\} .
$$

For $v_{p} \in K^{0}$, let

$$
\begin{equation*}
V_{p}=\left\{\sigma_{i} \in K \mid \sigma_{i}>v_{p}\right\}, \tag{3.1}
\end{equation*}
$$

and put

$$
T_{1}=\left\{V_{1}, V_{2}, \cdots, V_{k}\right\} .
$$

Then we define an ordering on T_{1} as follows: $V_{i}<V_{j}$ if and only if (1) or (2) implies,
(1) $V_{i} \neq V_{j}$ and $V_{i} \subset V_{j}$;
(2) $V_{i}=V_{j}$ and $i<j$.

Next, for $\sigma_{j} \in K$ let

$$
\begin{equation*}
W_{j}=\cap\left\{V_{r} \in T_{i} \mid V_{r} \ni \sigma_{j}\right\}, \tag{3.3}
\end{equation*}
$$

where, if there is more than two elements of (3.1) which are equal to W_{j}, then W_{j} is defined to be the smallest element of them with respected to the ordering (3.2). Here, putting

$$
T=T_{1} \cup\left\{W_{1}, W_{2}, \cdots, W_{l}\right\}
$$

we define an ordering on T as follows: for $U_{1}, U_{2} \in T$ such that $U_{1} \neq U_{2}, U_{1}<U_{2}$ if and only if (1) or (2) or (3) below, implies
(1) $U_{1}, U_{2} \in T_{1}$ and $U_{1}<U_{2}$ with respected to (3.2);
(2) $U_{1}, U_{2} \notin T_{1}$ and $U_{1} \subset U_{2}$;
(3) one is in T_{1}, say $U_{1} \in T_{1}$ and the other is not, say $U_{2} \notin T_{1}$, and $U_{1} \subset U_{2}$ under the comments of (3.3).

Then (T, \leq) is a partially ordered set, so that a finite T_{0}-space is defined on X. If $L(T)$ is the simplical presentation of T (see [1]), then $\tilde{X}=|L(T)|$ is said to be a regularization of X.

Moreover, if to each $U_{p} \in T$ we assign an simplex

$$
\tilde{\sigma}=\left\langle\left\{U \in T \mid U>U_{p}\right\}\right\rangle
$$

and consider the collection \bar{K} of such simplexes, then we have

$$
\hat{K} \approx L(T)
$$

(see [1]). Especially for $\sigma_{i} \in K$ let

$$
\tilde{\boldsymbol{\sigma}}_{i}=\left\langle\left\{U \in T \mid U>W_{i}\right\}\right\rangle .
$$

Given any quasi simplicial complex M, we may define an ordering \triangleleft on M by

$$
\sigma \triangleleft \tau \Leftrightarrow \sigma>\tau
$$

then (M, \triangleleft) is a partially ordered set. So the finite T_{0}-space is defined on M and is denoted by $F(M)$. Then we define $\phi:|M| \rightarrow F(M)$ as follows: if $x \in|M|$, then there is a unique simplex $\sigma \in M$ such that $x \in \sigma$. So put

$$
\phi(x)=\sigma .
$$

Then ϕ is a weak homotopy equivalence (see [1]).
Now a mapping $f: C l(K) \rightarrow C l(\tilde{K})$ is defined as follows: if $\tau \in C l(K), \tau=\left\langle v_{1}, v_{2} \cdots v_{m}\right\rangle$, then let $f(\tau)$ be an open simplex constructed by vertices

$$
\left\{V_{1}, V_{2}, \cdots, V_{m}\right\} \cup\{U \in T \mid \exists \sigma \in K: \sigma<\tau, U<\tilde{\sigma}\} .
$$

Then we have
(a) $f\left(v_{i}\right)=V_{i}(i=1,2, \cdots, k)$;
(b) $f\left(\sigma_{j}\right)=\tilde{\sigma}_{j}(j=1,2, \cdots, l)$;
(c) f is injective;
(d) $\sigma<\tau \Leftrightarrow f(\sigma)<f(\tau)$.

In fact, (a) and (b) follow immediately from the definition.
For (c), if $\sigma, \tau \in C l(K), \sigma \neq \tau$, then we may assume that there is $v_{i} \in K^{0}$ such that $v_{i}<\tau$ and $v_{i} \nless \sigma$. Clearly $U_{i}<f(\sigma)$, and while, if $\rho \in K, \rho<\sigma$, then $v_{i} \nleftarrow \rho$, so that $U_{i} \nless \tilde{\rho}$ by the definition of $\tilde{\rho}(\rho \in K)$. Hence $U_{i} \nleftarrow f(\sigma)$, thus $f(\tau) \neq f(\sigma)$.

For (d), $\sigma<\tau \Rightarrow f(\sigma)<f(\tau)$ follows from the definition of f. The converse follows from the proof of (c).

Next, define $h: K \rightarrow \tilde{K}$ by $h=f \mid k$, then $\sigma<\tau \Rightarrow h(\sigma)<h(\tau)$, hence h is a quasi simplicial mapping.

Let $C l\left(K_{1}\right)$ and $C l\left(\tilde{K}_{1}\right)$ be first subdivisions of $C l(K)$ and $C l(\tilde{K})$, respectively. And $f_{1}: C l\left(K_{1}\right) \rightarrow C l\left(\bar{K}_{1}\right)$ is defined as follows: for $\left\langle b\left(\tau_{1}\right) b\left(\tau_{2}\right) \cdots b\left(\tau_{m}\right)\right\rangle \in C l\left(K_{1}\right)$ (where $b\left(\tau_{j}\right)$ is the barycenter of τ_{j}), let

$$
f\left(\left\langle b\left(\tau_{1}\right) b\left(\tau_{2}\right) \cdots b\left(\tau_{m}\right)\right\rangle\right)=\left\langle b\left(\tilde{\tau}_{1}\right) b\left(\tilde{\tau}_{2}\right) \cdots b\left(\tilde{\tau}_{m}\right)\right\rangle
$$

where $\boldsymbol{\gamma}_{i}=f\left(\tau_{i}\right)$. Then from (3.4) f_{1} is bijective and $f_{1}, f_{1}{ }^{-1}$ are simplicial, so that

$$
C l\left(K_{1}\right) \approx f_{1}(C l(K))
$$

Next, the first barycentric subdivision M_{1} of a quasi simplicial complex M is defined by

$$
K_{1}=\left\{\left\langle b\left(\tau_{1}\right) \cdots b\left(\tau_{j}\right)\right\rangle \in C l\left(K_{1}\right) \mid \tau_{1}<\cdots<\tau_{j}, \tau_{j} \in K\right\}
$$

Now, define $h_{1}: K_{1} \rightarrow C l\left(K_{1}\right)$ by $h_{1}=f_{1} \mid K_{1}$, then $h_{1}\left(K_{1}\right) \subset \tilde{K}_{1}$. Because, if $\left\langle b\left(\tau_{1}\right) \cdots\right.$ $\left.b\left(\tau_{j}\right)\right\rangle \in K_{1}$ then $\tau_{1}<\cdots<\tau_{j}$ and $\tau_{j} \in K$. So from (3.4), $\tilde{\tau}_{1}<\cdots<\boldsymbol{\tau}_{j}$ and $\boldsymbol{\tau}_{j} \in \tilde{K}$, hence $\left\langle b\left(\boldsymbol{f}_{1}\right) \cdots b\left(\boldsymbol{f}_{j}\right)\right\rangle \in \tilde{K}_{1}$ thus $h_{1}\left(K_{1}\right) \subset \tilde{K}_{1}$. From (3.4)

$$
K_{1} \approx h_{1}\left(K_{1}\right)
$$

Therefore $h_{1}:\left|K_{1}\right| \rightarrow\left|\tilde{K}_{1}\right|$ is an embedding.
Theorem 2. Let X be a quasi polytope, \tilde{X} be a regularization of X, and K, \tilde{K} be minimal triangulation X, \tilde{X}, respectively, and let $h: K \rightarrow \tilde{K}$ be a canonical quasi simplicial mapping defined by $h=f \mid k$. Then h induces the simplicial mapping $h_{1}: K_{1} \rightarrow \tilde{K}_{1}$ which satisfy the following conditions:
(1) $h_{1}: X=\left|K_{1}\right| \rightarrow \tilde{X}-\left|\tilde{K}_{1}\right|$ is an embedding;
(2) $h: F(K) \rightarrow F(\tilde{K})$ is an embedding such that $h(F(K))$ is dense in $F(\tilde{K})$;
(3) let $\phi:|K| \rightarrow F(K)$ and $\tilde{\phi}:|\tilde{K}| \rightarrow F(\tilde{K})$ be two weak homotopy equivalence defined as the above, then $h \circ \phi=\bar{\phi} \circ h$.

Proof. (1) has been already proved.
For (2), of $h: K \rightarrow \tilde{K}$,

$$
\sigma_{i}<\sigma_{j} \Leftrightarrow h\left(\sigma_{i}\right)<h\left(\sigma_{j}\right) .
$$

Hence, of $h: F(K) \rightarrow F(\tilde{K})$.

$$
\sigma_{i} \triangleright \sigma_{j} \Leftrightarrow h\left(\sigma_{i}\right) \triangleright h\left(\sigma_{j}\right) .
$$

Thus h is a homeomorphism of $F(K)$ to $f(F(K))$. On the other hand, using the previous symbols, if $\tau \in F(\tilde{K})-h(F(K))$, then from the definition of \tilde{K} there is $V_{i} \in T_{1}$ such that $\tau=\left\langle\left\{U \in T|U\rangle V_{i}\right\}\right\rangle$. Now, taking σ_{j} such that $\sigma_{j} \in V_{i}$,

$$
\tilde{\boldsymbol{\sigma}}_{j}=\left\langle\left\{U \in T \mid U>W_{j}\right\}\right\rangle
$$

where $W_{j}=\cap\left\{V \in T_{1} \mid V>\sigma_{j}\right\}$. So $V_{i} \supset W_{j}$, that is $V_{i}>W_{j}$, hence, $\tilde{\sigma}_{j}>\tau$, whence
$\tilde{\boldsymbol{\sigma}}_{j} \triangleleft \tau$. So, in the space $F(\bar{K})$ the minimal basic neighborhood of τ contains $\tilde{\boldsymbol{\sigma}}_{j}$, thus $h(F(K))$ is a dense subspace in $F(\tilde{K})$.

For (3), if $x \in|K|=\left|K_{1}\right|$, there is a unique simplex $\sigma_{i} \in K$ containing x. Then

$$
h(\phi(x))=h\left(\sigma_{i}\right)=\tilde{\boldsymbol{\sigma}}_{i} .
$$

While, there is a unique simplex $\left\langle b\left(\sigma_{1}\right) \cdots b\left(\sigma_{i}\right)\right\rangle \in K_{1}$ containing x. Then

$$
h(x) \in\left\langle b\left(\tilde{\sigma}_{1}\right) \cdots b\left(\tilde{\sigma}_{i}\right)\right\rangle \subset\left|h\left(K_{1}\right)\right| \subset\left|\tilde{K}_{1}\right| .
$$

So that

$$
\tilde{\phi}(h(x))=\tilde{\phi}\left(\tilde{\sigma}_{i}\right)=\tilde{\sigma}_{i} .
$$

Therefore

$$
h \circ \phi=\tilde{\phi} \circ h_{1} .
$$

References

[1] M. Shiraki: Finite T_{0}-spaces and simplicial structures. This Journal, Vol. 2, (1969), 1728.
[2] M. Shiraki: On finite topological spaces II. This Journal, Vol. 2, (1969), 1-15.

[^0]: * Institute of Mathematics, Faculty of Science, Kagoshima University Kagoshima, Japan.

