QUASI POLYTOPES AND FINITE TOPOLOGICAL SPACES

著者	SHIRAKI Mitsunobu
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	9
page range	7-13
別言語のタイトル	準ポリトープと有限位相空間
URL	http://hdl.handle.net/10232/00012460

Rep. Fac. Sci., Kagoshima Univ. (Math., Phys., Chem.) No. 9, p. 7-13, 1976.

QUASI POLYTOPES AND FINITE TOPOLOGICAL SPACES

By

Mitsunobu SHIRAKI* (Received Sep. 28, 1976)

§1. Introduction

We have investigated finite topological spaces and those simplicial structures in [1] and [2]. In [2] we have adopted the concept, called eigen values, which was important for the characterization of finite T_0 -spaces. Moreover, in [1] we have showed that there is an equivalent correspondence that associates with each finite T_0 -space a space called a partially polytopes.

In this note we shall consider applications of the conception. We shall state that for a space called a quasi polytope the eigen values also may be defined, and we shall consider to extend each quasi polytope to a partially polytope inclued it.

§2. Quasi polytopes.

In an Euclidean space E^N , a set of properly joined open simplexes is said to be a quasi simplicial complex here (see [1]).

The geometric carrier of a star-finite quasi simplicial complex K is called a *quasi* polytope and is denoted by the symbol |K|. But, in this note quasi complexes and quasi polytopes shall always be assumed to be finite quasi complexes and finite quase polytopes, respectively.

A topological space X that is homeomorphic to a quasi polytope |K| is called a *triangulated space* and the quasi complex K is a *triangulation* of the space X. Next, let K be a quasi simplicial complex, then a set

$$Cl(K) = \{s \mid \exists \sigma \in K \colon s < \sigma\}$$

is a simplicial complex, which is said to be *induced* by K.

DEFINITION 1. Let $f: K \to L$ be a mapping of a quasi simplicial complex K to a quasi simplicial complex L. Then f is simplicial if there is simplical mapping $f_0: Cl(K) \to Cl(L)$ such that $f=f_0|K$.

DEFINITION 2. Two quasi simplicial complexes K and L are said to be *isomorphic* each other if there is a bijective simplicial mapping φ of one onto the other such that the inverse mapping φ^{-1} also is simplicial, and in such a case we denote by $K \approx L$.

^{*} Institute of Mathematics, Faculty of Science, Kagoshima University Kagoshima, Japan.

Evidently we have

$$K \approx L \Rightarrow |K| \simeq |L|$$
.

A triangulation K of a quasi polytope X is said to be *minimal* if the cardinality of K is minimum in the cardinalities of all triangulations of X.

From now on, we shall consider only quasi polytopes satisfying the following property: if K and L are two minimal triangulations of such a quasi polytope X, then $K \approx L$.

Now, let X be a quasi polytope, K be a minimal trangulation of X, and K^0 be the set of vertices belonging to Cl(K). Set

$$K^0 = \{v_1, v_2, \cdots, v_k\}$$
,

and

 $K = \{\sigma_1, \sigma_2, \cdots, \sigma_l\},\$

and for K we define a (k, l) matrix $A = [a_{ij}]$ as follows:

$$a_{ij} = 1$$
 if $v_i < \sigma_j$,
= 0 otherwse.

Such a matrix is said to be a p-matrix of K.

DEFINITION 3. Let X be a quasi polytope, K be a minimal triangulation of X, and A be a p-matrix of K. Then the characteristic polynomial f(x) of AA', that is,

$$f(x) = |xE - AA'|$$

is the polynomial of the space X. And the eigen values of AA' is said to be the eigen values of the space X.

In a matrix $AA' = [c_{ij}]$, c_{ij} is the number of open simplexes belonging to K which have vertices v_i and v_j as their faces. Because of

$$c_{ij} = \sum_{r=1}^{k} a_{ir} a_{jr} ,$$

and

$$a_{ir}a_{jr} = 1 \Leftrightarrow (a_{ir} = 1 \text{ and } a_{jr} = 1) \Leftrightarrow (v_i < \sigma_r \text{ and } v_j < \sigma_r).$$

The following theorem results easily from the matrix theory.

THEOREM 1. Let X be a quasi polytope and K be a minimal triangulation of X. Then the eigen values of X have the following properties:

(1) the number of the eigen values is equal to the number of vertices of open simplexes belonging to K;

(2) each eigen value is a non-negative real number;

(3) if there are rational roots, they are non-negative integers.

PROOF. For (1), let A be a p-matrix of K, and suppose that the number of open simplexes belonging to K is n. Then AA' is a (n, n) square matrix. whence (1) implies.

For (2), AA' is a non-negative Hermition matrix. Hence each eigen value is a

non-negative real number.

For (3), the polynomial of X is

$$f(x) = |xE - AA'| = x^n - \cdots + (-1)^n |AA'|$$

and if f(x)=0 has rational roots, then they are non-negative integers, since |AA'| is a non-negative integer.

Here, we shall show the eigen values or the characteristic polynomials of simple spaces.

(1) The eigen values of the *n*-closed ball are n+1 integers:

 $2^{n-1}, 2^{n-1}, \dots, 2^{n-1}, (n+2)2^{n-1}$.

In fact, a minimal triangulation of the *n*-closed ball is the closure K_1 of a *n*-simplex. Let A_1 be a *p*-matrix of K_1 , and set $A_1A'_1 = [c_{ij}]$. Each c_{ij} is the number of open simplex belonging to K, then

$$c_{ii} = {}_nC_0 + {}_nC_1 + \cdots + {}_nC_n = 2^n,$$

and for $i \neq j$

$$c_{ij} = {}_{(n-1)}C_0 + {}_{(n-1)}C_1 + \cdots + {}_{(n-1)}C_{(n-1)} = 2^{n-1}$$

where ${}_{m}C_{r}$ is the total number of combinations of m elements taken r elements at a time. Hence

that is, the diagonal elements are all 2^n , and the other elements are all 2^{n-1} . So that the eigen values of the space are

$$2^{n-1}, 2^{n-1}, \dots, 2^{n-1}, (n+2)2^{n-1}$$
.

(2) The eigen values of *n*-open ball are n+1 integers:

$$0, 0, \dots, n+1$$
.

In fact, a minimal triangulation of a *n*-open ball is a quasi simplical complex K_2 consisting of one *n*-open simplex. Let A_2 be a *p*-matrix, then elements of $A_2A'_2$ are all 1. Hence the eigen values are n+1 elements, $O, O, \dots, O, n+1$.

(3) The eigen values of the (n-1)-sphere are n+1 integers which are the difference between (1) and (2).

$$2^{n-1}, 2^{n-1}, \dots, 2^{n-1}, (n+2)2^{n-1} - (n+1)$$
.

In fact, a minimal triangulation of a (n-1)-sphere is clearly $K_3 = K_1 - K_2$. Now, let A_3 be a *p*-matrix of K_3 and setting $A_3A'_3 = [c_{ij}]$,

$$c_{ij} = 2^n - 1$$
,
 $c_{ij} = 2^{n-1} - 1$ (for $i \neq j$),

so that $A_3A'_3 = A_1A'_1 - A_2A'_2$. Hence, the eigen values are n+1 elements, 2^{n-1} , 2^{n-1} , \cdots , 2^{n-1} , $(n+2)2^{n-1}-(n+1)$.

(4) The eigen values of the Torus are 7 elements,

 $10, 10, \cdots, 10, 31$.

(5) The eigen values of the Möbius band are 6 elements,

 $5, 5, \cdots, 5, 23$.

(6) The eigen values of the projective plane are 6 elements,

8, 8, ..., 8, 26.

\S **3.** Regularization of quasi polytopes.

A finite quasi complex K is said to be a *n*-partially simplicial complex if K satisfies the following conditions:

(1) if $\sigma, \tau \in K$, $\dim(\sigma \cap \tau) = k$, then a set $\{\eta \in K \mid \eta < \sigma \cap \tau\}$ has k+1 elements,

(2) let K^0 be the set of vertices of open simplexes belonging to K, then K^0 has n elements.

The geometric carrier of a partially simplicial complex is called a *partially* polytope. There exists an equivalent correspondence that assigns to each partially polytope a finite T_0 -space.

Here, for each quasi polytope we shall consider a minimal dimensional partially polytope which will be called a regularization.

Now, let X be a quasi polytope, K be a minimal triangulation of X, and K^0 be a set of vertices belonging to Cl(K). Set

$$K = \{\sigma_1, \sigma_2, \cdots, \sigma_l\},$$

$$K^0 = \{v_1, v_2, \cdots, v_k\}.$$

$$V_p = \{\sigma_i \in K | \sigma_i > v_p\},$$
(3.1)

and put

For $v_{\phi} \in K^0$, let

and

$$T_1 = \{V_1, V_2, \cdots, V_k\}$$

Then we define an ordering on T_1 as follows: $V_i < V_j$ if and only if (1) or (2) implies,

(1) $V_i \neq V_j$ and $V_i \subset V_j$; (3.2)

(2)
$$V_i = V_j$$
 and $i < j$.

Next, for $\sigma_j \in K$ let

$$W_{i} = \bigcap \{ V_{r} \in T_{1} | V_{r} \ni \sigma_{i} \}, \qquad (3.3)$$

where, if there is more than two elements of (3.1) which are equal to W_j , then W_j is defined to be the smallest element of them with respected to the ordering (3.2). Here, putting

10

$$T = T_1 \cup \{W_1, W_2, \cdots, W_l\},\$$

we define an ordering on T as follows: for U_1 , $U_2 \in T$ such that $U_1 \neq U_2$, $U_1 < U_2$ if and only if (1) or (2) or (3) below, implies

(1) U_1 , $U_2 \in T_1$ and $U_1 < U_2$ with respected to (3.2);

(2) U_1 , $U_2 \notin T_1$ and $U_1 \subset U_2$;

(3) one is in T_1 , say $U_1 \in T_1$ and the other is not, say $U_2 \notin T_1$, and $U_1 \subset U_2$ under the comments of (3.3).

Then (T, \leq) is a partially ordered set, so that a finite T_0 -space is defined on X. If L(T) is the simplical presentation of T (see [1]), then $\tilde{X} = |L(T)|$ is said to be a regularization of X.

Moreover, if to each $U_{p} \in T$ we assign an simplex

$$\tilde{\sigma} = \langle \{ U \in T \, | \, U > U_{p} \} \rangle$$

and consider the collection \tilde{K} of such simplexes, then we have

$$\tilde{K} \approx L(T)$$

(see [1]). Especially for $\sigma_i \in K$ let

$$\tilde{\sigma}_i = \langle \{ U \in T \, | \, U > W_i \} \rangle$$

Given any quasi simplicial complex M, we may define an ordering \triangleleft on M by

 $\sigma \triangleleft \tau \Leftrightarrow \sigma > \tau ,$

then (M, \triangleleft) is a partially ordered set. So the finite T_0 -space is defined on M and is denoted by F(M). Then we define $\phi: |M| \to F(M)$ as follows: if $x \in |M|$, then there is a unique simplex $\sigma \in M$ such that $x \in \sigma$. So put

 $\phi(x)=\sigma.$

Then ϕ is a weak homotopy equivalence (see [1]).

Now a mapping $f: Cl(K) \to Cl(\tilde{K})$ is defined as follows: if $\tau \in Cl(K), \tau = \langle v_1, v_2 \cdots v_m \rangle$, then let $f(\tau)$ be an open simplex constructed by vertices

$$\{V_1, V_2, \cdots, V_m\} \cup \{U \in T \mid \exists \sigma \in K \colon \sigma < \tau , U < \tilde{\sigma}\}.$$

Then we have

a)
$$f(v_i) = V_i \ (i = 1, 2, \dots, k);$$

b) $f(\sigma_j) = \tilde{\sigma}_j \ (j = 1, 2, \dots, l);$
c) f is injective;
(3.4)

(d) $\sigma < \tau \Leftrightarrow f(\sigma) < f(\tau)$.

In fact, (a) and (b) follow immediately from the definition.

For (c), if $\sigma, \tau \in Cl(K), \sigma \neq \tau$, then we may assume that there is $v_i \in K^0$ such that $v_i < \tau$ and $v_i < \sigma$. Clearly $U_i < f(\sigma)$, and while, if $\rho \in K$, $\rho < \sigma$, then $v_i < \rho$, so that $U_i < \tilde{\rho}$ by the definition of $\tilde{\rho}$ ($\rho \in K$). Hence $U_i < f(\sigma)$, thus $f(\tau) \neq f(\sigma)$.

M. SHIRAKI

For (d), $\sigma < \tau \rightarrow f(\sigma) < f(\tau)$ follows from the definition of f. The converse follows from the proof of (c).

Next, define $h: K \to \tilde{K}$ by h = f | k, then $\sigma < \tau \to h(\sigma) < h(\tau)$, hence h is a quasi simplicial mapping.

Let $Cl(K_1)$ and $Cl(\tilde{K}_1)$ be first subdivisions of Cl(K) and $Cl(\tilde{K})$, respectively. And $f_1: Cl(K_1) \to Cl(\tilde{K}_1)$ is defined as follows: for $\langle b(\tau_1) \ b(\tau_2) \cdots b(\tau_m) \rangle \in Cl(K_1)$ (where $b(\tau_j)$ is the barycenter of τ_j), let

$$f(\langle b(\tau_1)b(\tau_2)\cdots b(\tau_m)\rangle) = \langle b(\tilde{\boldsymbol{\tau}}_1)b(\tilde{\boldsymbol{\tau}}_2)\cdots b(\tilde{\boldsymbol{\tau}}_m)\rangle$$

where $\mathbf{\tau}_i = f(\tau_i)$. Then from (3.4) f_1 is bijective and f_1, f_1^{-1} are simplicial, so that

 $Cl(K_1) \approx f_1(Cl(K))$.

Next, the first barycentric subdivision M_1 of a quasi simplicial complex M is defined by

$$K_1 = \{ \langle b(\tau_1) \cdots b(\tau_j) \rangle \in Cl(K_1) | \tau_1 < \cdots < \tau_j, \tau_j \in K \},\$$

Now, define $h_1: K_1 \to Cl(K_1)$ by $h_1 = f_1|K_1$, then $h_1(K_1) \subset \tilde{K}_1$. Because, if $\langle b(\tau_1) \cdots b(\tau_j) \rangle \in K_1$ then $\tau_1 < \cdots < \tau_j$ and $\tau_j \in K$. So from (3.4), $\tilde{\tau}_1 < \cdots < \tilde{\tau}_j$ and $\tilde{\tau}_j \in \tilde{K}$, hence $\langle b(\tilde{\tau}_1) \cdots b(\tilde{\tau}_j) \rangle \in \tilde{K}_1$ thus $h_1(K_1) \subset \tilde{K}_1$. From (3.4)

$$K_1 \approx h_1(K_1)$$
.

Therefore $h_1: |K_1| \to |\tilde{K}_1|$ is an embedding.

THEOREM 2. Let X be a quasi polytope, \tilde{X} be a regularization of X, and K, \tilde{K} be minimal triangulation X, \tilde{X} , respectively, and let $h: K \to \tilde{K}$ be a canonical quasi simplicial mapping defined by h=f|k. Then h induces the simplicial mapping $h_1: K_1 \to \tilde{K}_1$ which satisfy the following conditions:

(1) $h_1: X = |K_1| \rightarrow \tilde{X} - |\tilde{K}_1|$ is an embedding;

(2) $h: F(K) \to F(\tilde{K})$ is an embedding such that h(F(K)) is dense in $F(\tilde{K})$;

(3) let $\phi: |K| \to F(K)$ and $\tilde{\phi}: |\tilde{K}| \to F(\tilde{K})$ be two weak homotopy equivalence defined as the above, then $h \circ \phi = \tilde{\phi} \circ h$.

PROOF. (1) has been already proved. For (2), of $h: K \to \tilde{K}$,

$$\sigma_i < \sigma_j \Leftrightarrow h(\sigma_i) < h(\sigma_j) .$$

Hence, of $h: F(K) \rightarrow F(\tilde{K})$.

$$\sigma_i \triangleright \sigma_j \Leftrightarrow h(\sigma_i) \triangleright h(\sigma_j)$$
.

Thus h is a homeomorphism of F(K) to f(F(K)). On the other hand, using the previous symbols, if $\tau \in F(\tilde{K}) - h(F(K))$, then from the definition of \tilde{K} there is $V_i \in T_1$ such that $\tau = \langle \{U \in T | U > V_i\} \rangle$. Now, taking σ_i such that $\sigma_i \in V_i$,

$$\tilde{\sigma}_{j} = \langle \{ U \in T | U > W_{j} \} \rangle$$

where $W_i = \bigcap \{ V \in T_1 | V > \sigma_i \}$. So $V_i \supset W_i$, that is $V_i > W_i$, hence, $\tilde{\sigma}_i > \tau$, whence

12

 $\tilde{\sigma}_j \triangleleft \tau$. So, in the space $F(\tilde{K})$ the minimal basic neighborhood of τ contains $\tilde{\sigma}_j$, thus h(F(K)) is a dense subspace in $F(\tilde{K})$.

For (3), if $x \in |K| = |K_1|$, there is a unique simplex $\sigma_i \in K$ containing x. Then

$$h(\phi(x)) = h(\sigma_i) = \tilde{\sigma}_i$$

While, there is a unique simplex $\langle b(\sigma_1) \cdots b(\sigma_i) \rangle \in K_1$ containing x. Then

 $h(x) \in \langle b(\tilde{\sigma}_1) \cdots b(\tilde{\sigma}_i) \rangle \subset |h(K_1)| \subset |\tilde{K}_1|$.

So that

$$ilde{\phi}(h(x)) = ilde{\phi}(ilde{\sigma}_i) = ilde{\sigma}_i$$
 .

Therefore

$$h \circ \phi = \tilde{\phi} \circ h_1$$
.

References

 M. SHIRAKI: Finite T₀-spaces and simplicial structures. This Journal, Vol. 2, (1969), 17– 28.

[2] M. Shiraki: On finite topological spaces II. This Journal, Vol. 2, (1969), 1-15.