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Abstract

We estimate the error under the L*-norm for the Galerkin method to solve two point
boundary value problems. And, by using those error estimates, we consider adaptive mesh
refinement procedures such as the value of the error under the L=-norm is less than a given
positive number ¢.

1. Introduction

In this paper we consider the following linear two point boundary value problem :

Ly5~—g;<a(x)—g—§—>+b(x)y=f(x), xeI=[0, 1], (11)
y(0)=y(1)=0
where for some »>1
(i) a(x)e C(I), O0<a<a(x)<am
(i) b(x)eC™ (1), 0<b(x) }XEI‘

For the Galerkin approximation BabuSka and Rheinboldt have presented a posteriori
error estimates under the energy norm and adaptive mesh refinement procedures which are
based on those estimates ([1]-[4]). In this paper we estimate the error under the L*-norm
and consider adaptive mesh refinement procedures such as the value of the error under the
L~-norm is less than a given positive number d.

On the interval I we consider a partition

A 0=xo<x:1<x2<...<xn1<xn=1,
and introduce the notations

I;= i-1, Xi .
[x 1 X]}’ lzl,"', n,

hi=x:i—Xi-1
ha=max h..
1si=n

If P, denote the collection of all polynomials of degree not greater than 7, then continuous
piecewise polynomial space .#% is defined as usual by
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#:={veC(I)| vln€ PI), i=1,-, n; v(0)=0v(1)=0}.
Also on the interval J(J S7) we define '

(u, v);Z'/;uv dx

and

I u"E<1>:[£(6lu'z+ buz)dx]l/z; ue H'(J).

Let y.,&.#% be the Galerkin approximation to the solution y, of (1.1) determined by
the relation
(aya,, Vit (byar, v)i=(f, v),
for all ye .#%.
Then it is known that the following error estimate holds at the knots ([5]):
THEOREM 1. Let CA,,Z(gl%l(yo—yA,,)(xi)l- If yoe H**'(I) with 1<k<v7, then

theve is a constant C such that
_ Ca, < Cllyo*™V| ayhs™”,
where the constant C is independent of hs but dependent on a, b, k and 7.
In the case »>2, it is known from Theorem 1 that the Galerkin approximation Va.r
superconverges to the exact solution y, at the knots.
From now on we assume that
(i) r>2,
(ii) vo€ C*N(I), 1<k<r.

2. Error estimates

In this section, for each subinterval I,, we estimate the error under the L*-norm.
Those error estimates play important parts in adaptive mesh refinement procedures which
we will describe in next section.

First we obtain the following error estimate :

THEOREM 2. For each subinterval I; of a given partition A there is a constant C such
that

|| yt()S)*y(As,l "L“‘(I.-)S C( " yeery ”L2(1)hﬁ+r+|| yc()kH) ||1.'=°(1.>1’lf‘+1 )/hf’, 0<s<k+1,

wheve the constant C is independent of A but dependent on a, b, k, v and s.
Proof. Let y be the Lagrange interpolation polynomial of degree % to the solution y, of
(1.1) on each subinterval /;. Then

|96 = 5N L=t0 < C' | 96| sy 212, 0<s<k+1. (2.1)

Also it follows from [5] that

” Yo—Var ”L“(I.-)S C”( || y(()k+l) |IL2(1)h£+y+” yO(k+1) "L""(l.)h:?+1 )y

and
I 7 —yarlli-ao< C” U y8F O ey &+ 982 N =i ¥). (2.2)

Applying Markoff’s inequality to the above (2.2) gives
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|53 m= C 8 s+ 98 it )/hS, 0S5 <k,
From this and (2.1), it follows that
|98 =& o <N 962 = 5| =i+ 7= &0 L=
< CUys Nz h&" "+ ¥8 P =5/ S,
and the proof of Theorem 2 is complete.
Let

__l dyA,r °'
fA,r_ dx <a(x) dx >+b(x)yAr, xelz,

a:=min|a(x)|.

xel;

Then, by using C., in Theorem 1 and a posteriori error f— f., we obtain the

following result :
THEOREM 3. For each subinterval I; of a given partition A theve arve constants C, and

C, such that

lvo—va., ||E<m§ﬁhi | f—=Farl 1‘2<1.)+7CI;—1TCA,,

lvo—va, =)< 2/1€a -h¥? | f—Far izt CoCas,

where the constants C, and C, ave independent of h; but dependent on a and b.
Theorem 3 is proved by using the following lemma :
LEMMA. Let e be the linear intevpolant to u € C'(I) at the endpoints 0 and 1. Then
we have

1
lu—e ||L2<1>SW" u |z,

1y .,
lu—e ”meﬁ“z*” || 2
Proof of Theorem 3. Let {=y,—ya, and e be the linear interpolant to y, at the

endpoints x,_; and x,. Then, by using Schwarz’s inequality and Lemma,

I ¢ an=(at’, &)+ (b8, &),

(a8, &' —e )t (b8, E—e)t(al’, e )+ (b8, e
(

|

f=Fan &— e)l:+(d§,, e’)1i+(bé’, e)1,~
| f = farllizan 1€ — ellzzan+1 & Neas | € leas

IA

1
g—\/—6—7i—hi I £ = Farllzzan | € leao+1 € lleas | € Iz,

and

1€ lewr=—gahill £ = far lisao+—f5=Canr. (2.3)

Also (2.3) and Lemma imply that
I == & — e+l elli=u

YR ¢ g Cas

<SP et Car

<
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1
26a, R*| f = farlizaot+ CoCa.r.

<

Hence

16l = 5755 h2 ) = Fas lisao+ CoCoar,

and the proof of Theorem 3 is complete.

3. Adaptive mesh refinement procedures

Now we consider adaptive mesh refinement procedures such as the value of the error
under the L*-norm is less than a given positive number &.
Set

ClLy, 8)=57—ht*| F = Fas i (3.1)

First we divide the interval [ into some equal parts and compute the Galerkin approxima-
tion. Next, according as the inequality
C(I;, A< (3.2)
holds or not for each subinterval J;, we execute the fractionalization of the subintervals.
For example we divide only the subintervals /; such as
C(]j, A)ZIIE%)%C(L‘, A)>6

or all the subintervals J; such as
C(l;, A)>S
into two equal parts. We repeat the fractionalization till the (3.2) holds for every subinter-
vals ;.
In the following, we assume that (3.2) holds for every subintervals 7;. Then
| vo—va, =<8+ C2Ca, < (1+ C:ChZ™1)S.
THEOREM 4. For each subinterval I; of a given partition A therve is a constant C such
that
C(I:, D)< CU y& V| aah& + 1 6 Nl -aoh ),
wheve the constant C is independent of A but dependent on a, b, k and 7.
By using Theorem 2 this theorem is simply proved. It is known from Theorem 4 that
(3.2) holds for each 7, sufficiently small.
THEOREM 5. For a given partition A we assume that ha is sufficiently small. Then
there is a constant C such that
Ca,<C-06 -+ hil,
where the constant C is independent of ha but dependent on a, b and r.
Proof. Let G(x, &) be the Green’s function for (1.1). Then it follows from [5] that there
is an integer ; such that
Car=|(Wo—=ya,)(x;)]

< inf ﬁ‘,l I G(xs, )= vleas]

ve 7 1=

VYo~ Va.r “E(m.

By using » such as Lagrange interpolation to G(x, -) on each subinterval /;, there is a
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constant G, for each subinterval /; such that
| G(x,, )= vleuwn=< G:hl,
from which follows
n
CA,;'S igl Glh{ll yO_yA.r “E(Ii)-

Also using Theorem 3 gives

| yo—ya, IIE(Ii)s-/lT—T<2/aT 5+ CiCa).

Thus we multiply G;47 on both sides of the above inequality and fine out the whole sum of
all 7 such that

2 Gitlyo—valsun< (2@ 8+ C:iCar) 3 Ghi™™.
Hence
(1-C: 3} Gihi™*)Ca, <2/ar 6 3} GihI ™™,
Here

é Gihlf‘—l&g(é G%)l/Z(i h%r—-l)l/Z
i=1 i=1 i=1

<C(hZ* 3 i)
=C'hi".
Thus for . sufficiently small
Ca,<C -6 - hi,
and the proof of Theorem 5 is complete.
Remark 1. 1t is known from Theorem 1 of [5] and the proof of Theorem 5 that the
constants C of Theorem 1 and 5 depend on not only the values of ¢ and 4 but also the value
max | GT*V(x, *)|ieq) of the Green’s function G(x, -) for (1.1).

Remark 2. 1t follows from the proof of Theorem 3 that there is a constant C’ (which
depends on ¢ and 5) such that

I ety <453—h? f = Far lisaat € Can. (3.3)

Also if we replace v/6 of C([;, A) by r, then the inequality of Theorem 5 remain valid.
Hence

CLs, 8=t = Far s

is the principal term of (3.3), and can be also used in adaptive mesh refinement procedures
as same as C([;, A).

4. Numerical examples

We illustrate some computational results for two sample problems. We choose » =2
and 6§ =10"* and divide the interval / into sixteen equal parts at first. There are various
methods of the partition such as (3.2) holds for every subintervals /,. In this paper we use
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the following method :

Stepl. We divide all the subintervals /; such as
C(I;, A)>108
into two equal parts till
C(I 5 A )<106

for every subintervals /;.

Step2. We replace 108 by 10 & and divide the interval J into the same way as in Step

1.

Step3. We replace +/10 6 by § and divide the interval ] into the same way as in Step 1.
We summarize the numerical results of the following problems in Table 1 and 2 :
Example 1. (e>0), =xeI=[0,1], »(0)=»(1)=0.

The function

—ey'+y=-—1
ex/«/? e—xh/?
PO
is the unique solution and has boundary layers at the endpoints of I. The numbers of the
knots which are contained in interval (0, /¢ ) are respectively 10, 9 and 11.

Vo= 1

Example 2. —y"+y=(1—4a%)e**+(a*—1)(1+e%)e*+e*,  x€I=[0, 1],
y(0)=y(1)=0,
where the solution is
vo=(e®™—1)(e**—e?).
TABLE 1
e | 7| Cor |EAXCULA)N maxho | minho) e
107* | 86| 0.118(=5)| 0.866(—4) 27 2-10 0.117(—4)
107¢ | 130 | 0.117(=5) | 0.893(—4) 27° 271 0.122(—4)
1072 | 188 | 0.381(—6) | 0.927(—4) 27 21 0.126(—4)
TABLE 2
¢ | n| Car |mEXCUA) maxh | minho) e
2910.132(=7) | 0.949(—4 27 275 0.130(—4)
831 0.326(—8) | 0.936(—4) 27 277 0.128(—4)
1951 0.168(—=7) | 0.986(—4) 28 27° 0.134(—4)

In these tables we use the notation

¢= max max I(yo—ya‘,,)(xi_l—i-j%)l.

1si=n 0s,=100
If we use the method to divide the subintervals 7, such as
C(l;, A)>6
into two equal parts till
C(I;, A)<6
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for every subintervals /;, then the numbers of intervals used in the partitions are, respecti-
vely, 90, 138 and 204 for Example 1 and the same numbers as Table 2 for Example 2.

And if we replace C(I;, A) by C(I;, A) in Remark 2, then we obtain the better results
than the ones in Table 1 and 2.
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