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Abstract

The purpose of the present paper is to find a conformally invariant linear connection of a
Finsler space with (a, f)-metric, and to give the condition that a Randers space be conformally flat
in the tensorial form expressed in terms of the given metric. Especially, we determine all two-
dimensional conformally flat Randers spaces.

1. Introduction

On an n-dimensional differentiable manifold M, we consider an («, ff)-metric L(x, f),
where o is a Riemannian metric and f is a non-zero 1-form on M (Matsumoto [6,
Definition 30.1]). We put

(1.1) o = (a;(x)y'y)'2, B = bx)y"

Let {/,} be the Christoffel symbols constructed from a;;, and V, and R,’; denote the
covariant differentiation and the curvature tensor with respect to {;} respectively.

In his paper [5], Kikuchi treated Finsler spaces with (x, f)-metric of several types,
and obtained the condition that such a space of each type be locally Minkowski. In the
case of a Randers space (M, L), where L= a + § (Randers [8]), the condition is given as
follows:

Theorem 1.1. (Kikuchi [5]) A4 Randers space is locally Minkowski if and only if
R/} =0 and V,b; =0 are satisfied.

In the present paper, corresponding to Theorem 1.1, we shall give the condition that
a Randers space be conformally flat (Theorem 3.1). We shall here define as follows:

Definition 1.1. A Finsler space (M, L) is said to be conformally flat, if for any point
p of M there exist a local coordinate neighbourhood (U, x) containing p and a function
a(x) on U such that e°Lis a locally Minkowski metric.

* Department of Mathematics, College of General Education, University of Tokushima, Tokushima, Japan.

** Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima, Japan.



8 Yoshihiro IcHIYO and Masao HASHIGUCHI

Briefly speaking, “a Finsler space (M, L) is conformally flat” means that Lis locally
conformal to a locally Minkowski metric. The condition that a general Finsler space be
conformally flat has been given by many authors from various standpoints (e.g.,
Hashiguchi [1, Theorem 4.8], Hashiguchi-Ichijyo [2, Theorem C], Ichijyo [4, Theorem
7.1], Matsumoto [7, §2, Theorem]). In each case such a space is characterized by the
existence of some geometrical object (e. g., the so-called Wagner connection in [2]). The
condition given in the present paper is concerned with a Randers space only, but it
should be noted that it is invariantly expressed in terms of the given Randers metric itself.

In order to use Theorem 1.1 for our purpose, in the next section we shall find a
conformally invariant linear connection M, for a Randers space. The result is stated in
the tensorial form as the condition imposed on Mj,. This connection is, however,
defined for a Finsler space with general («, f)-metric (Theorem 2.1), so it will be also
useful for the study of Finsler spaces with («, f)-metric of other types.

If a Randers space (M, L) is conformally flat, where L=o + f, so is the
corresponding Riemannian space (M, «) (Theorem 4.1). Paying attention to this fact, in
the last section we shall give a local expression to Lof a conformally flat Randers space
(M, L). This is given in the form (4.8) around any point of M and tells us various
examples. Especially, in the two-dimensional case, we can determine all conformally flat
Randers spaces (Theorem 4.3).

2. The conformally invariant linear connection

Let (M, L) be a Finsler space with («, f)-metric L= L(«, f), where o« and f are
expressed as (1.1). A point of M and a tangent vector at the point are denoted by
x = (x) and y = (%) respectively. We put 9, = 9/0x*, (a”) = (a;)"!, b’ = a"b,, and b =
(brbr)l/z_

By a conformal change

(2.1) L= L(o, p)— L=e"® L(a, p),

we have also an (x, f)-metric L= L@, f), where & = e’«, f =e°B. Putting d =
(@;(x)y'y)"2, B = b(x)y', we have d; = e*’a;, b, = eb;.

We shall find a linear connection on M which is invariant under the change
(2.1). The Christoffel symbols { J.Tk} constructed from 4g;; are written as

(2.2) (5 = (i) + 8/ + 8/0; — d'ay,
where ¢, = 8,0, ¢' = a”o,. Thus we have

(2.3) Vb= e (Vb — byo; + b,a"ay).
Eliminating b,¢" from (2.3) and putting

(2.4) M; = (1/b*){b"V,b; — (V,b)b;/(n — 1)},
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we have

(2.5) g;=M;— M,.
Substituting (2.5) in (2.2) and putting

(2.6) M= {3 + 6/ My + 8M; — M'a,
where M’ = a"M,, we have

(2.7) M}, = M/,.

M}, is a symmetric linear connection on M. Thus we have shown

Theorem 2.1. In a Finsler space with (a, B)-metric there exists a conformally invariant
symmetric linear connection M jik.

We shall call the linear connection M, given by (2.6) the conformally invariant linear
connection of an (x, f)-metric. We denote its curvature tensor by M,’;,. We have from
(2.7)

(2-8) Mhijk = Mhijk'
Especially, we have from (2.4) and (2.6)
Proposition 2.1. In the case of V,b; =0, we have M; =0, M}, = {/\}, and M’

_ i
= Rh jk*

3. The condition that a Randers space be conformally flat

Let (M, L) be a Randers space, where L= o + f, and we shall consider a conformal
change (2.1) of L. Then we have a Randers metric L= e’L= & + f§, where 4 = e°a,
=¢e’f. If (M, L) is locally Minkowski, we have by Theorem 1.1 applied to (M, L)

(3.1) R/i,=0, V,bj=0.

From (3.1), we can apply Proposition 2.1 to (M, L), so we have ]\7Ij=0 and Mhijk
= R,;. Thus we have from (2.8) and (3.1),

(32) Mhijk = O

Then, since (2.5) becomes M; = o;(= 0;0), the covariant vector field M; is locally
gradient:

(3.3) ka] = v}'Mk,
and we have from (2.3)

(34) vkbj = bkM] - berajk.
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Since (3.2), (3.3), (3.4) are expressed in the tensorial form in terms of the given metric,
we have these conditions even if (M, L) is not globally but locally conformal to a locally
Minkowski space.

Conversely, let a Randers metric L= o + f§ satisfy the conditions (3.2), (3.3),
(3.4). The condition (3.3) gives us that for any point p of M there exist a local
coordinate neighbourhood (U, x) containing p and a function o(x) on U such that 0,0
= M;. By using this ¢ we consider the conformal change L—L=¢e°L on each
U. Then from (2.5) we have N,=0, which yields M} = {7} and so M,
= R,';. Hence R,’; = 6 follows from (2.8) and the condition (3.2). Using the condition
(3.4), from (2.3) we have W,‘Ejz 0. Thus we have proved

Theorem 3.1. A Randers space is conformally flat if and only if the conditions (3.2),
(3.3) and (3.4) are satisfied.

For later use, we shall give another expression of the condition (3.4). From (3.4) we
have

(3.5) b" Vb, = 0.

Thus from (2.4) we have

(3.6) bM" = — (V,b")/(n—1).

Substituting (2.4) and (3.6) in (3.4) we have

(3.7 Vib; = (1/6%){bb" V,b; + (V,b")(b*ay — b;b)/(n — 1)}.

Conversely, the condition (3.4) follows from (3.5) and (3.7). As is shown in Ichijyo
[3], (3.5) is equivalent to V,(b,b") =0, which means that b is constant when M is
connected. Thus we have

Theorem 3.2. A Randers space is conformally flat if and only if the conditions (3.2),
(3.3), (3.5) and (3.7) are satisfied. Then b = (b,b")'/* is constant if the underlying manifold
is connected.

Now, the condition (3.2) is explicitly concerned with M;,. The conditions (3.3) and
(34) are also expressed in terms of M. Let V, denote the covariant differentiation

with respect to M;,. Since M, is symmetric, (3.3) is equivalent to
On the other hand, we have

(3.9) vkaij = — 2Mkal'

j°
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(3.10) vka= ka]—bij——bJMk-}-b,Mrajk.

(3.9) shows that M}, is recurrent for g;;, and (3.10) shows that (3.4) is expressed in the

corresponding recurrent form:

j°

(3.11) Veb; = — M,b,.

Thus we have

Theorem 3.3. A Randers space is conformally flat if and only if the conditions (3.2),
(3.8) and (3.11) are satisfied.

4. Examples

Let (M, L) be a conformally flat Randers space, where L= «+ B, and we shall give a
local expression to L. Since Lis locally conformal to a locally Minkowski metric, for
any point p of M there exist a local coordinate neighbourhood (U, x) containing p and a
function o(x) on U such that L= e°L(= & + p) is locally Minkowski. Due to Theorem

1.1 we have (3,1), for the Riemannian metric & = e°a, so & is locally Euclidean. Thus we
have

Theorem 4.1. If a Randers space (M, o + ) is conformally flat, the corresponding
Riemannian space (M, o) is also conformally flat.

Hence for any point p of M there exist a connected local coordinate neighbourhood
(U, x) containing p and a non-zero function a(x) on U such that « is written in the form
o = a(x)(d;;»"y’)!>. Then, putting c; = b;/a we can express Lon U in the form

4.1) L=al*,
where
4.2) L* = (5ijyiyj)l/2 + Ci(x)yi-

Since (M, L) is conformally flat if and only if so is each (U, L*), we shall consider the
condition that the Randers space (U, L*) is conformally flat.

Since a;; = d;;, @ = 67, and b; = ¢; in (U, L*), in the formulas stated before we can
put b;=b'=c¢, b=c=(8%c)"? and {}4} =0, V, =9, We also put ¢; = d,c; and ),
=3Y"_,. Then, M; and M/, are expressed as

(4.3) M; = (/) { Y — (Xemey/(n — D},
(4.4) fe=0/M; + 6'M; — 6; M,

and the conditions (3.3), (3.5) and (3.7) are expressed as
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45) B M, = 3,M,,
(46) Zcrcrk = Oa
4.7) Cik = (1/02){Ckzcrcjr + (Zcrr)(czéjk - Cjck)/(n - 1)}

respectively. (4.5) means that M, is locally gradient, and since U is connected, (4.6)
shows that ¢ is constant on U. Thus Theorem 3.2 is restated as

Theorem 4.2. A Randers space (M, L) is conformally flat if and only if M is covered
by a system of local coordinate neighbourhoods {(U, x)} such that, in each U, the
Sfundamental function L is expressed in the form

(4.3) L= a(x){(6;y'y)""* + ci(x)y'},

where a(x) and c(x) are a function and a covariant vector field on U respectively, and c;
satisfies the following conditions:

(1) ¢ =(8Y¢;c)"? is constant, and (4.7) is satisfied,

(2) M{x) given by (4.3) satisfies (4.5),

(3) the curvature tensor M’y of the linear connection M}, given by (4.4) vanishes.

The case where each c; is constant gives a trivial example, but (4.8) has a rather wide
variety. We shall suggest this by considering the two-dimensional case. By checking
each case of the values that j and k take, it is shown that (4.7) follows from (4.6) as a
result of the condition that c is constant.

We put

(4.9) ¢, =ccosB, c, =csinb,
where 6 is given by
(4.10) 6 = tan~*(c,/c;), or 6 = cot™!(c,/c,).

If we write down (4.3) for j=1,2 explicitly, we have M, = (c,c;, — C;C32)/C%, M,
= (c,¢,; — C5¢;1,1)/c?, which are expressed as

4.11) M,=-0, M,=160,,
where 0; = 0;0. Thus, M; satisfies (4.5) if and only if 6 is harmonic:
4.12) 0,0,0 + 0,0,0 =0.
The coefficients M}, given by (4.4) become as follows:
M =M, =—-M?* =M,*,=0,
(4.13)

=
.
,
I

_lez = M122 = M221 = - 92,
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from which it is directly shown that the curvature tensor M,’; vanishes under the
condition (4.12). Thus we have shown

Theorem 4.3. A two-dimensional Randers space (M, L) is conformally flat if and only
if M is covered by a system of local coordinate neighbourhoods {(U, (x', x*))} such that, in
each U, the fundamental function L is expressed in the form

(4.14) L= a(x){((»")?* + (*)*? + (c cosO)y* + (c sin H)y?},

where a(x) is a function, ¢ is constant and 0(x) is a harmonic function. Then, we can
locally take a function o(x) such that 8,0 = — 0,0, 8,0 = 0,0, so L = (e’/a)L is locally
Minkowski.

The latter statement of Theorem 4.3 follows from the proof of Theorem 3.1. A two-
dimensional Riemannian space is always conformally flat, but Theorem 4.3 shows that
there are two-dimensional Randers spaces which are not conformally flat.

Now, on a well-known underlying manifold we shall give a non-trivial example of a
Randers space whcih is globally conformal to a locally Minkowski space. On a sphere
S? it is impossible to introduce a global Randers metric, because there is not a global
non-zero vector field b; on S2.

Ler H?> = {(x!, x*)|x* > 0} be the upper half-plane in the x!x?-plane. If we put
6(x) = x', a(x) = k/x* in (4.14), where k is a positive constant, we can take o(x) = x2, and
then

(4.15) L= (k/x*){((»")* + 0 + (c cos x')y! + (c sinx')y?}
is conformally changed to L= (x?/k)e*’L, which becomes

(4.16) L=(G"Y + GO + ¢5?

by the coordinate transformation

(4.17) x!' = e cosx!, x2 = ¢ sinx!.

L defines a global Randers metric on H?, which is modified from a Riemannian
metric of negative constant curvature — 1/k? called the Poincaré metric. The Randers
space (H?, L) is globally conformal to a locally Minkowski space (H?, L), where L is
locally expressed as (4.16) in the coordinate system (x!, x2).
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