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Abstract

Let a hypersurface S in an euclidean space R" be implicitly defined by a differentiable function
fin R". Then the Gaussian curvature of S is expressed in terms of f itself (cf. [6, Chap. 12]). As
an application of this result, in the present paper we discuss the Gaussian curvature of the
indicatrix of a Lagrange space (R", &).

1. Introduction

In an euclidean xy-plane R?, let a curve C be implicitly defined by a differentiable
function f in R? as f(x, y)=0. We put f; = df/dx, f, = df/0y. Around a point PeC
such that f,(P) # 0 the curve C is graphically expressed by a differentiable function g
as y = g(x). Then the curvature x of C is given by x = y”/(1 + y'?)*2. If we directly
calculate from

LYy =-fi Ly = —Untf? = 2fiafifa + foa fD),
where f}; = azf/axz’ fi2=fu = 52f/6x6y, 22 = azf/ayz, we have

fir fi2 N
(1.1) K=¢ | fon o o | /(fE+ 1D (e = sign f,).
fi 20

In an euclidean xyz-space R3, let a surface S be implicitly defined by a differentiable
function f in R> as f(x, y, z) =0. We put f;, f;; similarly. Around a point PeS such
that f3(P) # 0 the surface S is graphically expressed by a differentiable function g as
z =¢g(x, y), and the Gaussian curvature K of S is given by K = (rt — s?)/(1 + p? + ¢*)%,
where p = dg/dx, q = dg/0y, r = d*g/0x*, s = 0*g/dxdy, t = 0*g/0y*. If we directly
calculate from
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fap=—f1, fsa=—fa,
1= —fufi +2fisfifs = faa f?s
fPs=—fu2fd + fisfofs + s fifs — a3 fifas
fLt=—foufd + 2023 fofs — fas £

we have
fll f12 f13 fl
f21 f22 f23 f2
1.2 K=— 2 2 22
(-2 fu far S fo| (SIS
fi 2 f3 0

Especially, in the case where a treated function f is a quadratic polynomial of the
coordinates:

(1.3) 2f(x, y) = ax* + 2hxy + by + 2gx + 2fy + ¢,
(1.4)  2f(x, y, z) = ax? + by? + cz® + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d,

the formulas (1.1) and (1.2) are reduced to

a h g
(1.5) k=¢ |h b f| /(fE+f)? (e=sign f),
g f c
where f; =ax + hy + ¢, f, = hx + by + f, and
a h g p
h b f q
(1.6) K= - p f c /(f12+f22+f32)2,
pqrd

where f; =ax +hy +gz+p, f, =hx + by + fz + q, f3 = gx + fy + cz + r, respectively.
It is noted that in these formulas the determinants appeared as the numerators are
well-known constants independent on rectangular coordinate systems and the values of
k and K depend only on the magnitude of the gradient of f reciprocally.

Generally, in an n-dimensional euclidean space R" we shall consider a hypersurface
S defined by a differentiable function f in R" as

(1.7) S ={xeR"|f(x) =0, Vf) (x) # 0},

where x = (x,,...,x,) is a rectangular coordinate system of R", and Vf denotes the
gradient of f:
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(1.8) Vi="(1,....)  (fi=0:f).

Throughout the present paper, we put 0, = 0/0x; and denote a vector with
components v,,...,v, by an n x 1 matrix ‘(vq,...,v,), but we use also an abridged
notation (v;). A letter ‘4 denotes the transpose of a matrix 4. The inner product
Y u;v; of vectors u = (u;) and v= (v)) is denoted by u-v, and the length () v?)"/? of a
T i

i

vector v = (v;) by |v|]. The summation convention is not used.

Now, the notion of Gaussian curvature is generally defined for a hypersurface S
in R", and in the case where S is implicitly given by (1.7) we can get the same expression
as (1.1) and (1.2) (Theorem 2.1). This expression is derived, for example, from Theorem
5 of Thorpe [6, Chap. 12, p 89], but for convenience we shall give a self-contained
proof in §2, based on Lemma 2.1 concerning with the determinant of a linear
transformation of a hypersubspace of a vector space R".

The purpose of the present paper is to apply this result to Finsler geometry. We
denote by y = (y,,...,¥,) the canonical coordinate system of the tangent space R} at
each point xeR", and put d, = 3/dy,. Let (R", &) be a Lagrange space, where & is
a positive-valued differentiable function in the tangent bundle of R" and satisfies the
regularity condition det (5i5j$) #0 (cf. [4 p 11], [1, p 1]).

Each tangent space R} is also regarded as an n-dimensional euclidean space with
the rectangular coordinate system y. A hypersurface I, = {yeR%| L (x, y) =1} in R}
is called the indicatrix at x. In §3 we shall express the Gaussian curvature of I, in
terms of ¥ (Theorem 3.1).

A Lagrange space (R", ¥) becomes a Finsler space (R", L) if ¥ is given by
% = L?, where L is positively homogeneous of degree 1: L(x, Ay) = AL(x, y) for A > 0.
Then Theorem 3.1 is reduced to Thorem 3.2. Given a hypersurface S, in each tangent
space R’ a priori, by the well-known method (cf. [3, p 105]) we have a Finsler space
whose indicatrix I, is the given S,. Thus the Gaussian curvature of S, is expressed in
terms of a Finsler geometry. This fact seems interesting from the standpoint of
application.

The authors with to express here their sincere gratitude to Professor Dr. Makoto
Matsumoto and Professor Dr. Yoshihiro Ichijyo for the invaluable suggestions and
encouragement. The authors are also grateful to Professor Dr. Shun-ichi Hojo for the
helpful advice in the arrangements of Theorem 2.1.

2. The Gaussian curvature of a hypersurface

We shall recall here an elementary definition of the Gaussian curvature K of a
surface S in an euclidean space R®. Let S be expressed by parameters u,, u, as
X = x(uy, u,), where x = (x,, x,, x3) is a rectangular coordinate system of R®. At each
point PeS, two tangent vector fields X, = dx/du, (« = 1, 2) constitute a basis of the
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tangent plane Sp, and the unit vector field N = (X, x X,)/|X; x X,| is orthogonal to
Sp. Then paying attention to the Weingarten equation

(2.1) Ny=—-Y hX, (Ng = 0N /0uy),
a linear transformation T of S, is defined by

B B

‘Since T is represented by the matrix (hj) with respect to the basis X, X,, the
determinant of T gives the Gaussian curvature K of S at P.

It is noted that the vector ) vzN, in (2.2) is a derivative /,N of N with respect
B

to v. Generally, let Q be a differentiable geometrical object defined on an open set
U of an n-dimensional euclidean space R", such as a function and a vector field, and
let v=(v;) be a vector at a point PeU. The derivative V,Q of Q with respect to v
is defined by

(2.3) Vo2 =(Qoc) (to),

where x = c(t) is any differentiable curve such that c(ty)= P, ¢’(t,) =v The derivative
vV, is independent on the choice of a curve ¢, and is expressed by

(2.4) 7,2 =Y (020,

Now, let (S, N) be an oriented hypersurface in R", where N is a unit vector field
orthogonal to S. Let S, be the tangent space of a point PeS. The notion of a
derivative of Q with respect to veS, is also defined in the case where Q is defined
only on S. Since V,N €S, for ve Sp, we have a linear transformation T of S, defined by

(2.5) T: Sp — Splv— T(1) = — V,N.

This is called the Weingarten map of (S, N) at P. The Gaussian curvature K of (S, N)
at P is defined by the determinant of T.

Remark 2.1. In the case of n =3, this definition of the Gaussian curvature
coincides with the elementary definition stated above, independent on the choice of N.

In the case of n =2, the Gaussian curvature K of a parameterized curve C is a
cuvature k¥ of C, if we take N to be the normal vector of C. If N is replaced by
— N, we have K= —k. Since the Weingarten map T is represented by an
(n — 1) x (n — 1) matrix, if n is odd then K is independent on the choice of N, whereas
if n is even then K changes the sign by turning the direction of N.
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In the case where a hypersurface S in R" is given by (1.7), it is noted that the
gradient Vf of a treated function f is orthogonal to S at each point PeS. We have
the following expression for the Gaussian curvature K of an oriented hypersurface (S, N).

Theorem 2.1. Let (S, N) be an oriented hypersurface in R", where S is given by
(1.7) using a differentiable function f in R", and N is a unit vector field orthogonal to
S given by

(2.6) N =¢eVf/|Vf] (e= x1).
Then the Gaussian curvature K of (S, N) is given by

(2.7) K=— f”

f’/IVfI"+1

where f; = 0,f, f;; = 0,0;f, Vf=(f), and T=(—8)"+1.

Remark 2.2. In the case where n is odd, we have 1 = 1. In the case where n is
even, we have 1 = — ¢ If we choose an orientation N of S by

(2.8) N=-=Vf/IVfl,

we have always 7 = 1. Even in the case where an orientation N is given a priori, we
can take f to be 7 =1, because f and — f give the same S.

For the proof of Theorem 2.1 we shall show that the Weingarten map T of (S, N)
at PeS satisfies the following formula for any u = (u;), v = (v;)€Sp:

(2.9) u-T) = — (3/|Vfl)z ijUil;

Since Vf=¢|Vf| N from (2.6), we have for any v = (v,)€ Sp
V,7f =el,(IPf)N + eIV fIV,N.
Thus from (2.5) we have for any u = (u;)e S,
(2.10) u-WV,Vf)y=—¢lVflu T().
Since the vector field Vf = (f;) is defined on some open set containing S, from (2.4)

we have P, Vf= Z 0,V f)v;, so we have u-(V,Vf)= Z ;juv;. Thus (2.9) is shown

from (2.10).
The proof of Theorem 2.1 is obtained from the following lemma by putting

a;; = _Efij/Wﬂa n, = efi/IVf].

Lemma 2.1. Let V be an n-dimensional real vector space linearly isomorphic to a
vector space R", and T a linear transformation of an (n — 1)-dimensional vector subspace
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W of V. We denote any veV by v = (v;) using the corresponding (v;)eR". Let N = (n,)
be a unit vector orthogonal to W. If for any u= (u;), v=(v)eW the inner product
u-T(v) is expressed by a matrix A = (a;;) as

2.11) u-T(v) = "wdv (=) a;uv)),
i,Jj

(-1 3

Proof. In the proof, Greek indices take the values 1,...,n — 1. We choose a basis
X,,...,X,_, of W, and represent T by an (n — 1) x (n — 1) matrix B = (b,5), where

then the determinant K of T is given by

A N
‘N 0

a n

i

0

ij

nj

(2.12) K=— ‘

(2.13) T(X) = LbapX.

Then the determinant K of T is obtained as K = det B.
We define n x n matrices I§, X, Y by

~ B 0
B=<O 1), X=(X1,-..,Xn—1>N)> Yz(}fl,...,Yn_l,N),

where Y; = T(X,), and (n + 1) x (n + 1) matrices A4 A, X by

~ <A N ~ <X 0>
A= ., X =
'N 0 01
Paying attention to (2.13) and X,-N =0, N-N =1, we have

- X, Y, 0
XX =xy=(""" "),

from which we have (det X)?K = det (X, Y)).
In the same way, we have
‘X, AX, 'X,AN 0
‘XAX = | 'NAX, 'NAN 1
0 1 0

from which we have (det X)?(det A) = — det (X, AX p). Since the matrix X is regular,
we have K = — det A from (2.11). Q.E.D.

In the special case where a treated function f is a quadratic polynomial of the
coordinates, we have directly from (2.7)
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Theorem 2.2. Let (S, N) be an oriented hypersurface in R", where S is a regular
quadratic surface defined by

(2.14) 2f(.x) = Zaijxix]' + 2Zbixi + Cc = 0 (aij = aﬁ),
iJ i

and N is a unit vector field orthogonal to S given by (2.6). Then the Gaussian curvature
K of (S, N) is given by

2.15) K=—z|% "
C

b.

J

[ fRe 2,

where fi =Y a;x;+ b; and v =(—¢f"*!.
J

Remark 2.3. The expression (2.15) of the Gaussian curvature K of a hypersurface
Af =0 is independent on a positive constant A.

3. The indicatrix of a Lagrange space

Let (R", ¥) be a Lagrange space. At each point xeR" the indicatrix I, is a
hypersurface in the tangent space R}, where R} is thought to be an n-dimensional
euclidean space with a rectangular coordinate system y = (y,).

We define a function f by '

(3.1) fx, ) =2,y -1,
and put Vf=(0,f), V¥ =(6,%). Since we have Vf=V.% #0 from the regularity
of &, the indicatrix I, is expressed as

(32) I.={yeR%f(x, y) =0, (f) (x, y) # 0}.

At each yel, the vector field /¥ is orthogonal to I,. Suggested by Remark
2.2, we shall assume that an orientation N, of I, is always

(3.3) N=—-VZ/IVe|.
Then we have from Theorem 2.1

Theorem 3.1. Let (R", ¥) be a Lagrange space. At each point x€ R", the Gaussian
curvature K of the indicatrix I, oriented in the direction opposite to V¥ = (0; %) is
given by

34 K=-—|.
(3.4) s

& .
OL@@ﬂWW@
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Now, let a Lagrange space (R", ¥) be a Finsler space (R", L), where
& =12 Putting |, = 9,L, g;; = (0,0;L?)/2, and g = det(g;;), we have on the indicatrix,
where L(x, y) =1,

0:0, ¥ 6, %
0, 0

7= (n+1) gi; i

=

Thus Theorem 3.1 is reduced to

Theorem 3.2. Let (R", L) be a Finsler space. At each point xeR", the Gaussian
curvature K of the indicatrix 1, oriented in the direction opposite to V L= (l,) is given by

(35) K = g/(¥ 1372,

As an example we shall treat a Randers space (R", « + f§), where « and f are a
Riemannian metric and a non-vanishing 1-form in R” respectively. We put

(3.6) a= (Z aij(x))’in)l/za B = Zbi(x)yi'

Each indicatrix I, of a Riemannian space (R", «) is a quadratic hypersurface of
the coordinates y; with the center y =0:

(3.7 2f(x, y) = zaijyiyj —1=0,
ij
whereas the indicatrix I, of a Randers space is expressed as
3.8) 2f(x, y) = Y (a;; — bb) y;y; + 2) by, — 1 =0.
i,j i

Under the necessity of using a metric with non-central indicatrix, as the simplest
possible asymmetrical modification of a Riemannian metric, Randers introduced a Finsler
space with a metric L= o + f, which is a unique positive-valued Finsler metric such
that each indicatrix is a quadratic hypersurface of the coordinates y; (cf. [5], [2, p 34]).

Now, from (3.8) we have d,f = ¥ (a;; — b;b))y; + b;, which becomes d,f = Y a;;y;
J j
+ ab; on the indicatrix. Since from L= o + B we have I, = () a;;y; + ab;)/a, the vector
j

Vf=(3,f) has the same direction as VL= (). Thus the vector field
(3.9) N = —Vf/IVf|

gives the orientation assumed in (3.3). Since we have
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= — det (aij)a

applying Theorem 2.2 to (3.8) we have

Theorem 3.3. Let (R", L) be a Randers space, where L= o + . At each point
x€eR", the Gaussian curvature K of the indicatrix I, is given by

(310 K = det(a)/(¥ /2" D2,

where f; =Y a;;y; + ab;, provided I, is oriented in the direction opposite to Ve =(f).
j

Remark 3.1. Since f; = al; in Theorem 3.3, if we compare (3.10) with (3.5), we
have g = det(a;;)/a"** on the indicatrix, from which at any yeRZ% we have g = (L/a)"**
det (a;;).
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