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Abstract

Let a hypersurface S in an euclidean space Rn be implicitly defined by a differentiable function

/in Rn. Then the Gaussian curvature of S is expressed in terms of/itself(cf. [6, Chap. 12]). As

an application of this result, in the present paper we discuss the Gaussian curvature of the

indicatrix of a Lagrange space (Rn, !｣).

1. Introduction

In an euclidean xy-plane R2, let a curve C be implicitly defined by a differentiate

function/in R as/(x,y)-0. We put/, -df/dx,f2 -dfldy. Around a point PeC

such that /2(P) ≠ 0 the curve C is graphically expressed by a differentiable function g

as y-d(x)-　Then the curvature k of C is given by k-y"1(1 +y'2) /2. If we directly

calculate from

f2y'- -A,　fir- -(/n/22-2f12fj2 +f22h2),

where /n - d2f/dx2, f12 -f21 - d2f/dxdy, f22 - d2f/dy2, we have

1.1)　　　　　　K-｣

hi /12h

hi hi h

h h 0

/(A2+fif12　(｣-sign/2).

Inaneuclideanxyz-spacei?3,letasurfaceSbeimplicitlydefinedbyadifferentiate

function/inR3as/(x,y,z)-0.Weputfhftjsimilarly.AroundapointP∈Ssuch

that/3(P)≠0thesurfaceSisgraphicallyexpressedbyadifferentiablefunctiongas

z-g(x,y),andtheGaussiancurvatureKofSisgivenbyK-(rt-s2)/(l+p2+q)

2¥2

wherep-dg/dx,q-dg/dy,r-d2g/dx2,s-d2g/dxdyr>t-d2g/dy2.Ifwedirectly

calculatefrom
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we have
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hv--h,h<l- -J2,

/33r - -/ii/32 + 2/13/i/3 -/33/l 9

J3 S - -/12/3 +/13/2/3 +/23/1/3 --/33/1/2?

J3 ^- -J22J3 +2/23/2/3--J33J2�">

K=

/ll /12 /13 /l

J21　J22　J23　J2

J31　J32　J33　J3

/i h h 0

/(A2 +ft +fir-

Especially, in the case where a treated function / is a quadratic polynomial of the

coordinates :

1.3 2/(x,y) - ax2 +2hxy+ by2 + lax + 2fy+ c,

(1.4)　2/(x,y9z)-ax2+by2+cz2+2fyz+2gzx+2hxy+2px+2qy+2rz+d,

the formulas (1.1) and (1.2) are reduced to

(1.5)　　　　　　　K - 8

a h a

h b f

g ∫ c

/(/i2+fi)312　(e-signf2),

where/ォ-ax+hy+g,f2-hx+by+f9 and

1.6 K=

a h g p

h b f q

9　f c r

p q r d

/(A2 +fi +fif,

where /. -ax+hy+gz+p, f2-hx+by+fz+q, A-gx+fy+cz+r, respectively.

It is noted that in these formulas the determinants appeared as the numerators are

well-known constants independent on rectangular coordinate systems and the values of

k and K depend only on the magnitude of the gradient of / reciprocally.

Generally, in an n-dimensional euclidean space Rn we shall consider a hypersurface
●

S defined by a differentiable function / in Rn as

(1.7)　　　　　　　　　S - {x∈K"|/(x)-O, (Vf) (x) ≠0),

where x -(xl?...?xn) is a rectangular coordinate system of Rn, and Vf denotes the

gradient of ∫:
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Vf- '(/,,...,/)  (fi - dlf).
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Throughout the present paper, we put dt-d/dxt and denote a vector with

components vl9...9vn by an n x 1 matrix (vu...,vn), but we use also an abridged

notation (t;..). A letter A denotes the transpose of a matrix A. The inner product

∑wv: of vectors 〟-(U:) and v-(v:) is denoted by 〟 v, and the length (∑vf)1/ of a
●

l一

vector v- (v:) by ¥v¥. The summation convention is not used.

Now, the notion of Gaussian curvature is generally defined for a hypersurface S

in Rn, and in the case where S is implicitly given by (1.7) we can get the same expression

as (1.1) and (1.2) (Theorem 2.1). This expression is derived, for example, from Theorem

5 of Thorpe [6, Chap. 12, p 89], but for convenience we shall give a self-contained

proof in　ァ2, based on Lemma　2.1 concerning with the determinant of a linear

transformation of a hypersubspace of a vector space Rn.

The purpose of the present paper is to apply this result to Finsler geometry. We

denote by y - (y1,...,yn) the canonical coordinate system of the tangent space Rnx at
●

each point x∈Rn, and put ∂i - ∂/∂j;.-. Let (Rn, ｣｣) be a Lagrange space, where JS? is

a positive-valued differentiable function in the tangent bundle of jRn and satisfies the
●    ●

regularity condition det (∂i∂& ≠ 0 (cf. [4, p ll], [1, p l]).

Each tangent space R" is also regarded as an n-dimensional euclidean space with

the rectangular coordinate system y. A hypersurface Ix - {y∈RHx¥&{x, y) - 1} in R笠

is called the indicatrix at x. Inァ3 we shall express the Gaussian curvature of Ix in

terms of jS? (Theorem 3.1).

A Lagrange space (Rn, ｣｣) becomes a Finsler space (Rn,L) if ｡｣? is given by

J｣ -L , where L is positively homogeneous of degree 1: L(x, Xy) - XL(x, y) for A > 0.

Then Theorem 3.1 is reduced to Thorem 3.2. Given a hypersurface Sx m each tangent

space RZ a priori, by the well-known method (cf. [3, p 105]) we have a Finsler space

whose indicatrix Ix is the given Sx. Thus the Gaussian curvature of Sx is expressed in

terms of a Finsler geometry. This fact seems interesting from the standpoint of

application.

The authors with to express here their sincere gratitude to Professor Dr. Makoto

Matsumoto and Professor Dr. Yoshihiro Ichyyo for the invaluable suggestions and

encouragement. The authors are also grateful to Professor Dr. Shun-ichi Hojo for the

helpful advice in the arrangements of Theorem 2.1.

2. The Gaussian curvature of a hypersurface

We shall recall here an elementary definition of the Gaussian curvature K of a

surface S in an euclidean space R3. Let S be expressed by parameters ul9u2 as

x - x(ul, u2), where x -(xl9 x29 x3) is a rectangular coordinate system ofJR. At each

point P∈5, two tangent vector fields Xα - ∂x/∂uα (α - 1, 2) constitute a basis of the
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tangent plane Sp, and the unit vector field N - {Xl x X2)/¥Xl x I2| is orthogonal to

Sp. Then paying attention to the Weingarten equation

(2.1)　　　　　　　　Nβニー∑hlXα　(Nβ-∂N/∂uX
α

a linear transformation T of Sp is defined by
●

(2.2)　　　　　　T: Sv -Sp|t>- ∑vpxβ一一T(vlニー∑VβNp･
〟               〟

Since T is represented by the matrix (hi) with respect to the basis Xl9X29　the

determinant of T gives the Gaussian curvature K of S at P.
●

It is noted that the vector ∑vpNβ in (2.2) is a derivative VVN of N with respect
β

to v. Generally, let Q be a differentiable geometrical object denned on an open set

U of an n-dimensional euclidean space IT, such as a function and a vector field, and

let v-(v:) be a vector at a point P∈U. The derivative VvQ of Q with respect to v

is defined by

(2.3)　　　　　　　　　　　　　　VvQ - (Q｡C)′ (h),

where x - c(t) is any differentiable curve such that c(to)- P, c'(to) - v The derivative

VvQ is independent on the choice of a curve c, and is expressed by

(2.4)　　　　　　　　　　　　VM - ∑(∂ityv,.
I

Now, let (S, N) be an oriented hypersurface in Rn, where N is a unit vector field

orthogonal to S. Let S? be the tangent space of a point PeS, The notion of a

derivative of Q with respect to v∈Sp is also defined in the case where Q is defined
●

only on S. Since VvNeS? for veSF, we have a linear transformation TofSp defined by

(2.5)　　　　　　　　　　T: Sp ->Sp|v一蠎T(サ) - - FBN.

This is called the Weingarten map of (S, N) at P. The Gaussian curvature K of (S, N)

at P is defined by the determinant of T.

Remark　2.1. In the case of n-3, this definition of the Gaussian curvature

coincides with the elementary definition stated above, independent on the choice of N.

In the case of n - 2, the Gaussian curvature K of a parameterized curve C is a

cuvature k of C, if we take N to be the normal vector of C. If N is replaced by

-N, we have K--k. Since the Weingarten map T is represented by an

(n- 1) x (n- 1) matrix, if n is odd then K is independent on the choice of N, whereas

if n is even then K changes the sign by turning the direction of N.
●　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●
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In the case where a hypersurface S in Rn is given by (1.7), it is noted that the

gradient Vf of a treated function / is orthogonal to S at each point PeS. We have

the following expression for the Gaussian curvature K of an oriented hypersurface (S, N).

Theorem 2.1. Let (S, N) be an oriented hypersurface in Rn, where S is given by

(1.7) using a dijferentiable function f in Rn, and N is a unit vector field orthogonal to

S given by

(2.6)　　　　　　　　　　　　N-*Vf ¥Vf¥　　8-土1).

Then the Gaussian curvature K of (S, N) is given by

(2.7)　　　　　　　　　　　　　K - -t )

wheref{-∂i/?Jij∂l∂jf,Vf-(fi),andで-(-｣)',n+l

Remark2.2.Inthecasewherenisodd.wehavex=1.Inthecasewherenis

even,wehavet--どIfwechooseanorientationNofSby

(2.8)N--Vf/¥Vf¥,

wehavealwaysで-1.EveninthecasewhereanorientationNisgivenapriori,we

cantake/tobet-1,because/and-/givethesameS.

FortheproofofTheorem2.1weshallshowthattheWeingartenmapTof(5,N)

atP∈Ssatisfiesthefollowingformulaforany〟-(Mi),V-(V:)∈Sp:

(2.9)u-T(v)--(s/¥7f¥)∑fttjWj-

m

SinceVf-s¥Vf¥Nfrom(2.6),wehaveforanyv-(vt)∈Sp

r.rf-erj¥vf)N+e¥rfv,γ･

Thusfrom(2.5)wehaveforanyu-(u^eS?

2.10)u-(V.Ff)--e¥Vf¥u-T(v).

SincethevectorfieldVf-(ftisdefinedonsomeopensetcontainingS,from(2.4)

wehaveVvVf-∑(∂jVf)vj9sowehave〟(W)-∑ftjUiVj.Thus(2.9)isshown

ij
from(2.10).

TheproofofTheorem2.1isobtainedfromthefollowinglemmabyputting●

<H/--fi/o/|r/l,n^sfJWfl

Lemma2.1.LetVbeann-dimensionalrealvectorspacelinearlyisomorphictoa

vectorspaceRn,andTalineartransformationofan(n-1)-dimensionalvectorsubspace
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Wof V. We denote any v∈Vby v- (vt) using the corresponding (vt)∈Rn. Let N-(Hi)

be a unit vector orthogonal to W. If for any 〟-(ォ;),サ-(サi)∈W the inner product

u-T(v) is expressed by a matrix A - (ay) as

(2.ll)　　　　　　　　　u- T(v) - 'uAv (- ∑ lijサtVj),
l,J

then the determinant K of T is given by

(2. 12)　　　　　　　　　　T｣

A N

'N 0

サi] ni

n, 0

Proof. In the proof, Greek indices take the values l,...,n - 1. We choose a basis

Xl9...9Xn-1 of W, and represent Tby an (n- 1) × (n- 1) matrix B-(feaβ), where

(2.13)　　　　　　　　　　　T(Xβ) - ∑KeXa.
α

Then the determinant K of T is obtained as K = detB.
′l■′

We define n x n matrices fi, X, Yby

B-B(T

Ol.
X-(X1,...,Xn_1,N), ･-(･,,...,･_,,N),

whereYp-T(Xp)9and(n+1)x(n+1)matricesA,Xby

-i-仁4V

.V｡La:-言)�"

Payingattentionto(2.13)andXαN-0,N蝣N-1,wehave

(X
tX(XB)-tXY-¥αYp0

0

fromwhichwehave(detX)K-det(XαYn).

Inthesameway,wehave

/'XaAXplXxAN

<xAX-lNAXpfNAN

¥01

)

＼
･
1
1
ノ

0

　

1

　

0

l■■′

from which we have (detX)2(detA) - - det('xαAXβ). Since the matrix X is regular,

we have K- -detA from (2.ll).　　　　　　　　　　　　　　　　　　　Q.E.D.

In the special case where a treated function / is a quadratic polynomial of the

coordinates, we have directly from (2.7)



On the Gaussian curvature of the indicatrix of a Lagrange space 39

Theorem 2.2. Let (S, N) be an oriented hypersurface in Rn, where S is a regular

quadratic surface defined by

(2.14)　　　　　2/W-∑oijXiXj+2∑biXi+c-0　(ay-aX
U

and N is a unit vector field orthogonal to S given by (2.6). Then the Gaussian curvature

K of(S,N) is given by

(2.15) K=-x
aij bi

bj C

/(∑fi2)2¥(n+l)/2,

●一

where f{-∑atjxj+ bt andで-(-s)n+l
∫

Remark 2.3. The expression (2.15) of the Gaussian curvature X of a hypersurface

//- 0 is independent on a positive constant X.

3. The indicatnx of a Lagrange space

Let (Rn,if) be a Lagrange space. At each point x∈jR" the indicatrix Ix is a

hypersurface in the tangent space #", where JR" is thought to be an rc-dimensional

euchdean space with a rectangular coordinate system y - (yf).

We define a function / by

(3.1)　　　　　　　　　　　　　/x,y)- X(x,y)- 1,

and put Vf-(dJ),戸^-(∂JSf). Since we have Vf-戸eg ≠O from the regularity

of jJf, the indicatrix Ix is expressed as
●

(3.2)　　　　　　　ix- {y∈Rl¥f(x, y)-O, (Vf) (x, v) ≠0).
●

At each y∈Ix the vector field V5｣ is orthogonal to Ix. Suggested by Remark

2.2, we shall assume that an orientation Nx of Ix is always
●

(3.3)　　　　　　　　　　　N-一戸2I¥戸se¥.

Then we have from Theorem 2.1

Theorem 3.1. Let (Rn, ｣｣) be a Lagrange space. At each point x∈jRw, the Gaussian
●

curvature K of the indicatrix Ix oriented in the direction opposite to V!｣ - (∂:｣>) is

given by

(3.4) K=

●    ●                 ●

∂l∂jcY　∂ieY
●

∂tse o

/(∑(∂i^ry2¥(サ+l)/2

1
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NoTletaLagrangespace(Rn,

Putting/,=5,L,gu={didjL2)/2莞d;eaFin

=<kt(｡y);lerspace(Rn,L),where

wehave｡ntheindicatrix,

whereL(x,y)-1,

2~(〟+1)

●    ●                 ●

∂i∂jeY　∂icY
●

∂,se

dij h

O
一g･

Thus Theorem 3.1 is reduced to

Theorem 3.2. Let (Rn, L) be a Finsler space. At each point xeRn, the Gaussian

curvature K of the indicatrix Ix oriented in the direction opposite to VL - {lt) is given by

(3.5)　　　　　　　　　　　K - g/(∑j2¥(n+l)/2
●

I

As an example we shall treat a Randers space (R〝,α+β), where α and β are a

Riemannian metric and a non-vanishing 1-form in Rn respectively. We put

(3.6)　　　　　　　　α - (∑fli/M^y,-)1/2, β - ∑bt(x)yt.
ij

Each indicatrix Ix of a Riemannian space (Rn9 α) is a quadratic hypersurface of

the coordinates y{ with the center j; - 0:

(3.7)　　　　　　　　　2f(x, y) - ∑aijyiyj - 1 - 0,
i,j

whereas the indicatrix Ix of a Randers space is expressed as

(3.8)　　　　　　2/(x, y)- ∑(ay-Wttvサ+2∑b.y,- 1 - 0.
ij

Under the necessity of using a metric with non-central indicatrix, as the simplest
●

possible asymmetrical modi丘cation of a Riemannian metric, Randers introduced a Finsler

space with a metric L- α + β　which is a unique positive-valued Finsler metric such

that each indicatrix is a quadratic hypersurface of the coordinates yt (cf. [5], [2, p 34]).

Now, from (3.8) we have dtf- ∑{atj - bib:))?: + bh which becomes 3f/- ∑wj
●

∫                                          ∫

+ αbt on the indicatrix. Since from L- α + β we have I - (∑wj+ αbi)/α the vector
●

J
●                ●

vf- {∂./) has the same direction as戸L- (lt). Thus the vector field

(3.9)　　　　　　　　　　　　　　N - - Vf/¥Vf¥

gives the orientation assumed in (3.3). Since we have
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ay-btbj bi

bj　　-1
- det(ay),

41

applyingTheorem2.2to(3.8)wehave

Theorem3.3.Let(Rn,L)beaRandersspace,whereL-α+βAteachpoint

xeRn,theGaussiancurvatureKoftheindicatrixIxisgivenby

(3.10)K-det(aiJ)/(∑fi2)2¥(n+l)/2,

l

wherefi-∑aijyj+αbi9providedIxisorientedinthedirectionoppositetoVf-(/)).

∫

Remark3.1.Sinceメ;-∝JiinTheorem3.3,ifwecompare(3.10)with(3.5),we

haveg-det(at)/αw+10ntheindicatrix,fromwhichatanyy∈R笠wehaveg-(LIαyi+1

det(ay).
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