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Diffraction symmetries and extinctions of diffracted spots of complicated
crystals are discussed by means of space group theoretical treatment. The
complicated crystals mean: (a) Crystals are composed of several substructures
and (b) unit cells of crystals can be divided into several subcells which have
higher symmetry than that of the unit cells. Laue symmetries of crystals (a)
were discussed by Iwasaki [Acta Cryst. (1972). A28, 253-260]. Diffraction
symmetries and extinctions of the crystals belonging to the rypes 1 and 2 of
Iwasaki’s classification are studied more detail, and it is shown that enhance-
ment of diffraction symmetries does not occur for the crystals belonging to the
type 2, contrary to Iwasaki’s result. Symmetries and extinctions of crystals
(b) are discussed in connection with symmetries of subcells and symmetries
between the subcells. The symmetries of subcells are shown that they can not
be determined uniquely from the diffraction symmetries and extinctions

1. Introduction

Laue symmetry and extinctions of diffraction spots are symmetrical informations from
the X-ray diffraction pattern of a crystal for the crystal structure. In the case of complicated
crystal structures, the orders of Laue symmetries may become higher ones than those deduced
from the crystal symmetries, and also extraordinary extinctions which can not be interpreted by
the space groups of the crystals may appear.

Enhancement of Laue symmetries of crystals which are composed of several substructures
was discussed by Iwasaki (1972). His discussion can be reduced very simple by considering
that Laue symmetry is that which transforms invariantly the absolute value of structure factor.
The symmetries and extinctions of the composite crystals of types 1 and 2 of Iwasaki’s classifica-
tion are discussed in this article. Since there is no remark to his discussion for crystals of types
3 and 4, and there is no extraordinary extinction, the crystals of zypes 3 and 4 are not discussed.

It is advantageous to analyze crystal structures by dividing the unit cells into several sub-
cells in following cases, (1) the positions of strong intensities in reciprocal lattice space form a
sublattice of the reciprocal lattice and (2) there are non-space-group extinctions, and the ex-

traordinary extinctions can be interpreted as ordinary ones with respect to a sublattice of the
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reciprocal lattice. Interpretations of the extraordinary extinctions were practically carried out
by many investigators in the processes of structure analyses. The best of them is that of Kasper,
Lucht and Harker (1950). However, the studies on systematization of the interpretation are very
few. We can find only a reasonable one discussed by Niggli (1959). The author discusses the

symmetries and extinctions in the above cases.

2. Preliminary

It is necessary to distinguish between vectors or operations and their representations. In

ordinary theoretical treatment, we postulate that
kS—1=Sk, (D

where S is a rotation operation in real space and k is a vector in reciprocal lattice space. Further-
more, base vectors in real or reciprocal lattice are assumed that they are orthogonal to one
another, respectively, in many cases. If the base vectors are orthogonal unit vectors, the represen-
tation of a rotation by matrix becomes an orthogonal matrix of three dimensions. It is convenient
to adopt unit cell vectors as the base vectors in the field of crystallography. If the base vectors
are unit cell vectors, the representation of a rotation becomes a unimodular matrix that the ele-
ments of the matrix are +1 or 0. We must notice that if rotations are represented by square
matrices the vectors must be represented by row or column matrices. In this article, vectors in
real space are represented by column matrices and vectors in reciprocal lattice space are re-
presented by row matrices. We should notice that eq. (1) becomes meaningless if k and S are
represented by matrices.

In ordinary treatment, an operation with R on a scalar function f{r) results in
Rf()=/(R'r). ®)

If eq. (1) becomes meaningless, eq. (2) becomes no more advantageous. In this article, rotations
do not mean that those of co-ordinate axes of crystals but those of crystal bodies, then we can
express as
Rf(r)=f(Rr). (3)
A space group symmetry operation is represented by the form as

R=(4]1), 4



Hidewo TAKAHASHI 3

where A is the representation of a proper or improper rotation and ¢ is that of a translation
which is given by a sum of a lattice translation and its fractional one. Operation with R on r is

defined by
Rr=Ar+t. (%)
Product of two operations of a space group is defined by
(Alt,+1,)(Blt,+t,)=(AB|At,+t,+1,). (6)

where ¢, is the fractional translation which follows after 4 and ¢, is a lattice translation. The

product must be equivalent with one of symmetry operations of the space group,
(AB|At,+t,+1t,,)=(AB|At,+t,)=(Clt,) (mod T), 7

where T is the translation group of the space group.
If the structure factor F(h) of a crystal is operated with (4|¢,) which is not necessarily a mem-

ber of the space group of the crystal, F(k) is transformed into
(Alt,)F(h)= F(hA)exp(2riht,). 8)
If (Alt,) is a member of the space group of the crystal, then (A|¢,)F(k) should be equal to F(h),
(Alt,)E(h) = F(h). )

We define basis transformation from unit cell vectors a, b and ¢ to new vectors 4, B and C

by

a\ (my my my\ (A
b|=|my my my| B, (10)
c my3 Mgz M3/ \C
or in short,
a=mA, (D
where mt is the transposed matrix of m =(m;;) The reciprocal vectors of 4, B and C are given
by

a*=m"1A%*, (12)
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The respresentations of » and & in real and reciprocal lattice spaces are transformed to R and

H under the transformation,

R=mr, 13)
H=hm1, (14)

Operations R = (A|t,) are transformed to

R'=(Blt,)
=(mAm-1m¢,) (15)

The volume of the domain spanned by A, B and C is given by
(A x B)C=-r1n—(a < b)e, (16)
where m is the determinant of matrix m.

3. Crystals composed of several substructures

We assume that crystals are composed of several substructures which have following pro-
perties,
(1) base vectors of the substructures A, B and C are equal to the unit cell vectors a, b and c;
(2) space groups of crystals are subgroups of those of substructures;
(3) there is no symmetry operation which transforms a substructure to the others, except
the members of the space group of the substructure.

The structure factor F(h) of the composite crystals is expressed as
F(h)= Y exp(2zihu,)F ,(h), (17)
b

where F,(h) is the structure factor of the pth substructure and u, is the vector from the origin
of the crystal lattice to that of the pth substructure. Ordinary crystals can also be regarded to
consist of substructures, for example, halite consists of two substructures, one is of Na and the
other is of Cl. The space groups of all substructures of a crystal are assumed to be the same
in the case that the crystal belongs to type 1 or 2 of Iwasaki’s classification.

Operating with (A4|0), which is a member of the point group of substructures, on F(h), we

have
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(A|0)F(h)= X exp(2zihAu,)F ,(hA)
)
= ij exp(2zihAu,)F (h)exp(—2ziht,). (18)

If (A|0)F (k) is equal to either F(h)exp(if,) or F(h)*exp(if;), the absolute value of F(k)is invariant
by the operation. Denoting the arguments of F,(h), F,(hA), exp (2zihu,) and exp(2zwihAu,) by

ay, ap B, and B, respectively, we obtain a condition for the invariance of the absolute value of
F(h) as

(ap+8p)— (g +8)==% {ap+Bp) = (ag+69)) (19)

for any p and q. If the sign of the right hand side of eq. (19) is positive and 6, = —2zht,, (4]0)
becomes a member of the point group of the crystal, if negative (4|0) becomes a member of the
Laue symmetry although it is not a member of the point group of the crystal. That is to say, the
enhancement of Laue symmetry arises if the sign is negative. Hereafter, we assume that , =
—2rht,.

If we regard substructures as points of which scattering factors are the structure factors
F,(h) and which lie at u,, then eq. (19) means that every component of the structure factor F(h)
is rotated by the angle 4, or every component of the complex conjugate of F(h) is rotated by the
angle 6,. We note that ordinary symmetry operations are not limited within congluent trans-
formations. Since eq. (19) is not always necessary for the absolute value of F(h) being invariant by
the operation (4|0) and the absolute value of F(h) is invariant if eq. (19) is satisfied, eq. (19) is one

of sufficient conditions for the absolute value of F(h) being invariant by (4/0).

3. 1. Type 1

Crystals belong to the fype 1 of Iwasaki’s classification, if the arguments of the structure

factors of all the substructures are the same.

In this case, eq. (19) becomes

(Bs—B)=£(8,— By (20)
Equation (20) is equivalent to
(wp—u)=+ A(u,—u,) (mod 7). (21)

If the sign in eq. (21) is negative, (4]|0) becomes a member of the Laue symmetry although the

crystal does not have the symmetry. Equation (21) can be reduced to
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u,=+Au, (mod T) (22)

for any p. If 8, = 0 for any p, (A4|0) becomes always a member of the point group of the crystal

in this case.

In addition to space-group extinctions of substructures, extinctions arise if
fz‘,exp(Zn:ihup) =0 (23)

is satisfied by & in the case F,(h) = F,(h) for pxgq. If the number of the substructures are limited
within two, eq. (23) becomes equivalent to the extinction condition discussed by Niggli (1959).
One of the examples of the extinctions which can be interpreted by eq. (23) is that of

Mo0O,Cl,H,0 analyzed by Schulz and Schroder (1973). According to them, the following non=
space-group extinctions were observed:

(1) F(hkl) not present, if k = 4n + 2,

(2) F(hkO) not present, if k = 4n.
The extinction (1) arises if the number of the substructures is two and u; = 0, u, = b/4. If the
space group of the substructures has a glide plane parallel to (001) with the fractional translation
b/2, the extinction (2) arises by overlapping the extinction (1). Hence, we obtain equivalent posi-

tions in the unit cell as

X, Y,z x,y+:1,2 x,y+;,z x,y+i,2-

It is obvious that the crystal which has the above equivalent positions satisfies the extinctions (1)
and (2).
If all substructures can be derived from a basic substructure by symmetry, additional sym-

metry may appear. In this case, pth substructure can be assumed to be derived by a point group

symmetry (B,|0) and to be given by
F (k)= (B,|0)Fy(h). (24)

The operations (B,|0) are assumed to form a point group and they may or may not be the mem-
bers of the point group of the crystal. They should be the members of the point group of the

crystal lattice of the substructures. The structure factor F(h) is expressed as

F(h)= Z}J,‘exp(Znihup)Fl(hB,)
= ZP:(BA“[;)FI(I')- (25)
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If a space group is generated by the set SB = {(B,u)} and the translation group of the crystal
lattice of the substructure, the set SB and the space group of the substructures may generate a
space group. Then the crystal structure becomes an ordinary one. Diamond structure is one of
the examples of the ordinary structures which consist of two substructures. Hence, we assume that
the set SB and the translation group do not generate a space group.

The structure factor F(h) is given explicitly by

F(h)= ; Z,: %ﬁ-exp{Zﬂih(B it Uy}, (26)

where f; is the scattering factor of the ith atom, r; is the vector from the origin of the unit cell to
the position of the ith atom in the basic substructure and m; is the multiplicity of the position of
the ith atom. Since B,r; + u, is the vector from the origin of the unit cell to the ith atom in the

pth substructure, the operation with (B,|u,) on F(k) should be given by

(Bu)Fh=E % mi exp{2mih(B,lu,)(Br; +u,)}
-z ;%ﬁexp[ZTcih{Bq(Bpr,» +up)+u,)]
= %} Fy(hB,B,)exp{2xih(Bu,+ uq)}. 27

Introducing vector u(gp) = B,u, + u,, we rewrite eq. (27) as

(B, |u,)F(h)
=exp{2rihu(gr)} Zp: exp[2zik{u(qgp) — u(qr)}1F,(hB,B,), (28)
where B,B, = E, the unit operation.

In case a, = a, for g x p, the absolute value of (B,|u,)F(h) becomes equal to that of
F(h) if

u(gp) —u(gr)= tu;(mod T) (29)

is satisfied for any p and ¢, where B, B, = B;. If the sign of the right hand side of eq. (29) is

positive, and
u(gr)=0(mod 7)), (30)

(B,|u,) becomes a member of the space group of the crystal. Hence, if the sign of the right hand
side of eq. (29) is positive and eq. (30) is not satisfied, and if the sign is negative, (B,|0) becomes

a member of the Laue symmetry except the case 3, = 0 for any p. Even though eq. (29) is not
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satisfied, the subset of the reciprocal lattice points, satisfying
hu,=an integer 31

for any p, has the symmetry (B,|0).
If an operation (B,|0) generates a point group K(B,), additional extinction to those due to

the substructures arises if

K(‘L,;p)exp(Zﬂihu »=0 (32)

is satisfied by & which is invariant by K(B,), i.e. hB, = h. The summation in eq. (32) is over all
the member of the subset of SB, of which rotations form K(B,).

One of examples of the crystal structures of this type is as follows. If a substructure with
orthorhombic lattice has a two-fold rotation axis parallel to a-axis and a mirror plane perpendi-
cular to the axis, the space group of the substructure becomes P2/m. If another substructure is
derived by two-fold rotation of which axis is parallel to c-axis from the former substructure, the
space group of the crystal formed from the two substructures becomes Pmma if u; = 0 and u, =
c/2. If u; = 0 and u, = c¢/4, the space group becomes Pm. In this case, the Laue symmetry be-

comes mmm and 00/ reflections with / = 4n + 2 extinct.

3.2. Type 2

If the structure factors of substructures do not have the same arguments, i.e. a, % a, for
P = ¢q, and if the space groups of the substructures are the same one another, the crystal belongs
to the zype 2 of Iwasaki’s classification.

Since a, — a, = @, — a, % 0 for any p and ¢, the negative sign in eq. (19) should be
disregarded except the case a, + 8, = a, + 3, for any p and ¢q. If 3, = 3, for p % ¢, the point
group symmetry of the substructures becomes a point group symmetry of the crystal.

When all the substructures are derived from a basic substructure by symmetry, the absolute
value of F(h) is invariant if the right hand side of eq. (29) is positive, in addition, if eq. (30) is
valid, the symmetry operation (B,|#,) belongs to the space group of the crystal.

If there are many substructures of the same kind, the structure factor F(h) is expressed as

F(h) = 5 Sexp(2mihu ;) F k), (33)

where u,; is the vector from the origin of the crystal lattice to that of the sth substructure of the
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pth kind. The condition that (A4|0) which is a member of the point group of the substructure be-

longs to the point group of the crystal can be loosened that
AS"‘_,exp(Znihu,,s) = §exp(27z:ihAups) (34)
is satisfied by any p. If the imaginary parts in eq. (34) are zero, the condition becomes
Zs}cos(27rhu 2s) = Zs] cos(+2whAu,). (35)
Iwasaki’s eq. (44) can be rewritten by using our notations as

2 Zt] sin{2zh(u ,; —u,)} =0. (36)

Equation (36) can be obtained if the both arguments of Y] exp(2zihu,,) and 3 exp(2zihu,) are
s t
equal to each other. If we denote the arguments of Y exp (2wihu,) and X exp (2zihu,) by 3, and
s t
@, respectively, Iwasaki’s condition for enhancement of diffraction symmetry in this case should

be

Bp—B,=Bp—B,=0 (37

in our formalization. Since ap—a,=a,—a,%0 for any p and g, there is no enhancement of
diffraction symmetry in this case.

Additional extinction to those due to F,(h) = 0 arises if
Y exp(2zihu,) =0 (38)

1s satisfied by A for any p.

4. Unit cells consisting of several subcells

In this section, we discuss diffraction phenomena that the lattice points where diffracted
intensities are strong form a sublattice of the reciprocal lattice of a crystal and that extraordinary
extinctions can be interpreted as ordinary ones if the sublattice is regarded as a reciprocal lattice.
The base vectors A4*, B*¥ and C* of the sublattice are defined by eq. (12), where the elements of
m are assumed to be integers. The number of the subcells in a unit cell becomes an integer m.
We assume that the m subcells have the same space group. To clarify the meanings of the space
group of a subcell, we introduce subcell structure. If atomic arrangement of a structure A is the

same as that of the ith subcell of the other structure B, the structure A is called the subcell struc-
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ture of the ith subcell of the structure B. Then the space group of a subcell means the space group
of the corresponding subcell structure. Furthermore, we assume that the m subcells can be clas-
sified into p groups, and that the subcells belonging to the same group are derived symmetrically
from a subcell, which is called a basic subcell of the ith group if the group is of the ith one. The
symmetries which transform the p basic subcells to the equivalent ones are assumed to form a
point group of the order p. Then there must be r = m/pq subcells of the same kind in the unit
cell.

The vector from the origin of a unit cell to that of the jth subcell of the ith kind is
denoted by ;.. The base vectors of ¢;; are the subcell vectors 4,B and C, and the coefficients of

the base vectors are integers. We assume that the vector ¢;; is given by
L=t +t;, (39

and

t;,=0. ‘ (40)
Simplifying ¢,; as t;, we have.

t=t;+t;. (41)

The set {t;=m¢,} is denoted by t.

The point group and the space group of the basic subcells are denoted by Gy(S) and G(S),
respectively. We should notice that the basis of the representation of the groups is that of the
sublattice of the crystal lattice. The set of the representatives of the cosets of the translation group
in G(S) is denoted by G(S) = {(S,Is;)}. The order of Gy(S) is denoted by s. Although the space
groups of all the subcells are assumed to be the same, the kinds of atoms and the atomic posi-
tions in each basic subcells of different kind are not necessarily the same one another.

The point group symmetry by which the ith subcell belonging to a group is obtained from
the basic subcell in the group is denoted by (B;|0), the set of the symmetries forms a point group
and is denoted by Gy(B). The point group should be a subgroup of the point group of the crystal
lattice of the subcell structure. If #, is the vector from the origin of the basic subcell to that of
the ith subcell, we assume that the set G(B) = {(B;|u;)} becomes the set of the representatives
of the cosets of the translation group of the crystal lattice in a space group G(B), where B; =

m~!Bym and u, = m~u,. If G(B) does not become a space group, a part of the unit cell is either
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occupied by several sebcells belonging to the same group or not occupied by any subcell.
Let us obtain the structure factor F(h) of the crystal satisfying the above assumptions. If
the origin of the first basic subcell of the ith kind agrees with that of the unit cell, the structure

factor F(h) of the subcell is expressed as

FD=3T quv—fvexp{znih(s;.!s;)rv_} (42)

— X B fiexp{2rib(Sir, +5)}.
J v v

The structure factor of the kth subcell which is obtained by (B,|0) from the basic subcell and lies
at u, from the origin of the basic subcell is"denoted by (Blu,)F;(h). Then, (B,lu,)F(h) is ex-

pressed as

(B)F(R) = X 5 5 expl2mib{Bi(Sir, +5) + 43} @)
=exp(2rihku,)F(hB},).

Hence, the structure factor F(h) of the cyrstal is exprested as

>

q r

F(h)y=33 Zk}exp(Znihu})F {(hB))exp{2wih(t, +1,)} (44)
J 1
= SexpQriht,)F. (k).
where F (k) is given by
F.(h)= Sexp(rihu))F(h,B") Sexp(2riht;). (45)
7 k

If we regard F,(h) as the structure factor of the ith substructure, eq. (44) becomes similar to
eq. (17). Since we can not assume that the arguments of each sbustructures are the same in
general, this crystal structure belongs to the type 2 of Iwasaki’s classification. The structure of
which the structure factor is given by F,(h) is called the ith substructure, hereafter.

Operating with (S;|s;) on F;(k), we have
(Sils)Fi(h) = F\(hS)exp(2rihs;). (46)
If Fi(h) is invariant by the operation,
(Sils)Fi(h) = Fy(h), (47)

Fy(hB)) is also in variant. In this case, Fy(k) becomes zero when exp (2zihs;) x |. The symmetries
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which trasnform F(h) invariant form a subgroup K(S’) of G(S’) = {(S}ls})}. The condition that

(S;]0) belongs to the point group of the first substructure becomes:

exp(2mihu}) X exp(2riht;)
k

=exp(2wihS;u;) é exp(2zihS;t,)
%

is satisfied for any ;.

Similarly to eq. (27), operating with (B;|«;) on F,(h), we have

(Biluy)F1(h)
=exp{2xih(Bu;+u;)} i} exp(2rihB;t;)Fi(hB,B)).
%

Since the operations (B;|u;) form a group, there is a unique operation (B;|u;) satisfying

(Bilu;)(Bjlu}) = (B;Bj|Bu;+u;)
=(B;|u;) (mod 7).

Hence, if
Sexp(2riht]) = Nexp(2rihBit))
k k

is satisfied, (B;|u;)F (k) becomes equal to F,;(h).

(48)

(49)

(50)

(D

The set t = {¢;} should be invariant by B;, i.e. t = {B;t;}, if not, the domains occupied by

the basic subcells can not be determined uniquely. In addition, exp (2ziht;;) should be invariant

by the operations owing to the same reason. The Bravais lattice of the crystal is determined by the

crystal lattice and the maximum subset of t, which is invariant by the point group of the crystal

lattice. The space group of the crystal is determined by the Bravais lattice, G(B) and K(S").

Extinction rules can be derived from F(h) = 0. Ineq. (44), if F,(h) = 0, then F(h) = 0. Since

all the space groups of the subcells of different kind are the same, if F;(k) becomes zero owing to

space-group extinction, then F,(h) becomes zero. The structure factors F_(h) become zero, if

F1(h) becomes zero and if
Sexp(2riht;)=0.
k
Furthermore, for the subgroup K(B) of G(B), of which rotations satisfy AB; = h, if

2 exp(2zihu;) =0,
KB

(52)

(33)



Hidewo TAKAHASHI 13

then F,(h) become zero, where the summation is over all the members of the subset K(B).
By transforming the base vectors from the unit cell vectors to the subcell vectors, the structure

factors F,;(h) become

1
m

Fo(H)=r3 55— f,exp{2ziHB (SR, +s)}, (54)

where H = hm~! and R, = mr,. Since G(S) is the space group of the subcells, (B;|0)F;(H) is in-
variant by G(S). Since (B,|0)F\(H) is F;(HB;), F,)(H) is invariant by Gy(B). Hence, the structure
factor F(H)is invariant by both G(S) and Gy(B). That is to say, the structure factor F(H) of
which H has integral elements has the space group which is generated by G(S) and Gy(B). The
space group is denoted by Gs. The structure factor F(H) is explicitly given by

F(H)H=r3. 3. F,(HB)) (55)

2-,; 1

m

=r

f.exp{2ziHB (SR, +s;)}.

\M-a \M-Q

M -
N

v

Since F(H) becomes zero if Fy(H) = 0, F(H) becomes zero if
>, exp(2ziHs;) =0, (56)
K(S)

where K(S) is the subgroup of G(s), of which rotations satisfy HS; = H.

The rotations in Gs belong to the Laue symmetry of the sublattice spanned by 4*, B* and
C*, and the structure obtained by Fourier transform of F(H) where H has integral elements has
the space group Gs. If we assume that space groups can be determined uniquely from extinctions,
we can determine G(B) and Gs. The space group Gs can be expressed by the right cosets of G(S)
or the left cosets of Gy(B).

Gs=G(S) +(Bl0)G(S) +...... (57)
= Go(B)(Elt,) + Go(B)(Salszg +1,) + .. ... ;

where ¢, is the lattice translation. Since the subgroups obtained by the each representatives of the
distinct left cosets of Gy(B) are possible to become G(S), we can not determine uniquely the space
group G(S). That is to say, the arrangement of atoms in a unit cell can not be determined uniquely
from symmetry in a diffraction pattern in this case.

An application of the present theory to the case of MoCl,H,O becomes as follows. The set t
becomes {0, —i-b}, G(S), G(B) and Gs becomes P1, Pb and Pm, respectively. The equivalent posi-

tions becomes the same as those described in the preceding section.
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Another application to the case of decaborane analyzed by Kasper, Lucht and Harker (1950)
is as follows. According to them, the extinctions were:
(1) hkl present only for A+ k=2n,
(2) hkO present only for h=2n, k=2n,
(3) hOl present only for %h+l = 2n,

(4) Okl present only for %k-l—l =2n.

The extinction (1) is that due to eq. (52). The Bravais lattice is of C-centered. The extinction (2)
is that due to eq, (53). G(B) becomes Pa, hence Gy(B) = m. The extinctions (3) and (4) are those

due to eq. (56). Taking into consideration that the extinctions become ordinary ones if A=%a

and B= %b, we obtain Pnnm for Gs. The space group Pnnm is expressed as

Pnnm=m(E|t,) +m(A|n+t,)+ m(B|nt +¢,) + m(AB|t,)

where (A|n) and (B|n) are given by

100 1 00 _;_
A=[0 1 0}, B=OiOandn=%

001 001 0

The number of the subgroups of Pnnm generated by the representatives of the distinct cosets be-
comes four. Hence, we obtain four possible structures from the extinctions, which were discussed

by Kasper et al.
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