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Abstract This paper designs recursive least-squares filter and fixed-point smoother, which use the
observed value, the probability that the signal exists, and the covariance information relevant to the
signal and observation noises, on the estimation problem associated with the uncertain observations in

linear continuous systems.
1. INTRODUCTION

Nahi (1969) has proposed the celebrated technique in the state estimation of dynamical systems
associated with the uncertain observations. By the uncertain observations we mean that the
observation set does not necessarily contain the signal in the entire interval of observation and certain
observations may contain noise alone. The estimation problem with the uncertain observations has
been viewed as an important research in the area of the detection and estimation problems for
communication systems (Nahi 1969). In Nahi (1969), the recursive least-squares one-stage-prediction
algorithm is devised, provided that the probability for the existence of:the signal is available with
complete information of a state-space model in linear discrete-time systems.

By the way, the recursive Wiener filter (Kailath 1974) by use of the covariance information of the
observed value has been reported. Also, Nakamori (1990) has derived the recursive algorithms for the
least-squares estimates from the Wiener-Hopf integral equation for white Gaussian plus colored
observation noise in linear continuous systems. In Nakamori (1990), it is assumed that the observed
value, the variance of white Gaussian observation noise and the autocovariance functions of the signal
and colored noise, in the semi-degenerate kernel form, are known. The estimation technique using the
covariance information has been researched in the context of the detection and estimation of the signal
(Trees 1968). However, given the uncertain observations, the estimation problem using the covariance
information has not been solved.

This paper is concerned with the optimum estimation problems using the covariance information
regarding the estimation of the signal in terms of the uncertain observations in linear continuous
stochastic systems. The observation equation is given by y (1)=2z(¢)+ v (%), z(#)=a, (1) + v, (), x, (2)
=U(t) x(t), where the signal x (¢) might be correlated with colored observation noise v (¢). We use
the probabilty p (¢) at time # for the existence of the signal (Nahi 1969) as a priori information. We also
assume the knowledge of the observed value, the crosscovariance function of x, () with y(s), the

autocovariance function of z(#), and the variance of white Gaussian observation noise v (#). At first,
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the filtering and fixed-point smoothing algorithms of x, (#) are proposed in Theorem 1. The estimation
algorithms of x () are presented in Theorem 2 by incorporating the innovations process evaluated by
the equations of Theorem 1 into the estimation algorithms by Nakamori (1991). In the estimation of x
(t), the crosscovariance function of x(#) with y(s) and the autocovariance function of z(i) are
required particularly for p(¢)=1 as an additional information. The numerical considerations involved

are illusterated by examples.
2. ESTIMATION PROBLEM WITH UNCERTAIN OBSERVATIONS
Let an observation equation be described by
y(@)=z@t)to), 2=z, ()T (t), x.(@)=U(2)x(2), 1)

where y(t) is an nX1 observed value vector, x(#) is an nX1 zero-mean signal vector, v, (%) is a

zero-mean colored observation noise, and v (Z) is white Gaussian observation noise satisfying
E[v(#)]=0, (2)
E[v(t)v" (s)]=R(t)0(t—s),0=¢ s <oo, (3)
U(t) is a scalar quantity taking on values of 0 and 1 with

p()=PriU@)=1 , (4)
1—p(t)=Pr{U(t)=0}. ®)
Here, we denote p () by the probability that observation at time # contains the signal. The ideal value

of U(#) might be 1 when the signal x(2) exists, and U(#)=0 for the case where the observed value
contains noises only. Also, the expected values of U(t), U(t) U(s) and UP(¢) are written as

E[U#)]=p(t) (6)
E[U@)U(s)] = p(2) p(s), tFs, (7)
E[U*(t)]=p(t) (8)

(Nahi, 1969).

We assume that the signal x (i) and colored noise v.(¢) are uncorrelated with white Gaussian

noise v(s) as
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Elx(t) v (s)]1=0, E[v.(t) 2" (s)]=0, 0=t s< oo, 9)

and that the signal might be correlated with colored noise.

Let the fixed-point smoothing estimate %£,(:, T) of x, () be given by
5.6 T)=[ 45, Ty () ds (10)

as a linear integral transform of the observation set {y(s”), 0 = s"< T}, where i is the fixed-point
and h(t, s, T ) is referred to as an impulse response function.

Let us consider the linear least-squares estimation problem which minimizes a cost function
J=E[Il x,(t)—#@T) lI?]. (11)

Minimizing J, we obtain the Wiener-Hopf equation

T — T ’ ’ T ’
Elx,(1)y (S)]—foh(t,s,T)E[y(S)y (s)]ds (12)
by an orthogonal projection lemma (Nakamori 1990)

x,,(t)—f:h(t, S, T)y(s)ds" L y(s),0=s,t=T. (13)

Here, “L ”denotes the notation of the orthogonality.
Substituting (1) into (12), and using (3), we have

h(bs T)R()=Kyy (b5)=[ h(t 83 T) K. (s} ) ds’, (14)

where K,, (i, s) denotes the crosscovariance function of x,(¢) with y(s), and K, (i s) the
autocovariance function of z(i). -
Following the expression for the covariance function (Nakamori 1990), we let the crosscovariance

function K,,(f, s) be expressed in the semi-degenerate kernel from by

Kuy(t $)=E[x,(t) y7 (s)]
=E[U(t) ) y" ()]

T <s=<
_ {C(t)H (s), 0=s=4 (15)

M@#)NT(s), 0<t=<s,

where C () and H(s) are n X n” bounded matrices, and M (#) and N(s) are n X m” bounded matrices.

Likewise, the autocovariance function K, (i, s) is expressed in the semi-degenerate kernel form by



66 : ‘ BRERFHBZNNALE BREZER £46% (1995)
K. (4 s)=E[z(t)2"(s)]
G(t) LT (s), 0<s=<ji,
={ (¢) T(S) s (16)
L (t)G (s), 0=i=s, -
where G(t) and L (s) are nX1 bounded matrices.
Preliminary to the discussion on estimating the signal x (), we consider to estimate x,(t). In
Theorem 1, with the assumptions above, we design the recursive algorithms for the linear
least-squares filtering and fixed-point smoothing -estimates of ux,(#) by use of the. covariance

information.

3. RECURSIVE FILTERING AND FIXED-POINT SMOOTHING ALGORITHMS OF x,(t)

Theorem 1. Let the probablity for U(¢)=1 be p(#)'in the observation equation (1) for the signal
observed with additional white Gaussian plus colored noise. Here, the signal might be correlated with
coloured noise. Let the crosscovariance function K,, (2, s) of x (¢) with y(s) and the autocovariance
function K, (4, s) of z(#) be expressed in the semi-degenerate kernel form. Also, let the observed value
and the variance of white Gaussian observation noise be given. Then the recursive algorithms for
linear least-squares filtering and fixed-point smoothing estimates of x,(t) consist of (17)—(26) in

continuous stochastic systems.
Fixed-point smoothing estimate:
0%, (t, T) /oT=h(t, T, T)(y(t)—G(t) e(t)) 17)

Filtering estimate:

&, (T, T)=C(T) V(T) o : (18)
dV(T)/dT= @ (T, T) (y(T)—Gk'T) e(T)), i/£0)=0 | (19)
de(T)/dT= J(T, T)(y(T)= G(T) e(T)), e(0)=0 ' ' (20)
@ (T, T)=(H"(T)— W(T)G"(T)) R (T) (21)
J(T,-T)=(LT(T)—7(T)GT(T))R_l(T) - (22)

dr(T)/dT=J(T, T)(L(T)=G(T)«T)), n0)=0 " - (23)

h(t, T, T)=(M(t) N'(T)—S(, T) GT(T)) R (T) (24)
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S, T)/aT=h(t, T, T(L(T)—G(T)r(T)), S t)=C(t) W(t) (25)
dW(T)/dT=® (T, T)(L(T)—G(T)r(T)), W(@©0)=0 (26)
(Proof)

Let us differentiate (14) with respect to T.
Oh(t, s, T)/O0TR(s)=—h(t, T, T) K. (T, s)—fzah(t, s, T)/0TK, (s’ s)ds’ (27)
If we introduce an auxiliary function J(T, s) which satisfies
JTs)R(6)=L7(5)= [ (T, ) K. (s’ ) ds’ | | (28)
we have a partial differential equation for A(# s, T)
oh(t,5, T)/oT=—h(t, T, T) G(T) J(T, s). (29)

. Similarly, if we differentiate (28) with respect to T, we have

0J(T,s)/oTR (s)=—J(T, T) K. (T, s,)—f:aJ(T, s")/0TK, (s s)ds" (30)
From (16), (28) and (30), we obtain a partial differential equation for J(T, s)
oJ(T,s)/oT=—J(T, T) G(T) J(T, s). | | (31)

Now, from (28), the function J(T, T) in ‘(31) satisfies
J(T, T)R(T)=LT(T)—LTJ(T, s")K, (s, T) ds'.‘ B o (£’>2)
Substituting the expression K, (s, T)=L (s") GT(T) for 0<s"<T from (16) into (32), we have
J(T, T) R(T)=LT(T)—LTJ(T, s) L(s;) ds’GT(T). “ - | (33). |
If w.e introduce a function r(T) defined by
r(T)=[ (T, ) L(s") d, e

we obtain (22) for J(T, T).

If we differentiate (34) with respect to T and substitute (31) into the resultant equation, we have

dr(t)/dT=J(T, T) L(T)—J(T, T) G(T) foTJ(T, s")L(s") ds" (35)
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From (34), we can rewrite (35) as (23), where the initial condition on the differential equation (23)at T
=0 is r(0)=0 from (34).

From (14), the function h(i, T, T), which appeared in (29), satisfies

h(t, T, T) R(T)=K,, (&, T)—f:h(z, s, T)K, (s’ T) ds" (36)

If we use the expressions K,, (1, T)=M(t) NT(T)for 0= t< Tand K,(s’, T)=L(s") GT(T) for
0=s"= T from (15)—(16) in (36), we have

ht, T, TYR(T)=M (1) NT(T)—fOTh(t, s" T)L(s")ds"GT (T). 37)
If we introduce a function S(¢, T) defined by

T
S( T)=[ hit s’ T) L(s") ds’, (38)

we obtain the equation (24) for Ah(t, T, T).

If we differentiate (38) with respect to T and substitute (29) into the resultant equation, we have
oS, T)/oT=h(t, T, T)L(T)—h(, T, T) G(T) LTJ(T, sy L (s") ds". (39)

From (34), we can rewrite (39) as (25).
If we put t=T in (14), we have

h(T, s, T)R(s)=Kuy(T,s)—f:h(T,s’, T) K. (s’ s) ds" (40)
If we substitute K,, (T, s)=C(T)H" (s) from (15) into (40), we have

h(T,s, T)R(s)=C(T) HT(s)—f:h(T, $3 T) K, (s’ s) ds” (41)
Let us introduce an auxiliary function @ (T, s) which satisfies

® (TIs)R(s)=HT(s)—f:<I> (T, s") K. (s’ s) ds” (42)
From (41) and (42), we obtain

h(T,s, T)=C(T) ® (T, s). (43)

The initial condition on the partial differential equation (25) at T=1tis S (¢, t). From (38), S (¢, #)

is formulated as
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s, t)=Llh(t, s 1) L(s") ds" (44)

From (43), we can rewrite (44) as
S, t)=C(t)ﬁl(I> (4, ') L (s") ds". (45)
If we introduce a function W (#) defined by
T
wr)=["® (1,5 Ls") ds’ (46)

we obtain the initial condition as S(¢ t)=C (&) W(t).
If we differentiate (42) with respect to T, we have

o® (T,s) /0TR(s)=—® (T, T) K, (T, s)—f:acb (T,s") /OTK, (s, s) ds" (47)

If we substitute K,(T, s)=G(T) LT (s) for 0 < s<T from (16) into (47) and compare the

resultant equation with (28), we obtain a partial differential equation for ® (T, s)

8@ (T,s)/dT=—® (T, T) G(T) J(T, s). (48)
From (42), the function ® (T, T) in (48) satisfies

@ (T, T) R(T)=H"(T)— [ ® (T,5") K.(s" T) ds’. (49)

Since K, (s, T)=L(s") GT(T) for 0 < s’<T, we can rewrite (49) as

® (T, T)R(T)= HT(T)—fOTcI: (T,s’) L(s")yds"GT(T). (50)

Also, by use of (46), (50) becomes (21).
If we differentiate (46) with respect to T, we have

dW(T)/dT = ® (T, T)L(T)+f:ad> (T,s")/9TL (s") ds". k (51)
If we substitute (48) into (51) and use (34), we obtain (26). The initial condition on the differential
equation for W(T) at T=0 is W(0)=0 from (46).

If we differentiate (10) with respect to T, we have

oz, (t, T) /oT=h(t, T, T) y(T)+f0Tah(t, s, T)/0Ty(s") ds". (52)

If we substitute (29) into (52) and introduce a function
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e(T)=[ J(T,s") y(s") ds’ (53)

we obtain the partial differential equation (17) for the fixed-point smoothing estimate £, (¢, T).

If we differentiate (53) with respect to T, we have
de(T)/dT=J(T, T) y (T)+f:8J(T, s) /9Ty (s") ds”. (54)

If we substitute (31) into (54) and use (53), we obtain (20). The initial condition on the differential
equation (20) at T=0 is ¢(0)=0 from (53).
The filtering estimate &£,(T, T) of x,(T)(= U(T)x(T)) is formulated as

8T, )= h(T, 8, T) y(s") ds (55)

by putting =T in (10). If we substitute (43) into (55), and introduce a function V(T) defined by
T ’ ’ ’

MT)=[® (T,5) y (s ds’ (56)

we obtain(18).
If we differentiate (56) with respect to T, we have

dV(T)/dT=® (T, T)y(T)+f0Ta<I> (T,s") /oTy(s") ds". : (87)

If we substitute (48) into (57) and use (53), we obtain (19). The initial condition on the differential
equation for V(T)at T=01is V(0)=0 from (56). O
In Theorem 1, we proposed the algorithms for the filtering and fixed-point smoothing estimates of
x, (1) (=U(t) x(t)). It should be noted that the filtering estimate of x, (¢)+ v. (%) is calculated by G
(¢) e(t). Letting 2 (8, )= G () €(t), the innovations process for x, (¢)+ v, (¢) becomes y (¢)— 2 (%, ). We
focus our attention to estimating the signal x (#) by use of the covariance information under the
assumption that the uncertain observations are given. Here, we examine to apply the linear
least-squares filtering and fixed-point smoothing algorithms (Nakamori 1991), in the estimation
problem of the signal with certain observations, i. e., for p(#)=1, based on the innovations theory to
the present estimation problem of x (t). In Theorem 2, we propose the algorithms for the filtering and
fixed-point smoothing estimates of x(Z) by incorporating the estimation algorithms developed by

Nakamori (1991) with the equations that calculate the innovations process y(t)— G () e(t).
4. RECURSIVE FILTERING AND FIXED-POINT SMOOTHING ALGORITHMS OF x(t)

Theorem 2. Let the observation equation be expressed by (1). Let the crosscovariance function K,,
(¢ s) of x(t) with y(s) and the autocovariance function K.(i, s) of z(#) be expressed in the

semi-degenerate kernel form as follows particularly for p(¢)=1.
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a(t)pT(s), 0= s<=t,

e)¢T(s), 0= it<s (58)

K., (1 s)= {

Here, a (¢) and 3 (s) are nXn” bounded matrices, and € (¢) and ¢ (s) are nXm” bounded matrices.

A(t)BT(s), 0= s=<i,

B(t) AT(s), 0= t<s (59)

K.(i s)= {

Here, A (t) and B (s) are nX1 bounded matrices. Let 2 (i, t) denote the filtering estimate of x, (¢)+ v,
(t). Then the sequential algorithms for the linear least-squares filtering and the fixed-point smoothing

estimates of x(Z) consist of (60)—(72).

£(t, T):fixed-point smoothing estimate of x(i).
9i(t, T) /9T=e(t) ¢"(T)—E™(T, t) AT(T)) R (T) (y(T)—%(T, T))

—a(t) DT(T, 1) AT(T) R (T) (y (T)—2(T, T)) ~ (60)
dD(T,t) /3T = — J(T, T) A(T) D(T, t) (61)
OE(T, 1) /3T=J(T, T) ¢ (T)—A(T) E(T, t)), initial condition E (¢, )=0 (62)

Z(t, t):filtering estimate of x ().

&(t 1)=a(t) Q(2) (63)

2(1, t):filtering estimate of x,(#)+ v.(%).
2

(& 1)=G(t)e(?) (64)
dD (1, ¢) /di=f (1, t) (3 (t)—A(t) D(4 t)), initial condition D (0, 0)=0 (65)
dQ(t) /di=(BT (1)—qT (1) AT (¢)) R™' () (y () —£(4, 1)), initial condition Q (0)=0 (66)
dg (t) /di=F(1, t) (3 (t) — A(t) g (2)), initial condition g (0)=0 (67)
f&6)=B"(t)—g(t)AT(t)) R () (68)
dg(t) /di=f(t,t)(B(t)—A(t) g(t)), initial condition g (0)=0 (69)
de(T) /dT=J(T, T) (y(T)— G(T) e(T)), e(0)=0 (70)

J(T, T)=(L"(T)—r(T) G"(T)) R (T) (71)
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dr(T)/dT=J(T, T)(L(T)—G(T) r(T)), r(0)=0 (72)

Here, y(¢)—2(%, t) is the innovations process in the estimation problem concerned with the

uncertain observations.

(Proof)

(60)—(63) and (65)—(69) have been derived by Nakamori (1991) in the context of linear least-squares
estimation problem with the certain observations, i. e. , for p(#)=1, given the covariance information.
These filtering and fixed-point smoothing algorithms have been obtained based on the innovations
approach. We note that the quantity y (T)—2 (T, T) in (60) represents the innovations process at time T. In
the current estimation problem using the uncertain observations, y (T) is the uncertain observed value and
2(T, T) is the filtering estimate of x, (T)+ v, (T). If follows from Theorem 1 that the filtering estimate 2
(, t) is calculated by (64) and (70)—(72) sequentially. O

5. A NUMERICAL SIMULATION EXAMPLE

Let the observation equation be given by (1) for a scalar signal which is observed with additive

white Gaussian and colored noises. Let the signal x(#) be generated by
dx () /di=—5x (1)t u(t), Elu(t)u(s)]=1000(t—s), Elx?(0)]=10, (73)

where the autocovariance function K, (i, s) of x (¢) is expressed by K, (¢, s)=10 ¢ ° sl (Baggeroer,

1970). Also, let the process of colored noise v, (%) be generated by
dv.(t) /di=w(t), Elw()w(s)]=108 (i—s), E[v2(0)]=0, (74)

where the autocovariance function K, (i, s) of v, () is given by K. (¢, s)=10min (t,s) (Baggeroer 1970).
The crosscovariance function K,,(#, s) of x,(t) with y(s) is expressed by (15). Since x(¢) is
uncorrelated with v, (s), we obtain C(t)=10p(t)e—5’(=N(t) ) and H(s)=p(s)e53(= M(s)) from K,
(1, s)=10e ° Pe=sl Also, the autocovariance function K, (¢, s) of z(t) (=x,(¢)+ v.(2)) is given by
(16). The functions G(t) and L (s) become G (t)=[p(¢)10e °* 10] and L (s)=[p(s) € s. If we
substitute the functions C(T), H(T), N(T), M(t), G(T) and L (T) into Theorem 1, we can calculate
the filtering estimate &£, (¢, ) and the fixed-point smoothing estimate £, (¢, T). Graphs (a) and (b) in
Fig. 1 illustrate the colored noise process v(t) generated by (74) vs. t, starting with initial conditions
v.(0)=—0.1 and v, (0)= — 0.3 respectively. Fig. 2 shows the process x, (¢) (graph (a) ) and its filtering
estimate &, (4, t) vs. # when the initial value of the colored noise is v, (0)=—0.1 and the probability p
(t) is p=0.5, where we introduced the notation p for p (). Graphs (b), (¢) and (d) illustrate &£, (, t) for
white Gaussian observation noises N (0, 0.12), N (0, 0.3%) and N (0, 0.5%) respectively. Fig. 3 shows the
mean-square values of the filtering and fixed-point smoothing errors vs. p when v, (0)=—0.1. Graphs

(a), (b) and (c) illustrate the mean-square value (M. S. V.) of the filtering error x,(t)— £, (¢, t) for
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0 0.25 0.5 t

I
—
T

Colored noise vc(t)

Fig. 1 'The colored noise process v, (t) vs. &

(a) v, (t) for the initial condition v.(0)=—0.1.
(b) v, (t) for the initial condition v, (0)=—0.3. '

x,(t) and its filtering estimate iu(t,t)

Fig. 2 The process x, (t) and its filtering estimate £, (¢, t) vs. ¢ for N (0,
0.1%2), N(0,0.32) and N(0, 0.5%) when v, (0)=—0.1 and p=0.5.
(a) x, (2).
(b) £, (3, t) for N(0, 0.12).
(c) £, (8, t) for N(0, 0.3%).
(d) £, (4, t) for N(0, 0.52).

N(0, 0.12), N(0, 0.3%) and N (0, 0.5%). Graphs (d), (¢) and (f) illustrate the M. S. V. of the fixed-point
smoothing error x, (1)—#£, (¢, T) for N(0, 0.12), N(0, 0.3%) and N (0, 0.5%). Here, the M. S. V. of the

1000

filtering error is calculated by .21 (x, (iID)— &, (i, iD))? /1000, A=0.001. Also, the M. S. V. of the
i= 1000 100

fixed-point smoothing error is calculated by .21 .21 (x, (D)= £, (iD, i+ jA))2/100000. Fig.d

5 2

illustrates the mean-square values of the filtering and fixed-point smoothing errors vs. p when
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Mean-square value of estimation error

0 0.5 ‘ 1 P
Fig. 3 The mean-square values of the filtering error x, (¢)— £, (¢, t) and
the fixed-point smoothing error x, (t)— £, (t, T) vs. p for N (0, 0.1
), N(0,0.3%) and N (0, 0.5%) when v, (0)=—0.1.

(a) The M. S. V. of x,(¢)— £, (¢ t) for N(0, 0.12). (d) The M. S. V. of x, (t)— 4, (s T) for N(0, 0.1).
(b) The M. S. V. of x, (t)— £, (2 t) for N(0, 0.3%). (e) The M. S. V. of x, (t)—%,(t, T) for N(0, 0.3%).
(c) The M. S. V. of x,(¢)— &, (4, t) for N(0, 0.52). (f) The M. S. V. of x,(¢)— %, (s, T) for N(0, 0.5%).

Mean-square value of estimation error

0 0.5 1 P
Fig. 4 The mean-square values of the filtering error x, (£)— £, (¢, t) and
the fixed-point smoothing error x, (t)— £, (£, T) vs. p for N (0, 0.12
), N(0,0.3%) and N(0, 0.5%) when v, (0)=—0.3.

(a) The M. S. V. of x,(t)— %, (% t) for N(0, 0.1%). (d) The M. S. V. of x,(t)— £, (s T) for N(0, 0.1%).
(b) The M. S. V. of x, (t)— &, (2 t) for N(0, 0.3%). (e) The M. S. V. of x, (t)— %, (t, T) for N(0, 0.3%).
(c) The M. S. V. of x, (t)—%,(t, t) for N(0, 0.5%). (f) The M. S. V. of x, (t)— %, (¢, T) for N(0, 0.5%).

v (0)=—0.3. Graphs (a), (b) and (c) illustrate the M. S. V. of the filtering error x, (¢)— £, (¢, ) for N
(0, 0.1%), N(0, 0.3%) and N (0, 0.5%). Graphs (d), (e) and (f) illustrate the M. S. V. of the fixed-point
smoothing error x, (¢)— £, (¢, T) for N (0, 0.1%), N(0, 0.3%) and N (0, 0.5%). From Fig. 3 and Fig. 4, we
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find that the estimation accuracy for the fixed-point smoothing estimate is superior to that for the
filtering estimate.

The crosscovariance function K, (i, s) is given by (58). In this example. « (2), 3 (#), € (¢) and § (2)
become a (1)=10e % ( =¢ (#) ) and B (1)=e> ( =e (#)). Also, the autocovariance function K, (¢, s) of x
(t)+ v, (1) is given by (59). Then we have A (1)=[10e %! 10]and B(¢)=[e>® t]. If we substitute G (T),
L(T), a(t), (2), €(2), £(T), A(¢) and B(t) into Theorem 2, we can calculate the filtering and
fixed-point smoothing estimates of x(#). Fig. 5 shows the signal process x (i) (graph (a)) and its
filtering estimate £ (2, t) vs. ¢t when the initial value of the colored noise process is v, (0)=—0.1, and p
=0.5. Graphs (b), (c) and (d) illustrate £ (i, ¢) for white Gaussian observation noises N (0, 0.12), N (0,
0.3%) and N (0, 0.5%) respectively. Fig. 6 shows the fixed-point smoothing estimate £ (0.2, T) for the

0 0.5 1 t

x(t) and its filtering estimate X(t,t)

Fig. 5 The signal process x (¢) and its filtering estimate % (¢ t) vs. ¢ for N
(0, 0.12), N(0, 0.32) and N(0, 0.5%) when v, (0)=—0.1 and p=0.5.
(a) x (2). (c) (3 t) for N(0, 0.32).
(b) £(t, t) for N(0, 0.12). (d) £(4 t) for N(0, 0.5%).
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Fig. 6 The fixed-point smoothing estimate £(0.2, T) vs. 7, 0.2 < T=<0.3, for
N(0, 0.1%), N(0, 0.3%) and N(0, 0.5?) when v, (0)=—0.1 and p=0.5.
(a) £(0.2, T) for N(0, 0.1%).
(b) £(0.2, T) for N(0, 0.32).
(c) £(0.2, T) for N(0, 0.5%).
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fixed-point 0.2 vs. T, 0.2 = T=0.3, when v, (0)=—0.1. Graphs (a), (b) and (c) illustrate £ (0.2, T) for
N(0, 0.1%), N(0, 0.3%) and N (0, 0.5%) respectively. Fig. 7 shows the mean-square values of the filtering
and fixed-point smoothing errors vs. p when v, (0)=—0.1. Graphs (a), (b) and (c) illustrate the M. S. V.
of the filtering error x(¢)— (4 ¢) for N(0, 0.1%), N(0, 0.3%) and N (0, 0.5%). Graphs (d), (¢) and (f)
illustrate the M. S. V. of the fixed-point smoothing error x (¢)— £ (¢, T) for N(0, 0, 1?), N(0, 0, 3%) and
N(0, 0, 52). Here, the mean-square values of the filtering and fixed-point smoothing errors are
evaluated in the same way as those values for x, (t)— %, (¢, ¢) and x, (¢)— £, (¢, T). Finaly, Fig. 8 shows
the mean-square values of the filtering and fixed-point smoothing errors vs. p when v, (0)=-—0.3.
Graphs (a), (b) and (c) illustrate the M. S. V. of the filtering error x (¢)—#£ (¢ t) for N(0, 0.1%),

N(0, 0.32)‘and N (0, 0.5%). Graphs (d), (¢) and (f) illustrate the M. S. V. of the fixed-point smoothing
error x(t)—& (¢ T) for N(0, 0.1%), N(0, 0.3%) and N(0, 0.5%). Fig. 7 and Fig. 8 indicate that the
estimation accuracy for the fixed-point smoothing estimate £ (¢, T) is better than that for the filtering

estimate % (i, t).

Mean-square value of estimation error

Fig. 7 The mean-square values of the filtering error x (£)— £ (¢, t) and the
fixed-point smoothing error x (t)— & (¢, T) vs. p for N (0, 0.12), N
(0,0.3%) and N(0, 0.5%) when v, (0)=—0.1.

(a) The M. S. V. of x(¢:)— & (¢, t) for N(0, 0.1%).
(b) The M. S. V. of x(¢)— £ (¢, t) for N(0, 0.32).

(c) The M. S. V. of x(¢)—&(¢ t) for N(0, 0.52).

(d) The M. S. V. of x(¢)—#£ (i, T) for N(0, 0.12).

(e) The M. S. V. of x(¢)— % (¢, T) for N(0, 0.32).

(f) The M. S. V. of x(¢)—2(4, .T) for N(0, 0.52).
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Fig. 8 The mean-square values of the filtering error x (¢)— £ (¢, t) and the
fixed-point smoothing error x (t)— £ (¢, T) vs. p for N (0, 0.12), N
(0,0.32) and N(0, 0.5%) when v, (0)=—0.3.

(a) The M. S. V. of x(t)—%(i, ) for N(0, 0.12). (d) The M. S. V. of x(¢)— & (s, T) for N(0, 0.12).
(b) The M. S. V. of x(¢)—#£ (¢, t) for N(0, 0.32). (e) The M. S. V. of x(¢)— (¢, T) for N(0, 0.3%).
(c) The M. S. V. of x(¢)— & (¢, t) for N(0, 0.5%). (f) The M. S. V. of 2(¢)— % (¢, T) for N(0, 0.52).

6. CONCLUSIONS

This paper proposed new estimation technique for the signal with the uncertain observations. The
filtering and fixed-point smoothing algorithms of x, (¢) and x () are designed by use of the covariance
function in the semi-degenerate kernel form, the observed value, the variance of white Gaussian
observation noise and the probability p(=p(t)).

The approach adopted in this paper differs from the existing approach (Nahi 1969), that assumes
full knowledge of the state-space model, in the point that the current algorithm for £ (%, ) uses the
covariance information.

Some numerical simulation results have validated that the original idea introduced in Theorem 2

for the design of the filter and the fixed-point smoother is correct.
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