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Abstract

This paper designs the fixed-point smoother and filter suitable for estimating the wide-
sense stationary stochastic signal in relation to the H.. estimation approach in continuous-
time systems. Performance measure for the design of the estimators is newly introduced by
referring to that of the infinite-horizon H.. estimation problem in the Krein spaces [1],[2]. At
first, we propose the estimation algorithms using the covariance information in linear con-
tinuous wide-sense stationary stochastic systems. Secondly, to improve the estimation accu-
racy of the recursive least-squares (RLS) estimators [3] using the covariance information, the
suboptimal fixed-point smoother and filter using the covariance information are proposed.
Finally, the recursive H.. like fixed-point smoother and filter using the state-space parameters
are derived from those using the covariance information in a unified manner in linear con-

tinuous wide-sense stationary stochastic systems.

1. Introduction

Recently, by use of the state-space parameters, the H.. and its related estimation tech-
niques [1],[2],[4]-[8] have attracted great attention in the deterministic and stochastic estima-
tion methods of signal. Incidentally, as an alternative approach to the least-squares estimation
problem based on the state-space model, the recursive Wiener fixed-point smoother and filter
using the covariance information of the signal and the observation noise are developed in
linear continuous stochastic systems [3].

The performance criterion concerned with the H.. estimation problem is formulated in
the deterministic manner by nature. The problem formulation in the finite-horizon and infi-
nite-horizon H.. estimation problems is limited within deterministic representations and would
not fit to the estimation in linear stationary stochastic systems. In [1],[2] the deterministic H..

technique in the Krein spaces is developed. In the H.. estimation problem [1],[2], the perfor-
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mance criterion is repreéented as Eq.(4) in section 2. In the H> estimation problem, the value
of Y2(see Eq.(4)) is set to e[1],[2],[4]-[8]. Consequently, the estimation accuracy of the H..
estimator is superior to the H> estimator. Taking into account of these aspects, we introduce
the performance criterion newly. We examine to design the estimators, which correspond to
the H.. estimator, to improve the estimation accuracy in comparison with the RLS Wiener
estimators [3], which correspond to the H> estimator in the H.. estimation problem, in linear
wide-sense stationary stochastic systems [9]. At first, in section 2, the stochastic signal esti-
mation problem is introduced for the estimation of the wide-sense stationary signal. Based on
the current performance criterion (see Eq.(5)), as in the deterministic H.. estimation tech-
nique [1],[2], we obtain the observation equation in the wide-sense stationary stochastic sys-
tems. Assuming that the observation equation is given, we consider the linear least-squares
estimation problem using the covariance information in wide-sense stationary stochastic sys-

tems.

In the observed values, an artificial observed value Z(¢) (see Eq.(9)) is included. In [Theo-
rem 1], by use of the covariance information of the signal and the observation noise, recursive
algorithms for the fixed-point smoothing and filtering estimates of the signal z(7) (see Eq.(8))
are proposed. In [Theorem 2], based on the algorithms of [Theorem 1], recursive Wiener
fixed-point smoother and filter using the covariance information are proposed. Recursive
Wiener fixed-point smoother and filter for the signal z(z) use the system matrix F, the obser-
vation matrix H (see Eq.(8)), the crosscovariance function Kxy(z,7) of the state variable x(z)
with observed value y(T), the crossvariance function Kxy(7,T), the variance = of the observa-
tion noise (see Eq.(10)) and the observed value y(7T) (see Eq.(9)). From the estimation equa-
tions in [Theorem 2], [Theorem 3] formulates the algorithms using the covariance informa-
tion for the fixed-point smoothing estimates Z(z,T) and 2(z,T) at the fixed point t and the
filtering estimates Z(7,T) and Z,(7,T) for the components z;(t) and z,(¢) of the signal vector
Z(t). According to the derivation of the H.. suboptimal estimators [2], we propose in [Theo-
rem 4] the recursive suboptimal fixed-point smoother and filter using the covariance infor-
mation by setting 7(7T') = z,(T, T) in the estimation algorithms of [Theorem 3]. Here, the esti-
mation algorithms of [Theorem 4] necessitate the information of the observation matrices C
and L (see Eq.(8)), the system matrix F, the autocovariance function Kx(z,7) of the state vari-
able x(?), the autovariance function Kx(7,T), the crosscovariance function Kxy,(¢,T) of the state
variable x(t) with the observed value y;(7), the crossvariance function Kxy,(7,T), v (see Eq.(5))
and the observed value y(7T)(see Eq.(2)). For y2=c, the fixed-point smoothing and filtering

algorithms in [Theorem 4] are reduced to the RLS Wiener algorithms for the fixed-point
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smoothing and filtering estimates in [3]. [Theorem 5] shows the optimal fixed-point smooth-
ing and filtering algorithms using the state-space parameters. They are derived from the esti-
mation algorithms of [Theorem 3] using the covariance information. The algorithms of [Theo-
rem 5] uses the system matrix F, the observation matrices C and L, the input matrix B(see
Eq.(1)), v, the observed values yi(7) and Z(T). In [Theorem 6], assuming that the observed
value 7(T) of z(T) introduced artificially is equal to 22(7,T) in the estimation equations of
[Theorem 5], we propose the suboptimal algorithms using the state-space parameters for the
fixed-point smoothing and filtering estimates of z;(z) and z»(#). The suboptimal filtering algo-
rithm using the state-space parameters in [Theorem 6] is same as that based on the game
theory approach [5] in linear continuous stochastic systems. For ?=eo, the suboptimal filter is
reduced to the Kalman filter. The suboptimal fixed-point smoothing algorithm in [Theorem

6] is proposed for the first time in this context.

2. Problem Formulation

Let the linear time-invariant state-space model for the state variable x(7) be given by

% = Fx(t) + Bu(t), x(0) = x,,

E[u(tyu” (s)]=T1, 8(t - 5). (1

Here,x(t)eR, ,u(t) €R,.F represents the system matrix and B the input matrix for u(z). Let z1(1)
represent a signal expressed by z;(7)=Cx(t). We assume that the signal z;(¢) is observed with

additive white Gaussian noise v (t).

yi)=zi(t)+vi(t),  zi(t)=Cx(t), E[,(t)v] (s)]= RS(t - s) (2)
Here, y(t) represents the observed value and C m by n observation matrix. We assume that
vi(t) and u(t) are uncorrelated. We also assume that (F;C) is observable and xp is a random
variable with the mean zero and the variance Q.

Let a signal z5(?) be represented by

22(t)=Lx(1), €))
where L is r by n vector.

Let L2[O,T] denote the usual Hilbert space of square integrable functions. In the finite-
horizon H.. estimation problem, the estimators are designed so as to achieve the following

performance measure [2]:
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T
[(Z(1) = Lx(0)T (2(t) — Lx(z))dr
sup 0

Xo,u(t)eLy,x(1),v,(1)EL,

7 7 <yl 4)
x5 05" xo + [u (Ou)dr + [v] (t)v, (1)t
0 0

Here,Z () is the artificial observed value for zx(z) and Q, is a definite weighting matrix. Oy
reflects a priori knowledge as to how close x(0) is to its initial guess. We assume that initial
guess of x(0) is zero without loss of generality. For the case of T=ec, the performance criterion
(4) is concerned with the infinite-horizon H.. estimation problem. In the H.. estimation prob-
lem, we make no assumption of the nature of the noises disturbances u(z) and v(¢) (e.g.
normally distributed, uncorrelated, etc.) and consider to estimate z,(#)=Lx(t). It is clear that
the problem formulation for the H.. estimation problem would not fit to treat the estimation
problem which assumes the priori statistics for u(z) and v(¢) in (1) and (2) in wide-sense
stationary stochastic systems [9].

In this paper, instead of the H.. estimation problem, we consider to estimate the signal
22(t)=Lx(t) in the wide-sense stationary stochastic systems by taking into account of the sta-
tistical properties for u(z) and v(¢) in (1) and (2). Along with this idea, we newly introduce the

performance criterion represented by

E[(Z(t) - Lx(t))" (Z(1) - Lx(1))]

P T T 1 T p-1 <7’
E[xo Qp xo]+ E[u” (01T u()]+ E[(y ()= Cx(1))” R™ (,(1) - Cx(1))]

S

)

in the wide-sense stationary stochastic systems. Under the criterion of (5), we can now treat
the estimation problem for the wide-sense stationary stochastic signal process in which the

ergodic process is included. If we introduce the stochastic quantity of the form

J; = E[x{ Qy'xo] + Elu” () [15" ()] + E[(y,(t) = Cx(t))" R™' (3, () - Cx())]

~y2E[(Z(t) - Lx(1))" (Z(t) - Lx(2))],

(6)

we find that the performance criterion (5) in the current stochastic estimation problem is

transformed into the relationship satisfying Js> 0. Henceforth,

J; = Elxq (0005 xo 1+ E[u” () TT5" u()]+

yw@®71 ¢ TR o TYw®] [C
E[[[Z(t)}_[L}x(t)] [0 —yzl} ({E(t)}_{L}x(t)J}>o 7
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is obtained in relation to the H.. estimation problem [2]. Let us introduce the vector z(¢) which

consists of the signals z;(z) and zx(1).
z(t) = Hx(1)

B R L R e TR I 270
= Zz(t) s = Ll 7 =Cx), 2, = (3)

Let us also introduce the observation vector y(t)
¥ (1)
(=" 9
y 2 %)
which consists of y(¢) and the artificial observation Z(t) for z5(¢). As in the observation
-equation in the Krein spaces [2], by checking the condition for a minimum of Jy> 0, the ob-

servation equation in the stationary stochastic continuous-time systems might be written as

V](t)
y(®)=Hx(t)+v(t), z(t)=Hx(t), v(t)= ) |
2

(10)

E[v(t)vT(s)] =E8(t—5), E= [R 02}.

0 -r
The observation equation (10) is analogous to that in the Krein spaces [2] of the linear deter-
ministic H.. estimation problem. Provided that the observation equation (10) is given, we
consider the stochastic estimation problem in the sense of linear least-squares estimation
problem for the fixed-point smoothing and filtering estimates of the signal z(z) and the filter-
ing estimate of the state variable x(z).

It should be noted that the performance criterion even in the infinite-horizon H.. estima-
tion problem is distinct from the current one given by (5). In the H.. estimation problem, we
do not assume a priori knowledge on the variances of the noises u(*) and v;(*) with their
uncorrelation property.

Let the fixed-point smoothing estimate %(z,7) of the state variable x(z) be expressed as
T

X, T)= j h(t, s, T)y(s)ds (11)
0

as an integral transformation of the observed data set {y(s), 0= s = T}. Here, A(t,s,T) repre-
sents the impulse response function. “t” is referred to as the fixed point. The fixed-point
smoothing estimate of the signal z(z) is expressed as 2(t,T)=Hzx(t,T). We consider the linear

least-squares smoothing problem which minimizes the cost function
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J = Elx(t) - 3¢, T (12)
in linear continuous-time stochastic systems, given the observation equation (10). Let Kxy(z,s)
represent the crosscovariance function of the state variable x(7) with the observed value y(s).
The optimal impulse response function, which minimizes (12), satisfies the Wiener-Hopf
integral equation [3]
T
K, (t,5)= [ h(t,s', T)E[y(s')y" (s)lds’ (13)
0
If we substitute (10) into (13), we obtain

T
h(t,5,T)E = K, (1,5) = [ h(t,s', T)HK ., (s', 5)ds’, (14)
0

since the variance of v(¢) is E from (10).
In sections 3 and 4, by use of the covariance information of the signal z(#) and the obser-
vation noise v(z), we present the recursive algorithms for the fixed-point smoothing estimate

2(1,T) of the signal z(t) and the filtering estimates Z(7,T) of z(T) and %(T,T) of x(T).

3. Recursive Wiener Smoother and Filter
Let ®(T,0) represent the state transition matrix of the system matrix F. ®(z,s), 0 <s <t,
0D(t,s)
ot

Z(t). Kz(t,s) is expressed as

satisfies = F®(t,5). Let Kz(t,s) represent the autocovariance function of the signal

K, (t,5)= HO(t,5)K (s, )Lt = 5)+ KL (t, )@ (s, ) H (s - 1), (15)

where 1(z-s) represents the unit step function. [Theorem 1] presents the fixed-point smoothing
and filtering algorithms of z(7) using the crosscovariance function Kxy(z,7) of the state vari-
able x(z) with the observed value y(T), the crossvariance function Kxy(7,T), the state transition
matrix ®(7,0), the observaﬁon matrix H, the variance Z of the observation noise v(¢) and the

observed value y(7).

[Theorem 1]

Let the variance of the initial value xo of x(¢) at t = 0 be Qo > 0. Let the observation
equation be given by (10). Then the recursive algorithms for the fixed-point smoothing esti-
mate Z(z,T) at the fixed point ¢ and the filtering estimates 2(7,T) of z(T) and %(T,T) of x(T),
which achieve the criterion of (5), consist of (16) ~ (24). Here, the estimators use the
crosscovariance function Kxy(t,T) of the state variable x(z) with the observed value y(7), the

crossvariance function Kxy(7,T), the state-transition matrix ®(7,0) for the system matrix F,
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the observation matrix H, the variance Z of the observation noise v(z) and the observed value

WT).

2(1,T): Fixed-point smoothing estimate of the signal z(z) at the fixed point t.

ELD ~ e, 7,17~ 22,1 (16)
h(t,T,T)=(K,,(t,T) - U(t, )®" (T,0)H" )= (17)
i%(;’i) = h(t, T, TY(K ] (T, T)®" (0,T) - HO(T,0)W(T)) (18)
U(T,T) = (T, 0)W(T) (19)
J(T,T)=(®0,T)K ., (T,T)- W(T)®" (T,0)H )Z™ (20)
d‘;’—;T) = J(T,T)K (T, T)®" (0,T)— H®(T,0)W(T)),
W(0)=0 (21)

Z(T,T): Filtering estimate of the signal z(7).
YT, T)=HX(T,T) (22)

X(T,T) : Filtering estimate of the state variable x(7).

HTT)=D(T0)e(T) 23)
de(T) _ _
= J(T,TY(Y(T)— HD(T,;0)e(T)), e(0)=0 (24)

Proof: Let us differentiate (14) with respect to 7.

oh(t,s,T)

- 7 oh(t,s’,T)
o E=—h(t T, T)HK (T 5) - J

0 o HK (5", s)ds' (25)
If we introduce an auxiliary function ¢(7,s) which satisfies

jrol T ! ] !
9(T,$)E = HK (T, )~ [ q(T,s HK (s ,5)ds', (26)

we obtain the differential equation
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% =-h(t,T,T)q(T,s) 27)

for h(t,s,T) by comparing (25) with (26). (26) is written as
q(T,s)E = HO(T,0)d(0, $)K . (s,5) — I()T q(T,s' )HK ,, (s',s)ds' (28)

by using the property of the transition matrix ®(7,s). If we introduce an auxiliary function

J(T,s) which satisfies

J(T,)E = (0, 9)K 1, (5.5) — [ J(T.sVHK (', )ds', (29)
we obtain
4(T,s) = HO(T,0)J(T, 5). (30)

If we differentiate (29) with respect to T, we have

dJ(T,s) - 7 dJ(T,s")
55 E=~J(TDHK,(T.s)- jo 5

From (28), (30) and (31), we obtain the differential equation

HK,(s',5)ds'. (31)

dJ(T,s) _
—-aT =-J(T,T)q(T,s) 32)

=-J(T,TYH®(T,0)J(T,s)
for the function J(T,s).
Now, the function A(#,7,T) in (27) can be formulated as follows. If we put s=7 in (14)
and use the expression of Kxy(s’,T) for 0 < s’ < T, i.e., HK,, (s',\T)= KxTy(s', s )CDT(T, sH)HT, we

have

T
h(t,T,T)E =K, (t,T) - j h(t,s', T)HK (s’ , T)ds'

0 :
= Ky (.T) [ h(t.s' T)KL(s',s" )@ (T.s)H'ds (33)
If we introduce a function
U@t,T)= jOT h(t,s', T)K] (s',s)®7(0,s")ds, (34)
we obtain
h(t,T,T) = (K, (t, T) - U(t, )®" (T, 00H")E™". (35)

If we differentiate (34) with respect to T, and use (27) and (30), we have
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U t,T T ' ) ' '
% = 1, T, T)KL(T. T)®" (0.T) - h(t, T, D HO(T,0) [ J(T.s )KL, (s', 8 )®T (0, 5')ds.
(36)
If we introduce a function
T ~
W(T) = |, J(T,s KL, (s, s H®T(0,5)ds , (37)
we obtain the differential equation
WD) _ iy 7. 1)K (T.T)OT (0,T) ~ HO(T,0)W)(T)) (38)
oT Y
for the function U(t,T).
If we differentiate (37) with respect to 7, we have
dW(T) _ T T T aJ(T’S') T/ 0 o T ] '
=L DELT, TR (0,1)+ X Ky )@T(0,5)ds' (39)
If we substitute (32) into (39) and use (37), we obtain the differential equation
LD — I TKL T, 1O (0.7) - HOT. W) (40)

for the function W(T). The initial condition on the differential equation (40) at 7=0 is W(0)=0
from (37).
The function J(T,T) in (40) is formulated as follows. If we put s=T in (29) and substitute

the expression for Kxy(s' ,7T) into the resultant equation, we have
J(T,TE=D(0,1)K, (T, T) - JOT J(T,s")HK ,,(s',T)ds'
— T N2 ZEY Y ' T 30
= ®(0,T)K (T, T)—j0 J(T,sHKL(s', )@ (T,s')H ds'. @)
From (37) and (41), we obtain

J(T,T)=(®(0,T)K,,(T,T)- W(T)®'(T,0)H )=, (42)

If we differentiate (11) for the fixed-point smoothing estimate £(¢,7) with respect to 7,
and use (27) and (30), we have

Q)%T—) =h(t,T,T)y(T) - h(s, T, T)HD(T, 0)j§J(T, $)y(s)ds. 43)
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If we introduce a function

o(T) = [ J(T.5)y(s)ds, (44)

we obtain the differential equation
ox(t,T)

a7 =h(t,T,T)y(T)— HO(T,0)e(T)) 45)

for 2(1, 7).
If we differentiate (44) with respect to 7, and use (32) and (44), we obtain
de(T)
dTr
The initial condition on the differential equation (46) for e¢(7) at T=0 is ¢(0)=0 from (44).

=J(T, TY(T)— HO(T,0)e(T)). (46)

From (11), the filtering estimate %(7,T) is written as

AT.T) = jOTh(T, 5, T)y(s)ds. (47)

Let us derive the equation for h(T;s,T). From (14), we have

T
W(T,s,T)E = K, (T,s)— [ h(T,s',T)HK . (s, s)ds'". (48)
0

If we cofnpare (48) with (29), we obtain

WT,s,T)=®(T,0)J(T,s). (49)

If we substitute (49) into (47), we obtain

x(T,T)=D(T,0)e(T) (50)
from (44).

In the calculation of (38), the initial condition of U(?,T) at T=t is necessary. If we put
T=tin (34), we have

U1 = [} h(t,s, DKL (s',s)®T (0,5")ds'. (51)

From (37), (49) and (51), we obtain

U(t,1) = O(t,0)W(z). (52)
]

Now, in [Theorem 2], starting with the stochastic estimation algorithms of [Theorem 1],

we propose the recursive Wiener fixed-point smoother and filter. The recursive Wiener smoother
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and filter use the system matrix F in (1), the observation matrix H in (10), the crosscovariance
function Kxy(t,T) of the state variable x(¢) with the observed value y(T), the crossvariance

function Kx(7,T), the variance E of the observation noise v(t), and the observed value y(T).

[Theorem 2]

Let the autocovariance function Kz(7,s) of the signal z(z) be expressed as (15), and let
the information of the system matrix F, the observation matrix H, the crosscovariance func-
tion Kxy(t,T) of the state variable x(¢) with the observed value y(7), the crossvariance func-
tion Kxy(T,T), the variance = of the observation noise v(z) and the observed value y(T) be
given. Then the recursive Wiener' algorithms for the fixed-point smoothing estimate Z(z,T) at
the fixed point 7 and the filtering estimates 2(7,T) of z(T) and £(7,T) of x(T) consist of (53)~
(59).

2(1,T) : Fixed-point smoothing estimate of the signal z(z) at the fixed point t.
J2(t,T)

o Hh(t,T,T)()(T) - 2(T,T)) (53)

h(t,T,T) = (K, (t,T)— p(t, )H" )E™' (54)
p(t,T) : Autovariance function of the fixed-point smoothing estimate £(z,7).

ap(t, T

PEL) — e, 7, KT (T, 1) = Hp(T, T + plt, DFT (55)
p(TT) : Autovariance function of the filtering estimate £(7,7).

%D = Fp(T,T)+ p(T,T)F" + h(t,T, T)(KxTy(T, T)-Hp(T,T)) ,

p(0,0)=0 (56)
Z(T,T): Filtering estimate of the signal z(7).

AT, T)=HX(T,T) (57)

X(T,T) : Filtering estimate of the state variable x(7).

dx(T,T)
dr

£(0,0)=0 (58)

= Fx(T,T)+WT,T,T)(T)— Hx(T,T)),
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WT,T,T) = (K,(T.T)- p(T,T)H" )= (59)

Proof: From (45) and (50), we obtain

“ox(t,T) R
——==h(t,T,T)((T)—- Hx(T,T)).
oT ( YW(T)—Hx(T,T)) (60)
If we put
p(t,T) = U(t, T)®' (T, 0), ©61)
we can rewrite (17) as
h(t,T,T) = (K, (t,T) - p(t, DH")E™". (62)
If we differentiate (61) with respect to 7, we have
ap(t,T) _ T T T T
“or - [A(2, T, T)(K o, (T, T)®" (0,T) — HO(T,0)W(T))1®" (T,0) + p(t, T)F (63)
09(T,0
from (38) and the relationship ;T )_F D(T,0). If we take the relationship
p(T,T)=U(T, T)®'(T,0)
= (T, 0)W(T)®' (T,0), (64)
from (19) and (61), into consideration, we obtain the differential equation
T
59% = h(t, T, TY(K?, (T, T) ~ Hp(T, T) + p(t, T)F" 65)
for the function p(t,T).
Let us differentiate (64) with respect to 7.
T
dp(I.T) _90(T,0) W(T)®T (T, 0)+ ®(T,0)W(T) 2 (1.) +®(T,0)——— dW(T) o (T,0)
dT oT or
(66)
. . 99(T,0) :
If we use the relationship o7 F®(T,0), we can rewrite (66) as

dp(T,T)

T Fp(T,T)+ p(T,T)F+ &(T,0)J(T, TX(K L (T, T)®" (0,T) - HO(T,0)W(T))®" (T,0)

= Fp(T,T)+ p(T,T)F" + h(T,T,TYK (T, T) - Hp(T,T)) 67)
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from (21), (49) and (64). The initial condition on the differential equation (67) for p(7,T) at
T=0 is p(0,0)=0 from (37) and (64).
If we differentiate (50) with respect to 7, and use (24), (49) and (50), we obtain the

differential equation

di(T,T)

T = Fx(T,T) + ®(T,0)J(T,T)((T) — HO(T,0)e(T))

= Fx(T,T)+ (T, T, T)((T)— Hx(T,T)) (68)

for the filtering estimate £(7,7T).
The filter gain A(T,T,T) in (68) can be formulated as follows. We obtain

WT,T,T)=®(T,0)J(T,T)
= ®(T,0)(®(0, T)K,(T,T) - W(T)®"(T,00)H" =™

_ _ Tyl
= (K (T,T)- p(T,T)H" )E (69)

in terms of (20), (49) and (64).
From linear estimation theory [9], we find that P(z,T) in (62) and P(7,T) in (69) represent
the autovariance functions of the fixed-point smoothing estimate £(z,7) and the filtering esti-

mate %(7,T) respectively. : ]

The recursive Wiener fixed-point smoother and filter have been derived in [Theorem 2]
based on the invariant imbedding method [3] in a unified manner. In [Theorem 2], the sto-
chastic estimation algorithms for the fixed-point smoothing estimates Z(z,7) and Z,(z,T) and
the filtering estimates 21(7,T) and Z(T,T) of z1(T) and z(T) are not given explicitly against
those in [1],[2],[4]-[8] for the H., estimation problem. Hence, in [Theorem 3], we formulate
the estimation algorithms for the fixed-point smoothing estimates Z(z,7) and 25(¢,T) and the
filtering estimates 2 (7,T) and Z2(7,T) by expanding the signal vector z(7) and the function
vector A(t,T,T) in the algorithms of [Theorem 2] into their vector components as z(7)=[zi(7T)

22(T)1" and h(t TT)=[h\(t TT) ho(t,TT)].

[Theorem 3]

Let 2,(t,T) and Z,(t,T) represent the smoothing estimates of z;(z) and z»(¢) at the fixed
point ¢ respectively. Let 21(T,T) and Z,(7,T) represent the filtering estimates of z;(7) and zx(7)
respectively. Let y((T)(=Cx(T)+vi(T)) and Z(T)(=Lx(T)+v,(T)) be the observed values de-

fined in the observation equation (10). Let the information of the system matrix F, the obser-
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vation matrices C and L; the crosscovariance function Kxy,(z,T) of the state variable x(7) with
the observed value y(7T), the crossvariance function Kxy,(7,T), the autocovariance function
Kx(1,T) of the state variable x(7), the autovariance function Kx(7,T) of the state variable x(7), v,
the observed value y;(7) and the artificial observed value Z(T) be given. Then the recursive
Wiener algorithms for the fixed-point smoothing estimates Z(z,7) of the signal z;(z) and
22(1,T) of the signal z5(z) at the fixed point ¢ and the filtering estimates Z(7,T), 2(7,T) and
(T, T) consist of (70) ~ (78).

21(t,T) : Fixed-point smoothing estimate of the signal z;(z) at the fixed point t.

%, (;; T _ Cl[K,y, (t,T)— p(t, T)CTIR [y, (T) - 2/(T, T)] -
y K TL = p, DL ][Z(T) = (T, T (70)

2(1,T) : Fixed-point smoothing estimate of the signal z(2) at the fixed point t.

azi#)‘ = Li[K,,, &, T) - p(t, )CTIR'[y,(T) - /(T )] -
y2[K (¢, T)LT — p(r, T)LT1[Z(T) - 2,(T, T} an

h(t,T.T)=[K,, (t,T)- p(t, T)CT]R™,

K, t.T)=K,(,T)C" (72)

hy(t,T,T) = -y [K,(t,T)— p(t, T)]L" (73)

p(t,T) : Autovariance function of the fixed-point smoothing estimate £(z,7).

@%Tl = h(t,T, 1)KL, (T,T)~ Cp(T, T) 1+ hy(t, T, T)[LK (T, T) — Lp(T, T)]+ p(t, T)F"

(74)

p(T,T): Autovariance function of the filtering estimate £(7,7).

dpg; T) = Fp(T,T)+ p(T.T)F" + [ny| (T,T)- p(T,T)CTIR™ [KxTy, (T,T)- Cp(T,T)]-
v 2K (T, 1)L - p(T, T)L'][LK (T, T) - Lp(T, )},
p(0,0)=0 75)

Z1(T,T): Filtering estimate of the signal z;(7).
2T, T)=C(T.T) (76)
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2o(T,T): Filtering estimate of the signal z»(7).
2T, T)=LX(T,T) (77)

(T, T): Filtering estimate of the state variable x(7).

dx(T,T) N
T = FX(T, T) + (KX)’I

Y AK (T, T)L" — p(T, T)L" Y(Z(T) - LX(T, T)),

(T,T)— p(T, T)CT )R (y,(T) - CX(T, T)) -

2(0,0)=0 (78)

Here, Kx(t,T) and Kxy,(t,T) are calculated by

K .(t,T)= K (T,T)®" (1,T), ®(t,T)= D (T,1),
o0D(T,1)
aT

in terms of Kx(T,T) and F.

=FO(T,1), K, t.T)=K, (1.T)C",

Proof: Let h(t,T,T) be expressed by
ht,TT)=[h(t,TT) ho(t, TT)]. (79)

If we substitute (8), (9), (10) and (79) into the estimation equations of [Theorem 2], we
readily obtain the recursive Wiener algorithms for the fixed-point smoothing and filtering

estimates in [Theorem 3]. L]

If we put 7(T) = z,(T, T)(= Lx(T,T)) in [Theorem 3], in accordance with the derivation of
the H.. suboptimal filter in [2], we obtain the recursive suboptimal estimation algorithms of

[Theorem 4] by use of the covariance information.

[Theorem 4]

Let 21(1,T) and Z,(1,T) represent the smoothing estimates of Z;(¢) and Z,(¢) respectively.
Let 21(T,T) and Z,o(T,T) represent the filtering estimates of z;(7) and z»(7T) respectively. Let
yi(T)(=Cx(T)+v1(T)) be the observed values defined in the observation equation (10). Let the
information of the system matrix F, the observation matrices C and L, the crosscovariance

function Kxy,(t,T) of the state variable x(t) with the observed value y(T), the crossvariance
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function Kxy,(T,T), the autocovariance function Kx(z,T) of the state variable x(z), the autovariance
function Kx(7,T) of the state variable x(7T), Y, the observed value y;(7) and the artificial ob-
served value Z(7) be given. Then the recursive suboptimal Wiener algorithms to those of
[Theorem 3] for the fixed-point smoothing estimates Z(z,T) of the signal z;(z) and 2,(z,T) of
the signal z,(¢) at the fixed point t and the filtering estimatf':s ZUTT), 2T, T) and XT,T)
consist of (80) ~ (88).

21(1,T): Fixed-point smoothing estimate of the signal z;(z) at the fixed point t.

azl(;tr’“*T) = CIK,, (t,T) = p(t,T)C|[y,(T) = (T, T)] 0

25(t,T): Fixed-point smoothing estimate of the signal z5(¢) at the fixed point t.
9%(t,T)

o7 =LKy, (1) = p(t. TYC ] (1) = 44(T, T)] (81)
h(tT,T)=[K,, &, T)- pt,T)C" IR
K, t.T)=K, (,T)C" (82)
hy (t,T,T)=—y *[K (t, T)L" — p(t,T)L"] (83)

p(t,T): Autovariance function of the fixed-point smoothing estimate x(z,7).

ap(t,T)

S =T, T)K}, (T.T)- Cp(T,T)]+ hy(t, T, T)[LK (T, T) - Lp(T,T)] + p(t, T)F"

(84)
p(TT): Autovariance function of the filtering estimate x(7,7).

PLD — Fp(r, 1+ pTDFT 41K,y

YK (T.T)L" = p(T, T)L" LK (T, T) - Lp(T,T)],

(T,T)- p(T, T)C"IR'[K], (T,T)- Cp(T,T)] -

p(0,0)=0 (85)

Z)(T, T): Filtering estimate of the signal z,(T).
(T T)=CX(T.T) (86)

Zo(T, T): Filtering estimate of the signal z,(7).
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A

2T, T)=L&(T,T) (87)

2(T,T): Filtering estimate of the state variable x(T).

dX(T.T) .
T = FX(T, T) + (nyl

x(0,0)=0 (88)

(T,T)- p(T, T)CT)R™ (y,(T) — CX(T, T)),

Here, Kx(t,T7) and Kxy,(t,T) are calculated by

K .(t,T)=K (T,T)®" (1,T), ®tT)=d"(T,1),
oD(T,1)
oT

= FO(T,1), K, t.T)=K, (tT)C"

in terms of Kx(T,T) and F.

The autocovariance function Kx(7,T) of the state variable x(7) is calculated by

dK (T,T)

T FK (T, T)+ K (T, T)F" + BII, B" (89)

For Vozo=oo, the H.. filter is reduced to the H2 filter and the structure of the H., smoother

is same as the H2 smoother [4]. Similar relationship would fit to the suboptimal estimation
algorithms in the wide-sense stationary stochastic systems. For y?=co, the fixed-point and
filtering algorithms in [Theorem 4] are reduced to the RLS Wiener algorithms for the fixed-
point smoothing and filtering estimates in [3].

Next, from [Theorem 6] in section 4, we show that the filtering equations using the state-

space parameters are same as those based on the game theory approach [5].

4. Derivation of Estimators Using the State-Space Parameters
In [Theorem 5], we show the recursive fixed-point smoothing and filtering algorithms
using the state-space parameters. The algorithms are derived from those of [Theorem 4] us-

ing the covariance information.
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[Theorem 5]

Let 21(2,T) and Z,(t,T) represent the fixed-point smoothing estimates of z,(¢) and zx(¢)
respectively. 21(T,T) and Z,(7T,T) represent the filtering estimates of z,(7) and z,(T) respec-
tively. Let y,(T)(=Cx(T)+v(T)) and Z(T)(=Lx(T)+v,(T)) be the observed values defined in the
observation equation (10). Let the information of the system matrix F, the observation matri-
ces C and L, the input matrix B in the state-space model (1), 7, the observed value y;(7) and
the artificial observed value Z(7) in (9) be given. Then the recursive optimal algorithms for
the fixed-point smoothing estimates Z(z,T) of the signal z;(z) and Z,(z,T) of the signal zx(z) at
the fixed point ¢ and the filtering estimates 2 (7,T), 2o(T,T) and %(T,T) consist of (90)~(98).

21(1,T): Fixed-point smoothing estimate of the signal z;(¢)(=Cx(t)) at the fixed point t.
821 (t7 T)

T Ciby(t, T, T)y(T) = 2 (T, T)] + by (t, T, T)[Z(T) = 2, (T, T) ] (90)
25(1,T): Fixed-point smoothing estimate of the signal z(¢)(=Lx(t)) at the fixed point t.
B — Lya 7D (D= 3T D]+ by, T DL ED = 5T D) ©1)

h(t,T,T)=Q(t,T)CTR™
(=(K,(t,T)- pt, THC'R™) (92)

hy(t,T,T) = -y ~2Q(t,T)LT

(== (K (t.T) - p(t. )L") (93)
Q(t,T): Autovariance function of the fixed-point smoothing error x(z)-%(t,7).
% =Q(t,DF" ~y(t,T,T)CQT, T) = hy(1, T, T)LQ(T,T) (94)

Q(T,T): Autovariance function of the filtering error x(7)-%(T,T).

do(T,T)
dT

0(0,0)=Qo (95)

= FQ(T,T)+Q(T, T)F'+ Q(T,1)[CTR'C -y " LIQ(T, T) + BI1 ,B”,

Z1(T,T): Filtering estimate of the signal z;(T)(=Cx(T)).
L(TT)=CX(T,T)) (96)

2o(T,T): Filtering estimate of the signal zo(T)(=Lx(T)).
ATT)=LX(TT) o7
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X(T,T): Filtering estimate of the state variable x(7).

di(;;, r_ FR(T,T)+ (T, T)CTR™[y,(T) = CX(T, T)] - y2O(T, T)LT [Z(T) - LX(T, T)],
x(0,00=0 98)

Proof: [Theorem 5] is derived along with [Theorem 3]. Q(z,T) represent the autocovariance
function of the smoothing error x(2)-%(t,T). Q(t,T) is calculated by subtracting the autovariance
function p(t,T) of the fixed-point smoothing estimate £(z,7) from the autocovariance function
Kx(1,T) of x(1), i.e., Q(t, T)=Kx(t,T)-p(t,T). If we use the equation for Q(z,T) and Q(T,T)(=Kx(T,T)-
p(T,T)), we obtain (90) ~ (94) and (98). If we differentiate Q(7,T) and use (75) and (89), we
obtain (95). The initial condition on the differential equation (95) for the variance Q(7,T) of
the filtering error x(7)-£(T,T) at T = O is obtained by substituting Kx(0,0)=0q and p(0,0)=0
into the equation Q(0,0)= Kx(0,0)-p(0,0).

In [Theorem 6], we design the suboptimal recursive algorithms using the state-space
parameters for the fixed-point smoothing and filtering estimates from the optimal recursive
algorithms of [Theorem 5]. The suboptimal algorithms are derived by putting 7(T') = Lx(T, T)(= z,(T, T))

in the estimation equations of [Theorem 5] based on the state-space model.

[Theorem 6]

Let 2(¢,T) and Z(¢,T) represent the fixed-point smoothing estimates of z)(z) and z(?)
respectively. 2(T,T) and 2,(T,T) represent the filtering estimates of z;(7) and z»(T) respec-
tively. y,(T)(= Cx(T)+v,(T)) and z(T)(= Lx(T) + v,(T)) be the observed values defined in the
observation equation (10). Let the information of the system matrix F, the observation matri-
ces C and L, the input matrix B in the state-space model (1), vy, the observed value y;(7T) and
the artificial observed value Z(7) in (9) be given. Then the recursive suboptimal algorithms
for the fixed-point smoothing estimates Z(z,T) of the signal z;(z) and 2,(2,T) of the signal z5(z)
at the fixed point t and the filtering estimates 2 (7,T), 2»(T,T) and %(T,T) consist of (99)~(107).

21(t,T): Fixed-point smoothing estimate of the signal z;(z)(=Cx(t)) at the fixed point t.

9z,(t,T)

o7 = Ch(. T D (D) = 4(T.7)] (99)

25(t,T): Fixed-point smoothing estimate of the signal Z,(z)(=Lx(t)) at the fixed point t.
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92, (t,T)

o7 = L. T. D (D) - 4(T. 7)) (100)

h(t,T,T) = Q(t, T)CTR™
(= (K, (t,T)- pt, THC'R™) (101)

hy(t,T,T) = —y~2Q(1, T)LT
(= -y (K, (t,T)- p(t,T)L") (102)

Q(t,T): Autovariance function of the fixed-point smoothing error x(z)-%(¢,T).

__aQa(’T’ D) o 0. T)FT — (6. T.TYCQT.T) ~ by (1, T, T)LQ(T,T) (103)
Q(T.T): Autovariance function of the filtering error x(7)-%(T,T).
d—ng—T) = FQ(T,T)+ Q(T,T)F' + (T, T)[CTR™'C -y 2 LT L]O(T, T) + BT1, B!
0(0,0) = Q, | (104)

Z1I(T,T): Filtering estimate of the signal z;(T)(=Cx(T)).
(T, T)=Cx(T,T) (105)

Zo(T,T): Filtering estimate of the signal zo(T)(=Lx(T)). v
(T, T)=L3(T,T) (106)

X(TT): Filtering estimate of the state variable x(7).

d—%@ = FX(T,T)+ Q(T, T)CT R [y, (T) - CX(T, T)],

x(0,0)=0 (107)

It should be noted that the suboptimal filtering algorithm for 2,(7,T) in [Theorem 6] is
same as that of [5] based on the game theory approach in linear continuous stochastic sys-
tems. For y2=c0, the suboptimal filtering equations for £(7,7T) are reduced to those of the
Kalman filter. The present estimation technique is useful in the wide-sense stationary sto-
chastic systems. The recursive suboptimal fixed-point smoother in [Theorem 6] is proposed
for the first time in this context.

There exists a bounded symmetric matrix function Q(7,7)>0 for t €0,«) that satisfies

(104), and such that the unforced linear time-invariant system
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% =[F+Q(T, T)C'R'C- }/_ZLTL)]Q(T, T) is exponentially stable. For T = oo, the so-

lution of the Riccati differential equation is equal to that of the steady state Riccati equation.

5. A Numerical Simulation Example

Let the observed value y,(7) be generated by the following state-space model.

(0 =z()+v (1)

x, (1)
i o][x;(t)}v,m, a®=x®, C=[I 0.
wild 0 17Tx®] [1
dt | _ X
dx, (1) | [-3 —4}[@(:)] * [—2}”(”’
dt
E[w()w(s)] = 8( — s). | (108)

Let Kz (t,s) represent the autocovariance function of z;(z). The autocovariance function Kz,(t,s)

of zi(t) is expressed as

_3 -9 O i)
Kzl(t,s)—ge S+4—8e s (109)

forOss<t

Let K, (1,5)(= Ky (t,5)) represent the crosscovariance function of the state variable
x(t) with the signal z;(s) and Kxz,(t,s) the crosscovariance function of x(z) with z,(s). We as-
sume that the scalar quantities z;(z) and z,(z) are related by zp(¢)=az;(t) for a given parameter
a(=0.95). Hence, in the recursive suboptimal estimation algorithms of [Theorem 4] for the
filtering estimates Z1(7,T) and Z,(7,T) and the fixed-point smoothing estimates Z(z,T) and
25(1,T), we need the information of the system matrix F , the observation vectors C and L, the
crossvariance function Kxy,(7,T)(=Kxz(T,T)), the variance R of the observation noise vi(), ,
the observed value y,(7T) and the parameter a. Under this assumption, the autocovariance

functions Kz,(z,s) of zi(z) and Kz,(t,s) of z5(t) are expressed as

K, (t,5) = CO(t, S)ny1 (s,9)(t—s)+ ny1 T, t)dDT(s, t)CTl(s —1), (110)

K., (t,5)=a*Co(t, K, (5,91t —5) + a’k . T t,H®7 (s,))CT1(s - 7). (111)

Xy

For the autocovariance function Kz,(z,s) expressed as (110), the system matrix F, the
crossvariance function Kxy,(t,¢) of the state variable x(z) with the observed value y(z) and the

observation vector C are obtained as follows [3],[10].
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K0,0(t,S) KO,I(t’s) Ko’z(t,s)"' KO,j—l(t’s)
Kl,o(t,s) Kl,l(t,s) K]vz(t,s)"' Kl’j_l(t,s)
rij(t’s): ................................ ’ (112)

Ki_l’o(t,s) Ki_l,l(t,s) Ki—l,2(t’s).” Ki—],j—l(t’s)

. i
where K i (t,8) = ﬁ% ,0 < s <t. For the matrix I' »n(t,7) with the rank n, we find that
s
ar, (t,s) _
F= =t = s T (00), | (113)
Ko 0(t, s)|s=t
K, ,(t,5)| .
Ky, (1,0) = "".(_W?IS" , (114)
K,o1,0(6,5)] 5=
c=[1 0 - 0]. (115)

Here, F is a time-invariant square matrix of order n and Kxy,(z,t) is an nX1 vector.

Hence, we can calculate the estimates by use of the system matrix F, the observation
vectors C and L(=aC), the crossvariance function Kxy,(7,T), the variance R of the observation
noise, and the observed value y(7T), where F, C and Kxy (7T,T) are calculated from the
autocovariance function Kz,(t,s) of the signal z;(7). We consider to estimate z>(#)(=0.95z1(¢))
for a=0.95. From (112), I'55(2,s) is calculated as

3 -9, D -39 ie—(t—s) + ie—’j(z‘—s)
T, (1,5) = 16 48 16 16 _
2(59) _3 o= _ D 39 3 o—(1=9) _ 15 o= 31=5)
16 16 16 16

0 1 -

From (113), F'is evaluated asF = [ 3 4:| by F = él:‘—%(t’—s)h:,l"zz 1(t,t) in terms of the invert-
-3 t

1
ible matrix I'22(7,¢) with rank 2. Also, from (114), Kxy(1,2) is evaluated as K, (1) = [-214 - E]T

Here, the observation vector is given by C=[1 0] from (115).

If we substitute the quantities a(=0.95), F, Kx,(t,t), C, L, 'y and R into the estimation
algorithms of [Theorem 4], the fixed-point smoothing and filtering estimates of z;(?) and z,(?)
are calculated. Fig.1 illustrates the stochastic processes of z»(z) (graph (a)) and its filtering
estimate 22(z,¢) vs. t for ¥2=0.52. Graphs (b) and (c) depict 22(,¢) for white Gaussian observa-

tion noises N(0,0.1%) and N(0,0.3?). Fig.2 illustrates the stochastic processes of z;(#) (graph
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Fig.1 The sequence of z(¢) and its filtering estimate 22 (¢,¢) vs. t for y2=0.52.

(a) ...... ZZ (t)
(b)e=eee- Filtering estimate 25 (1,z) for white Gaussian observation noise N(0,0.12).
(C)eeeeee Filtering estimate 25 (1,¢) for white Gaussian observation noise N(0,0.32).
08 ~ T \ T T 1 T ]‘
ST ‘ -‘ |
,// ‘ | \\\\\ H
07/ : FooNg
061
<
N 05
13
il
8 04} : L
8o T
5 ] , e
E
= 0.31 :
Al | i
§ o2~/
e
014
0 e bl L | i i 1 i 1
0 02 0.4 06 08 1 12 14 16 18
Time t
Fig.2 The sequence of z,(z) and its filtering estimate 2; (z,¢) vs. t for ¥2=0.52.
(a)'..'." Zl(t)
(b)e-e- Filtering estimate 2| (1,¢) for white Gaussian observation noise N(0,0.12).

() eeeee Filtering estimate 2 (z,¢) for white Gaussian observation noise N(0,0.32).
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Fig.3 The fixed-point smoothing estimate 2; (0.3,7) vs. T for y?=0.52.
(@)------ 25 (0.3,T) for white Gaussian observation noise N(0,0.12).
(b)eeeeee 25 (0.3,7) for white Gaussian observation noise N(0,0.32).
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Fig.4 M.S.V. of the filtering error z3(¢)- 22 (1,¢) vs. t for the observation noise N(0,0.32).
(a) -+ M.S.V. of z5(1)- 22 (t,t) for Y2=co.
(b)-++=e+ M.S.V. of z5(1)- 22 (t,t) for y>=1.

(c)*+*+*M.S.V. of za(t)- 22 (1,) for y?=0.52.
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(a)) and its filtering estimate Z1(z,¢) vs. t for ¥2=0.52. Graphs (b) and (c) depict Z1(t,¢) for white
Gaussian observation noises N(0,0.12) and N(0,0.32). Fig.3 illustrates the fixed-poiht smooth-
ing estimate 22(0.3,7) vs. T for y?=0.52, where the value of z(¢) at the fixed point t=0.3 is
0.73556. Graphs (a) and (b) show 22(0.3,7) for the observation noises N(0,0.12) and N(0,0.32).
Fig.4 illustrates the mean-square value (M.S.V.) of the filtering error zx(1)-22(z,t) vs. t for the
observation noise N(0,0.3%). Graph (a) shows the M.S.V. of the filtering error for y?=co. Graphs
(b) and (c) show the M..S.V. of the filtering error for y2=1 and y?=0.52 respectively. Fig.5 illus-
trates the M.S.V. of the filtering error zi(1)-Z(t,¢) vs. t for the observation noise N(0,0.32).
Graph (a) shows the M.S.V. of the filtering error for y2=co. Graphs (b) and (c) show the M.S.V. of
the filtering error for y?=1 and y?=0.52 respectively. Fig.6 illustrates the M.S.V. of the filtering
error zx(t)-2,(t,t) vs. t for y2=0.52. Graphs (a), (b) and (c) show the M.S.V. of z(¢)-22(1,¢) for the
observation noises N(0,0.52), N(0,0.3%2) and N(0,0.12) respectively. Fig.7 illustrates the M.S.V.
of the filtering error z1(2)-21(t,t) vs. t for ¥2=0.52. Graphs (a), (b) and (c) show the M.S.V. of
z1(t)-21(t,t) for the observation noisesN(0,0.5%), N(0,0.32) and N(0,0.12) respectively. In Figs.
4~7, the M.S. V. is evaluated in terms of the average of 20 trials for the square value of the
filtering error. Table 1 compares the mean-square values of the estimation errors with those of the
RLS estimation errors for both the filtering estimate Z2(z,¢) and the fixed-point smoothing

estimate 22(,T). The mean-square values are shown for the sequences of the white Gaussian
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Fig.5 MLS.V. of the filtering error z1(2)- 2 (1,2) vs. t for the observation noise N(0,0.32).
(a) +*eee M.S.V. of z1(1)- 2(t,t) for Y2 = oo,
(b) *+eee- M.S.V. of zi(1)- 21(t,t) for y? = 1.

(C) *+ee M.S.V. of zi(t)- 2 (t,t) for y? = 0.52.
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Nean-square value of filtering error for z,(#)

0 02 0.4 06 0.8 1 1.2 1.4 16 1.8 2
Time t
Fig.6 M.S.V. of the filtering error z2(2)- 2 (t,¢) vs. t for ¥ = 0.52.
(a):---- M.S.V. of z>(1)- 22 (t,¢) for the observation noise N(0,0.52).
(b)-==--- M.S.V. of z2(t)- 22 (1,¢) for the observation noise N(0,0.32).
(c)eeeeee M.S.V. of z>(1)- 22 (1,t) for the observation noise N(0,0.12).
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Fig.7 M.S.V. of the filtering error z1(2)- 2 (1) vs. t for y? = 0.52.
(@y------ M.S.V. of z1(2)- 21 (1,t) for the observation noise N(0,0.52).
(b):eee- M.S.V. of z;(1)- 21 (1,¢) for the observation noise N(0,0.32).
(c)reeeee M.S.V. of z;(t)- 21 (t,¢) for the observation noise N(0,0.12).
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observation noises N(0,0.12), N(0,0.32) and N(0,0.52). The mean-square values are calcu-

2000
Y (2, (iA) - 2, (iA, iA))?
lated by =L

A =0.001, for the current and RLS filtering estimates and

’

2000
00

201
2
i=1

2500
Y (2, (iA) = 2, A iA + jA))?
j=1

by for the current and RLS fixed-point smoothing estimates.

5000000

For the current filtering and fixed-point smoothing estimates, the mean-square values are evalu-
ated for values of V2, 0.52, 1, 52 and 102. The current filtering and fixed-point smoothing estimates
for y?=cc correspond to the RLS Wiener estimates [1] respectively. Similarly, Table 2 com-
pares the mean-square values of the estimation errors by the current technique with those of
Table 1 Mean-square values of the estimation errors for both the filtering estimate £ (t,z) and

the fixed-point smoothing estimate 25 (z,7)when the observation noise obeys N(0,0.12), N(0,0.32)
and N(0,0.52). iy

White Kind of estimation Value of M.S.V. of M.S.V. of fixed-
Gaussian technique 4 ? filtering error point smoothing |
observation z,(8) = 2,(¢,1) error
| noise z,(t) = 2,(¢,T)

N(0,01%) Current estimation 05 | 12236227x107 | 33813318x 107
technique 1 12515357 x 107 | 3.5187265x 107
52 12604574 x 10> | 35629329 x10°°
10 12607373 x 107 | 35643199 x 10~
RLS estimation technique 0 12608273 x 107 | 35647758 x 107

in [3]
N(0,03%) Current estimation 052 9.6362084 x 107 | 50143092 x 1072
technique 1 1.0270526 x 10™" | 54761010 x 10~
5 1.0461311x 107" | 56156003 x 10~
10* 10467182 x 10~ | 56199026 x 10>
RLS estimation technique o0 10469137 x10™" | 56213271 x 107>

. in [3]
N(0,05%) Current estimation 05> 17907817 x 10~ | 10772996 x 10~
technique 1 1932574 x10™" | 1.1858771x10”"
52 19706018 x 10" | 12150826 x 10~
10° 1.9717448 x 10" | 12159609 x 10”"
RLS estimation technique 0 19721242 x 107" | 12162541 x107"

in [3]
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Table 2 Mean-square values of the estimation errors for both the filtering estimate Z2j (z,2)

and the fixed-point smoothing estimate Zj (¢,7) when the observation noise obeys N(0,0.12),
N(0,0.32) and N(0,0.52).

Vhite Kind of estimation Value of M.S. V. of M.S.V. of fixed-
Gaussian technique Y2 filtering error | point smoothing
observation 2, (1) -2,(1,1) error
noise z,()-2,(¢,T)
N(0,0.1%) Current estimation 0.5 1.3558144 x107* | 3.7466298 x 103
technique 1 1.3867431x 107 | 3.8988703 x10°*
5 1.3966287 x 10~* | 3.9478549 x10°°
10° 1.3969382 x10~* | 3.9493885x10~*
RLS estimation technique 00 1.3970388 x 107 | 3.949888x 10~
in [3]
N(0,0.3%) Current estimation 0.5 1.0677241x 10~ | 55560249 x 107
technique 1 1.1380081x 10" | 6.0677015x 1072
5 1.1591481x 10" | 6.2222683 x 107>
10° 1.1597985x 107" | 6.2270390x10~*
RLS estimation technique 00 1.1600147 x 10" | 6.2286269 x 10~
in [3]
N(0,0.5%) Current estimation 0.5 1.9842541x10™" | 1.1936826 x 10~
technique 1 2.1413564x 107" | 1.3139912 x 10~
5 2.1834918 x 10~ | 1.3463541x 10!
10° 2.1847590x107" | 1.3473251x10""
RLS estimation technique 00 2.1851786x 107" | 1.3476486 x 10~
in [3]

the estimates for y2=cc in both cases of the filtering estimate 21(z,¢) and the fixed-point smooth-
ing estimate 21(¢,T). The mean-square values are shown for the observation noises N(0,0.12),
N(0,0.32) and N(0,0.52). The mean-square values for the filtering and smoothing estimates of
z1(t) are calculated similarly with those of z,(¢). For the filtering and fixed-point smoothing
estimates, the mean-square values are evaluated for y?=0.52, 1, 52, 102. From Table 1 and
Table 2, we find that the estimation accuracy of the smoothing estimates 22(¢,T) and 21(z,T) is
superior to the filtering estimates 22(z,7) and 21(z,7) respectively. Also, as the variance of the
observation noise becomes small, the mean-square values of the filtering errors zx(£)-22(z,1)
and z,(£)-21(¢,1) and the smoothing errors zx(2)-22(¢,T) and z;(¢)-21(¢,T) become small. Clearly,

the estimation accuracy of the estimates 22(z,7), 21(¢,¢), 22(z,T) and Z21(¢,T) by the proposed
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estimators is superior to that of the estimates for y2=co respectively. As the value of y? in-
creases, the mean-square values of the filtering errors zx(#)-22(2,7) and z(¢)-2,(z,f) and the

smoothing errors z(£)-25(¢,T) and z;(¢)-21(z,T) tend to be large.

8. Conclusions

The numerical simulation results have shown that the recursive suboptimal fixed-point
smoothing and filtering algorithms in [Theorem 4] are feasible. For y2=cc, the estimation
algorithms for the fixed-point smoothing and filtering estimates in [Theorem 4] are same as
those by the RLS Wiener estimators [3] using the covariance information. For y2<e, the
estimation accuracy of the proposed estimators are preferable to those in [3].

In this paper, the stochastic estimation algorithms have been derived in a unified manner.

By use of the covariance information, the optimal and suboptimal estimators have been
proposed respectively in [Theorem 3] and [Theorem 4] for linear continuous-time stochastic
systems. The estimation algorithms for the fixed-point smoothing and filtering estimates of
22(t)(=Lx(?)) and z,(r)(=Cx(t)) have been obtained in relation to the deterministic H.. estima-
tion technique in the Krein spaces [1],[2].

In [Theorem 5] and [Theorem 6], by use of the state-space parameters, the optimal and
suboptimal algorithms for the fixed-point smoothing and filtering estimates have been de-
rived respectively. The suboptimal filtering equations in [Theorem 6] using the state-space
parameters are identical with those based on the game theory approach [5] in linear continu-
ous systems. The suboptimal fixed-point smoother in [Theorem 6] is proposed for the first

time in this paper.
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