Design of Linear Stationary Stochastic Estimators in Relation to H_{∞} Estimation Technique

Seiichi NAKAMORI* (Received 30 September, 1998)

Abstract

This paper designs the fixed-point smoother and filter suitable for estimating the widesense stationary stochastic signal in relation to the H_{∞} estimation approach in continuoustime systems. Performance measure for the design of the estimators is newly introduced by referring to that of the infinite-horizon H_{∞} estimation problem in the Krein spaces [1],[2]. At first, we propose the estimation algorithms using the covariance information in linear continuous wide-sense stationary stochastic systems. Secondly, to improve the estimation accuracy of the recursive least-squares (RLS) estimators [3] using the covariance information, the suboptimal fixed-point smoother and filter using the covariance information are proposed. Finally, the recursive H_{∞} like fixed-point smoother and filter using the state-space parameters are derived from those using the covariance information in a unified manner in linear continuous wide-sense stationary stochastic systems.

1. Introduction

Recently, by use of the state-space parameters, the H_{∞} and its related estimation techniques [1],[2],[4]-[8] have attracted great attention in the deterministic and stochastic estimation methods of signal. Incidentally, as an alternative approach to the least-squares estimation problem based on the state-space model, the recursive Wiener fixed-point smoother and filter using the covariance information of the signal and the observation noise are developed in linear continuous stochastic systems [3].

The performance criterion concerned with the H_{∞} estimation problem is formulated in the deterministic manner by nature. The problem formulation in the finite-horizon and infinite-horizon H_{∞} estimation problems is limited within deterministic representations and would not fit to the estimation in linear stationary stochastic systems. In [1],[2] the deterministic H_{∞} technique in the Krein spaces is developed. In the H_{∞} estimation problem [1],[2], the perfor-

^{*} Department of Technology, Faculty of Education, Kagoshima University, 1-20-6, Kohrimoto, Kagoshima 890-0065, Japan

mance criterion is represented as Eq.(4) in section 2. In the H_2 estimation problem, the value of γ_{∞}^2 (see Eq.(4)) is set to ∞ [1],[2],[4]-[8]. Consequently, the estimation accuracy of the H_{∞} estimator is superior to the H_2 estimator. Taking into account of these aspects, we introduce the performance criterion newly. We examine to design the estimators, which correspond to the H_{∞} estimator, to improve the estimation accuracy in comparison with the RLS Wiener estimators [3], which correspond to the H_2 estimator in the H_{∞} estimation problem, in linear wide-sense stationary stochastic systems [9]. At first, in section 2, the stochastic signal estimation problem is introduced for the estimation of the wide-sense stationary signal. Based on the current performance criterion (see Eq.(5)), as in the deterministic H_{∞} estimation technique [1],[2], we obtain the observation equation in the wide-sense stationary stochastic systems. Assuming that the observation equation is given, we consider the linear least-squares estimation problem using the covariance information in wide-sense stationary stochastic systems.

In the observed values, an artificial observed value $\tilde{z}(t)$ (see Eq.(9)) is included. In [Theorem 1], by use of the covariance information of the signal and the observation noise, recursive algorithms for the fixed-point smoothing and filtering estimates of the signal z(t) (see Eq.(8)) are proposed. In [Theorem 2], based on the algorithms of [Theorem 1], recursive Wiener fixed-point smoother and filter using the covariance information are proposed. Recursive Wiener fixed-point smoother and filter for the signal z(t) use the system matrix F, the observation matrix H (see Eq.(8)), the crosscovariance function $K_{xy}(t,T)$ of the state variable x(t)with observed value y(T), the crossvariance function $K_{xy}(T,T)$, the variance Ξ of the observation noise (see Eq.(10)) and the observed value y(T) (see Eq.(9)). From the estimation equations in [Theorem 2], [Theorem 3] formulates the algorithms using the covariance information for the fixed-point smoothing estimates $\hat{z}_1(t,T)$ and $\hat{z}_2(t,T)$ at the fixed point t and the filtering estimates $\hat{z}_1(T,T)$ and $\hat{z}_1(T,T)$ for the components $z_1(t)$ and $z_2(t)$ of the signal vector z(t). According to the derivation of the H_{∞} suboptimal estimators [2], we propose in [Theorem 4] the recursive suboptimal fixed-point smoother and filter using the covariance information by setting $\tilde{z}(T) = \hat{z}_2(T, T)$ in the estimation algorithms of [Theorem 3]. Here, the estimation algorithms of [Theorem 4] necessitate the information of the observation matrices Cand L (see Eq.(8)), the system matrix F, the autocovariance function $K_x(t,T)$ of the state variable x(t), the autovariance function $K_x(T,T)$, the crosscovariance function $K_{xy_1}(t,T)$ of the state variable x(t) with the observed value $y_l(T)$, the crossvariance function $K_{xy_l}(T,T)$, γ (see Eq.(5)) and the observed value $y_1(T)$ (see Eq.(2)). For $\gamma^2 = \infty$, the fixed-point smoothing and filtering algorithms in [Theorem 4] are reduced to the RLS Wiener algorithms for the fixed-point

smoothing and filtering estimates in [3]. [Theorem 5] shows the optimal fixed-point smoothing and filtering algorithms using the state-space parameters. They are derived from the estimation algorithms of [Theorem 3] using the covariance information. The algorithms of [Theorem 5] uses the system matrix F, the observation matrices C and L, the input matrix B(see Eq.(1)), γ , the observed values $y_1(T)$ and $\tilde{z}(T)$. In [Theorem 6], assuming that the observed value $\tilde{z}(T)$ of $z_2(T)$ introduced artificially is equal to $\hat{z}_2(T,T)$ in the estimation equations of [Theorem 5], we propose the suboptimal algorithms using the state-space parameters for the fixed-point smoothing and filtering estimates of $z_1(t)$ and $z_2(t)$. The suboptimal filtering algorithm using the state-space parameters in [Theorem 6] is same as that based on the game theory approach [5] in linear continuous stochastic systems. For $\gamma^2 = \infty$, the suboptimal filter is reduced to the Kalman filter. The suboptimal fixed-point smoothing algorithm in [Theorem 6] is proposed for the first time in this context.

2. Problem Formulation

Let the linear time-invariant state-space model for the state variable x(t) be given by

$$\frac{dx(t)}{dt} = Fx(t) + Bu(t), x(0) = x_0,$$

$$E[u(t)u^T(s)] = \prod_0 \delta(t-s).$$
(1)

Here, $x(t) \in R_{n_1}$, $u(t) \in R_l$. *F* represents the system matrix and *B* the input matrix for u(t). Let $z_1(t)$ represent a signal expressed by $z_1(t) = Cx(t)$. We assume that the signal $z_1(t)$ is observed with additive white Gaussian noise $v_1(t)$.

$$y_1(t) = z_1(t) + v_1(t), \quad z_1(t) = Cx(t), \quad E[v_1(t)v_1^T(s)] = R\delta(t-s)$$
 (2)

Here, $y_1(t)$ represents the observed value and C m by n observation matrix. We assume that $v_1(t)$ and u(t) are uncorrelated. We also assume that (F,C) is observable and x_0 is a random variable with the mean zero and the variance Q_0 .

Let a signal $z_2(t)$ be represented by

$$z_2(t) = Lx(t), \tag{3}$$

where *L* is r by n vector.

Let $L_2[O,T]$ denote the usual Hilbert space of square integrable functions. In the finitehorizon H_{∞} estimation problem, the estimators are designed so as to achieve the following performance measure [2]:

$$\sup_{x_{0},u(t)\in L_{2},x(t),v_{1}(t)\in L_{2}} \frac{\int_{0}^{T} (\breve{z}(t) - Lx(t))^{T} (\breve{z}(t) - Lx(t))dt}{x_{0}^{T}\hat{Q}_{0}^{-1}x_{0} + \int_{0}^{T} u^{T}(t)u(t)dt + \int_{0}^{T} v_{1}^{T}(t)v_{1}(t)dt} < \gamma_{\infty}^{2}$$
(4)

Here, $\tilde{z}(t)$ is the artificial observed value for $z_2(t)$ and \hat{Q}_0 is a definite weighting matrix. \hat{Q}_0 reflects a priori knowledge as to how close x(0) is to its initial guess. We assume that initial guess of x(0) is zero without loss of generality. For the case of $T=\infty$, the performance criterion (4) is concerned with the infinite-horizon H_∞ estimation problem. In the H_∞ estimation problem, we make no assumption of the nature of the noises disturbances u(t) and $v_1(t)$ (e.g. normally distributed, uncorrelated, etc.) and consider to estimate $z_2(t)=Lx(t)$. It is clear that the problem formulation for the H_∞ estimation problem would not fit to treat the estimation problem which assumes the priori statistics for u(t) and $v_1(t)$ in (1) and (2) in wide-sense stationary stochastic systems [9].

In this paper, instead of the H_{∞} estimation problem, we consider to estimate the signal $z_2(t)=Lx(t)$ in the wide-sense stationary stochastic systems by taking into account of the statistical properties for u(t) and $v_1(t)$ in (1) and (2). Along with this idea, we newly introduce the performance criterion represented by

$$\sup \frac{E[(\tilde{z}(t) - Lx(t))^{T} (\tilde{z}(t) - Lx(t))]}{E[x_{0}^{T} Q_{0}^{-1} x_{0}] + E[u^{T}(t) \prod_{0}^{-1} u(t)] + E[(y_{1}(t) - Cx(t))^{T} R^{-1}(y_{1}(t) - Cx(t))]} < \gamma^{2}$$
(5)

in the wide-sense stationary stochastic systems. Under the criterion of (5), we can now treat the estimation problem for the wide-sense stationary stochastic signal process in which the ergodic process is included. If we introduce the stochastic quantity of the form

$$J_{f} = E[x_{0}^{T}Q_{0}^{-1}x_{0}] + E[u^{T}(t)\prod_{0}^{-1}u(t)] + E[(y_{1}(t) - Cx(t))^{T}R^{-1}(y_{1}(t) - Cx(t))] -\gamma^{-2}E[(\breve{z}(t) - Lx(t))^{T}(\breve{z}(t) - Lx(t))],$$
(6)

we find that the performance criterion (5) in the current stochastic estimation problem is transformed into the relationship satisfying $J_f > 0$. Henceforth,

$$J_{f} = E[x_{0}^{T}(0)Q_{0}^{-1}x_{0}] + E[u^{T}(t)\Pi_{0}^{-1}u(t)] + \\E[\left(\begin{bmatrix}y_{1}(t)\\ \breve{z}(t)\end{bmatrix} - \begin{bmatrix}C\\L\end{bmatrix}x(t)\right)^{T}\begin{bmatrix}R & 0\\ 0 & -\gamma^{2}I\end{bmatrix}^{-1}\left(\begin{bmatrix}y_{1}(t)\\ \breve{z}(t)\end{bmatrix} - \begin{bmatrix}C\\L\end{bmatrix}x(t)\right)] > 0$$
(7)

is obtained in relation to the H_{∞} estimation problem [2]. Let us introduce the vector z(t) which consists of the signals $z_1(t)$ and $z_2(t)$.

$$z(t) = Hx(t)$$

$$= \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}, \quad H = \begin{bmatrix} C \\ L \end{bmatrix}, \quad z_1(t) = Cx(t), \quad z_2(t) = Lx(t)$$
(8)

Let us also introduce the observation vector y(t)

$$y(t) = \begin{bmatrix} y_1(t) \\ \ddot{z}(t) \end{bmatrix}$$
(9)

which consists of $y_1(t)$ and the artificial observation $\tilde{z}(t)$ for $z_2(t)$. As in the observation equation in the Krein spaces [2], by checking the condition for a minimum of $J_f > 0$, the observation equation in the stationary stochastic continuous-time systems might be written as

$$y(t) = Hx(t) + v(t), \quad z(t) = Hx(t), \quad v(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix},$$

$$E[v(t)v^T(s)] = \Xi\delta(t-s), \quad \Xi = \begin{bmatrix} R & 0 \\ 0 & -r^2 \end{bmatrix}.$$
 (10)

The observation equation (10) is analogous to that in the Krein spaces [2] of the linear deterministic H_{∞} estimation problem. Provided that the observation equation (10) is given, we consider the stochastic estimation problem in the sense of linear least-squares estimation problem for the fixed-point smoothing and filtering estimates of the signal z(t) and the filtering estimate of the state variable x(t).

It should be noted that the performance criterion even in the infinite-horizon H_{∞} estimation problem is distinct from the current one given by (5). In the H_{∞} estimation problem, we do not assume a priori knowledge on the variances of the noises $u(\bullet)$ and $v_1(\bullet)$ with their uncorrelation property.

Let the fixed-point smoothing estimate $\hat{x}(t,T)$ of the state variable x(t) be expressed as

$$\hat{x}(t,T) = \int_{0}^{T} h(t,s,T) y(s) ds$$
(11)

as an integral transformation of the observed data set $\{y(s), 0 \le s \le T\}$. Here, h(t,s,T) represents the impulse response function. "t" is referred to as the fixed point. The fixed-point smoothing estimate of the signal z(t) is expressed as $\hat{z}(t,T)=H\hat{x}(t,T)$. We consider the linear least-squares smoothing problem which minimizes the cost function

$$J = E \|x(t) - \hat{x}(t, T)\|^2$$
(12)

in linear continuous-time stochastic systems, given the observation equation (10). Let $K_{xy}(t,s)$ represent the crosscovariance function of the state variable x(t) with the observed value y(s). The optimal impulse response function, which minimizes (12), satisfies the Wiener-Hopf integral equation [3]

$$K_{xy}(t,s) = \int_{0}^{t} h(t,s',T) E[y(s')y^{T}(s)] ds'.$$
(13)

If we substitute (10) into (13), we obtain

$$h(t,s,T)\Xi = K_{xy}(t,s) - \int_{0}^{T} h(t,s',T) H K_{xy}(s',s) ds',$$
(14)

since the variance of v(t) is Ξ from (10).

In sections 3 and 4, by use of the covariance information of the signal z(t) and the observation noise v(t), we present the recursive algorithms for the fixed-point smoothing estimate $\hat{z}(t,T)$ of the signal z(t) and the filtering estimates $\hat{z}(T,T)$ of z(T) and $\hat{x}(T,T)$ of x(T).

3. Recursive Wiener Smoother and Filter

Let $\Phi(T,0)$ represent the state transition matrix of the system matrix F. $\Phi(t,s)$, $0 \le s \le t$, satisfies $\frac{\partial \Phi(t,s)}{\partial t} = F\Phi(t,s)$. Let $K_z(t,s)$ represent the autocovariance function of the signal z(t). $K_z(t,s)$ is expressed as

$$K_{z}(t,s) = H\Phi(t,s)K_{xy}(s,s)\mathbf{1}(t-s) + K_{xy}^{T}(t,t)\Phi^{T}(s,t)H^{T}\mathbf{1}(s-t),$$
(15)

where l(t-s) represents the unit step function. [Theorem 1] presents the fixed-point smoothing and filtering algorithms of z(t) using the crosscovariance function $K_{xy}(t,T)$ of the state variable x(t) with the observed value y(T), the crossvariance function $K_{xy}(T,T)$, the state transition matrix $\Phi(T,0)$, the observation matrix H, the variance Ξ of the observation noise v(t) and the observed value y(T).

[Theorem 1]

Let the variance of the initial value x_0 of x(t) at t = 0 be $Q_0 > 0$. Let the observation equation be given by (10). Then the recursive algorithms for the fixed-point smoothing estimate $\hat{z}(t,T)$ at the fixed point t and the filtering estimates $\hat{z}(T,T)$ of z(T) and $\hat{x}(T,T)$ of x(T), which achieve the criterion of (5), consist of (16) \sim (24). Here, the estimators use the crosscovariance function $K_{xy}(t,T)$ of the state variable x(t) with the observed value y(T), the crossvariance function $K_{xy}(T,T)$, the state-transition matrix $\Phi(T,0)$ for the system matrix F,

the observation matrix *H*, the variance Ξ of the observation noise v(t) and the observed value y(T).

 $\hat{z}(t,T)$: Fixed-point smoothing estimate of the signal z(t) at the fixed point t.

$$\frac{\partial \hat{z}(t,T)}{\partial T} = Hh(t,T,T)(y(T) - \hat{z}(T,T))$$
(16)

$$h(t,T,T) = (K_{xy}(t,T) - U(t,T)\Phi^{T}(T,0)H^{T})\Xi^{-1}$$
(17)

$$\frac{\partial U(t,T)}{\partial T} = h(t,T,T)(K_{xy}^T(T,T)\Phi^T(0,T) - H\Phi(T,0)W(T))$$
(18)

$$U(T,T) = \Phi(T,0)W(T) \tag{19}$$

$$J(T,T) = (\Phi(0,T)K_{xy}(T,T) - W(T)\Phi^{T}(T,0)H^{T})\Xi^{-1}$$
(20)

$$\frac{dW(T)}{dT} = J(T,T)(K_{xy}^{T}(T,T)\Phi^{T}(0,T) - H\Phi(T,0)W(T)),$$

W(0)=0 (21)

$$\hat{z}(T,T)$$
: Filtering estimate of the signal $z(T)$.
 $\hat{z}(T,T) = H\hat{x}(T,T)$
(22)

 $\hat{x}(T,T)$: Filtering estimate of the state variable x(T).

 $\hat{x}(T,T) = \Phi(T,0)e(T) \tag{23}$

$$\frac{de(T)}{dT} = J(T,T)(y(T) - H\Phi(T,0)e(T)), \quad e(0) = 0$$
(24)

Proof: Let us differentiate (14) with respect to *T*.

$$\frac{\partial h(t,s,T)}{\partial T} \Xi = -h(t,T,T)HK_{xy}(T,s) - \int_0^T \frac{\partial h(t,s',T)}{\partial T}HK_{xy}(s',s)ds'$$
(25)

If we introduce an auxiliary function q(T,s) which satisfies

$$q(T,s)\Xi = HK_{xy}(T,s) - \int_0^T q(T,s') HK_{xy}(s',s) ds',$$
(26)

we obtain the differential equation

$$\frac{\partial h(t,s,T)}{\partial T} = -h(t,T,T)q(T,s)$$
(27)

for h(t,s,T) by comparing (25) with (26). (26) is written as

$$q(T,s)\Xi = H\Phi(T,0)\Phi(0,s)K_{xy}(s,s) - \int_0^T q(T,s')HK_{xy}(s',s)ds'$$
(28)

by using the property of the transition matrix $\Phi(T,s)$. If we introduce an auxiliary function J(T,s) which satisfies

$$J(T,s)\Xi = \Phi(0,s)K_{xy}(s,s) - \int_0^T J(T,s')HK_{xy}(s',s)ds',$$
(29)

we obtain

$$q(T,s) = H\Phi(T,0)J(T,s).$$
 (30)

If we differentiate (29) with respect to T, we have

$$\frac{\partial J(T,s)}{\partial T} \Xi = -J(T,T)HK_{xy}(T,s) - \int_0^T \frac{\partial J(T,s')}{\partial T}HK_{xy}(s',s)ds'.$$
(31)

From (28), (30) and (31), we obtain the differential equation

$$\frac{\partial J(T,s)}{\partial T} = -J(T,T)q(T,s)$$

$$= -J(T,T)H\Phi(T,0)J(T,s)$$
(32)

for the function J(T,s).

Now, the function h(t,T,T) in (27) can be formulated as follows. If we put s=T in (14) and use the expression of $K_{xy}(s',T)$ for $0 \le s' \le T$, i.e., $HK_{xy}(s',T) = K_{xy}^T(s',s')\Phi^T(T,s')H^T$, we have

$$h(t,T,T)\Xi = K_{xy}(t,T) - \int_{0}^{T} h(t,s',T) H K_{xy}(s',T) ds'$$

= $K_{xy}(t,T) - \int_{0}^{T} h(t,s',T) K_{xy}^{T}(s',s') \Phi^{T}(T,s') H^{T} ds'.$ (33)

If we introduce a function

$$U(t,T) = \int_0^T h(t,s',T) K_{xy}^T(s',s') \Phi^T(0,s') ds',$$
(34)

we obtain

$$h(t,T,T) = (K_{xy}(t,T) - U(t,T)\Phi^{T}(T,0)H^{T})\Xi^{-1}.$$
(35)

If we differentiate (34) with respect to T, and use (27) and (30), we have

Design of Linear Stationary Stochastic Estimators in Relation to H_∞ Estimation Technique

$$\frac{\partial U(t,T)}{\partial T} = h(t,T,T)K_{xy}^{T}(T,T)\Phi^{T}(0,T) - h(t,T,T)H\Phi(T,0)\int_{0}^{T}J(T,s')K_{xy}^{T}(s',s')\Phi^{T}(0,s')ds'.$$

If we introduce a function

$$W(T) = \int_0^T J(T, s') K_{xy}^T(s', s') \Phi^T(0, s') ds',$$
(37)

we obtain the differential equation

$$\frac{\partial U(t,T)}{\partial T} = h(t,T,T)(K_{xy}^T(T,T)\Phi^T(0,T) - H\Phi(T,0)W)(T))$$
(38)

for the function U(t,T).

If we differentiate (37) with respect to *T*, we have

$$\frac{dW(T)}{dT} = J(T,T)K_{xy}^{T}(T,T)\Phi^{T}(0,T) + \int_{0}^{T} \frac{\partial J(T,s')}{\partial T}K_{xy}^{T}(s',s')\Phi^{T}(0,s')ds'.$$
(39)

If we substitute (32) into (39) and use (37), we obtain the differential equation

$$\frac{dW(T)}{dT} = J(T,T)(K_{xy}^{T}(T,T)\Phi^{T}(0,T) - H\Phi(T,0)W(T))$$
(40)

for the function W(T). The initial condition on the differential equation (40) at T=0 is W(0)=0 from (37).

The function J(T,T) in (40) is formulated as follows. If we put s=T in (29) and substitute the expression for $K_{xy}(s', T)$ into the resultant equation, we have

$$J(T,T) \Xi = \Phi(0,T) K_{xy}(T,T) - \int_0^T J(T,s') H K_{xy}(s',T) ds'$$

= $\Phi(0,T) K_{xy}(T,T) - \int_0^T J(T,s') K_{xy}^T(s',s') \Phi^T(T,s') H^T ds'.$ (41)

From (37) and (41), we obtain

$$J(T,T) = (\Phi(0,T)K_{xy}(T,T) - W(T)\Phi^{T}(T,0)H^{T})\Xi^{-1}.$$
(42)

If we differentiate (11) for the fixed-point smoothing estimate $\hat{x}(t,T)$ with respect to *T*, and use (27) and (30), we have

$$\frac{\partial \hat{x}(t,T)}{\partial T} = h(t,T,T)y(T) - h(t,T,T)H\Phi(T,0)\int_0^T J(T,s)y(s)ds.$$
(43)

99

(36)

If we introduce a function

$$e(T) = \int_0^T J(T,s)y(s)ds,$$
(44)

we obtain the differential equation

$$\frac{\partial \hat{x}(t,T)}{\partial T} = h(t,T,T)(y(T) - H\Phi(T,0)e(T))$$
(45)

for $\hat{x}(t,T)$.

If we differentiate (44) with respect to T, and use (32) and (44), we obtain

$$\frac{de(T)}{dT} = J(T,T)(y(T) - H\Phi(T,0)e(T)).$$
(46)

The initial condition on the differential equation (46) for e(T) at T=0 is e(0)=0 from (44).

From (11), the filtering estimate $\hat{x}(T,T)$ is written as

$$\hat{x}(T,T) = \int_0^T h(T,s,T)y(s)ds.$$
 (47)

Let us derive the equation for h(T,s,T). From (14), we have

$$h(T, s, T)\Xi = K_{xy}(T, s) - \int_{0}^{T} h(T, s', T) HK_{xy}(s', s) ds'.$$
(48)

If we compare (48) with (29), we obtain

$$h(T, s, T) = \Phi(T, 0)J(T, s).$$
 (49)

If we substitute (49) into (47), we obtain

$$\hat{x}(T,T) = \Phi(T,0)e(T)$$
 (50)

from (44).

In the calculation of (38), the initial condition of U(t,T) at T=t is necessary. If we put T=t in (34), we have

$$U(t,t) = \int_0^t h(t,s',t) K_{xy}^T(s',s') \Phi^T(0,s') ds'.$$
(51)

From (37), (49) and (51), we obtain

$$U(t,t) = \Phi(t,0)W(t).$$
(52)

Now, in [Theorem 2], starting with the stochastic estimation algorithms of [Theorem 1], we propose the recursive Wiener fixed-point smoother and filter. The recursive Wiener smoother

and filter use the system matrix F in (1), the observation matrix H in (10), the crosscovariance function $K_{xy}(t,T)$ of the state variable x(t) with the observed value y(T), the crossvariance function $K_{xy}(T,T)$, the variance Ξ of the observation noise v(t), and the observed value y(T).

[Theorem 2]

Let the autocovariance function $K_z(t,s)$ of the signal z(t) be expressed as (15), and let the information of the system matrix F, the observation matrix H, the crosscovariance function $K_{xy}(t,T)$ of the state variable x(t) with the observed value y(T), the crossvariance function $K_{xy}(T,T)$, the variance Ξ of the observation noise v(t) and the observed value y(T) be given. Then the recursive Wiener algorithms for the fixed-point smoothing estimate $\hat{z}(t,T)$ at the fixed point t and the filtering estimates $\hat{z}(T,T)$ of z(T) and $\hat{x}(T,T)$ of x(T) consist of (53)~ (59).

 $\hat{z}(t,T)$: Fixed-point smoothing estimate of the signal z(t) at the fixed point t.

$$\frac{\partial \hat{z}(t,T)}{\partial T} = Hh(t,T,T)(y(T) - \hat{z}(T,T))$$
(53)

$$h(t,T,T) = (K_{rv}(t,T) - p(t,T)H^T)\Xi^{-1}$$
(54)

p(t,T): Autovariance function of the fixed-point smoothing estimate $\hat{x}(t,T)$.

$$\frac{\partial p(t,T)}{\partial T} = h(t,T,T)(K_{xy}^T(T,T) - Hp(T,T)) + p(t,T)F^T$$
(55)

p(T,T): Autovariance function of the filtering estimate $\hat{x}(T,T)$.

$$\frac{dp(T,T)}{dT} = Fp(T,T) + p(T,T)F^{T} + h(t,T,T)(K_{xy}^{T}(T,T) - Hp(T,T)),$$

$$p(0,0)=0$$
(56)

 $\hat{z}(T,T)$: Filtering estimate of the signal z(T).

$$\hat{z}(T,T) = H\hat{x}(T,T) \tag{57}$$

 $\hat{x}(T,T)$: Filtering estimate of the state variable x(T).

$$\frac{d\hat{x}(T,T)}{dT} = F\hat{x}(T,T) + h(T,T,T)(y(T) - H\hat{x}(T,T)),$$

$$\hat{x}(0,0)=0$$
(58)

$$h(T,T,T) = (K_{xy}(T,T) - p(T,T)H^T)\Xi^{-1}$$
(59)

Proof: From (45) and (50), we obtain

$$\frac{\partial \hat{x}(t,T)}{\partial T} = h(t,T,T)(y(T) - H\hat{x}(T,T)).$$
(60)

If we put

$$p(t,T) = U(t,T)\Phi^{T}(T,0),$$
 (61)

we can rewrite (17) as

$$h(t,T,T) = (K_{xy}(t,T) - p(t,T)H^T)\Xi^{-1}.$$
(62)

If we differentiate (61) with respect to *T*, we have

$$\frac{\partial p(t,T)}{\partial T} = [h(t,T,T)(K_{xy}^{T}(T,T)\Phi^{T}(0,T) - H\Phi(T,0)W(T))]\Phi^{T}(T,0) + p(t,T)F^{T}$$
(63)

from (38) and the relationship $\frac{\partial \Phi(T,0)}{\partial T} = F\Phi(T,0)$. If we take the relationship

$$p(T,T) = U(T,T)\Phi^{T}(T,0)$$

= $\Phi(T,0)W(T)\Phi^{T}(T,0),$ (64)

from (19) and (61), into consideration, we obtain the differential equation

$$\frac{\partial p(t,T)}{\partial T} = h(t,T,T)(K_{xy}^T(T,T) - Hp(T,T)) + p(t,T)F^T$$
(65)

for the function p(t,T).

Let us differentiate (64) with respect to T.

$$\frac{dp(T,T)}{dT} = \frac{\partial \Phi(T,0)}{\partial T} W(T) \Phi^{T}(T,0) + \Phi(T,0) W(T) \frac{\partial \Phi^{T}(T,0)}{\partial T} + \Phi(T,0) \frac{dW(T)}{dT} \Phi^{T}(T,0)$$
(66)

If we use the relationship $\frac{\partial \Phi(T,0)}{\partial T} = F\Phi(T,0)$, we can rewrite (66) as $\frac{dp(T,T)}{dt} = FP(T,T) + P(T,T)F^{T} + \Phi(T,0)J(T,T)(K^{T}(T,T)\Phi^{T}(0,T) - H\Phi(T,0)W(T))\Phi^{T}(T,0)$

$$\frac{1}{dT} = Fp(T,T) + p(T,T)F^{T} + \Phi(T,0)J(T,T)(K_{xy}^{T}(T,T)\Phi^{T}(0,T) - H\Phi(T,0)W(T))\Phi^{T}(T,0)$$
$$= Fp(T,T) + p(T,T)F^{T} + h(T,T,T)(K_{xy}^{T}(T,T) - Hp(T,T))$$
(67)

from (21), (49) and (64). The initial condition on the differential equation (67) for p(T,T) at T=0 is p(0,0)=0 from (37) and (64).

If we differentiate (50) with respect to T, and use (24), (49) and (50), we obtain the differential equation

$$\frac{d\hat{x}(T,T)}{dT} = F\hat{x}(T,T) + \Phi(T,0)J(T,T)(y(T) - H\Phi(T,0)e(T))$$

= $F\hat{x}(T,T) + h(T,T,T)(y(T) - H\hat{x}(T,T))$ (68)

for the filtering estimate $\hat{x}(T,T)$.

The filter gain h(T,T,T) in (68) can be formulated as follows. We obtain

$$h(T, T, T) = \Phi(T, 0)J(T, T)$$

= $\Phi(T, 0)(\Phi(0, T)K_{xy}(T, T) - W(T)\Phi^{T}(T, 0)H^{T})\Xi^{-1}$
= $(K_{xy}(T, T) - p(T, T)H^{T})\Xi^{-1}$ (69)

in terms of (20), (49) and (64).

From linear estimation theory [9], we find that P(t,T) in (62) and P(T,T) in (69) represent the autovariance functions of the fixed-point smoothing estimate $\hat{x}(t,T)$ and the filtering estimate $\hat{x}(T,T)$ respectively.

The recursive Wiener fixed-point smoother and filter have been derived in [Theorem 2] based on the invariant imbedding method [3] in a unified manner. In [Theorem 2], the stochastic estimation algorithms for the fixed-point smoothing estimates $\hat{z}_1(t,T)$ and $\hat{z}_2(t,T)$ and the filtering estimates $\hat{z}_1(T,T)$ and $\hat{z}_2(T,T)$ of $z_1(T)$ and $z_2(T)$ are not given explicitly against those in [1],[2],[4]-[8] for the H_{∞} estimation problem. Hence, in [Theorem 3], we formulate the estimation algorithms for the fixed-point smoothing estimates $\hat{z}_1(t,T)$ and $\hat{z}_2(t,T)$ and the filtering estimates $\hat{z}_1(T,T)$ and $\hat{z}_2(T,T)$ by expanding the signal vector z(T) and the function vector h(t,T,T) in the algorithms of [Theorem 2] into their vector components as $z(T)=[z_1(T) z_2(T)]^T$ and $h(t,T,T)=[h_1(t,T,T) h_2(t,T,T)]$.

[Theorem 3]

Let $\hat{z}_1(t,T)$ and $\hat{z}_2(t,T)$ represent the smoothing estimates of $z_1(t)$ and $z_2(t)$ at the fixed point *t* respectively. Let $\hat{z}_1(T,T)$ and $\hat{z}_2(T,T)$ represent the filtering estimates of $z_1(T)$ and $z_2(T)$ respectively. Let $y_1(T)(=Cx(T)+v_1(T))$ and $\breve{z}(T)(=Lx(T)+v_2(T))$ be the observed values defined in the observation equation (10). Let the information of the system matrix *F*, the obser-

vation matrices *C* and *L*, the crosscovariance function $K_{xy_1}(t,T)$ of the state variable x(t) with the observed value $y_1(T)$, the crossvariance function $K_{xy_1}(T,T)$, the autocovariance function $K_x(t,T)$ of the state variable x(t), the autovariance function $K_x(T,T)$ of the state variable x(T), γ , the observed value $y_1(T)$ and the artificial observed value $\tilde{z}(T)$ be given. Then the recursive Wiener algorithms for the fixed-point smoothing estimates $\hat{z}_1(t,T)$ of the signal $z_1(t)$ and $\hat{z}_2(t,T)$ of the signal $z_2(t)$ at the fixed point *t* and the filtering estimates $\hat{z}_1(T,T)$, $\hat{z}_2(T,T)$ and $\hat{x}(T,T)$ consist of (70) \sim (78).

 $\hat{z}_1(t,T)$: Fixed-point smoothing estimate of the signal $z_1(t)$ at the fixed point t.

$$\frac{\partial \hat{z}_{1}(t,T)}{\partial T} = C \left\{ \left[K_{xy_{1}}(t,T) - p(t,T)C^{T} \right] R^{-1} \left[y_{1}(T) - \hat{z}_{1}(T,T) \right] - \gamma^{-2} \left[K_{x}(t,T)L^{T} - p(t,T)L^{T} \right] \left[\tilde{z}(T) - \hat{z}_{2}(T,T) \right] \right\}$$
(70)

 $\hat{z}_2(t,T)$: Fixed-point smoothing estimate of the signal $z_2(t)$ at the fixed point t.

$$\frac{\partial \hat{z}_{2}(t,T)}{\partial T} = L\left\{ \left[K_{xy_{1}}(t,T) - p(t,T)C^{T} \right] R^{-1} \left[y_{1}(T) - \hat{z}_{1}(T,T) \right] - \gamma^{-2} \left[K_{x}(t,T)L^{T} - p(t,T)L^{T} \right] \left[\tilde{z}(T) - \hat{z}_{2}(T,T) \right] \right\}$$
(71)

$$h_{1}(t,T,T) = [K_{xy_{1}}(t,T) - p(t,T)C^{T}]R^{-1},$$

$$K_{xy_{1}}(t,T) = K_{x}(t,T)C^{T}$$
(72)

$$h_2(t, T, T) = -\gamma^{-2} [K_x(t, T) - p(t, T)] L^T$$
(73)

p(t,T): Autovariance function of the fixed-point smoothing estimate $\hat{x}(t,T)$.

$$\frac{\partial p(t,T)}{\partial T} = h_1(t,T,T) [K_{xy_1}^T(T,T) - Cp(T,T)] + h_2(t,T,T) [LK_x(T,T) - Lp(T,T)] + p(t,T)F^T$$
(74)

p(T,T): Autovariance function of the filtering estimate $\hat{x}(T,T)$.

$$\frac{dp(T,T)}{dT} = Fp(T,T) + p(T,T)F^{T} + [K_{xy_{1}}(T,T) - p(T,T)C^{T}]R^{-1}[K_{xy_{1}}^{T}(T,T) - Cp(T,T)] - \gamma^{-2}[K_{x}(T,T)L^{T} - p(T,T)L^{T}][LK_{x}(T,T) - Lp(T,T)],$$

$$p(0,0)=0$$
(75)

 $\hat{z}_1(T,T)$: Filtering estimate of the signal $z_1(T)$.

$$\hat{z}_1(T,T) = \mathbf{C}\hat{x}(T,T) \tag{76}$$

 $\hat{z}_2(T,T)$: Filtering estimate of the signal $z_2(T)$.

 $\hat{z}_2(T,T) = L\hat{x}(T,T)$

 $\hat{x}(T,T)$: Filtering estimate of the state variable x(T).

$$\frac{d\hat{x}(T,T)}{dT} = F\hat{x}(T,T) + (K_{xy_1}(T,T) - p(T,T)C^T)R^{-1}(y_1(T) - C\hat{x}(T,T)) - \gamma^{-2}(K_x(T,T)L^T - p(T,T)L^T)(\check{z}(T) - L\hat{x}(T,T)),$$
$$\hat{x}(0,0)=0$$
(78)

Here, $K_x(t,T)$ and $K_{xy_1}(t,T)$ are calculated by

$$K_x(t,T) = K_x(T,T)\Phi^T(t,T), \qquad \Phi(t,T) = \Phi^{-1}(T,t),$$

$$\frac{\partial \Phi(T,t)}{\partial T} = F\Phi(T,t), \quad K_{xy_1}(t,T) = K_x(t,T)C^T,$$

in terms of $K_x(T,T)$ and F.

Proof: Let h(t,T,T) be expressed by

$$h(t,T,T) = [h_1(t,T,T) \quad h_2(t,T,T)].$$
(79)

If we substitute (8), (9), (10) and (79) into the estimation equations of [Theorem 2], we readily obtain the recursive Wiener algorithms for the fixed-point smoothing and filtering estimates in [Theorem 3].

If we put $\tilde{z}(T) = \hat{z}_2(T,T) (= L\hat{x}(T,T))$ in [Theorem 3], in accordance with the derivation of the H_{∞} suboptimal filter in [2], we obtain the recursive suboptimal estimation algorithms of [Theorem 4] by use of the covariance information.

[Theorem 4]

Let $\hat{z}_1(t,T)$ and $\hat{z}_2(t,T)$ represent the smoothing estimates of $\hat{z}_1(t)$ and $\hat{z}_2(t)$ respectively. Let $\hat{z}_1(T,T)$ and $\hat{z}_2(T,T)$ represent the filtering estimates of $z_1(T)$ and $z_2(T)$ respectively. Let $y_1(T)(=Cx(T)+v_1(T))$ be the observed values defined in the observation equation (10). Let the information of the system matrix *F*, the observation matrices *C* and *L*, the crosscovariance function $K_{xy_1}(t,T)$ of the state variable x(t) with the observed value $y_1(T)$, the crossvariance

105

(77)

function $K_{xy_1}(T,T)$, the autocovariance function $K_x(t,T)$ of the state variable x(t), the autovariance function $K_x(T,T)$ of the state variable x(T), γ , the observed value $y_1(T)$ and the artificial observed value $\tilde{z}(T)$ be given. Then the recursive suboptimal Wiener algorithms to those of [Theorem 3] for the fixed-point smoothing estimates $\hat{z}_1(t,T)$ of the signal $z_1(t)$ and $\hat{z}_2(t,T)$ of the signal $z_2(t)$ at the fixed point t and the filtering estimates $\hat{z}_1(T,T)$, $\hat{z}_2(T,T)$ and $\hat{x}(T,T)$ consist of (80) \sim (88).

 $\hat{z}_1(t,T)$: Fixed-point smoothing estimate of the signal $z_1(t)$ at the fixed point t.

$$\frac{\partial z_1(t,T)}{\partial T} = C[K_{xy_1}(t,T) - p(t,T)C^T][y_1(T) - \hat{z}_1(T,T)]$$
(80)

 $\hat{z}_2(t,T)$: Fixed-point smoothing estimate of the signal $z_2(t)$ at the fixed point t.

$$\frac{\partial \hat{z}_2(t,T)}{\partial T} = L[K_{xy_1}(t,T) - p(t,T)C^T][y_1(T) - \hat{z}_1(T,T)]$$
(81)

$$h_{1}(t,T,T) = [K_{xy_{1}}(t,T) - p(t,T)C^{T}]R^{-1}$$

$$K_{xy_{1}}(t,T) = K_{x}(t,T)C^{T}$$
(82)

$$h_2(t,T,T) = -\gamma^{-2} [K_x(t,T)L^T - p(t,T)L^T]$$
(83)

p(t,T): Autovariance function of the fixed-point smoothing estimate $\hat{x}(t,T)$.

$$\frac{\partial p(t,T)}{\partial T} = h_1(t,T,T) [K_{xy_1}^T(T,T) - Cp(T,T)] + h_2(t,T,T) [LK_x(T,T) - Lp(T,T)] + p(t,T)F^T$$
(84)

p(T,T): Autovariance function of the filtering estimate $\hat{x}(T,T)$.

$$\frac{dp(T,T)}{dT} = Fp(T,T) + p(T,T)F^{T} + [K_{xy_{1}}(T,T) - p(T,T)C^{T}]R^{-1}[K_{xy_{1}}^{T}(T,T) - Cp(T,T)] - \gamma^{-2}[K_{x}(T,T)L^{T} - p(T,T)L^{T}][LK_{x}(T,T) - Lp(T,T)],$$

$$p(0,0)=0$$
(85)

(86)

 $\hat{z}_1(T,T)$: Filtering estimate of the signal $z_1(T)$. $\hat{z}_1(T,T)=C\hat{x}(T,T)$

 $\hat{z}_2(T,T)$: Filtering estimate of the signal $z_2(T)$.

Design of Linear Stationary Stochastic Estimators in Relation to H_{∞} Estimation Technique

107

$$\hat{z}_2(T,T) = L\hat{x}(T,T)$$
(87)

 $\hat{x}(T,T)$: Filtering estimate of the state variable x(T).

$$\frac{d\hat{x}(T,T)}{dT} = F\hat{x}(T,T) + (K_{xy_1}(T,T) - p(T,T)C^T)R^{-1}(y_1(T) - C\hat{x}(T,T)),$$

 $\hat{x}(0,0) = 0$
(88)
Here, $K_x(t,T)$ and $K_{xy_1}(t,T)$ are calculated by
 $K_x(t,T) = K_x(T,T)\Phi^T(t,T), \quad \Phi(t,T) = \Phi^{-1}(T,t),$

 $\frac{\partial \Phi(T,t)}{\partial T} = F \Phi(T,t), \quad K_{xy_1}(t,T) = K_x(t,T)C^T,$

in terms of $K_x(T,T)$ and F.

The autocovariance function $K_x(T,T)$ of the state variable x(T) is calculated by

$$\frac{dK_{x}(T,T)}{dT} = FK_{x}(T,T) + K_{x}(T,T)F^{T} + B\prod_{0} B^{T}$$
(89)

For $\gamma_{\infty}^2 = \infty$, the H_{∞} filter is reduced to the H_2 filter and the structure of the H_{∞} smoother is same as the H_2 smoother [4]. Similar relationship would fit to the suboptimal estimation algorithms in the wide-sense stationary stochastic systems. For $\gamma^2 = \infty$, the fixed-point and filtering algorithms in [Theorem 4] are reduced to the RLS Wiener algorithms for the fixedpoint smoothing and filtering estimates in [3].

Next, from [Theorem 6] in section 4, we show that the filtering equations using the statespace parameters are same as those based on the game theory approach [5].

4. Derivation of Estimators Using the State-Space Parameters

In [Theorem 5], we show the recursive fixed-point smoothing and filtering algorithms using the state-space parameters. The algorithms are derived from those of [Theorem 4] using the covariance information.

[Theorem 5]

Let $\hat{z}_1(t,T)$ and $\hat{z}_2(t,T)$ represent the fixed-point smoothing estimates of $z_1(t)$ and $z_2(t)$ respectively. $\hat{z}_1(T,T)$ and $\hat{z}_2(T,T)$ represent the filtering estimates of $z_1(T)$ and $z_2(T)$ respectively. Let $y_1(T)(=Cx(T)+v_1(T))$ and $\bar{z}(T)(=Lx(T)+v_2(T))$ be the observed values defined in the observation equation (10). Let the information of the system matrix *F*, the observation matrices *C* and *L*, the input matrix *B* in the state-space model (1), γ , the observed value $y_1(T)$ and the artificial observed value $\bar{z}(T)$ in (9) be given. Then the recursive optimal algorithms for the fixed-point smoothing estimates $\hat{z}_1(t,T)$ of the signal $z_1(t)$ and $\hat{z}_2(t,T)$ of the signal $z_2(t)$ at the fixed point *t* and the filtering estimates $\hat{z}_1(T,T)$, $\hat{z}_2(T,T)$ and $\hat{x}(T,T)$ consist of (90)~(98).

 $\hat{z}_1(t,T)$: Fixed-point smoothing estimate of the signal $z_1(t)(=Cx(t))$ at the fixed point t.

$$\frac{\partial \hat{z}_1(t,T)}{\partial T} = C \{ h_1(t,T,T) [y_1(T) - \hat{z}_1(T,T)] + h_2(t,T,T) [\breve{z}(T) - \hat{z}_2(T,T)] \}$$
(90)

 $\hat{z}_2(t,T)$: Fixed-point smoothing estimate of the signal $z_2(t)(=Lx(t))$ at the fixed point t.

$$\frac{\partial \hat{z}_2(t,T)}{\partial T} = L\{h_1(t,T,T)[y(T) - \hat{z}_1(T,T)] + h_2(t,T,T)[\ \vec{z}(T) - \hat{z}_2(T,T)]\}$$
(91)

$$h_{1}(t,T,T) = Q(t,T)C^{T}R^{-1}$$

$$(= (K_{x}(t,T) - p(t,T))C^{T}R^{-1})$$
(92)

$$h_{2}(t,T,T) = -\gamma^{-2}Q(t,T)L^{T}$$

(= -\gamma^{-2}(K_{x}(t,T) - p(t,T))L^{T}) (93)

Q(t,T): Autovariance function of the fixed-point smoothing error x(t)- $\hat{x}(t,T)$.

$$\frac{\partial Q(t,T)}{\partial T} = Q(t,T)F^T - h_1(t,T,T)CQ(T,T) - h_2(t,T,T)LQ(T,T)$$
(94)

Q(T,T): Autovariance function of the filtering error x(T)- $\hat{x}(T,T)$.

$$\frac{dQ(T,T)}{dT} = FQ(T,T) + Q(T,T)F^{T} + Q(T,T)[C^{T}R^{-1}C - \gamma^{-2}L^{T}L]Q(T,T) + B\prod_{0}B^{T},$$

$$Q(0,0) = Q_{0}$$
(95)

- $\hat{z}_1(T,T)$: Filtering estimate of the signal $z_1(T)(=Cx(T))$. $\hat{z}_1(T,T)=C\hat{x}(T,T))$ (96)
- $\hat{z}_2(T,T)$: Filtering estimate of the signal $z_2(T)(=Lx(T))$. $\hat{z}_2(T,T)=L\hat{x}(T,T)$ (97)

 $\hat{x}(T,T)$: Filtering estimate of the state variable x(T).

$$\frac{d\hat{x}(T,T)}{dt} = F\hat{x}(T,T) + Q(T,T)C^{T}R^{-1}[y_{1}(T) - C\hat{x}(T,T)] - \gamma^{-2}Q(T,T)L^{T}[\check{z}(T) - L\hat{x}(T,T)],$$

$$\hat{x}(0,0) = 0$$
(98)

Proof: [Theorem 5] is derived along with [Theorem 3]. Q(t,T) represent the autocovariance function of the smoothing error $x(t) - \hat{x}(t,T)$. Q(t,T) is calculated by subtracting the autovariance function p(t,T) of the fixed-point smoothing estimate $\hat{x}(t,T)$ from the autocovariance function $K_x(t,T)$ of x(t), i.e., $Q(t,T)=K_x(t,T)-p(t,T)$. If we use the equation for Q(t,T) and $Q(T,T)(=K_x(T,T)-p(T,T))$, we obtain (90) \sim (94) and (98). If we differentiate Q(T,T) and use (75) and (89), we obtain (95). The initial condition on the differential equation (95) for the variance Q(T,T) of the filtering error $x(T) - \hat{x}(T,T)$ at T = 0 is obtained by substituting $K_x(0,0)=Q_0$ and p(0,0)=0into the equation $Q(0,0)=K_x(0,0)-p(0,0)$.

In [Theorem 6], we design the suboptimal recursive algorithms using the state-space parameters for the fixed-point smoothing and filtering estimates from the optimal recursive algorithms of [Theorem 5]. The suboptimal algorithms are derived by putting $\tilde{z}(T) = L\hat{x}(T,T)(=\hat{z}_2(T,T))$ in the estimation equations of [Theorem 5] based on the state-space model.

[Theorem 6]

Let $\hat{z}_1(t,T)$ and $\hat{z}_1(t,T)$ represent the fixed-point smoothing estimates of $z_1(t)$ and $z_2(t)$ respectively. $\hat{z}_1(T,T)$ and $\hat{z}_2(T,T)$ represent the filtering estimates of $z_1(T)$ and $z_2(T)$ respectively. $y_1(T)(=Cx(T)+v_1(T))$ and $\check{z}(T)(=Lx(T)+v_2(T))$ be the observed values defined in the observation equation (10). Let the information of the system matrix *F*, the observation matrices *C* and *L*, the input matrix *B* in the state-space model (1), γ , the observed value $y_1(T)$ and the artificial observed value $\check{z}_1(T)$ in (9) be given. Then the recursive suboptimal algorithms for the fixed-point smoothing estimates $\hat{z}_1(t,T)$ of the signal $z_1(t)$ and $\hat{z}_2(t,T)$ of the signal $z_2(t)$ at the fixed point t and the filtering estimates $\hat{z}_1(T,T)$, $\hat{z}_2(T,T)$ and $\hat{x}(T,T)$ consist of (99) \sim (107).

 $\hat{z}_1(t,T)$: Fixed-point smoothing estimate of the signal $z_1(t)(=Cx(t))$ at the fixed point t.

$$\frac{\partial \hat{z}_1(t,T)}{\partial T} = Ch_1(t,T,T)[y_1(T) - \hat{z}_1(T,T)]$$
(99)*

 $\hat{z}_2(t,T)$: Fixed-point smoothing estimate of the signal $\hat{z}_2(t)(=Lx(t))$ at the fixed point t.

鹿児島大学教育学部研究紀要 自然科学編 第50卷(1999)

$$\frac{\partial \hat{z}_2(t,T)}{\partial T} = Lh_1(t,T,T)[y_1(T) - \hat{z}_1(T,T)]$$
(100)

$$h_{1}(t,T,T) = Q(t,T)C^{T}R^{-1}$$

$$(= (K_{x}(t,T) - p(t,T))C^{T}R^{-1})$$
(101)

$$h_{2}(t,T,T) = -\gamma^{-2}Q(t,T)L^{T}$$

(= -\gamma^{-2}(K_{x}(t,T) - p(t,T))L^{T}) (102)

Q(t,T): Autovariance function of the fixed-point smoothing error x(t)- $\hat{x}(t,T)$.

$$\frac{\partial Q(t,T)}{\partial T} = Q(t,T)F^T - h_1(t,T,T)CQ(T,T) - h_2(t,T,T)LQ(T,T)$$
(103)

Q(T,T): Autovariance function of the filtering error x(T)- $\hat{x}(T,T)$.

$$\frac{dQ(T,T)}{dT} = FQ(T,T) + Q(T,T)F^{T} + Q(T,T)[C^{T}R^{-1}C - \gamma^{-2}L^{T}L]Q(T,T) + B\prod_{0} B^{T},$$

$$Q(0,0) = Q_{0}$$
(104)

 $\hat{z}_1(T,T)$: Filtering estimate of the signal $z_1(T)(=Cx(T))$. $\hat{z}_1(T,T)=C\hat{x}(T,T)$ (105)

 $\hat{z}_2(T,T)$: Filtering estimate of the signal $z_2(T)(=Lx(T))$. $\hat{z}_2(T,T)=L\hat{x}(T,T)$ (106)

 $\hat{x}(T,T)$: Filtering estimate of the state variable x(T).

$$\frac{d\hat{x}(T,T)}{dt} = F\hat{x}(T,T) + Q(T,T)C^{T}R^{-1}[y_{1}(T) - C\hat{x}(T,T)],$$

$$\hat{x}(0,0) = 0$$
(107)

It should be noted that the suboptimal filtering algorithm for $\hat{z}_2(T,T)$ in [Theorem 6] is same as that of [5] based on the game theory approach in linear continuous stochastic systems. For $\gamma^2 = \infty$, the suboptimal filtering equations for $\hat{x}(T,T)$ are reduced to those of the Kalman filter. The present estimation technique is useful in the wide-sense stationary stochastic systems. The recursive suboptimal fixed-point smoother in [Theorem 6] is proposed for the first time in this context.

There exists a bounded symmetric matrix function Q(T,T)>0 for t $\in [0,\infty)$ that satisfies (104), and such that the unforced linear time-invariant system

 $\frac{dQ(T,T)}{dT} = [F + Q(T,T)(C^T R^{-1} C - \gamma^{-2} L^T L)]Q(T,T)$ is exponentially stable. For $T = \infty$, the solution of the Riccati differential equation is equal to that of the steady state Riccati equation.

5. A Numerical Simulation Example

Let the observed value $y_1(t)$ be generated by the following state-space model.

$$y_{1}(t) = z_{1}(t) + v_{1}(t)$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + v_{1}(t), \quad z_{1}(t) = x_{1}(t), \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

$$\begin{bmatrix} \frac{dx_{1}(t)}{dt} \\ \frac{dx_{2}(t)}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix} w(t),$$

$$E[w(t)w(s)] = \delta(t-s).$$
(108)

Let $K_{z_1}(t,s)$ represent the autocovariance function of $z_1(t)$. The autocovariance function $K_{z_1}(t,s)$ of $z_1(t)$ is expressed as

$$K_{z_1}(t,s) = \frac{3}{16}e^{-(t-s)} + \frac{5}{48}e^{-3(t-s)}$$
(109)

for $0 \le s \le t$.

Let $K_{xz_1}(t,s)(=K_{xy_1}(t,s))$ represent the crosscovariance function of the state variable x(t) with the signal $z_1(s)$ and $K_{xz_2}(t,s)$ the crosscovariance function of x(t) with $z_2(s)$. We assume that the scalar quantities $z_1(t)$ and $z_2(t)$ are related by $z_2(t)=az_1(t)$ for a given parameter a(=0.95). Hence, in the recursive suboptimal estimation algorithms of [Theorem 4] for the filtering estimates $\hat{z}_1(T,T)$ and $\hat{z}_2(T,T)$ and the fixed-point smoothing estimates $\hat{z}_1(t,T)$ and $\hat{z}_2(t,T)$, we need the information of the system matrix F, the observation vectors C and L, the crossvariance function $K_{xy_1}(T,T)(=K_{xz_1}(T,T))$, the variance R of the observation noise $v_1(t)$, γ , the observed value $y_1(T)$ and the parameter a. Under this assumption, the autocovariance functions $K_{z_1}(t,s)$ of $z_1(t)$ and $K_{z_2}(t,s)$ of $z_2(t)$ are expressed as

$$K_{z_1}(t,s) = C\Phi(t,s)K_{xy_1}(s,s)\mathbf{l}(t-s) + K_{xy_1}^{T}(t,t)\Phi^{T}(s,t)C^{T}\mathbf{l}(s-t),$$
(110)

$$K_{z_2}(t,s) = a^2 C \Phi(t,s) K_{xy_1}(s,s) l(t-s) + a^2 K_{xy_1}^T(t,t) \Phi^T(s,t) C^T l(s-t).$$
(111)

For the autocovariance function $K_{z_1}(t,s)$ expressed as (110), the system matrix *F*, the crossvariance function $K_{xy_1}(t,t)$ of the state variable x(t) with the observed value $y_1(t)$ and the observation vector *C* are obtained as follows [3],[10].

鹿児島大学教育学部研究紀要 自然科学編 第50卷 (1999)

$$\Gamma_{ij}(t,s) = \begin{bmatrix} K_{0,0}(t,s) & K_{0,1}(t,s) & K_{0,2}(t,s) \cdots & K_{0,j-1}(t,s) \\ K_{1,0}(t,s) & K_{1,1}(t,s) & K_{1,2}(t,s) \cdots & K_{1,j-1}(t,s) \\ \cdots \cdots & \cdots & \cdots & \cdots & \cdots \\ K_{i-1,0}(t,s) & K_{i-1,1}(t,s) & K_{i-1,2}(t,s) \cdots & K_{i-1,j-1}(t,s) \end{bmatrix},$$
(112)

where $K_{ij}(t,s) = \frac{\partial^i \partial^j K_{z_1}(t,s)}{\partial t^i \partial s^j}, 0 \le s \le t$. For the matrix $\Gamma_{nn}(t,t)$ with the rank n, we find that

$$F = \frac{\partial \Gamma_{nn}(t,s)}{\partial t} \Big|_{t=s} \Gamma_{nn}^{-1}(t,t),$$
(113)

$$K_{xy_{1}}(t,t) = \begin{bmatrix} K_{0,0}(t,s)|_{s=t} \\ K_{1,0}(t,s)|_{s=t} \\ \dots \\ K_{n-1,0}(t,s)|_{s=t} \end{bmatrix},$$
(114)

$$C = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}. \tag{115}$$

Here, F is a time-invariant square matrix of order n and $K_{xy_1}(t,t)$ is an $n \times 1$ vector.

Hence, we can calculate the estimates by use of the system matrix F, the observation vectors C and L(=aC), the crossvariance function $K_{xy_1}(T,T)$, the variance R of the observation noise, and the observed value $y_1(T)$, where F, C and $K_{xy_1}(T,T)$ are calculated from the autocovariance function $K_{z_1}(t,s)$ of the signal $z_1(t)$. We consider to estimate $z_2(t)(=0.95z_1(t))$ for a=0.95. From (112), $\Gamma_{22}(t,s)$ is calculated as

$$\Gamma_{22}(t,s) = \begin{bmatrix} \frac{3}{16}e^{-(t-s)} + \frac{5}{48}e^{-3(t-s)} & \frac{3}{16}e^{-(t-s)} + \frac{5}{16}e^{-3(t-s)} \\ -\frac{3}{16}e^{-(t-s)} - \frac{5}{16}e^{-3(t-s)} & -\frac{3}{16}e^{-(t-s)} - \frac{15}{16}e^{-3(t-s)} \end{bmatrix}.$$

From (113), *F* is evaluated as $F = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$ by $F = \frac{\partial \Gamma_{22}(t,s)}{\partial t} \Big|_{s=t} \Gamma_{22}^{-1}(t,t)$ in terms of the invertible matrix $\Gamma_{22}(t,t)$ with rank 2. Also, from (114), $K_{xy_1}(t,t)$ is evaluated as $K_{xy_1}(t,t) = \begin{bmatrix} \frac{7}{24} & -\frac{1}{2} \end{bmatrix}^T$. Here, the observation vector is given by $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ from (115).

If we substitute the quantities a(=0.95), F, $K_{xy_1}(t,t)$, C, L, γ and R into the estimation algorithms of [Theorem 4], the fixed-point smoothing and filtering estimates of $z_1(t)$ and $z_2(t)$ are calculated. Fig.1 illustrates the stochastic processes of $z_2(t)$ (graph (a)) and its filtering estimate $\hat{z}_2(t,t)$ vs. t for $\gamma^2=0.5^2$. Graphs (b) and (c) depict $\hat{z}_2(t,t)$ for white Gaussian observation noises $N(0,0.1^2)$ and $N(0,0.3^2)$. Fig.2 illustrates the stochastic processes of $z_1(t)$ (graph

Fig.1 The sequence of $z_2(t)$ and its filtering estimate $\hat{z}_2(t,t)$ vs. t for $\gamma^2=0.5^2$. (a)······ $z_2(t)$

(b) Filtering estimate $\hat{z}_2(t,t)$ for white Gaussian observation noise $N(0,0.1^2)$. (c) Filtering estimate $\hat{z}_2(t,t)$ for white Gaussian observation noise $N(0,0.3^2)$.

(b) Filtering estimate $\hat{z}_1(t,t)$ for white Gaussian observation noise $N(0,0.1^2)$. (c) Filtering estimate $\hat{z}_1(t,t)$ for white Gaussian observation noise $N(0,0.3^2)$.

(b) M.S.V. of $z_2(t)$ - $\hat{z}_2(t,t)$ for $\gamma^2=1$. (c) M.S.V. of $z_2(t)$ - $\hat{z}_2(t,t)$ for $\gamma^2=0.5^2$.

115

(a)) and its filtering estimate $\hat{z}_1(t,t)$ vs. t for $\gamma^2 = 0.5^2$. Graphs (b) and (c) depict $\hat{z}_1(t,t)$ for white Gaussian observation noises $N(0,0.1^2)$ and $N(0,0.3^2)$. Fig.3 illustrates the fixed-point smoothing estimate $\hat{z}_2(0.3,T)$ vs. T for $\gamma^2=0.5^2$, where the value of $z_2(t)$ at the fixed point t=0.3 is 0.73556. Graphs (a) and (b) show $\hat{z}_2(0.3,T)$ for the observation noises $N(0,0.1^2)$ and $N(0,0.3^2)$. Fig.4 illustrates the mean-square value (M.S.V.) of the filtering error $z_2(t) - \hat{z}_2(t,t)$ vs. t for the observation noise $N(0,0.3^2)$. Graph (a) shows the M.S.V. of the filtering error for $\gamma^2 = \infty$. Graphs (b) and (c) show the M.S.V. of the filtering error for $\gamma^2=1$ and $\gamma^2=0.5^2$ respectively. Fig.5 illustrates the M.S.V. of the filtering error $z_1(t)$ - $\hat{z}_1(t,t)$ vs. t for the observation noise $N(0,0.3^2)$. Graph (a) shows the M.S.V. of the filtering error for $\gamma^2 = \infty$. Graphs (b) and (c) show the M.S.V. of the filtering error for $\gamma^2=1$ and $\gamma^2=0.5^2$ respectively. Fig.6 illustrates the M.S.V. of the filtering error $z_2(t)-\hat{z}_2(t,t)$ vs. t for $\gamma^2=0.5^2$. Graphs (a), (b) and (c) show the M.S.V. of $z_2(t)-\hat{z}_2(t,t)$ for the observation noises $N(0,0.5^2)$, $N(0,0.3^2)$ and $N(0,0.1^2)$ respectively. Fig.7 illustrates the M.S.V. of the filtering error $z_1(t)$ - $\hat{z}_1(t,t)$ vs. t for $\gamma^2=0.5^2$. Graphs (a), (b) and (c) show the M.S.V. of $z_1(t)$ - $\hat{z}_1(t,t)$ for the observation noises $N(0,0.5^2)$, $N(0,0.3^2)$ and $N(0,0.1^2)$ respectively. In Figs. 4~7, the M.S.V. is evaluated in terms of the average of 20 trials for the square value of the filtering error. Table 1 compares the mean-square values of the estimation errors with those of the RLS estimation errors for both the filtering estimate $\hat{z}_2(t,t)$ and the fixed-point smoothing estimate $\hat{z}_2(t,T)$. The mean-square values are shown for the sequences of the white Gaussian

- (b) M.S.V. of $z_1(t) \hat{z}_1(t,t)$ for $\gamma^2 = 1$.
- (c) M.S.V. of $z_1(t) \hat{z}_1(t,t)$ for $\gamma^2 = 0.5^2$.

Fig.7 M.S.V. of the filtering error $z_1(t)$ - $\hat{z}_1(t,t)$ vs. t for $\gamma^2 = 0.5^2$. (a) ······ M.S.V. of $z_1(t)$ - $\hat{z}_1(t,t)$ for the observation noise N(0,0.5²). (b) ······ M.S.V. of $z_1(t)$ - $\hat{z}_1(t,t)$ for the observation noise N(0,0.3²). (c) ····· M.S.V. of $z_1(t)$ - $\hat{z}_1(t,t)$ for the observation noise N(0,0.1²).

observation noises $N(0,0.1^2)$, $N(0,0.3^2)$ and $N(0,0.5^2)$. The mean-square values are calcu-

lated by $\frac{\sum_{i=1}^{2000} (z_2(i\Delta) - \hat{z}_2(i\Delta, i\Delta))^2}{2000}$, $\Delta = 0.001$, for the current and RLS filtering estimates and

by
$$\frac{\sum_{i=1}^{2000} \sum_{j=1}^{2500} (z_2(i\Delta) - \hat{z}_2(i\Delta, i\Delta + j\Delta))^2}{5000000}$$
 for the current and RLS fixed-point smoothing estimates.

....

For the current filtering and fixed-point smoothing estimates, the mean-square values are evalu-

ated for values of γ^2 , 0.5², 1, 5² and 10². The current filtering and fixed-point smoothing estimates for $\gamma^2 = \infty$ correspond to the RLS Wiener estimates [1] respectively. Similarly, Table 2 compares the mean-square values of the estimation errors by the current technique with those of

Table 1 Mean-square values of the estimation errors for both the filtering estimate $\hat{z}_2(t,t)$ and the fixed-point smoothing estimate $\hat{z}_2(t,T)$ when the observation noise obeys $N(0,0.1^2)$, $N(0,0.3^2)$ and $N(0,0.5^2)$.

White Gaussian observation	Kind of estimation technique	Value of γ^2	M.S.V. of filtering error $z_2(t) - \hat{z}_2(t,t)$	M.S.V. of fixed- point smoothing error $z_2(t) - \hat{z}_2(t, T)$
N(0,0.1 ²)	Current estimation	0.5 ²	$\frac{1.2236227 \times 10^{-2}}{1.2515357 \times 10^{-2}}$	$\frac{-2(3)}{3.3813318 \times 10^{-3}}$
	teeninque	5^{2}	$\frac{1.2513337 \times 10^{-2}}{1.2604574 \times 10^{-2}}$	3.5629329×10^{-3}
	RLS estimation technique in [3]	<u> </u>	1.2607373×10^{-2}	3.5647758×10^{-3}
$N(0,0.3^2)$	Current estimation	0.5 ²	9.6362084×10^{-2}	5.0143092 × 10 ⁻²
	technique	1	1.0270526×10^{-1}	5.4761010 × 10 ⁻²
		5 ²	1.0461311×10^{-1}	5.6156003×10^{-2}
		10 ²	1.0467182×10^{-1}	5.6199026×10^{-2}
	RLS estimation technique in [3]	αο	1.0469137 × 10 ⁻¹	5.6213271 × 10 ⁻²
$N(0,0.5^2)$	Current estimation	0.5 ²	1.7907817×10^{-1}	1.0772996×10^{-1}
	technique	1	1.932574×10^{-1}	1.1858771×10^{-1}
		5 ²	1.9706018×10^{-1}	1.2150826×10^{-1}
		10 ²	1.9717448 × 10 ⁻¹	1.2159609×10^{-1}
	RLS estimation technique in [3]	œ	1.9721242 × 10 ⁻¹	1.2162541×10^{-1}

Table 2 Mean-square values of the estimation errors for both the filtering estimate $\hat{z}_1(t,t)$ and the fixed-point smoothing estimate $\hat{z}_1(t,T)$ when the observation noise obeys $N(0,0.1^2)$, $N(0,0.3^2)$ and $N(0,0.5^2)$.

		the second s		
White	Kind of estimation	Value of	M.S.V. of	M.S.V. of fixed-
Gaussian	technique	γ²	filtering error	point smoothing
observation			$z_1(t) - \hat{z}_1(t,t)$	error
noise				$z_1(t) - \hat{z}_1(t,T)$
$N(0, 0.1^2)$	Current estimation	0.5 ²	1.3558144×10^{-2}	3.7466298×10^{-3}
	technique	1	1.3867431×10 ⁻²	3.8988703×10^{-3}
		5 ²	1.3966287×10^{-2}	3.9478549 × 10 ⁻³
		10 ²	1.3969382×10^{-2}	3.9493885×10^{-3}
	RLS estimation technique	œ	1.3970388 × 10 ⁻²	3.949888 × 10 ⁻³
	in [3]			
$N(0, 0.3^2)$	Current estimation	0.5 ²	1.0677241×10^{-1}	5.5560249×10^{-2}
	technique	1	1.1380081×10^{-1}	6.0677015×10^{-2}
		5 ²	1.1591481×10^{-1}	6.2222683×10^{-2}
		10 ²	1.1597985×10^{-1}	6.2270390×10^{-2}
	RLS estimation technique	∞	1.1600147×10^{-1}	6.2286269×10^{-2}
	in [3]			
$N(0, 0.5^2)$	Current estimation	0.5 ²	1.9842541×10^{-1}	1.1936826×10^{-1}
	technique	1	2.1413564×10^{-1}	1.3139912×10^{-1}
		5 ²	2.1834918×10^{-1}	1.3463541×10^{-1}
		10 ²	2.1847590×10^{-1}	1.3473251×10^{-1}
	RLS estimation technique	∞	2.1851786×10^{-1}	1.3476486×10^{-1}
	in [3]			

the estimates for $\gamma^2 = \infty$ in both cases of the filtering estimate $\hat{z}_1(t,t)$ and the fixed-point smoothing estimate $\hat{z}_1(t,T)$. The mean-square values are shown for the observation noises $N(0,0.1^2)$, $N(0,0.3^2)$ and $N(0,0.5^2)$. The mean-square values for the filtering and smoothing estimates of $z_1(t)$ are calculated similarly with those of $z_2(t)$. For the filtering and fixed-point smoothing estimates, the mean-square values are evaluated for $\gamma^2=0.5^2$, 1, 5², 10². From Table 1 and Table 2, we find that the estimation accuracy of the smoothing estimates $\hat{z}_2(t,T)$ and $\hat{z}_1(t,T)$ is superior to the filtering estimates $\hat{z}_2(t,t)$ and $\hat{z}_1(t,t)$ respectively. Also, as the variance of the observation noise becomes small, the mean-square values of the filtering errors $z_2(t)-\hat{z}_2(t,t)$ and $z_1(t)-\hat{z}_1(t,t)$ and the smoothing errors $z_2(t)-\hat{z}_2(t,T)$ and $z_1(t)-\hat{z}_1(t,T)$ become small. Clearly, the estimation accuracy of the estimates $\hat{z}_2(t,t)$, $\hat{z}_1(t,t)$, $\hat{z}_2(t,T)$ and $\hat{z}_1(t,T)$ by the proposed estimators is superior to that of the estimates for $\gamma^2 = \infty$ respectively. As the value of γ^2 increases, the mean-square values of the filtering errors $z_2(t) - \hat{z}_2(t,t)$ and $z_1(t) - \hat{z}_1(t,t)$ and the smoothing errors $z_2(t) - \hat{z}_2(t,T)$ and $z_1(t) - \hat{z}_1(t,T)$ tend to be large.

8. Conclusions

The numerical simulation results have shown that the recursive suboptimal fixed-point smoothing and filtering algorithms in [Theorem 4] are feasible. For $\gamma^2 = \infty$, the estimation algorithms for the fixed-point smoothing and filtering estimates in [Theorem 4] are same as those by the RLS Wiener estimators [3] using the covariance information. For $\gamma^2 < \infty$, the estimation accuracy of the proposed estimators are preferable to those in [3].

In this paper, the stochastic estimation algorithms have been derived in a unified manner.

By use of the covariance information, the optimal and suboptimal estimators have been proposed respectively in [Theorem 3] and [Theorem 4] for linear continuous-time stochastic systems. The estimation algorithms for the fixed-point smoothing and filtering estimates of $z_2(t)(=Lx(t))$ and $z_1(t)(=Cx(t))$ have been obtained in relation to the deterministic H_{∞} estimation technique in the Krein spaces [1],[2].

In [Theorem 5] and [Theorem 6], by use of the state-space parameters, the optimal and suboptimal algorithms for the fixed-point smoothing and filtering estimates have been derived respectively. The suboptimal filtering equations in [Theorem 6] using the state-space parameters are identical with those based on the game theory approach [5] in linear continuous systems. The suboptimal fixed-point smoother in [Theorem 6] is proposed for the first time in this paper.

References

- [1] B. Hassibi, A. H. Sayed and T. Kailath, "Linear Estimation in Krein Spaces Part I," IEEE Trans. Automatic Control, Vol.41, no.1, pp.18-33, 1996.
- [2] B. Hassibi, A. H. Sayed and T. Kailath, "Linear Estimation in Krein Spaces Part II," IEEE Trans. Automatic Control, Vol.41, no.1, pp.34-49, 1996.
- [3] S. Nakamori, "Design of Recursive Wiener Smoother Given Covariance Information," IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, Vol.E79-A, pp.864-872, 1996.
- [4] K.M. Nagpal and P.P Khargonekar, "Filtering and Smoothing in an H[∞]-Setting," IEEE Trans. Automatic Control, Vol.36, pp.151-166, 1991.
- [5] I. Yaesh and U. Shaked, "Game Theory Approach to Optimal Linear State Estimation

and Its Relation to the Minimum H_{∞} -Norm Estimation," IEEE Trans. Automatic Control, Vol.37, pp.828-831, 1992.

- [6] I. Yaesh and U. Shaked, "Game Theory Approach to Optimal Linear Estimation in Minimum H_{∞} -Norm Sense," Proceedings of the 28th Conference on Decision and Control, pp.421-425, 1989.
- [7] U. Shaked and Y. Theodor, " H_{∞} -Optimal Estimation: A Tutorial," Proceedings IEEE Conference on Decision and Control, pp.2278-2286, 1992.
- [8] I. Yaesh and U. Shaked, "Nondefinite Least Squares and its Relation to H_∞-Minimum Error State Estimation," IEEE Trans. Automatic Control, Vol.36, no.12, pp.1469-1472, 1991.
- [9] A.P. Sage and J.L. Melsa, Estimation Theory with Applications to Communications and Control, McGraw-Hill, 1971.
- [10] L.M. Silverman, "Realization of Linear Dynamical Systems," IEEE Trans. Autom. Control, vol.AC-16, no.6, pp.554-567, Dec. 1971.