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Abstract. The purposes of this article are (1) to more explicitly describe Hae-
fliger’s obstruction for a map f: M" — N?'~* to be homotopic to an embedding, (2)
to show some relations among the Stiefel-Whitney classes of a map f and (3) to give
methods to determine the Stiefel-Whitney classes of a map.

1. Introduction

Throughout this note, n-manifolds mean n-dimensional connected dif-
ferentiable manifolds without boundary. The cohomology is understood to
have Z, as coeflicients.

For a map f : M — N between manifolds, the total Stiefel-Whitney class
of fLw(f)(=>2isowi(f)), is defined by the equation

w(f) = w(M)f*(w(N)), (1.1)

where w(N) and w(M)(=w(M)™") are the total Stiefel-Whitney class of N and
the total normal Stiefel-Whitney class of M, respectively. For an n-manifold
V", let Uy € H"(V?) denote the mod 2 Thom class (or the diagonal class) of
V' as given in [6, p. 125].

Haefliger [1.5 and 3.7] defined a primary obstruction ¢{ e H" (M)
for a map f:M" — N"* to be homotopic to an embedding, where
M*(=(M x M — AM)/Z,) denotes the reduced symmetric product of M.

THEOREM (Haefliger). For a map f: M" — N % the primary ob-
struction ¢{ to being homotopic to an embedding vanishes if and only if (1)
Unm(1 @ wai(f)) + (f2) Uy =0, and (2) wi(f) =0 for i >n—k.

The explicit description of H*(M*) is given in [7, §2] (see §2). But ¢{
has not been given an explicit description as an element of H*(M*). We
regard the isomorphism p,, | B}, @ I}, : By, ® I}, — H*(M*) in [7, Proposition
2.9(d)] (see Theorem 2.1 in §2) as the identity. Then we have
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THEOREM 1.1. Let M" be a compact n-manifold. Then for a map
f M N?.n—k

= UM(I ® Wn—k(f)) + (fz)*UN
+ > Y uPe (O Wn—rtsj—i(£))-
1<j<[(k=1)/2) 0<i<j
Here Q' : H*(M) — H*"(M)(i > 0) are Yo’s operations defined in [11]
(see [8, §2]) and satisfy the relation
> S¢' 0}, (x) = xwi(M) for x e H'(M). (1.2)
ij=k
COROLLARY 1.2. Under the above assumption, ¢{ =0 if and only if (1)
Un(1 @ waic(f)) + (f2) Uy =0, and 2) wi(f) =0 forn—k <i<n—[§] - 1.

This corollary and Haefliger’s theorem indicate that w;(f) for i > n—k/2
are described by using w](f)(n —k<j<n-—1k/2]). In fact, we have the
following relations, where 0, = 3,00y, is the dual to Qu =35, O,
that is, 0, Om = Qu Oy = 1.

THEOREM 1.3. Let M™ be a compact n-manifold.
(1) For f:M"— N1,

W+ () = D, Y O O Wauery i (f)  fori=0.

1<j<k 0<i<i
(2) For f:M"— N %,
Wak () = D Qi (f) + S on ik (N),

1<j<k

wnkri(f) = D, D 0O waks (/) fori=1.

0<j<k 0<i<i

Here v;(N) stands for the i-th Wu class of N.

The relation (1) in Haefliger’s Theorem (or in Corollary 1.2) is important
in the study of embeddings. The following method helps determine w,_¢(f).
Let Sq(=Y;55¢") be the dual operation to Sg(=Y",(S¢’), that is, S¢° = 1,
> o<i<;S4'Sq/ = 0(j > 0).

THEOREM 1.4 (cf. Li-Peterson). For a map f: M — N,
w(f)x, [M]y = {Sq(x)f*(v(N)),[M]>  for xe H'(M),

or equivalently

Wi (f)x =Y Sq'(X)f*(va—jmi(N))  for x € H'(M).

i>0
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Applications of these theorems to the existence and the non-existence
problems of embeddings will be given in, e.g., [10] and [9], respectively.

This note is organized as follows. §2 is devoted to the explanation of
H*(M*) by [7], Haefliger’s obstruction ¢{ [1] and Yo’s operation Q), and its
dual [11]. We will prove Theorems 1.1, 1.3 and 1.4 in §3, §4 and §5,
respectively.

2. Preliminaries

We adopt the notations and definitions used in [7, §2].

For a manifold M, let M? be the product M x M and AM the diagonal
of M in M?. The group Z, acts on M? by interchanging factors. We set
M* = (M?*—AM)/Z,. Further, we set I'M = S® x zyM?, where Z, acts
by the diagonal action. Let i:S8% x z3(M?>—AM)c I'M and p:S®x
z3(M?* — AM) — M* be the natural inclusion and the natural projection.
Then p is a homotopy equivalence and the map p,, = p: H*(I'M) — H*(M*)
in [7, Theorem 2.1] is given by p;, =p*~'i* [8, (2.2)]. Let 3 be the in-
volution of M? which transposes the factors and let

Iy=(1+6,)H (M?*) and Kj ={(x*)(=x®x)|xe H(M)}.

Further let u e H'(P®) be the generator.

THEOREM 2.1 (Thomas). (1) There is an H*(P*)-module isomorphism

H*(I'M) = H*(P*)®K;, ® I},
where H*(P*) acts on I, trivially.

(2) Let By, be the subgroup of H*(I'M) generated by all elements of the
form W @ (x)* with j+dimx < dim M. The restriction of pyr to By @I is
a group isomorphism,

Pt | By ® Iy : By @ Iy = H* (M),
For a map f : M" — N?°*_ the obstruction ¢ € H**(M*) in [1, §3] is
described as
= > @Ry +pu((F) TN, (21
0<j<[2n—k-1)/2]
in other words, ¢{ =pul()'ony(1®1) by [8, Proposition 2.6].

Yo [11] defined operations Oy = 3,0 Oi, Q) : H*(M) — H** (M), for

compact manifolds A", which satisfy such properties as

0% =1, Qix=0 if2i>dimM —dimx, (2.2)

SqOmx = xw(M), Qux=w(M)Sqx. (2.3)

There are some other relations.
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LeMMA 2.2. Let M be a compact manifold. Then
Oyx=0 ifi>0xeH" (M), (2.4)
Oy fo(N)=w(f) forf:M — N. (2.5)

Proor. For i> 0, QMX_ZO<1<1 1Q QMx by the deﬁmtlon of QM
If dimx=n—1i, then n—dlmQ_x—l—j<2(l—- /). Hence Q QMx—O

for 0 <j<i by (2.2) and so Q;Wx = 0. This shows (2.4). y (2.3) and
the relation w(N)= Squ(N), we have Q, f*v(N)= W(M)Sqf*v(N) =
w(M) f*Squ(N) = w(M)f*w(N) = w(f). O

3. mod 2 primary obstructions
In this section, we will prove Theorem 1.1, while using the following

LEMMA 3.1.  Let M" be a compact n-manifold. ~Then for any x € H""|(M),

@@ @)= Y Y sV ® (040 )

1<j<[(k-1)/2] 0<i<j

+par(Un(1® Oy x)).

Proor. If [k/2] <i < k, then the relation holds trivially. For i >k, we
prove the relation by induction. If i =k and x € H""¥(M), then ¢, (1® 1) =
D 0<j<((k-1)/2 4 f®(QMx) + Uy (1 ® x) by [8, Proposition 2.6]. Hence

P @)= > T ®(04%)7) +pu(Un(1®x))
1<j<[(k-1)/2]

= Y S oY © (0400 + par(Un(1 ® ).

1<j<[(k-1)/2] 0<I<j

Assume that the equations hold for [k/2] <i < m and consider the case when
i=m+1. For xe H™™ (M), we have, by [8, Proposition 2.6],

(PM(u’n+l_k ® xn-m—l) - Z um+]—k+m+l—2r ® (Q;VIX)Z
0<r<((m+1)/2]

Hence, by the assumption of induction and the fact that Q},x=0 for
2r>n—dimx=m+1,

pM(HZ(erl)—k ® (x)Z)
— Z pM(uZ(m+l)—k-27 ® (Q;\,[x)z)

1<r<[(m+1)/2]
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= 2 S e 040y T )

1<r<|(m+1)/2] 1<j<[(k—-1)/2) 0<I<j
m+1—r—k
+ > puUn®0y T
1srs[(m+l)/2]

2
_ Z p<k21®<zZQM—m+1k+]1rQ;,Mx>>
]

1<j<([(k-1)/2 0<l<j 1<r

+pM<UM<1 ® ZthLl —k— rQM.X))

I<r

- Y Y e @ ay

1<j<[(k=1)/2] 0<i<j

Oyx))

+pu(Un(1® Oy %)),

Thus the relation holds for m + 1. This completes the proof. O
Now we are ready to prove Theorem 1.1.

PrOOF OF THEOREM 1.1. For a map f: M" — N?** we have

K= 5 @@ (oM + oy () Ux) by (21,
0<m<|[(2n—k-1)/2]

_ Z Z Zp WY @ (0,0

0<m<[(2n—k—1)/2] 1<j<[(k—1)/2] 0<i<j

n—m—k+j—1

f*Um(N))z)

+ Y puUn(1® 0" (V)
03m£[(2n~k~1)/2]
+pu((fH)*Uy) by Lemma 3.1

2
- > fere(ya v )

1<j<[(k-1)/2] 0<i<jy 0<m<n—k+j—1

+/7M<UM<1 ® Z Qn . mf Vm(N )>> +pM((f2)*UN)

0<m<n—k

= D D ru I @ (Qhywa kit () + par(Un (1 ® wak(£)))

<j<[(k=1)/2] 0<I<;
+pu((f)*Uy) by (1.1) and Lemma 2.2.

Regarding p,, | B* @ I* as the identity, we complete the proof. O
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ExaMPLE 3.1. Let f:M" — N>* If k=0, then ¢{ =0, because
H>(M*)=0. If k>0, then
5 = Un(1 @ war(f)) + (f*) Uy
0 fork=1,2,
U2 @ (Wp_ier1(f))? for k = 3,4,
W2 (Wair1(f))?
@ (Waks2(f) + (Sg" + wi(M))wis1(f))? for k =5,6.

Corollary 1.2 and Haefliger’s theorem indicate that if (1) and (2) of
Corollary 1.2 are satisfied then w;(f) =0 for i>n—[k/2]. This follows
immediately from the following lemma. Let j: PM — M* be the natural
inclusion and set j*u=u. Then

+

LEMMA 3.2. For a map f: M" — N?k,
J#, = Z Z W Wi (M) Wy_gyi(f)-

I<i<k 0<j<i

PROOF.

FH= Y gk @@ (f*uiN))?) + pakt (f7) U

0<i<[(2n—k—1)/2]

by (2.1) and the commutative diagram in [7, Theorem 2.1]

= szk*(uzn_k_Zi ® (f*vi(N))?)

0=t
(/3 Uy eIy if k is odd,
(f2)"(Un + (vagyy(N))?) €Iy if k is even,

by [8, Proposition 2.6], and k*I;, = 0 by [7, Proposition 2.5],

because{

= Y uPk2HSeif*y(N) by [7, Proposition 2.5 and (2.7)]

0<j<i
= Zu?.n—k—l Z f*quUi(N) _ Zu2n~k—1f*w1(N

o</ i+j=I o</
Z W2k (N) + Z 2L (N

<Il<n n—k<l<n
= 2 2w 3 ik (MBS V)
0<i<n I1<i<n 0<j<n—k-I

3 W f*w,_ii(N) by [2, Proposition 3.1].
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Let a; be the coefficient of #"~/. Then

a= Y Y Wikt (M)FM) Wi(N) + [ Wi (N)

0<l<n—k 0<j<n—k—I

S Wik (M) (MY W) + £ Weieri(N)

0<m<n—k 0<l<m

= Z Wi+n—k~m(M)Wm(f) +f*wn—k+i(N) by (11)

0O<m<n—k

= Z Wi(M)Wyii—k—j(f) because w(M)w(f) =f"w(N) by (1.1). [

0<j<i

4. Relations among Stiefel-Whitney classes of a map

The aim of this section is to prove Theorem 1.3. For a map f: M" —
N2k we have

J* 8 = par(Une(1 ® wai(£)) + (f2) Un)

+ 0> > Y @ (@) Wakaj—i(f))?) by Theorem 1.1,
0<j<[(k—1)/2] 0<I<)

= Y Y oY @ (@it (1))

0</j<[(k-1)/2] 0<i<j
+ [Park (1@ (Q4 Wk (1) + (/) 0w (N)))]'
by the diagram in [7, Theorem 2.1] and [8, Proposition 2.6].

Therefore, for a map f: M" — N?'~* we have, by [7, Proposition 2.5 and
(2.7)],

Fe= Y S Y WS O wakaa(f) (4.1)

1<j<[(k=1)/2] 0<i<j 0<i<n—k+j
55 > WS (VP Wik (f) + 1 tnia (V)
0<i<n—k/2

We begin proving Theorem 1.3. We give the proof of (2) and omit that
of (1).

PrOOF OF THEOREM 1.3(2). Comparing the coefficients of u"~% of j*¢{ ’s

1. brackets appear only when k is even.
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in Lemma 3.2 and (4.1), we have

Wk () = D wi(M)Wazieik—i(f) + Qhpwn-2k(f) + /" 0n-k(N)

1<j<k

+ > > 8¢ Qlwn ki (f)

1<j<k 0<i<j

= Z Wi(M)Wni—i () + Ok Wn—2k(f) + [ Vn-ic(N)

1<j<k

+ Z Z Sq" QW i—m(f) by settingk —j+I=m

1<m<k 0<l<m

= QWn-2x(f) +f*vak(N)

+ Z ( Z Sqm_[qu a5 Wm(M)> Wn—i—m(f)

I<m<k \0<lI<m

= [ Vp_i( N Z QMWn k—m( + Qlji/[H}n*zk(f) by (2.3).

1<m<k

Thus (2) for i = 0 holds. Next, we consider the coefficients of u" %=1 Then

Wnk+1(f) = Z Wi(M)Wair1-(f) + Sq" (O W2k (f) + [ vn-r(N))

1<j<k

+ > > SeTT QW kg (f)

1<j<k 0<i<j

= wi(M)Wyic(f) + 5" (QsyWn—2k(f) + [ *vn—ic(N))

+ Z (Wm+1 Z Sqm+1MIQ§u> Wn—k—m(f)

1<m<k 0<i<m

= wi(M)wp_i(f) + 54" (Qywn-2u(f) +f*va-r(N))
+ 3 (Sq' O+ Ont wakm(f) by (23),

1<m<k

= Wl(M)Wn k +Sq ( Z QMWn k— m )+f*vn—k(N)>

l<m<k

+ Z Qﬁ_Hwn k—m f)

l<m<k

= O wuic(f)+ D Q' Wakom(f) by (2) fori=0.

1<m<k
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Thus (2) holds for i=1. We assume that (2) holds for i=0 to i. By
comparing the coefficients of #"*~~! we have

Wa—tri1 () + Sq Qw2 (f) +/*vu-i(N))

— Z Wj(M)Wn k+z+1—j Z Z qu+l+1‘]QMwn 2k4j— I(f)

1<j<k+i 1<j<k 0<i<j

= Y wiMWairini () + Y wi(M)Wakyiv1(f)

1<j<i i+l <j<k+i

+ Y > Sg Ol W kom(f) by settingk —j+1=m

l<m<k 0<i<m

= 3w 3 3T Q0 k()

I<j<i 0<m<k 0<I<i—j

+ Z Wi+1+m(M)Wn—k—m(f)

0<m<k

X3 Z Z Sq M=ol W, k_m(f) by the assumption of induction,

I<m<k 0<i<m

" 2 (Z > wM M)03 Q' 7" 4 Wit (M)

l<m<k \1<j<i 0<I<i—j

L Z Sqi+l+m_lQ§u>Wn—k—m(f)

0<l<m

+ < > w(d) o 0,0+ w,-+1(M>> wnk(f)

1<j<i 0<i<i—j

- Z ( Z Z wr~l(M)Qj\4Q;l+')1_r+Q§\}‘l+m

I<m<k \1<r<i 0<l<r

T Z Squj;erm_r) Wn—te—m ()

I<r<i+l

( Z Z wr—i( QMQhLl 4 Wi+1(M)> wak(f) by settingj+1=r,

I<r<i 0<i<r
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- Z Squ}lt—/Ii—l-F"Pr) Wn«k—m(f)

1=r<i

(O +S4) 04"~ r+wi+l(M)>Wn—k(f) by (2.3),
I<r

<i

Z QMQ1+1+m r Q1+1+m S, t+1QM)Wn o m(f)

o
- (z
( Z Qi+1—r+ Z Sq’Q}}}L]*'+Wi+1(M)> wn_r(f)

>

I<r<i

0

+Sqi+1 (Wn k Z QMWn k— m ))

1<m<k

Qj\j[_1+mwn—k—m(f) i Z Z Q;MQEI_Fm_rW"_k_'"(f)

m<k 0<m<k 1<r<i

IA

Hence, we have, by (2) for i =0,

Wakiin ()= D D OO ™ Wakem(f)-

0<m<k 0<r<i

This completes the proof of (2). O

5. On the estimate of the Stiefel-Whitney classes of a map

Theorem 1.4, below, was proved implicitly in the proof of [5, Theorem
2.1]. We will give another proof in a way somewhat different from that of
[5], while using older methods.

THEOREM 1.4 (cf. Li and Peterson). For a compact n-manifold M" and
a map f: M" — N"K,

w(f)x, [M]> = {Sq(x)f*(v(N)), [M]>  for x e H"(M).

PrOOF. Let f:M" — N be a map and let xe H*(M). Then
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W), [M]y = RN (w(N))x, [M]> by (1.1),
= (R(M)f*(Sq(v(N)))SqSa(x), [M]>  because Squ(N) = w(N),
= <H(M)Sq(f* (v(V)) Sq(x)), [M]>
= Ou(f* (V) Sq(x)), [M]y by (23),
= (o Ol (o(N)Sq(0), s [M1),

where  [/*(v(N))Sq(x)],, denotes the (n— k)-dimensional part of
f*(o(N))Sq(x). By (2.4), we have

w(f)x, [M]y = {[f*o(N)Sq(x)],, [M]> = <f*v(N)Sq(x), [M]>. O

COROLLARY 5.1 (cf. Li and Peterson). The following relations hold:
(1) wat (f)x = 2in0 X%/ (0g—2:(N)) for xe H' (M),
(2) waa(f)y = Xino ¥ [ (vn1(N)) for y e H}(M) with Sq'y = 0.

Proor. This follows from Theorem 1.4 and the facts that Sg(x) =
Yisox? if dimx =1, and Sq(y) =Y",.,»% if dimy =2 with Sg'y =0. O

Applications of this corollary to the non-existence problem of immersions
and embeddings are given in [5] and [9].
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