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Abstract. The purposes of this article are (1) to more explicitly describe Hae-

fliger's obstruction for a map / : M" —> N2"~k to be homotopic to an embedding, (2)
to show some relations among the Stiefel-Whitney classes of a map / and (3) to give
methods to determine the Stiefel-Whitney classes of a map.

1. Introduction

Throughout this note, w-manifolds mean ^-dimensional connected dif

ferentiate manifolds without boundary. The cohomology is understood to
have Z2 as coefficients.

For a map / : M —• N between manifolds, the total Stiefel-Whitney class
of /,w{f){=Y^i^QWi(f)), is defined by the equation

w(f) = w(M)f*(w(N)), (1.1)

where w(N) and w(M)(=w(M)~l) are the total Stiefel-Whitney class of TV and
the total normal Stiefel-Whitney class of M, respectively. For an ^-manifold
V, let Uy e H"(V2) denote the mod 2 Thorn class (or the diagonal class) of
V as given in [6, p. 125].

Haefliger [1.5 and 3.7] defined a primary obstruction <j>{ e H"+k(M*)
for a map / : M" —> Nn+k to be homotopic to an embedding, where
M*(=(M x M - AM)/Zz) denotes the reduced symmetric product of M.

Theorem (Haefliger). For a map f : M" —» N2"~k, the primary ob
struction </>2 to being homotopic to an embedding vanishes if and only if (1)
UM{\ ® w„_fe(/)) + (f2)*UN = 0, and (2) wt{f) = 0 for i > n - k.

The explicit description of H*(M*) is given in [7, §2] (see §2). But
has not been given an explicit description as an element of H*(M*). We
regard the isomorphism pM | B*M © I*M : B*M © I*M -» H*(M*) in [7, Proposition
2.9(d)] (see Theorem 2.1 in §2) as the identity. Then we have
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Theorem 1.1. Let M" be a compact n-manifold. Then for a map
f:M"-* N2"-k,

<t>{=uM(i®w„_k(f)) + (f2yuN

+ E Y,uk~Z3®&M*>n-k+j-i{f))2-
l<j<l(k-\)/2] 0<i<j

Here QM : H*(M) -» H*+i{M)(i > 0) are Yo's operations defined in [11]
(see [8, §2]) and satisfy the relation

Y/SqiQJM(x)=xwk(M) for xeH*(M). (1.2)
i+j=k

Corollary 1.2. Under the above assumption, <j>{=^ if and only if (1)
UM(\ ® w„-k{f)) + (f2)*UN = 0, and (2) wt(f) = Ofor n- k < i < n- [§] - 1.

This corollary and Haefliger's theorem indicate that ve,-(/) for i > n - k/2
are described by using wj(/)(«- k <j <n- [k/2]). In fact, we have the
following relations, where QM - £,•><, Q'M is the dual to Qm = T/i>q Q'm>
that is, QmQm = QmQm = !•

Theorem 1.3. Let M" be a compact n-manifold.
(1) For f :M" -> JV2"^2*-1),

w„.(,_1)+;(/) = y, E fiLe^_V(*-iw(/) >-'>o.
1 <y<Jt 0</<;

(2) For /:¥"-> iV2"-2*,

*„_*(/) = ^ QitWn-k-jU) +f"»-t(A0,
i <y</t

w„_fc+/(/)= E E eLeM7'"Vw(/) >-/>i.
0 <Jr"<Ar 0</<;

Here u,-(/V) stands for the i-ih Wu class of 7Y.
The relation (1) in Haefliger's Theorem (or in Corollary 1.2) is important

in the study of embeddings. The following method helps determine w„-k(f).
Let Sq{=J2i>o Sq') be the dual operation to 5,?(=E^0,S'?')» that is> ^9° = *>
Zo*i£jSqiSqJ-t = 0U>0).

Theorem 1.4 (cf. Li-Peterson). For a map f : M —> N,

<w(/)x,[M]> = (Sq(x)f*(v(N)),[M]y forxeH*(M),

or equivalently

w„-j(f)x = J2 Sq,(x)r(vl^j.i(N)) for xe W{M).
i>0
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Applications of these theorems to the existence and the non-existence

problems of embeddings will be given in, e.g., [10] and [9], respectively.
This note is organized as follows. §2 is devoted to the explanation of

H*(M*) by [7], Haefliger's obstruction (j>{ [1] and Yo's operation Q'M and its
dual [11]. We will prove Theorems 1.1, 1.3 and 1.4 in §3, §4 and §5,

respectively.

2. Preliminaries

We adopt the notations and definitions used in [7, §2].
For a manifold M, let M2 be the product M x M and AM the diagonal

of M in M2. The group Z2 acts on M2 by interchanging factors. We set
M* = (M2 - AM)/Z2. Further, we set FM = S™ Xz2M2, where Z2 acts
by the diagonal action. Let /': 5°° x z2(M2 - AM) c FM and p-.S^x
z2{M2 - AM) —> M* be the natural inclusion and the natural projection.
Then p is a homotopy equivalence and the map pM = p : H*(FM) —» H*(M*)
in [7, Theorem 2.1] is given by pM=p*~xi* [8, (2.2)]. Let tM be the in
volution of M2 which transposes the factors and let

rM = (\+tl!)H*(M2) and K*M = {(x2)(= x® x)\x e H*(M)}.
Further let ueH^P™) be the generator.

Theorem 2.1 (Thomas). (1) There is an H*(PaD)-module isomorphism

H*(FM)^H*(Pa')®K*M®rM,

where H*(PC0) acts on IM trivially.
(2) Let B*M be the subgroup of H*(FM) generatedby all elements of the

form uj ® (x)~ with j + dimx < dimM. The restriction of pM to B*M © IM is
a group isomorphism,

pM\BM®IM:BM®FM^H*(M*).

For a map / : Mn -> N2n~k, the obstruction (j>{ e H2"-k{M*) in [1, §3] is
described as

</>{= E PM(u2"-k-2j®(rvAN))2)+pM((f2yuN), (2.i)
0</<[(2/nt-l)/2]

in other words, cj>{ = pMF{f)*<pN(\ ® 1) by [8, Proposition 2.6].
Yo [11] defined operations QM = £li0 Q'M, QM : H*{M) -> H*+i{M), for

compact manifolds M", which satisfy such properties as

0m = 1, Qmx = 0 if 2/> dimM-dim x, (2.2)

SqQMx = xw(M), QMx=w(M)Sqx. (2.3)

There are some other relations.
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Lemma 2.2. Let M be a compact manifold. Then

QMx = 0 ifi>0,xe H"-'{M), (2.4)

QMf*<N)=w(f) forf:M^N. (2.5)

Proof. For i>0, QMx =£o<y<,-i Q'mQmx bY the definitionj3f Q'M.
If &\rs\x = n- i, then n- d\mQJx = i-j < 2(i-j). Hence Q'^QMx —0
for 0<j<i by (2.2) and so Q^x = 0. This shows (2.4). By (2.3) and
the relation w(N) = Sqv(N), we have QMf*v(N) = w(M)Sqf*v(N) =
w{M)f*Sqv(N) = w{M)f*w{N) = w(f). •

3. mod 2 primary obstructions

In this section, we will prove Theorem 1.1, while using the following

Lemma 3.1. Let M" be a compact n-manifold. Thenfor any x e H"~'{M),

PM(u2i-k ®(x)2) - E E pu^-%! ®(q'mQm^'x)2)
\<j<\(k-\)/2] 0<l<j

Proof. If [k/2] < i < k, then the relation holds trivially. For ;' > k, we
prove the relation by induction. If i = k and x e H"~k(M), then <pM(1 ® 1) =
£o<y<[(*-i)/2] uk~2j ®(Qmx)2 + UmO- ®x) by [8, Proposition 2.6]. Hence

pM(uk®(x)2)= Yl Pm(^-2J®(QJmx)2)+Pm(Um(1®x))
\<j<[(k-\)l2\

= E E PM{uk-lj®{Q'MQiM,x)2)+pM(UM{\®x)).
\<j<[[k-\)/2] 0<Kj

Assume that the equations hold for [k/2] <i<m and consider the case when
i = m+\. For xeHn~m~1(M), we have, by [8, Proposition 2.6],

,„ f,,m+\-k ^, v \_ V"* ,.m+\-k+m+\-2r ^j, try \2
<PM\U ®X,,-m-\) — 2.^1 ®\Y.MX) •

0<r<[(m+l)/2]

Hence, by the assumption of induction and the fact that QrMx = 0 for
2r > n —dim x = tn + 1,

M«2(W+1M ® «2)

= E PM^2(m+X)-k-2r®{QrMxf)
l<r<[(m+l)/2]
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E E E PM(uk-2j ®(Q'MQnM+l-r-k+J-'Qm*)2)
l<r<[(m+l)/2] l<;<[(/t-l)/2] 0<l<j

+ E PM(UM(\®QM+l~r~kQrMx))
l<r<[(m+l)/2]

E pm U-2J 9(E EQmqT-^'-'q'm*)2)
\<j<[(k-\)/2] \ \0<Kj \<r / /

+PM(uM(l®YQ7l~k~rQMx))

= E Ep^-^^mQ'm^''-)2)
i<j<[(k-\)/2\ 0</<y

+PM(UM(l®Q"M+l~kx)).

Thus the relation holds for m + 1. This completes the proof. •

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For a map / : M" —> N2"~k, we have

tf2= E PM{u2"-k-2m®(Pvm(N))2)+pM((f2yUN) by (2.1),
0<m<[(2«-yt-l)/2]

E E E PM(»k-2j ®(G^rm-Wr«m(iv))2)
U£m<[(2n-fc-l)/2] 1<j<[(k-1)/2] 0</<;

+ E MtMi®er"V*MAO))
0<m<[(2n-/t-l}/2]

+ PM((f2)*UN) by Lemma 3.1

E ^ («** ®fE Qm E 8^^.(Wf)
l</<[(fc-l)/2] \ \0</<7 0<m<n-k+j-l ) )

+pM(uM(\® J2 QMk~'Yvm(N)))+pM((f2yuN)
E E />*(«*"* ®(Q>n-k+H(f))2) +Pm(Um{\ ®*_*(/)))

\<j<[(k-\)/2] 0</</

+ PM{{f2T UN) by (1.1) and Lemma 2.2.

Regarding pM \B* © /* as the identity, we complete the proof. •
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Example 3.1. Let f :M" -> N7n~k. If k= 0, then <j>[ = 0, because
H2n{M*) = 0. If k > 0, then

<f>{ = uM(i®wn_k(f)) + (f2yuN
0 for k =1,2,

«*-2®K_fc+,(/))2 forfc = 3,4,

uk-%®{w„-M(f)f
I +^-4®(1v„_/t+2(/) + (5?1+vv,(M))^_/t+1(/-))2 for/: =5,6.

Corollary 1.2 and Haefliger's theorem indicate that if (1) and (2) of
Corollary 1.2 are satisfied then wt(f) = 0 for i>n-[k/2). This follows
immediately from the following lemma. Let j : PM —> M* be the natural
inclusion and set j*u = u. Then

Lemma 3.2. For a map f : M" -> N2"~k,

M = E E u'"iwj{M)wn.k+H{f).
\<i<k 0<j<i

Proof.

7*^2 = E P2k*(u2"-k~2i ®(rv,(N))2)+p2k*(f2yUN
0<i<l(2„-k-l)/2]

by (2.1) and the commutative diagram in [7, Theorem 2.1]

= ZZP2k*(u2n-k-2i®(rvi(N))2)

+ <

0<i

because
((f2)*UNeFM if k is odd,

{(f2y(UN + (vn_m(N))2)eIM if* is

by [8, Proposition 2.6], and F7^ = 0 by [7, Proposition 2.5],

= E "2*~k~2t+i~JSqJf*ViW by [?> Proposition 2.5 and (2.7)]
o</</

= E"2""^' E rsq^N) = Yu2n-k-'r^{N)
0<l i+j=l 0</

= J2 u2"-k'lf*wi(N)+ J2 u2'-k-'f*w,{N)
0<l<n-k n-k<l<n

= E E M"_/ E wn+i-k+,-J{M)wj{M)rwl{N)
0<l<n-k 1</<« 0<j<n-k-l

+ J2 W-'fWn-k+iiN) by [2, Proposition 3.1].
0</<A:

is even,
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Let a,- be the coefficient of u"~'. Then

a'= E E ^+i-k-i-j(M)wj(M)rw,(N)+rw^k+i(N)
0</<«-£ 0<j<n-k-l

= E E wi+»-k-m{M)wm^,{M)f*wl{N)+f*w„^k+i{N)
0<m<n-k 0<!<m

= Y m+n-k-m{M)wm{f)+f*wn-k+i{N) by (1.1)
0<m<n-k

= Y Wj(M)w„+i-k-j(f) because w{M)w(f) =f*w(N) by (1.1). Q
0<y'<;

4. Relations among Stiefel-Whitney classes of a map

The aim of this section is to prove Theorem 1.3. For a map / : M" —>
N2"~k, we have

M =J*Pm(Um(1 ®wn.k(f)) + (f2)*UN)

+ E E J*PM(uk-2j ®(Q>n-k+J-,(f))2) by Theorem 1.1,
0<y<[(H)/2] 0</<j

= E E fPM(uk-2J®(Q>»-k+J-i(f))2)
0<j<[(k-\)/2] 0</<7

+ [PMk*{\ ®(QT'^n-kif) + (f2Tvn-k/2(N))2)}]
by the diagram in [7, Theorem 2.1] and [8, Proposition 2.6].

Therefore, for a map / : M" —> N2"~k, we have, by [7, Proposition 2.5 and
(2.7)],

rrt E E E »"-'-'Sq'Q'MW^j-M) (4.1)
\<j<[(k-\)/2] 0<l<j 0<i<n-k+j

+ Y u^-'Sq'iQ'fw^if) +rv„.k/2(N))
0<i<n-k/2

We begin proving Theorem 1.3. We give the proof of (2) and omit that
of (1)

Proof of Theorem 1.3(2). Comparing the coefficients of u"~k of y'*^{'s

1. brackets appear only when k is even.
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in Lemma 3.2 and (4.1), we have

Wn_k{f) = Y WJ(M)wtt-2k+k-j(f) + QMwn-2k{f) +f* V„-k{N)
1<j<k

+ E E Sqk-iQ'Mw„.2k+H{f)
\<j<k 0<l<j

= Y Wj(M)w„-k-j(f) + QkMwn.2k{f) +f*v„-k(N)
1<j<k

+ Y E s<r~lQMw»-k-m(f) ^ settingk-j+ l= m,
\<m<k 0<l<m

= Q>»-2k(f) +rV„-k(N)

+E ( E S^'QM +"M(M))w**-m(f)
\<m<k \0</<m J

=f*vn-k(N)+ Y Q">n-k-M) + Q>>,-2k(f) by (2.3).
1 <m<k

Thus (2) for i = 0 holds. Next, we consider the coefficients of u"~k~1. Then

w„-k+i{f) = Y Wj(M)wn-k+l-j(f) + Sq\QkMw,^2k(f) +rvn-k(N))
l<j<k

+ E E Sqk^Q'Mwn.k.{k.j+l){f)
\<j<k 0<l<j

= Wl(M)wn-k(f) + Sq\QkMwn_2k{f) +rv*-k(N))

+ Y Un+i(M)+ Y S^+{-'Q'M\wn.k.m{f)
\<m<k V 0</<m /

= w,(M)vv„_,(/) +Sqi(QkMwn.2k(f) +f*vn.k(N))

+ Y (Sq'Qv + QZ^n-k-M) by (2.3),
1 <m<k

=Wl(M)Wn-k(f) +Sqll Y Q'>n~k-,n{f) +rVn-k(N) )
\\<m<k J

+ Y Qu^n-k-M)
\<m<k

= QMwn_k(f)+ Y Q"M+^n-k-m(f) by (2) for / = 0.
1 <m<k
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Thus (2) holds for i = 1. We assume that (2) holds for i = 0 to i. By

comparing the coefficients of u"~k~'~\ we have

W„.k+i+](f) + Sqi+](QkMW„.2k(f) +rvn-k(N))

= Y ">j(M)Wn-k+M-j(f) + Y E Sqk+M~JQ'Mwn.2k+H{f)
\<j<k+i \<j<kQ<l<j

= Y wj{M)wn-k+i+\-j{f) + Y Wj(M)Wn-k+i+\-j(f)
\<j<i i+\<j<k+i

+ E E Sqi+x+m->Q'Mwn.k.m{f) by setting k-j + l = m,
1 <m<k 0<l<m

= y wj(m) Y E Q'MQi+l~J+l"-l^-k-m(f)
\<j<i 0<m<k 0<l<i-j

Y Wi+l+m(M)w„-k-m(f)
<m<k

Y, E Sy'+l+m~lQlMwn-k-m(f) by the assumption of induction,
1 <m<k 0<l<m

E E E MM)Q!MQ^-j+,"-l +Wl+i+m(M)
\<m<k \ 1<7<! 0<l<i-j

+ Y Sq'+]+"'-'Q'M)wn_k_m(f)
0<l<m I

+(YWJW Y QlMQ'M~J~l +^+i(M))w^k(f)
\\<j<i 0<t<i~j j

E E Ywr->(M)QMQ^+m-r + Q'Mx+m
1<m<k \ \<r<i 0<l<r

+ Y SqrQ^+m-r)wn^m(f)
l<r</+l /

+(E E Wr-i(M)Q!MQ%l-r +wM(M))wn^k(f) by settingj+1 =r,
,1 <r<i 0<l<r
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E E W + QrM)Qi+x+m~r + Q'+m+i + sq'+lQ'm
1<m<k \1<r<i

Y s<fQM+m-r Wk-M)
\<r<i J

+ E (QM+Sgr)Q'^r +^+i(M))wn.k(f) by (2.3),
\\<r<i J

•Y (E QMQiMl+'"-r +QiM]+m +Sqi+]QMyn-k~M)
ik \l<r<; /

E QrMQ'M[-r+ Y SqrQ^-r +wM{M)\w^k{f)
\<r<i \<r<i J

= Y QiM1+"1^-k^n(f)+ Y E QmQ'^-'^-M)
0<m<k 0<m<k \<r<i

+Sqi+i(wn„k(f)+ Y Q">n-k-,n(f))-

Hence, we have, by (2) for ;' = 0,

Wn-k+M{f) = Y E QrMQ'^+m-r^-k-m(f)-
0<m<k 0<r< i

This completes the proof of (2). •

5. On the estimate of the Stiefel-Whitney classes of a map

Theorem 1.4, below, was proved implicitly in the proof of [5, Theorem
2.1]. We will give another proof in a way somewhat different from that of
[5], while using older methods.

Theorem 1.4 (cf. Li and Peterson). For a compact n-manifold M" and
a map f: M" -> N"+k,

<w(f)x, [M]> = <[Sq(x]f*(v(N)), [M]> for x e H*{M).

Proof. Let / : M" -> N be a map and let x e H*(M). Then

\<m<k \l<r<i

A:
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(w(f)x, [M]> = <v?(M)/>(A0)x, [M]> by (1.1),

= (w{M)f*(Sq(v{N)))SqSq(x), [M]> because Sqv(N) = w{N),

= (w(M)Sq(f*(v(N))Sq(x)),[M})

'-<QM(f*(v(N))Sq(x)),[M}y by (2.3),

[YtoQM[r(v(N)Sq(x)}n_k,[M}]

where [f*(v(N))Sq(x)]n_k denotes the (n - fc)-dimensional part of
f*(v{N))Sq(x). By (2.4), we have

(w(f)x, [M]> = <{f*v(N)Sq(x)}„, [M]> = (f*v(N)Sq(x), [M]>. Q

Corollary 5.1 (cf. Li and Peterson). The following relations hold:
(1) wn_l(f)x=yZi>0x2if*(vn_2i(N)) for xeH\M),
(2) wn.2{f)y = J2i>0y2'f*(Vn-2^ (N)) for y e H2(M) with Sq'y = 0.

Proof. This follows from Theorem 1.4 and the facts that Sq(x) =
y~2i>0x2' if dimx = 1, and Sq(y) = }~2j>0y2' if dimj; = 2 with Sqxy = 0. •

Applications of this corollary to the non-existence problem of immersions
and embeddings are given in [5] and [9].
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