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Abstract

The three-dimensional finite element method was applied to the analysis of thawing processes
of "kamaboko", which was used as a homogeneous foodstuff. In order to check the program,
beforehand,comparisons of numerical solutions with existing analytical solutions were made for
heating of a finite cylinderwithout phase-change on various time steps. The numerical solu
tions werein goodagreementwith the analytical solutions whenan adequate time step was cho
sen, and yielded good approximations for the experimental results in the frozen zone below the
melting point. However, for more agreement in the melted zone, the interpolation of heat
capacity and thermal conductivity at thenarrow temperature range above and below themelting
point, in which the phase-change takes place abruptly, may be necessary. And for practical
applications, time step, grid size, boundary conditions and material variations have to be
more carefully estimated.

The finiteelementmethodwasfirst proposed forfield problems by O. C. Zienkiewicz
and Y. K. Cheung1)2). Since then many researchers have published books and
reports on the fundamental concept and various applications of this method on
the heat conduction1)~7K Recently, G. Comini et al.1) reported applications of the
method to computation of temperature curves in foodstuffs of irregular shape during
freezing and thawing with phase-change. Miki et al.4) described applications of
this method to thawing processes in frozen fish. Most authors have discussed only
one- or two-dimensional geometries. And for practical problems, three-dimensional
problem with irregular shape should be considered. Therefore, this study is under
taken to extend the applications of the finite element method to the solution of
a transient heat transfer problem during thawing in three-dimensional geometries of
foodstuffs. Evaluations of thermal properties in foodstuffs and time step are also
discussed.

Physical Aspects

When foodstuffs are cooled below the freezing point (Tf), which is considered to
be equal to the melting point or the thawing point in the present paper, a ratio (£)
ofice to total water at a temperature (T) is represented approximately by8):
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€=!--%-. (1)

The specific heat (cf) of water in foodstuffs below the freezing point has been defined
by Gensyo9) as:

T TCf =Cl + (C1 —C2)—jr-~ ^w~jrf • (2)

In the phase-change zone, a straight line can be used to interpolate the specific heat
(cf) of water including the latent heat effect as shown in Fig. 110). As is seen from
Eq. (2), cf is expressed for a function of temperature (T) in the phase-change zone.
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Fig. 1. Specific heat of water around the melting point is approximated by
the solid line instead of the dashed line (Eq. (2)).

New estimations of density and thermal conductivity of homogeneous foodstuffs
above and below the freezing point have been proposed by Yano11) as following
equations:
i) Density (p) of foodstuffs11):

P= X/pw +Y/fi, +(1 - X- Y)/pd ' (3)
where X, Y and (1—X— Y) are mass fractions of water, lipid and solid (protein,
carbohydrate) in foodstuffs. The values of pw, pl and pd indicate densities of water,
lipid and solid. These values above 0°C and at —10°C are shown in Table l11).
ii) Specific heat (c) of foodstuffs12):

c= cwX'+ c, Y+ cd(l - X- Y)9 (4)
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where cwy ct and cd represent specific heat of water, lipid and solid. These values
above 0°C and — 10°C are shown in Table 211).

Table 1. Densities of each constituent in foodstuffs.

above 0°C** _io°C***

pw 1000 [kg/m3] 918 [kg/m8]

pd 1300 // 1300 //

Pl 900* // 930* //

* Measured by Yano.11)
** Used above Tf[0C] in the present paper.

*** Used below Tf[°C] in the present paper.

Table 2. Specific heats of each constituent in foodstuffs.

above 0°C** _io°C***

cw 1.0 [kcal/kg°C] 0.48 [kcal/kg°C]

cd 0.3 // 0.30 //

ci 0.5 // 0.37* //

* Measured by Yano.u)
** Used above 7/[°C] in the present paper.

*** Used below Tf[°C] in the present paper.

iii) Thermal conductivity (k) of foodstuffs:
Effective thermal conductivity of heterogeneous system has been expressed as11):

here

k~ X"/k„ +Y'/k, +(1 - X- Y)"/kd ' (5)

X/pw+Y/pt + (l-X-Y)/pd '

J - X/pw + Y/p, +Q.-X- Y)/pd ' V}

U A X) X/pa+Y/p, +0--X-Y)/pd ' w

where Xv, Yv and (1—X— Y)v are volume fraction of water, lipid and solid.
Provided T^Tfi the values of pw, cw and kw in Eqs. (3)-(5) are replaced as

follows4):

Pu, = (l-?)Pi + iP2, (9)

cw = cf9 (10)

^ = (1-$)^ + $^, (11)
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where subscripts 1 and 2 express water and ice respectively in Eqs. (2), (9) and (1.1).
These values above and below the freezing point (7^) are shown in Tables 1 to 3.
Thermal properties of the chief constituents in foodstuffs are shown in Table 310).
Provided T> Tfi the values of cwi pw and kw are equal to the each physical property of
water in liquid.

Table 3. Thermal conductivities of the chief constituent

in foodstuffs.

k [kcal/mh°C]

water

ice
2.0

liquid 0.48

Solid
(protein, 0.26 ( 0°C)*?

carbohydrate) 0.42 (-10°Q

Lipid 0.12-0.15**

* Used 0.42 [kcal/mh°C] in the present paper.

** Used 0.15 [kcal/mh°C] in the present paper.

Experimental

Sample

"Kamaboko" was used as a homogeneous and commercially available foodstuff.
The samples of kamaboko manufactured by Nakashin Kamaboko Honten Ltd.
(Kushikino-shi), with net weight of 290 g, were obtained at a local supermarket.
These samples were made from rinsed musclesof Alaska pollack (Theragachalcogramma),
Lizardfish {Saurida undosquamis) and other's additions, i.e., salt, starch, sugar, poly
phosphate, etc. .

Thawing procedure

The samples were first equilibrated at —18°C and —72°C. The frozen sample
of —18°C was thawed at room temperature of 21°C. The other frozen sample of
—72°C was thawed at room temperature of 19°C. Thermocouples (Cu-Con.,
0.3 mm0) for measurement of temperatures were inserted into the samples as shown
in Fig. 4 before freezing, and then thawing curves were recorded by the automatic
temperature recorder (Yokogawa Elec. Works Ltd., ER-4036).

Constituent analysis

Water content (X) was determined by the infrared watermeter (Kett Elec.
Laboratory Ltd., F-1A). Lipid content (7) is assumed as 0.01 in the present paper.
Solid content (1—X— Y) was calculated from the measured values X and Y.
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Formulation

In this section we give the finite element formulation for the three dimensional
heat conduction. As in Ref. 4, we assume the isotropic heat conduction coefficient.
Then the governing equation is given as follows:

pc
OT

dt

with the boundary condition:

r/dT
dx dy

d2T , d2T , d2T2+ Qy2 •)- o
d*

wrn^+a(T-Ta)=0,
(on the boundary S)

(12)

(13)

where p is the density, c the specific heat, k the isotropic thermal conductivity, nX9 ny
and ng the direction cosines of the outward normal to the boundary surface, a the
convective heat transfer coefficient and Ta is the temperature of the atmosphere.

We divide the three dimensional domain into hexahedrons. This division makes

the numbering of nodal point easier than that of direct division into tetrahedral
elements. One hexahedral element is further divided into five tetrahedral sub-

elements by two ways shown in Fig. 22). A 8 X8 hexahedral element stiffness matrix
is given by summing ten 4x4 subelement stiffness matrices of tetrahedrons. The
averaging of the two ways of subdivision makes our computational scheme more
stable.

( i ) ( ii )

Fig. 2. A hexahedral element is divided by five tetrahedral subelements in two ways.2)

As in Ref. 4, we consider the functional for one tetrahedral subelement,

pc
dT d2T_

2

d2T , d2T
dy2 •+

dz2 )} dv-k(^

\ dx
T* dT

+
dT* dT dT* dT\\
dy dy ~1~ dz dz )]dt d>

+a\jsT*(T-Ta)dA,
dv

(14)
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where T * is the weighting function and dv and dA denote the three and two dimen
sional integrations respectively. Q is the domain of a tetrahedral subelement and S
is its surface on the boundary. Following the Galerkin's method we write T and
T* by,

T=L{Ti9 r*=X,r,* (£= 1 —4) (15)

where Lt denote the volume coordinates and T% and Tf represent the temperatures
and their variations at the four vertices of the tetrahedron. For completeness we

give the volume coordinates Lt.

L^-^iat+biX +ctf+diz), (16)

a{= Ali9 b{= A2i9 Ci = A3h d{= AAi9 (£= 1-4) (17)

where v is the volume of the tetrahedral subelement and Atj are the cofactors of the
element of the following determinant:

1 1 1 1

*1 x2 x* x4

Jl 72 73 74

*1 z* *3 ZA

(18)

In Eq. (18) {xi9yi9 zt) are the values of the coordinates at the z-th vertex of the
tetrahedron.

The time derivative in Eq. (14) is approximated by,

dT _T T^-Tlt-At)
dt ' At

Then the functional is rewritten as:

where

dx°sub =T*§k(M*+M>+M*)+-^M+aBJ T&)

-5£-(Af)«rx*-J0+a(^),},

TaL{dA.

(19)

(20)

(21)
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The integrals of Eq. (21) can be easily-performed by using the formulas12):

llMUdA- (a4'̂ ;2), 2A. (22)
The variational functional of one hexahedral element is given by summing ten

functionals of tetrahedral subelement:

8*e =±-{ S 8z'ubil)+ S 8*iu*(2)}.
sub (1) sub (2)

And the variational functional for the whole domain is the sum of all the functionals

of hexahedral elements:

dx=Z8*e
e

Requiring that 8X is equal to zero for any variations Tf (i= l—N,Nis the number of
the nodal points of the whole domain), a matrix equation follows by which we can
determine the temperatures Tt(t) if T^t-^-At): are known.

Computational Results

Comparison with analytical solution

In order to see the reliability of our numerical method, we will compare the com
putational results with the analytical solution. Considering a column, we use the
analytical solution:

r=ra+(r0-ra)exP{--^[^+(4)V]}/0(^)cos(^)) (23)
where r and z are column coordinates, R and //are radius and the height of the column
respectively, J0 is the 0-th order Bessel function and the constants // and v are deter
mined by the following equations:

A/i(/0 aR
(24)

/0(/0 : *.-•'

v sin (y) _ aH
cos(v) ~ k

(25)

lg values for theconstants;

pc = 1.0kcal/m3oC,

k = 0.25 kcal/mA°C, a = 37.5 kcal/m2A°C
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#=2.0 cm, i? = 2.0cm,

r0=4.ooc, ra=35.o°c.

Then from Eqs. (24) and (25) p and v are determined to be:

#=V3.19, v = 1.193.

We have plotted Eq. (23) by the solid curve in Fig. 3.

Fig. 3. Comparison of numerical solutions with the analytical ones.

The numerical calculation was carried out by dividing the column using the
hexahedral elements also shown in Fig. 3. The numerical results are given by the
dots in the figure. For the time step At equal to 2.5 minutes, the agreement with the
analytical solution is wonderful, but if At increases the computational results tend to
go lower than the analytical solution. If we take much smaller time step, the com
putation comes to be unstable. Thus we will take 2.5 minutes for the time step if
the similar hexahedral elements shown in Fig. 3 are used. The favorable time step
depends on the volumes of the hexahedrons and physical parameters such as thermal
conductivity. If we divide the space into smaller pieces, the favorable time step
might become small.

Comparison with experimental result

We have applied our numerical scheme to the thawing process of kamaboko.
The division of kamaboko into hexahedral elements are shown in Fig. 4. As the
elements have similar volumes as those in Fig. 3, the time step is chosen to be 2.5
minutes. We have used the physical parameters given in Tables 1-3. The con-
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Fig. 4. Our division of kamaboko into hexahedral elements. Dashed lines represent the boundary

and our numerical results are written at the surfaces of A and B'. The number of the hexa

hedral elements is 19x3= 57. While experiments are performed at the surfaces A and B.

vective heat transfer coefficients are 24 and 20 (Kcal/m2h°C) for the thawing processes
with initial temperatures —18 and —72 (°C) respectively. These values are natural
if the natural convections are induced.

The experimental results are shown in Figs. 5 and 6, and the numerical results are
shown in Figs. 7 and 8. The agreement with the experimental results may be re-
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Fig. 5. Experimental results at the surfaces A and Fig. 6. Experimental results at the surfaces A
B when the initial temterature is —18°C. and B when the initial temperature is.

-72°Ct
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spectable. Especially the three dimensional effects have been rightly estimated.
We hope the agreement to increase if the parameters are more carefully chosen.

As can be seen in Figs. 7 and 8, the numerical results show a little unstable features.
The unstability increases if we use Eq. (2) instead of our practical one shown in
Fig. 1 for the specific heat of water. In order to obtain more stable results, all the
physical parameters have to be made perfectly smooth.

120 180 240 300 360 420

Time( nin )

Fig. 7. Numerical solutions at the surfaces A and B' Fig. 8. Numerical solutions at the surfaces A

when the initial temperature is — 18°C. I, II, and B' when the initial temperature is

III are given in Fig. 4. —72°C. I, II, III are given in Fig. 4.

Discussion

Disagreements between the numerical and experimental results in the melted zone
above the melting point (= Tf) are probably due to poor approximation of thermal
properties. The thermal conductivity of dry solid above the melting point was as
sumed ^=0.42, which was equal to the value of —10°C, to obtain a better fit.
On the. estimation of thermal properties of foodstuffs, it was assumed that Yano's
equations11) gave almost the same effect to computed results as Tanaka's equations13)
used in.the previous report4).

For more agreement, it is necessary to estimate thermal properties of biological
materials with accuracy and interpolate heat capacity (cp) and thermal conductivity
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(k) at the phase-change zone close to the melting point. And for practical problems,
time step, grid size, boundary conditions and material variations have to be more
carefully treated.

In general, it may be considered that three dimensional finite element method can
be used to simulate the thawing processes of foodstuffs having irregular cubic shapes.
This analogy may be extended for prediction of deterioration and evaluation of stress
cracks which will occur in foodstuffs during freezing and thawing processes. Further
more, this method can be applied for solution of mass diffusion in foodstuffs on the
processing problems of preservation such as drying, smoking and salting etc. .
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Notations

c = Specific heat (kcal/kg°C)
nX9 ny9 nt = Direction cosines of the outward normal to the boundary surface
TV" = Number of the nodal points
q = Heat capacity (kcal/kg)
S = Boundary surface
T = Temperature (°C)
X = Mass fraction of water

Y = Mass fraction of lipid
1—X— Y = Mass fraction of dry solid
a = Convective heat transfer coefficient (kcal/m2h°C)

X = Latent heat (kcal/kg)
f = Ratio of ice to total water in foods

p —Density (kg/m3)
X = Functional of the variational principle
Q = Domain of a tetrahedral subelement

Subscripts and superscripts
a = Ambient v = volume fraction

d = Dry solid w = Water
e = Element xy j>, z = In the x9 y, z direction
/ = Freezing point 1 = water in liquid
/ = Lipid 2 = Ice
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