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Abstract

The model of adiabatic quantum computation is a new paradigm for designing

quantum algorithms. This model is based on the quantum adiabatic theorem, where

a quantum computer　 evolves the quantum system slowly to switch gradually from

an initial Hamiltonian with a ground state which is easy to construct, to a final

Hamiltonian whose ground state encodes the solution of the problem to be solved.

This dissertation presents an experimental study on the discrete quantum adia-

batic computation in combinatorial search problems, we take k-Satisfiability problem

as target problem to be examined. For k ≥ 3, k-SAT is NP-complete, i.e., among

the most difficult NP problems in the worst case. Here we proposes a new monotonic

variation method for the phase shift and mixing functions in the adiabatic quantum

algorithm called the Quadric variation method, in order to speed up the algorithm

search and decrease the overall resulting search cost. In addition, we present a bet-

ter parameter configuration for the algorithm to be used with quadric variation as

well as the previously proposed methods

The experiment are carried out in solving random instances of 3-SAT problems.

The results indicate that the proposed method of using monotonic quadric variation

in the phase functions of the adiabatic algorithm greatly improve the search behavior

of the adiabatic algorithm and reduces the resulting search cost, also the results

indicate that the better configuration of the algorithm parameters could greatly

enhance the search behavior for the proposed method as well as the previously

proposed methods.
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Chapter 1

Introduction

1.1 Historical Background

The need to do the computation faster and more reliability was and still an impor-

tant aim. The Scientists and researchers trying to find ways to achieve this goal by

designing devices/machines to accelerate the process of the computation, starting

from using their own hands passing by very simple devices like, for example, the

Abacus [1], ending with the conventional computers we know nowadays .and the

development and research efforts are still and will always trying to achieve this goal.

The conventional computers we know nowadays (based on Turning Machines) rep-

resents the culmination of years of technological advancements beginning with the

early ideas of Charles Babbage (1791-1871). The real start was after Johan Barden,

Walter Brittan, and Will Shockley developed the transistor in 1947. For inventing

new families of computers with more powerful capabilities, it was necessary to in-

crease the number of the transistors used on approximately the same physical space.

The only way to achieve this goal is by decreasing the size of the components with

a process known as Miniaturization [2]. According to Moor’s law: The number of

transistors per square inch on integrated circuits has doubled every year since the

integrated circuit was invented. This law has been proved to be true since 1965 when

Gordon more Moore proposed it until now. However, according to this law, the size

of the components will hit the quantum level by 2020 where it is not possible any

more to control the states of the components by conventional means. So the need

to find alternatives rose up, and the efforts started for that, whereas implementing

2



CHAPTER 1. INTRODUCTION

quantum computer was one of the strong alternatives [3].

There have been efforts started trying to find suitable alternatives to the conven-

tional computers. Charles Bennet in the early 1970 showed that [4] the computation

could be done in a reversible way (where the input can be generated from the out-

put) by describing a Universal Reversible Turning Machine. Edward Fredkin and

Tomas Toffoli examined how reversible computation could be done using traditional

Boolean logic gates. They have showed that there exists a universal reversible three

bit gate for reversible computation known as Toffoli gate that could be used instead

of the Traditional Boolean logic gates like AND,OR, etc. The field of quantum

computation starts in the early 1980’s with the proposal of Paul Benioff [4] for

computers working according to the principles of quantum mechanics, and Richard

Feynman [1], who noticed that certain quantum mechanical effects cannot be simu-

lated efficiently on conventional computers, so he suggested that computers working

according to the principles of quantum mechanics might perform more efficiently.

In 1985, David Deutsch introduced the Universal Quantum Turing machine [5], and

the next question was how to use this new device. A new few quantum algorithms

were introduced since then by David Deutsch, Richard Josa [6]. In 1994, the field

started to arise as one of the hot area of research when Peter Shor [7] surprised the

world by describing a polynomial-time quantum algorithm for factorizing integers

using the phase estimation technique. In 1996, Lov Grover [8] described another

quantum algorithm for searching an unstructured list with quadric speed up over

conventional algorithms by using the amplitude amplification technique. Most of the

algorithms introduced since then have been based mainly on these two techniques

(phase estimation and amplitude amplification). Since then, Quantum computers

which can exploit quantum mechanical principles like interference and working on

superposition of all possible states simultaneously in parallelism to do computation

faster arose as a strong possible alternatives to conventional computers. As a result,

the race started among mathematicians, computer scientists, and physicists trying

to find new quantum algorithms, quantum complexity theory, and quantum theory

of information [3], beside the big challenge to build real quantum computers [13].

Recently a new kind of quantum algorithms have been designed using the adi-

3



CHAPTER 1. INTRODUCTION

abatic theorem, where the quantum computer evolves slowly for sufficient time T

to switch gradually from an initial Hamiltonian with known ground state, to a final

Hamiltonian whose ground state encodes the known solution. This concept of quan-

tum computation known as quantum adiabatic evolution was pioneered by E. Farhi

et al. [24]. The adiabatic quantum algorithm have been applied to solve various

optimization problems, such as satisfiability problems [25] [26], finding cliques in

random graphs [27], and set partitioning problem [28], where it has shown to give

a polynomial search cost growth on average. Later, the adiabatic version of various

quantum algorithm were presented such as adiabatic Grover search algorithm [29],

and adiabatic Deutsch-Joza algorithm [31]. Also it was established that the adi-

abatic model is polynomially equivalent to the stander model of quantum circuits

[32].

1.2 Research Objective

The model of adiabatic quantum computation is a new paradigm for designing quan-

tum algorithms, proposed by Farhi et al. [24]. It was recently established that this

model is polynomially equivalent to the standard model of quantum circuits [36].

Nevertheless, this model provides a completely different way of constructing quan-

tum algorithms and reasoning about them. Therefore, it is seen as a promising

approach for the discovery of substantially new quantum algorithms. The adiabatic

quantum algorithm have been applied to solve various optimization problems, such

as satisfiability problems [25] [26], finding cliques in random graphs [27], and set

partitioning problem [28], where it has shown a promising results. Here we presents

an experimental study on the discrete adiabatic algorithm in solving combinatorial

search problem. The aim of the research is to speed up the search of the adiabatic

quantum algorithm ,i.e., presenting a better variation method (scheduling) for the

phase function of the algorithm to decrease the steps required to find the solution

without breaking the adiabatically conditions. Also it aims to find a better config-

uration for the algorithm parameters in order to decrease the overall the resulting

search cost as well as improve the stability of the adiabatic algorithm.

4



CHAPTER 1. INTRODUCTION

1.3 Dissertation Overview

The thesis divided into 6 chapters, Starts with chapter 1 as an introduction explains

briefly the historical development for the ideas to find alternatives to conventional

computation and how it leads to think about the quantum computation as a strongly

possible alternative and the adiabatic evolution as an idea for computation. Also this

chapter describe the motivation of research and specify the dissertation structure.

Chapter 2 gives an overview of the basic concepts and ideas related to this

research namely the basic principles for the quantum computation such as the qubits,

interference, and parallelism. At the same time, it defines the targeted combinatorial

search problem, Satisfiability problem. this chapter also describes the conceptual

differences between the adiabatic evolution model we study and the original quantum

computation model known as circuit model

Chapter 3 describes the novel idea behind the adiabatic quantum evolution, and

how the adiabatic theorem could be used to evolve the computer system from the

initial state to the target final state. This chapter also presents a numerical example

describes how to apply the adiabatic evolution method. Then it proceeds to describe

the conceptual differences between the local and the global adiabatic evolution, the

definition and the importance of the minimum energy gaps, and how to design a

practical adiabatic quantum algorithm.

Chapter 4 reports about the results of the experiments carried out to solve

instances of knapsack problems with quantum heuristic search algorithm (QHS).

This chapter describes in details the operators and the parameters used in the QHS

algorithm. Then it reports on the results obtained from solving random instances

for three different types of the knapsack problems, finally it presents a comparison

between the search behavior of the QHS and the Genetic algorithm using two types

of the constrain handling methods namely Penalty Function and Random Repair.

Ends with findings and conclusions

Chapter 5 describes a new variation method for the phase functions of the adi-

abatic quantum algorithm named Quadric variation method. This method was

the first proposed version as partially monotonic variation method. A number of

5
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previously presented variation methods are briefly referenced showing the param-

eter configuration for each and the corresponding minimum energy gaps. Then it

proceeds to outline the main functions available in the simulator we uses for the

experiments. it reports on results obtained from the experimental study set up to

compare the proposed method with most recently proposed variation methods such

as cubic variation and linear variation. The experiments used random instances of

3-SAT problems with difference number of variables up to 20 bits. The chapter

concludes with summary of findings and suggestions for future works where the ex-

periments revealed that the quadric variation method improve on the other methods

such as linear and cubic in the resulting search cost and shows stable search behavior,

However more modification and better settings for the parameter are expected.

Chapter 6 extends the presented work and describes the second version of the

quadric variation method as a complete monotonic variation method. In addition,

it describes the improved formulas we suggests to find a values for the parameter ∆

of the algorithm in order to improve the algorithm search behavior and decrease the

resulting search cost. Then it proceeds to present a discussion for the experimental

results of solving 3-SAT problems up to 28 bits, and presents a comparison for the

resulting probability of finding solution, corresponding minimum energy gaps, and

the search costs for all the methods. This chapter ends by concluding the findings

and the results reflecting the experiences gathered along the research process.

6



Chapter 2

Background and Related works

2.1 Basic Principals

In this chapter we will introduce a review for the basic concepts of the quantum

computations as Qubit and its main difference to the classical bit, the various rep-

resentation of the qubit, the quantum measurement, the parallelism, interference,

and the entangled states. In addition, we will show the difference between the

new paradigm of quantum computation with adiabatic evolution technique and the

slandered model of the quantum computation using quantum circuit model.

2.1.1 Quantum Computer

Quantum Computer is a computational device, which can do the computation by

exploiting the quantum mechanical principles as parallelism, interference, entangle-

ment, and can operate simultaneously on superpositions of all classical search states,

allowing them to evaluate properties of all states in about the same time a classi-

cal machine requires for a single evaluation. This property is known as quantum

parallelism. Superpositions are described by a state vector, consisting of complex

numbers, called probability amplitudes, associated with each classical state. The

quantum computation raised as hot area of research after existence of many quan-

tum algorithms could solve problems believed to be intractable. Notable among

them are Shore polynomial algorithm for factorings integers [21] and Grover algo-

rithm with quadric speed up in the search over best know classical algorithm by

using amplitude amplification [23].

7
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Figure 2.1: First Quantum CPU with 128 qubits, designed and presented by D-Wave
systems, February 2007. [12]

Fig. 2.1 presents a first Quantum CPU with 128 qubits, designed and presented

by D-Wave systems, February 2007 [12]. Later; this CPU unit was used to present

a first real Quantum computer presented by D-wave systems in 2011.

2.1.2 Quantum bit and Superpositions

A classical bit is the basic unit of the information in conventional computers. It

is always understood that the bit could be either a 0 or a 1, it can only contain

one value at time. A quantum bit or qubit is a basic unit of the information in

quantum computation (mechanics). The Qubit also has two possible states |0⟩ and

|1⟩ which can be considered as 0, and 1 , respectively in the classical bit. However,

the main difference between classical bit and the quantum bit is that the qubit can

be exit in linear combination of states |0⟩ and |1⟩ at the same time [4]. this linear

combination of possible classical states is called the superposition, and also other

important difference is the construction, where the classical bit can be constructed

form complete digital circuit called flip-flop, whereas, the qubit can be constructed

from a single atom or single molecule [12].

Fig. 2.2 presents an example to show the difference using 3 classical bits and

the 3 qubits, 3 classical bit register can carry only one value of the all possible

8
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Superposition of all possible  states Classical bits only one state is possible

010
111

000001010011100101110111

Classical bits Qubits

Figure 2.2: The difference between classical bits and qubits in superpositions for
example with 3 bits(qubits) [13]

combination for example 001, However, the 3 qubit quantum register can carry one

combination as the classical bit or all possible combination in superposition, which

gives insights into the power of quantum computation using the parallelism as we

well show later in this chapter.

2.1.3 Quantum bit Representations

A qubit in the superposition can be represented as linear combination of states |0⟩

and |1⟩ as follows

|ψ⟩ = a|0⟩+ b|1⟩ (2.1)

|⟩ notation is called Dirac notation or bra kit notation which it is the standard

notation of states in quantum mechanics [11], a and b are complex numbers called

the probability amplitudes of the system, and it must be always normalized, i.e.,

satisfies the condition |a|2 + |b|2 = 1 where a = x+ iy, |a| =
√
aa∗, and a∗ = x− iy

where a∗ is the complex conjugate of a. Reading data stored in this qubit while it is

in the superposition will break the superposition and output only one state, giving

9
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Figure 2.3: A Qubit, a fundamental building block of quantum computers, can be
represented as point on The Bloch sphere [39].

either state 0 with probability |a|2 or state 1 with probability |b|2.

For example, a qubit in a perfect superposition could be in the state,

|ψ⟩ = 1√
2
(|0⟩+ |1⟩) (2.2)

Reading (Measuring) this qubit will lead to state |0⟩ with near 50% or state |0⟩ with

probability 50%.

Geometric representation of the qubit

One of the important representation of the qubit is the geometric representation,

where it shows the effect of the quantum operators in the rotation and phase shift for

probability amplitudes of the qubit. The probability amplitudes a, b associated with

the states 0 and 1, respectively, are complex number must satisfies the condition

|a|2 + |b|2 = 1 as mentioned before in equation, so we can represent the quantum

state of one qubit |ψ⟩ as,

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (2.3)

10
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where θ and, ϕ are real numbers defining unique point on the surface of Bloch

Sphere shown in the Fig. 2.3 Applying any operation on the qubit will change the

values θ and, ϕ to new values consistent with the operation, i.e. rotation [3].

State vector representation of the qubit

The n-qubit quantum system can be represented as vector of length 2n over

Hilbert space. Also it could be presented with the Dirac notation where, it is more

useful for describing the quantum state and the evolution of the state to the system .

The state of a single qubit system can be represented as a vector in two dimensional

complex vector space spanned by the orthogonal basis |0⟩ and |1⟩ as follows,

|ψ⟩ = a|0⟩+ b|1⟩ =
[
a
b

]
. (2.4)

where,

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
. (2.5)

and,

[
a
b

]
is called the system state vector.

2.1.4 Parallelism

The parallelism is one of the most powerful characteristic of the quantum computa-

tions. It means the ability of the quantum computer to operate on superpositions

of all classical search states simultaneously, i.e., evaluates properties of all possible

states in about the same time a classical computer requires for a single evaluation,

where any unitary operation could be applied on the system while it is in superpo-

sition will be applied on all the states on the system simultaneously, which is one

of reasons for the possibility of an exponential speed up of the computation in the

quantum computer over the classical computers [2][7].

Fig. 2.4 shows an example using 3 bits (qubit) to show the difference between a

quantum operator (function) which can evaluate the all states in superposition in

11
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000001010011100101110111

010
111

Superposition of  3 Qubits Classical 3 bits

One operation Exponential number

Figure 2.4: A example for Quantum parallelism , i.e., the ability to operate simul-
taneously on a superposition of all possible classical states. the example uses 3 bits
to describe the parallelism [13]

a single evaluation, and the classical computer operator which needs to be applied

for each possible state individually ,i.e, 8 times in this case.

2.1.5 Multiple Qubits

Considering a case of 2 bit register, a conventional computer register will be able to

carry only one fixed value out of the four possible values 00,01,10,11, at a any time.

However, if we consider quantum system (quantum register) with two qubit, the all

possible states |00⟩, |01⟩, |10⟩, |11⟩ could be found in a superposition. this state in

superposition can be represented as,

|ψ⟩ = a0|00⟩+ a1|01⟩+ a2|10⟩+ a3|11⟩ (2.6)

where ai are probability amplitudes (complex numbers) satisfies the condition∑
i |ai|2 = 1 . Any attempt to read this quantum register will give out one of the

four possible states |00⟩, |01⟩, |10⟩, |11⟩ with probability |ai|2 where i is the integer

representation of that state.

The tensor product is a mathematical concept important to understand [19], due

12
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to its importance in combine smaller quantum system in a single larger quantum

system. For example, let |ψ⟩ and |µ⟩ be two vectors from a two-dimensional complex

vector spanned by basis |0⟩ and |1⟩. The tensor product of |ψ⟩ and |µ⟩ will be written

as,

|ψ⟩ ⊗ |µ⟩ (2.7)

and have the basis |0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩, and|1⟩ ⊗ |1⟩

Which can shortly written as |00⟩, |01⟩, |10⟩, |11⟩ Similarly, the basis for 3 qubit

system will be,

|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩ (2.8)

A two-qubit register in a state vector notation is a complex vector spanned by

the orthogonal basis |00⟩, |01⟩, |10⟩, |11⟩ and can be represented as follows

|ψ⟩ = a0|00⟩+ a1|01⟩+ a2|10⟩+ a3|11⟩ =


a0
a1
a2
a3

 . (2.9)

Where

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 , (2.10)

Now, if we consider n-qubit quantum system, this state can be represented as

vector of length 2n over Hilbert space. States can be represented via vector /matrix

notation or Dirac notation [11], the Dirac notation is more useful for describing the

quantum state and the evolution of the state to the system. And it can be presented

as,

|ψ⟩ = a0|00 . . . 0⟩+ a1|00 . . . 1⟩+ . . .+ an|11 . . . 1⟩ (2.11)

or shortly

|ψ⟩ =
∑
i

ai|i⟩ (2.12)

where are probability amplitudes (complex numbers) satisfies the condition∑
i |ai|2 = 1 and i is the integer representation of that state .
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Figure 2.5: The quantum interference phenomena, light waves interfere construc-
tively and destructively [40].

2.1.6 Quantum Interference

Quantum interference is one of the most challenging principles of quantum informa-

tion theory . Essentially, the concept states that elementary particles can not only

be in more than one place at any given time (through superposition), but that an

individual particle, such as a photon (light particles) can cross its own trajectory

and interfere with the direction of its path. Debate over whether light is essentially

particles or waves dates back over three hundred years. In the seventeenth century,

Isaac Newton proclaimed that light consisted of a stream of particles; in the early

nineteenth century, Thomas Young devised the double-slit experiment to prove that

it consisted of waves. Although the implications of Young’s experiment are difficult

to accept, it has reliably yielded proof of quantum interference through repeated

trials. The known physicist Richard Feynman claimed that the essentials of quan-
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tum mechanics could be grasped from an exploration of the double slit experiment.

For this variation of Young’s experiment, a beam of light is aimed at a barrier with

two vertical slits. The light passes through the slits and the resulting pattern is

recorded on a photographic plate. If one slit is covered, the pattern is what would

be expected: a single line of light, aligned with which ever split is open. Intuitively,

one would expect that if both slits are open, the pattern of light will reflect that

fact: two lines of light, aligned with the slits. In fact, what happens is that the

photographic plate is entirely separated into multiple lines of lightness and darkness

in varying degrees. What is being illustrated by this result is that interference is

taking place between the waves/particles going through the slits, in what, seemingly,

should be two non-crossing trajectories.

Fig. 2.5 shows the quantum interference phenomena using two light sources, it

shows how the light waves could interfere constructively (wight waves)and destruc-

tively (black waves).

The importance and the power of the quantum interference comes from the

ability to perform a exponential number of computations in parallel to either cancel

or enhance each other [41]. Feynman beautifully describes how light waves can

constructively or destructively interfere to produce this effect [42]. The goal of any

quantum algorithm is to have a similar phenomena occur, i.e., interference increases

the amplitude of computational results we desire and decreases the amplitude of the

remaining results. Quantum interference research is being applied in a wide area of

applications, such as quantum cryptography, and quantum search algorithms [43].

2.1.7 Entanglement

Entanglement is a non-classical physical phenomenon which has been known since

the early days of quantum mechanics [44]. Usually, a state of a quantum system of

two or more qubits can be represented in terms of the tensor product of each qubit

as we review before, sometimes it is not possible to represent the state of the system

in terms of the states of its individual qubits. In such a case, we say that there is

a correlation between these components, i.e., each component doesn’t have its own

state. This is usually referred to as an entangled state [45].
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For example, the state a|00⟩+ b|11⟩ cannot be decomposed into the states of two

separate qubits, i.e., we cannot find and a0, a1, b0, and b1 such that,

(a0|0⟩+ b0|1⟩)⊗ (a1|0⟩+ b1|1⟩) = a|00⟩+ b|11⟩ (2.13)

To satisfy this identity it require that

a0b1 = 0a1b0 = 0 (2.14)

However, this implies that a0 or b1and a1 or b0 which is impossible. It means

that the state cannot be decomposed to its individual qubits which called entangled

state.

Two qubit entangled states are usually known as EPR states, EPR pairs or Bel

Basis and can be wrote as following

|00⟩ ± |11⟩√
2

,
|01⟩ ± |10⟩√

2
(2.15)

The entangled states are very important and considered as heart for many quan-

tum algorithms, for example quantum teleportation [46], and quantum database

search [23].

2.1.8 Quantum Decoherence

Quantum decoherance is a consequence of interaction of quantum systems with their

environments resulting in their probabilistic behavior [18]. It is a non-unitary effect

(irreversible) and can be viewed as the loss of information from the system to envi-

ronment. One of the greatest challenges in quantum computation and the practical

realization of quantum computers is controlling or removing quantum decoherance.

Since they are expected to rely heavily on the undisturbed evolution of quantum

coherences. Simply, they require that coherent states be preserved and that deco-

herance is managed which usually means isolating system from its environment, in

order to actually perform quantum computation.

2.1.9 Quantum Measurements

Quantum Measurement is an operation means reading information from any quan-

tum register [19] , measuring a quantum register in a superposition will break that

16



CHAPTER 2. BACKGROUND AND RELATED WORKS

superposition to some new state that agrees with the outcome of the measurement.

For example , consider the two qubit system which can be presented as follow,

|ψ⟩ = a0|00⟩+ a1|01⟩+ a2|10⟩+ a3|11⟩ (2.16)

Where ai is the probability amplitudes (complex numbers) satisfy the condi-

tion
∑

i |ai|2 = 1, if we measure the first qubit to be |0⟩, then the system after-

measurement will be in the state,

|ψ′⟩ = 1√
|a0|2 + |a1|2

(a0|00⟩+ a1|01⟩) (2.17)

From Eq. (2.17), we can see that the amplitude of resulting state is still normal-

ized so that its state vector length still equal to 1.

The probability that the first qubit of |0⟩ is given by |a0|2 + |a1|2.

From above we can understand that key of designing any quantum algorithm

is that we always need to increase the probability of finding certain state (solution

state, matching state) before the measurement operation, so that it could be the

output after measurement.

The Measurement can be considered as an operator on the state vector. How-

ever, the measurement operators are not unitary, i.e., not reversible unlike all other

quantum operators, since any measurement will break the superposition of the state

of the system.

2.2 Quantum computation

The field of quantum computation has attracted a great attention in the recent past

[20]. This is mainly due to the existence of many algorithms showing that the quan-

tum algorithms based on the principles of quantum mechanics can greatly enhance

the efficiency of solving problems believed to be intractable on classical comput-

ers. Notable among them are Peter Shor’s polynomial time quantum algorithm for

factorizing integers [21], the algorithms of Deutsh-Jozsa [22], and Grover algorithm

for unstructured search with quadric speed up over any known classical algorithm
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[23]. These algorithms follows the slandered model of quantum computation using

a quantum logic gates which is known as quantum circuit model.

Recently a novel paradigm to design quantum algorithms using the adiabatic

theorem was pioneered by E. Farhi et al. [24], where the quantum computer evolves

slowly for sufficient time T to switch gradually from an initial Hamiltonian with

known ground state, to a final Hamiltonian whose ground state encodes the known

solution. This paradigm of quantum computation is known as quantum adiabatic

evolution model.

In Next section we will try to review briefly the basic concepts in this two

paradigms.

2.2.1 Quantum circuit model

A Quantum circuit model is the most popular model for quantum computation, in

which a computation is a sequence of transformations on n-qubit (quantum) register.

These transformations U are unitary, i.e., the inverse of that matrix U−1 must be

equal to its complex conjugate transpose U † [19], this unitary operators are called

quantum gates [5]. The reason that quantum gates must be unitary is that the

quantum systems follow the fundamental laws of quantum physics and it must be

reversible [6]. Any arbitrary quantum computation (reversible transformation) on

any number of qubits can be generated by a finite set of quantum gates (quantum

circuit). Such set is said to be universal for quantum computation. An universal

gates for classical computation are NAND and NOR gates. In quantum compu-

tation, any multiple qubit logic gate can be presented as 2n x 2n unitary matrix

decomposed from other universal smaller gates.

There are three classes of quantum algorithms which proved to provide an ad-

vantage over known classical algorithms.

1. A class of algorithms based upon quantum version of the Fourier transform

such as Shor’s algorithm for factoring and discrete logarithm [21].

2. Quantum search algorithms for database search known as Grover’s algorithm

with quadric speed up over best known classical algorithm using amplitude
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amplification technique. This technique was the heart for many of Grover like

algorithms presented later and proved optimality in many places [23].

3. Quantum simulations (algorithms for simulating quantum systems).

In next section we will review examples for a famous Quantum gates such as

Hadamard Gate and phase gate.

Hadamard Gate

Hadamard gate is a pure quantum gate, also it called Hadamard Transform Hn,

it can be represented as a 2n2n matrix, where n is the number of qubits used. The

Hadamard transform can be defined in two ways: recursively, or by using the binary

(base-2) representation of the indexes n and k.

1- Recursively, we define the 1 1 Hadamard transform (gate) H0 by the identity

H0 = 1, and then define Hn for n > 0 by:

Hn =
1√
2

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
(2.18)

Given H0 = 1 , then Hadamard transform (gate) for 1 qubit presented as

H1 =
1√
2

(
1 1
1 −1

)
(2.19)

Hadamard gate has special effect when applied to |0⟩ or |1⟩ state qubits, where the

output state is the perfect superposition of |0⟩ and |1⟩, i.e., a quantum state that,

if observed, will be a 0 or 1 with equal probability. as flowing

H|0⟩ = 1√
2
(|0⟩+ |1⟩) (2.20)

H|1⟩ = 1√
2
(|0⟩ − |1⟩) (2.21)

The Hadamard gate ( Transform ) plays an important role in quantum algorithms

where it is used as an initial step, since it could map n qubits initialized with |0⟩ to

superposition of all 2n orthogonal states in the |0⟩ and |1⟩ basis with equal weight

[19].
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2.2.2 Adiabatic Evolution model

Adiabatic evolution model is a novel paradigm presented by Farhi et al [24] to design

new series of quantum algorithms known as adiabatic quantum algorithms, this

model of quantum computation relies on the adiabatic theorem, a famous theorem

in thermodynamics, to do calculations. The goal is to find a Hamiltonian whose

ground state corresponds to the solution of the problem to be solved. First, a

system with a simple Hamiltonian (easy to be construct) is taken and initialized

to its ground state. Finally, the simple Hamiltonian is adiabatically evolved to the

desired Hamiltonian. Then the adiabatic theorem grantee that the system remains

in the ground state, under suitable conditions, so that the final state of the system,

i.e., after the evolutions for time T will describe the solution to the problem to be

solved.

The adiabatic quantum algorithms have been applied to solve various optimiza-

tion problems, such as satisfiability problems [25] [26], finding cliques in random

graphs [27], and set partitioning problem [28], where it has shown to give a polyno-

mial search cost growth on average. Later, the adiabatic version of various quantum

algorithm were presented such as adiabatic Grover search algorithm [29] [82], and

adiabatic Deutsch-Joza algorithm [31]. Also it was established that the adiabatic

model is polynomially equivalent to the slandered model of quantum circuits [36].

2.3 The Quantum Complexly Classes

Computational complexity theory is the subject of classifying the difficulty of vari-

ous computational problems (both classical and quantum). The basic concept is a

complexity class, which can be thought as a collection of computational problems

that share some common feature(s) with respect to the computational resources

needed to solve those problems. The most important classes are P and NP. The

former is the class of computational problems that can be solved efficiently (in poly-

nomial time) on classical computer and the later is the class of problems which have

solutions that can be quickly verified (again in polynomial time) on classical com-

puter [17]. It is clear that P is a subset of NP, since the ability to solve problem
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P Problems
NP Complete

PSPACE problems
NP Problems

BQP
Figure 2.6: The relationship between classical and quantum complexity classes.
Where quantum computers fit between P and PSPACE is not known [17].

implies the ability to check potential for solutions. Perhaps the most important

problem of theoretical computer science is to determine whether these two classes

are different: P and NP, where most of the scientist believe there are problems in

NP not that are not included in P. There is an important subclass of NP problems,

called NP-complete problems (NPC). Any NPC problem is at least as hard as all

other problems in NP. It means that an algorithm to solve a specific NPC problem

can be adapted to solve any other problem in NP. If P=NP, then it follows that

no NP-complete problem can be efficiently solved on classical computer. It is not

known whether quantum computers can be used to quickly solve all the problems in

NP (although they can be used to solve some of them, e.g., factoring, which is be-

lieved not to be in P). Another important class in PSPACE. It consist of problems

which can be solved using resources which are few in spatial size, but not necessary

in time. PSPACE is believed to be strictly larger than P and NP (see Fig. 2.6),

although this has never been proved. Finally, we mention BPP complexity class

containing problems that can be solved using randomized algorithms in polynomial

time, if a bounded probability of error is allowed.

In quantum complexity classes, we can define BQP (quantum, polynomial time)

to be the class of all computational problems which can be solved efficiently on a

quantum computer, allowing a bounded probability of error. Quantum computers
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Table 2.1: an Example for 2-SAT problem

Assignment Number of Conflicts c Corresponding Integer

000 1 0

001 0 1

010 1 2

011 1 3

100 1 4

100 0 5

100 0 6

111 0 7

run only probabilistic algorithms [17], so BQP on quantum computer is the counter-

part ofBPP on classical computers. Exactly whereBQP fits with respect to P,NP

and PSPACE is not known. What is known is that quantum computers can solve

all the problems in P efficiently, but there are no problems outside of PSPACE

which can be solved efficiently, therefore BQP probably lies somewhere between

them. An important implication is that if it is proved that quantum computers are

strictly more powerful than classical computers, then it will follow that P is not equal

to PSPACE. Although quantum computers may be faster than classical computers

they can’t solve any problems the classical computers can’t (given enough time and

memory). Since a probabilistic Turing machine can simulate quantum computers,

they could never solve an undecidable problem like the halting problem [17].

2.4 Satisfiability problem (SAT)

NP search problems have exponentially many possible states and a procedure that

quickly checks whether a given state is a solution [81]. Constraint satisfaction prob-

lems (CSPs) [88] are an example. A CSP consists of n variables, V1, V2, . . . , Vn, and

the requirement to assign a value to each variable to satisfy given constraints, where

an assignment specifies a value for each variable.

One important CSP is the satisfiability problem (SAT), which consists of a logical

propositional expression with n variables and the requirement to find a value (true

or false) for each variable that makes the formula true. This problem has 2n possible
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assignments.

The k-satisfiability problem (k-SAT) is a combinatorial search problem, whose

instance is a Boolean expression written using AND, OR, NOT, n variables, and

m clauses. A clause is a logical OR of k variables, each of which may be negated.

Given an expression, the solution is an assignment, i.e., a value of TRUE or FALSE

values for each variable that will make the entire expression true, i.e., satisfying all

the clauses [80]. For k ≥ 3 these problems are NP-complete complete, i.e., among

the most difficult NP problems in the worst case [81].

An example for a clause of k=3, with the third variable negated, is V1 OR V2 OR

(NOT V3 ), which is False for exactly one assignment for these variables:V1 = false,

V2 = false, and V3 = true. A clause with k variables is false for exactly one

assignment to those variables, and true for the other choices of 2k − 1 possible

assignments. Since the formula is a conjunction (AND) of clauses, a solution must

satisfy every clause. We say an assignment conflicts with a particular clause when

the values the assignment gives to the variables in the clause make the clause False.

For example, in a four variable problem, the assignment V1 = false, V2 = false,

V3 = true, and V4 = true conflicts with the k = 3 clause given above, while

V1 = false, V2 = false, V3 = false, and V4 = true does not. Thus each clause is

a constraint that adds one conflict to all assignments that conflict with it. Then

number of distinct clauses m is the number of constraints in the problem.

The assignments for SAT can also be viewed as bit strings with the correspon-

dence that the ith bit is 0 or 1 according to whether vi is assigned the value false or

true, respectively. Also this bit strings could be the binary representation of integers,

ranging from 0 to 2n − 1 . For example, the assignment V1 = false, V2 = false,

V3 = true, and V4 = false represents the integer whose binary representation is

0010,i.e, the number 4.

An example for 2-SAT problem with n=3 is the propositional formula

(V1OR(NOTV2))AND(V2OrV3) (2.22)

This problem has a 8 possible assignments as shown in Table. 2.1. This problem

have 4 solutions, i.e., The assignments with conflict number c = 0, Specifically, the
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assignments with the bit representations 001, 101, 110 and 111. The remaining

assignments with c > 0 are non-solutions, where they don’t satisfies all the clauses.
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Chapter 3

Adiabatic Quantum computation

3.1 Introduction

The model of adiabatic quantum computation is based on a theorem known as the

quantum adiabatic theorem [9]. Informally, this theorem says that if we take a

quantum system whose Hamiltonian slowly changes from initial Hamiltonian H1 to

final Hamiltonian H2, then, under certain conditions, the ground (lowest energy)

state of H1 gets transformed to the ground state of H2. This theorem is used to

construct a new series adiabatic algorithms for solving optimization problems, in

the following way. We take a Hamiltonian H1 whose ground state |ψ⟩ is easy to

construct, and a Hamiltonian H2 whose ground state corresponds to the solution of

the problem to be solved. Then, starting a quantum system in the state |ψ(0)⟩ and

slowly changing the Hamiltonian from H1 to H2 will solve our optimization problem.

The adiabatic quantum algorithm have been applied to solve various optimization

problems, such as satisfiability problems [25] [26], and set partitioning problem [28].

Later, the adiabatic version of various quantum algorithm were presented such as

adiabatic Grover search algorithm [29], and adiabatic Deutsch-Joza algorithm [31].

where it was found that in some cases the adiabatic algorithm is not efficient, such

as the adiabatic Grover algorithm and adiabatic Deutsch-Jozsa algorithm as they

results in a complexity of O(N), which is equal to the classical counterpart. Later,

the concept of local adiabatic evolution was presented [82], where it was proved to

improve these algorithms performance giving an optimal performance of O(
√
N)

[82]. Also it was established that the adiabatic model is polynomially equivalent to
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the slandered model of quantum circuits [36].

3.2 The Adiabatic Theorem

The adiabatic theorem is an important theorem in the thermodynamics. Informally,

It states that a physical system that is initially in its ground state, tends to stay

in this lowest energy state ( ground state), provided that the Hamiltonian of the

system is changed slowly enough, and if there is non zero gap between the ground

state eigenvalue and the reset of the higher eigenvalues (higher energy states).

The term adiabatic means in thermodynamics to identify any isolated process,

i.e., processes without the exchange of heat between the system and environment

[17].

At a given time t, let |ψ(t)⟩ denote the state vector of the system under the

influence of the Hamiltonian H(t). This quantum system evolves according to the

Schrődinger equation [84] (we use h̄ = 1 for simplicity)

i
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩. (3.1)

where the Hamiltonian of a quantum system gives a complete specification of the

time evolution of this system.

The Schrődinger equation can also be described with reference to the unitary

transformation U that is defined by the Hamiltonian H(t) as

d

dt
U(t)|ψ(0)⟩ = −iH(t)U(t)|ψ(0)⟩, (3.2)

thus with with the initial condition U(0) = I. we can say that The Hamiltonian

evolution from H(0) to H(T ) induces the unitary transformation U(T ). which can

easily be expressed as U = e−iTH [84](by integrating the Eq. (3.2) over limits [0,T]).

Assume we can build a Hamiltonian H(c) with ground state encodes the solution

of the problem instance to be solved, and prepare the system in the known ground

state of another Hamiltonian H(0) ( Usually we use a uniform superposition). Then

the continuous adiabatic evolution of the system can be described by following the

26



CHAPTER 3. ADIABATIC QUANTUM COMPUTATION

time dependent Hamiltonian

H(t) = (1− t

T
)H(0) +

t

T
H(c). (3.3)

with t ranging from 0 to T . Under suitable conditions, i.e., with a nonzero gap

between relevant eigenvalues of H(f), and with sufficiently enough time T , the

adiabatic theorem grantees that the evolution maps the ground state of H(0) into

the ground state of H(c). Then a subsequent measurement after time T gives the

solution encoded at the ground state of H(c). The successful adiabatic evolution of

the system is found to critically depends on the time of the evolution T [17].

3.3 The Quantum Adiabatic Algorithm

Consider a Quantum system evolves according to the Schrődinger equation (we use

h̄ = 1 for simplicity)

i
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩. (3.4)

where |ψ(t)⟩ denote the state vector of the system under the influence of the time-

dependent Hamiltonian H(t). The Quantum adiabatic algorithm relies on the adi-

abatic theorem to to the computation, where it the Hamiltonian H(t) varies slowly

enough for time T , the state of the system will stay close to the instantaneous ground

state of the Hamiltonian at each time t [68]. Assume we can build a Hamiltonian

H(c) with ground state encodes the solution of the problem instance to be solved,

and prepare the system in the known ground state of another Hamiltonian H(0).

Then the adiabatic algorithm [68] can continuously evolve the state of the quantum

computer using the time dependent Hamiltonian

H(t) = (1− t

T
)H(0) +

t

T
H(c). (3.5)

with t ranging from 0 to T . Under suitable conditions, i.e., with a nonzero gap

between relevant eigenvalues of H(f), and with sufficiently enough time T , the

adiabatic theorem grantees that the evolution maps initial state vector |psi(0)⟩ which

is the ground state of H(0) to the final state vector |ψ(T )⟩ which will be close to the

27



CHAPTER 3. ADIABATIC QUANTUM COMPUTATION

0
1
2
3
4
5

-3 -2 -1 0 1 2 3

f(x)

x

Function Optimization Problem

Figure 3.1: The evolution function fs(x) at s=0, i.e., equal to the initial function
f0(x) [53].

ground state of H(c), thus a subsequent measurement after the evolution for time T

gives the solution encoded at the ground state of H(c).

3.3.1 Example for function Optimization

Consider an optimization problem in which we need to find the x that minimizes

the following function

f(x) = x4 − 2x+ 1. (3.6)

for the interval of x ∈[-2,2].

To be able to use the concept of the adiabatic method we do the following

1. Chose easy initial form of the function (easy to solve), here we chose it to be

f0(x) = x2. giving the function in fig . 3.1.

2. Construct the evolving function ( Hamiltonian ) from the initial function f0(x)
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Figure 3.2: The evolution function fs(x) at s=0.32 [53].

and target function ( the problem to be solved) f1(x) as

fs(x) = (1− s) · f0(x) + s · f1(x)
= sx4 + (1− 3)x2 + s.

(3.7)

where s is the step parameter for the evolution with values changes slowly

from 0 to 1.

3. Evolve the function fs(x) gradually from f0(x) to f1(x) with slow changing in

s from 0 to 1. At s=1 system will be at the minimum of the function f1(x),

i.e., we can the desired solution as shown in the figures 3.2,3.3, and 3.4.

3.4 The Minimum Gap

Minimum Gap G plays an important role in the quantum adiabatic evolution, where

adiabatic theorem states that the evolution from the initial ground state to final

ground state be successful provided that the evolving Hamiltonian energies (eigen-

values) never cross, i.e., with non-zero gap between the relevant eigenvalues of the

system Hamiltonian H.
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Figure 3.3: The evolution function fs(x) at s=0.62 [53].
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Figure 3.4: The evolution function fs(x) at s=1, i.e., at the targeted function f1(x),
where the minimum solution is presented after all the evolution take place [53].
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The system Hamiltonian which govern the Adiabatic quantum evolution could

be generally presented as

H(t) = (1− s(t))H(0) + s(t)H(final). (3.8)

with s(t) changing from 0 to 1.

The adiabatic algorithm is considered to be successful if the required running

time grows polynomially in the number of bits n. This time can be thought of the

algorithm complexity (cost). The required running time is dominated by spectrum

of the evolving Hamiltonian H(t) [38], in particular the difference between the two

lowest eigenvalues E0(t) (ground state) and E1(t) ( the first higher energy level).

where required running time T must obey

T =
ε

G2
. (3.9)

where G is the minimum gap given by

G = min(E1(t)− E0(t)) (3.10)

and ε is less than the largest eigenvalue of H(final) −H(0), and always polynomial.

From all above we can conclude that if the evolving Hamiltonian H(s) has an ex-

ponentially small minimum gap with respect to the number of qubits used in com-

putation, then the corresponding algorithm is expected to be inefficient, whereas

minimum gap which scales inverse polynomially gives an efficient quantum adia-

batic algorithm whose running time is also polynomial [38].

3.5 Global vs Local Adiabatic Evolutions

When proposed the paradigm of quantum adiabatic evolution to design new series of

quantum algorithms known as adiabatic quantum algorithms. The adiabatic quan-

tum algorithms proposed by Farhi et al. [24] have been applied to solve various

optimization problems, such as satisfiability problems [25] [26], and finding cliques

in random graphs [27], where it has shown to give a polynomial search cost growth

on average. In these algorithms, the condition for adiabaticity is fulfilled globally
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by using only the minimum energy gap between ground and first exited state to

determine the computation time. This method (global evolution) is found to be not

efficient in some cases, such as adiabatic Grover’s search algorithm [29] and adiabatic

Deutsch-Jozsa algorithm [31] as they result in a complexity of O(N) (which is com-

plexity of classical algorithms). Therefore the need for an improvement rosed the

idea of local adiabatic evolution [82], which proved to give an optimal performance

of O(
√
N).

In the following sections we will show a brief definition for the Global adiabatic

evolution and the local adiabatic evolution

3.5.1 Global Adiabatic Evolution

In the global adiabatic evolution scheme, s is changed uniformly with time (s =

constant) and the computation time scales as 1/g2 . After evolution under H(s) for

a time T , the system is found in the ground state of The final Hamiltonian Hfinal

with probability (1− ε2)2, provided the evolution rate satisfies [17]

|⟨dH
dt
⟩1,0|

G2
≤ ε, ⟨dH

dt
⟩1,0 = ⟨E1; t|

dH

dt
|E0; t⟩| (3.11)

where ε << 1. The above formula (Eq. (3.11)) follows directly from adiabatic

theorem by applying first order perturbation theory on a two-level system of relevant

states. In particular, Eq. (1) implies that the minimum gap cannot be smaller than

a certain value if we require the state at time t to differ from instantaneous ground

state by a negligible amount (a smaller gap implies a higher transition probability

to the first excited state). As long as the gap is finite, for any finite and positive,

the time of evolution can be finite [17].

3.5.2 Local Adiabatic Evolution

The scheme of local adiabatic evolution was presented in order to improve the adi-

abatic evolution complexity (running time) which have shown the same of classical

counterpart in some cases [29]. The idea is to impose a limit on the evolution rate

during the whole computation by dividing the entire time interval T into infinites-

imal time intervals dt and applying adiabaticity condition locally to each of these
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intervals [82] [17], thus we can vary the evolution rate continuously in time and

thereby speeding up the computation. Then a new local evolution condition would

be

|⟨ds
dt

⟩ ≤ ε
g2(t)

|⟨dH
ds
⟩0, 1|

(3.12)

Although, the scheme of local evolution improved the evolution where it could

change the scaling time from from g−2
m to g−1

m (gm is the minimum gap). How-

ever, it’s response to the deliverance (sensitive to environmental noise) is a known

disadvantage. In contrast, the global evolution is robust against the decoherance.

Beside that, the local adiabatic evolution requires the knowledge of the spectrum

which is not feasible for general Hamiltonian [17].

3.6 Practical Implementation of Adiabatic Quan-

tum Computer

For the practical (actual) implementation [17], the Hamiltonian of the evolving

system is discretized [82] in order to recast the adiabatic evolution in terms of

unitary operators, Then the unitary operator U can be discretized to be as follow

U =
M∏

m=0

Um (3.13)

where m is current discrete step and M is the total number of discrete steps, Um is

the unitary transform for the step m and can be presented as

Um = exp(−i[1− m

M
H(0) +

m

M
H(final)]∆t) (3.14)

where

∆t = T/(M + 1) (3.15)

Discretization of a continuous Hamiltonian is straightforward process and changes

the total run time T of the adiabatic evolution only polynomially. The required

adiabatic limit is achieved when sufficient number of discrete steps M achieved.

The first experimental implementation of Actual adiabatic quantum evolution

was for Shor’s algorithm, it was demonstrated by Vandersypen et. al. [50] in 2001
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using nuclear spins to find the prime factors of number 15. More recent experiments

by Lu et. al. [51] and Lanyon et. al. [52] used photons as qubits and found the same

factors. In 2005, Mitra et. al demonstrated the experimental implementations of

local adiabatic evolution algorithms (Grover!s search and Deutsch-Jozsa algorithm)

on a 2-qubit quantum information processor using NMR [54] [55]. Chuang et. al.

[70] have demonstrated the implementation of a quantum adiabatic algorithm by

solving MAXCUT 28 problem on a 3-qubit system by NMR. and most recently D-

Wave systems company has announced the first quantum computer with 128 qubits

capable to run adiabatic quantum algorithm to solve combinatorial search problems

[39].
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Study on Quantum Heuristic
Search in Knapsack problems

4.1 Introduction

In this chapter, we present an experimental study on the optimization behavior of

the quantum heuristic search algorithm (QHS) for knapsack problem. QHS belongs

to the gate model of the quantum algorithms, it could operate on superposition of

all possible search states, and attempts to find the state with low cost. The cost

c associated with each state is used to adjust the phase of the states amplitude,

and a problem independent mixing operation combines the amplitude from different

states. The experiments are carried out using random instances for different types of

the knapsack problems for different number of bits, we uses two kinds of constrain

handling methods for knapsack problems known as penalty function and random

repair. The experimental results are compared with the conventional heuristic, the

Genetic Algorithm (GA) using same instances.

4.2 The optimization algorithms

4.2.1 Quantum Heuristics search (QHS)

Quantum Heuristic Search [59, 60] is an alternative quantum algorithm for combi-

natorial search. The algorithm operates with superpositions of all possible search

states for the problem instance. Each of their steps consists of adjusting the phases

of the amplitudes in the super positions based on the properties of the problem
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being solved, combined with problem-independent operation to mix the amplitudes

among different states. A single trail of the algorithm can be presented as follows,

1. Initialize the amplitude equally for all 2n states ,giving the initial state vector

|ψ(0)
s ⟩ = 1√

N


1
1
...
1

 (4.1)

where N = 2n .

2. For steps 1 through j, effect on the state vector using operator P to shift the

amplitude phase based on the costs c associated with the states, and then mix

them musing U operator. These operations is matrix multiplication as

|ψ(j)
s ⟩ = U (j)P (j) · · ·U (1)P (1)|ψ(0)

s ⟩ (4.2)

3. Measuring the final superposition, giving the state s with probability P (s) =

|ψ(j)|2. Thus the probability to obtain the minimum-cost state with a single

trial is P =
∑

s p(s), where the sum is over those s with minimum cost.

For each step h the phase shift matrix P (h), is a unitary diagonal matrix de-

pending on the problem instance we are solving, with values determined by the cost

associated with each state s as

P (h)
ss = eiπρhc(s) (4.3)

where ρh is a constant and c(s) is the cost associated with search state s.

The mixing matrix U is problem independent given by U (h) = WT (h)W , where for

state r and s Walsh transform W is given by Wrs = 2−n/2(−1)|r∧s|, where |r ∧ s| is

the number of 1 bits the both states have in common. The matrix T (h) is diagonal

with elements depends on b, where b is the number of 1-bits state s contains as

follow

T (h)
ss = eiπτhb (4.4)
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Figure 4.1: Flowchart represent single trial of QHS

where τh is a constant depending on the class of problem and the number of steps

j, the mixing matrix U depend only on the hamming distance between the states

d(r, s),i.e, the number of bits with different values in the two states.That is, we

can write U (h) = (− tan(πτh/2))
d(r,s), up to an over all phase and normalization

constant [59] . The key of designing any quantum algorithm is the need to increase

the probability of finding certain state (solution state, matching state) before the

measurement operation, so that it could be the output after measurement.

4.2.2 Genetic Algorithm(GA)

Genetic algorithms are a part of evolutionary computing, which inspired by Dar-

win’s theory about evolution. Simply we can say, solution to a problem solved by

genetic algorithms is evolved [61], GA uses operators inspired by evolutionary bi-

ology such as mutation, selection, and crossover. It uses three basic parameters

crossover probability and mutation probability, beside the population size [62]. A

single trial of the GA can be described as follows:
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1. Initialization: create a (random) starting population and evaluate fitness of

each individual.

2. Recombination: recombine individuals using crossover and mutation.

3. Evaluation: evaluate fitness.

4. Selection: select best ones for the next generation

5. Termination: if the termination condition is satisfied, stop, otherwise continue

at step 2.

Choosing appropriate values for the parameters in speed up the algorithm and pre-

vent falling into local extreme

4.3 Comparative study between QHS and GA

4.3.1 Preparation

50 problems instances were randomly generated for each of the three classes of 0-1

knapsack problem with different number of bits, these instances were used in the

evaluation experiments in order to observe the performance of QHS compared to

GA. Two different constraint handling methods are used and the knapsack capacity

is set to be half of the sum total of all items weights.

The phase parameters ρh and τh of QHS is chosen to vary linearly [59, 60] with the

number of steps j as follows,

ρh = (R0 +R1(1− (h− 1)/j))/j (4.5)

τh = (T0 + T1(1− (h− 1)/j))/j (4.6)

where h is the current step ,j is the number of steps for which the algorithm will

be run. Thus for instance the first step uses ρh = (R0 + R1)/j, which means as j

increases, the ρh and τh values become small so the corresponding P and U matrices
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become close to identity matrices,i.e., each step introduces only small changes in the

amplitudes. The values of the parameters R0, R1, T0, and T1 are 4, -3.4, 0.5392,

and 3.5105, respectively, these values are same values used in the previous work,

where it gave the best performance [59] [60] [58] [63]. The cost c of each assignment

s (”individual”) is calculated as cost(s) = maxfitness − fit(s) . The parameters

of GA are chosen as follows, mutation rate =0.005, the crossover rate = 70% , the

roulette wheel selection as selection method and the termination condition is 100

generations.

4.3.2 Knapsack Problem

0-1 Knapsack problem is well known optimization problem belongs to the class of

NP-hard problems [64][65], where we have a knapsack with finite capacity and set

of n items, where each item i have a weight wi and a profit pi. The objective of the

KP is to select a subset of items such that the total profit z is maximized, while the

total weight b doesn’t exceed the capacity of knapsack, it can be mathematically

formulated as follows [66],

Given : c, wi, pi

Maximize : z =
n∑

i=1

xipi

Subject to : b =
n∑

i=1

xiwi ≤ c and xi ∈ 0, 1 (4.7)

Classes of KP

The classes of KP focusing on the relationship between Weight and Profit [67] as

shown in Figures 4.2, 4.3, and 4.5 as follows,

Uncorrelated: The profit pi and the weight wi of the item i are uniformly random

numbers in [1, v] .

Weakly correlated: The weight wi is uniformly random in [1, v], and pi is uni-

formly random in [max (wi -r, 1), wi +r ]

Strongly correlated: The weight wi is uniformly random in [1, v], and pi = wi

+r .
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Figure 4.4: Strongly correlated (Cs).
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4.3.3 Constraint Handling Methods

With the aim to evaluate the dependableness on the problem constraint handling

methods in solving KP with QHS and GA, two different methods are used , Penalty

function and Random repair [67] to handle the constraint violations,i.e., the excess

of total weights of the chosen items the capacity of the knapsack .

1. Penalty Function

Considering n items Knapsack problem with capacity given by c = 1
2

∑n
i=1wi.

The Fitness is calculated from a penalty function as follows:

Fit(pi) =
n∑

k=1

pkxik − α ·max{0,
n∑

k=1

wixik − c}, (4.8)

Where pi is the profit and wiis the weight of the item i, C is the capacity of

the knapsack and α = maxk=1...n{pk/wk}.

2. Random Repair.

To evaluate the fitness using random repair method the following two steps

will be applied:

Step1: Repeat selecting an item in the knapsack randomly and removing it

until the knapsack is filled.

Step2: Repeat selecting an item and adding into the knapsack until capacity

are exceeded. When the capacity is exceeded, the item added at the end is

removed.

The Step2 is applied even when weight limits are satisfied [67].

Penalty function method is a general-propose constraint handling method, however,

eqn (4.8) depends on KP. Random Repair method is constraint handling method

depending on KP. Therefore the dependableness on problem-specific constraint han-

dling method is expected to be larger in Random repair method.

4.3.4 Experimental results

The experiments is carried out solving 10 different random instances each is averaged

over 10 trials, QHS and GA are run for 100 generation(steps) for each trail. As result,
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the rate of finding the optimal solution and search cost for the both algorithms will

be compared.

Fig. 4.5 shows the rate of finding the optimal solution vs. number of steps of

QHS and GA for the three classes of the KP-problem, Uncorrelated (Cu), weakly

correlated (Cw), and strongly correlated (Cs) with different number of bits 8,16, and

20. It shows that the quantum algorithm QHS can find the optimal solution on aver-

age effectively with fewer number of steps when compared with GA for the 3 types,

however with lower rate of finding the optimal solution. Also the fig indicate that

the Strongly correlated type instances was the hardest to solve using QHS, where it

gives lowest probability to find the solutions (from 0.44 to 0.52). That is because the

QHS search performance is affected mainly by the distribution of the 1 bits inside

the state (the assignment), which effects directly on the problem-independent oper-

ator U (which mix the amplitudes between the different states). Thus the results

revealed that penalty function method couldn’t improve the performance of QHS.

Fig. 4.6 shows the rate of finding the optimal solution vs. number of steps for

QHS and GA for the same instances used in Fig. 4.5, however it uses random repair

method as constraint handling method. Focusing on Figure 4.6 we can see that

QHS could find the optimal solutions with rates higher than shown in Fig. 4.5 and

also the required number of steps for QHS is below that of GA. The fig also shows

the improvement of the rate of finding the optimal solution specially, in strongly

correlated type with 20 items (62%) instead of (44%).

The comparison between experimental results shown in Fig. 4.5 and Fig. 4.6 have

revealed that using the random repair method could improve the rate of finding the

optimal solution of QHS than those of using penalty function method. This is

mainly because random repair method redistribute the 1 bits inside the assignments

(adding or removing items from knapsack), which improves the performance of the

mixing operator U . As result, it leads to improve in the search performance of QHS.

Fig. 4.7 compare the search cost of QHS vs. GA in Cu, Cw, and Cs with different

number of bits 4,8,12,16, and 20. For each number of bit n the same number of

instances is solved using the both algorithms, each point value is the average of 100

trials, and the search cost is calculated as total number of steps in the successive
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trials over the number of successive trials .

Fig. 4.8 also show the comparison of the search cost for QHS and GA in Cu,

Cw and Cs using random repair method. Focusing in the Figures 4.7 and 4.8

we can see that QHS has search costs are below of the classical algorithm GA or

at least comparable all the time, however, both algorithms search costs growth

exponentially, the comparison between the average search cost of both algorithm

measured by total number of steps in the successive trials over the search trials

is the most significant comparison. This is because the actual search times will

depend on detailed implementation of the steps. Although the number of elementary

computational steps involving evaluating the cost is the same on the both algorithms,

the difference in clock rates of classical and quantum machines remain to be seen.

4.4 Conclusion

The experiments done with QHS with different constraint handling method for KP,

and the comparison with GA indicate that the QHS which could operates with

superpositions of all possible search states and use the cost structure of problem in-

stances, on average has performance comparable to classical heuristics where number

of steps required by QHS was lower than required by GA to find the optimal solution,

also the experiments revealed that using the random repair method as constraint

handling method improved the search performance of the QHS than using penalty

function, specially, with the strongly correlated type. However, the search cost after

using random repair method is increased than using the penalty function method

but still comparable with GA. For future direction, including other properties used

in classical heuristics may also give useful phase adjustment for example include

how an assignment cost compare to those of its neighbors. Currently, such quantum

machines do not exist. Instead, we must simulate the quantum algorithm on con-

ventional machines, so each trial requires exponential cost and memory. Thus we are

limited to investigating much smaller problems up to 20 variables, the simulation

evaluates properties of all search states and so is considerably more expensive than

evaluating conventional heuristics.
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Figure 4.5: Comparison between QHS and GA using Penalty method on the rate of
finding the optimal solution
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Chapter 5

Study on discrete adiabatic
computation with quadric
variation method

5.1 introduction

The model of adiabatic quantum computation is a new paradigm for designing

quantum algorithms, proposed by Farhi et al. [24]. It relies on the adiabatic theorem

to do the calculations, where the quantum computer evolves slowly for sufficient time

T to switch gradually from an initial Hamiltonian with known ground state, to a

final Hamiltonian whose ground state encodes the known solution [25]. Recently It

was recently established that this model is polynomially equivalent to the standard

model of quantum circuits [36] [84]. Nevertheless, this model provides a completely

different way of constructing quantum algorithms and reasoning about them [79].

Therefore, it is seen as a promising approach for the discovery of a new quantum

algorithms [24].

The adiabatic quantum algorithm have been applied to solve various optimiza-

tion problems, such as satisfiability problems [25] [26], finding cliques in random

graphs [27], and set partitioning problem [28], where it has shown to give a polyno-

mial search cost growth on average.

This Chapter presents the first version of the quadric variation method, which is a

partiality-monotonic variation method for the phase functions in quantum adiabatic

algorithm. With the aim to show the improvement in the search behavior of the
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quantum adiabatic algorithm using the proposed method when it is compared to

the existing methods, the experimental study in solving random instances of 3-SAT

problems with different number of bits has been carried out using the three variation

methods, linear, cubic, and quadric, for which the corresponding search costs and

probability of finding the solution are shown. The experimental considerations and

results shown in this chapter are presented at The World Congress on Nature and

Biologically Inspired Computing (NaBIC2010) and published in it’s proceedings [69].

5.2 3-SAT Problem

The k-satisfiability problem (k-SAT) is a combinatorial search problem, whose in-

stance is a Boolean expression written using AND, OR, NOT, n variables, and m

clauses. A clause is a logical OR of k variables, each of which may be negated.

Given an expression, the solution is an assignment, i.e., a value of TRUE or FALSE

values for each variable that will make the entire expression true, i.e., satisfying

all the clauses [80]. An example 2-SAT instance with 3 variables and 2 clauses is

(v1OR(NOTv2)) AND (v2 OR v3), which has 4 solutions, for example, v1 = v2 =

false and v3 = true. For a given instance, the cost c(s) of an assignment s is the

number of clauses it does not satisfy.

For k ≥ 3, k-SAT is NP-complete, i.e., among the most difficult NP problems in

the worst case [80] [81]. With aim to show the average behavior of the algorithm, we

generate random instances of 3-SAT problem, in which the m clauses are selected

uniformly at random, .i.e., for each clause, a set of 3 variables is selected randomly.

In this study we focus on the decision problem, i.e., finding a solution, where the

adiabatic algorithm is probabilistic, so cannot definitively determine if the solution

exists or not, thus we consider soluble instances only.

5.3 The discrete Adiabatic algorithm

Originally, the adiabatic method is continuous process. However, with aim to

compare with other discrete methods, here we use the discrete formulation of the

algorithm which proved to be algorithmically equivalent [84][68], it acts on the
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amplitude state vector initially in the ground state of the Hamiltonian H(0), which

can be represented for n qubits quantum system as |ψ(0)
s ⟩ = 1√

2n
[1, 1, ..., 1]T [68].

Discretization of a continuous Hamiltonian is straightforward process and proved to

change the total run time of the algorithm only polynomially [70].

Consider a discreet Hamiltonian H(f) in the general form

H(f) = τ(f)H(0) + ρ(f)H(c), (5.1)

where τ(f) and ρ(f) are mixing and phase shift function, respectively. Both of them

are functions of f (0 ≤ f ≤ 1), shown in Table.1, subject to the boundary conditions

τ(0) = 1, ρ(0) = 0, (5.2)

τ(1) = 0, ρ(1) = 1. (5.3)

Although, the two functions τ(f), and ρ(f) are not necessary to be monotonic

[85] (i.e. obey the constraint τ(f)+ ρ(f) = 1), here we consider only the monotonic

functions. In matrix form [68], the Hamiltonian H(c) could be presented as

H(c)
r,s = c(s)δr,s,where δr,s =

{
1 if r=s
0 otherwise

(5.4)

This Hamiltonian introduces a phase shift factor in the amplitude of assignment

s depending on its associated cost c(s), where the higher cost results in more phase

shift. The Hamiltonian H(0) can be implemented with elementary quantum gates

by use of the Walsh-Hadamard transform with elements Wr.s = 2−n/2(−1)r·s [68],

where H(0) = WDW and D is a diagonal matrix with the value for state r given

by the sum of the bits, i.e, the element Dr,r is just a count for the number of bits

equal to 1 in state r.

A single trial of the algorithm, as shown in Fig. 5.1, consists of j steps with

parameter ∆ and can be described as follows [69]:

1. Initialize the amplitude state vector to the ground state of H(0) giving equal

values for all states as |ψ(0)
s ⟩ = 1√

N
[1, 1, ..., 1]T .

2. For steps h = 1 to j, repeat the matrix multiplication :

|ψ(h)⟩ = Uh(f)|ψ(h−1)⟩. (5.5)
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Figure 5.1: Flowchart represents the discrete version of adiabatic quantum algorithm

where |ψ(h−1)⟩ is the amplitude state vector at the step h − 1, and Uh(f) is

unitary evolution operator for hth step which can be represented as

Uh(f) = e−iτ(f)H(0)∆ · e−iρ(f)H(c)∆. (5.6)

3. Measure the final system after the j steps take place. Then probability to find

a solution is given by Psoln =
∑

s ||ψ(j)||2.

5.4 The Quadric Variation Method

(Partial Monotonic version)

Recently several variation methods for phase shift ρ(f), and mixing function τ(f)

in the discrete adiabatic quantum algorithm are presented, such as linear variation

[24], and cubic variation [68]. Here we propose a partially monotonic version of
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Figure 5.2: Phase shift and phase mix functions vs. f for the partial monotonic
quadric variation method with a · f − b · f 2.

quadric variation method for ρ(f) and τ(f) in attempt to decrease the over all

resulting search cost and speed up the adiabatic algorithm. In this method ρ(f) and

τ(f) vary monotonically as quadric polynomial in f as a·f−b·f 2 and 1−[a·f−b·f 2]

,respectively. This proposed formula is easy to construct, and it was found to satisfy

the conditions (4) and (5) as well as the adiabaticity condition, i.e, using this method

doesn’t lead the relevant eigenvalues (energies) of the evolving Hamiltonian H(f)

to cross.

A word Monotonic means that it satisfies the condition (ρ(f)+τ(f)=1) for all

values of f , and have values bounded between 0 and 1. The values of a and b depend

on the problem to be solved. However, these values are bounded by satisfying the

conditions (4), and (5). For satisfiability problems these values are found to be

a=2.5187 and b=-1.483. These values are found for a set of 100 random instances

of 3-SAT problem with a best performance [69].

Fig. 5.2 shows the phase functions for quadric variation method vs. the f value

51



CHAPTER 5. STUDY ON DISCRETE ADIABATIC COMPUTATION WITH
QUADRIC VARIATION METHOD

-0.50
0.51
1.52
2.5

0 0.2 0.4 0.6 0.8 1
Energy ( ei
genvalue)

f

Level2Level1GT

Figure 5.3: Lowest two 3 eigenvalues vs. f for an instance with n=8, and one
solution. The black curve shows the ground state, gray curve and dark gray curve
are level 1, level 2, energies, respectively.

from 0 to 1. From this figure we can see that the quadric variation method shown

has small diversity area and big intensification area which gives a sign for expecting

better results. Also we we can see that the values of ρ(f) and τ(f) are not completely

bounded between 0 and 1, thus we say this method is partially monotonic. However

the values of a and b could be optimized depending on the problem to be solved to

get the best probability of finding the solutions or to convert the quadric variation

to be completely monotonic as we will show in the next chapter.

Fig. 5.3 shows the Lowest 3 eigenvalues (Energy levels) of the evolving Hamilto-

nian H(f) vs. f in solving an instance of 3-SAT problem with one solution. In this

evolution the quadric variation method is used for the phase shift ρ(f), and mixing

τ functions. This figure shows that the eigenvalue of the ground state (bold black

curve) and the next two smallest higher eigenvalues correspond to non solutions

(gray and durk gray curve respectively), never cross, i.e., with non-zero gap. As

a result this figure reveal that evolution under the discrete Hamiltonian H(f) (see

Eq.(4)) with the quadric variation method follows the adiabatic theorem.
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5.5 The Recent Variation Methods

Recently several variation methods for phase shift ρ(f), and mixing function τ(f)

in the discrete adiabatic quantum algorithm such as linear variation [24], and cubic

variation[68]. With aim to show the improvement of the proposed method we use

linear [24], and cubic [68] methods described in next sections to compare the search

behavior and performance of the adiabatic algorithm with proposed method.

5.5.1 Linear Variation Method

Linear variation method is corresponding method to the continuous version of the

adiabatic algorithm (The original scheduling method for the adiabatic algorithm).

It varies the phase shift ρ(f) and mixing functions τ(f) of the adiabatic algorithm

linearly as simple monotonic function as f and 1− f , respectively. This method is

easy to construct. However, it was proven that it needs large number of steps to

reach high probability of finding solutions [69]. This method presents the original

idea of the adiabatic evolution model to do a computations [24] [25]. This method is

completely monotonic where it starfishes the condition (ρ(f)+τ(f)=1) for all values

of f and have values always bounded between 0 and 1.

Fig. 5.4 shows the phase functions for linear variation method vs. the f value

from 0 to 1. From this figure we can note that the linear variation method has

diversity area and intensification with equal size, which gives a sign for requiring an

intensive phase shifting and mixing , i.e, requires higher number of steps to achieve

high probability of finding a solutions.

Fig. 5.5 shows the Lowest 3 eigenvalues (Energy levels) of the evolving Hamil-

tonian H(f) vs. f in solving an instance of 3-SAT problem with one solution using

linear variation method. This figure shows that the eigenvalue of the ground state

(bold black curve) and the next two smallest higher eigenvalues correspond to non

solutions (gray and dark gray curve respectively), never cross, i.e., with non-zero

gap. As a result this figure reveal that evolution under the discrete Hamiltonian

H(f) (see Eq.(4)) with the linear variation method obeys the adiabatic theorem.
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Figure 5.4: Phase shift and phase mix functions vs. f for the linear variation method.
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Figure 5.5: Lowest two 3 eigenvalues vs. f for an instance with n=8, and one
solution. This instance was solved using the algorithm with linear variation method.
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5.5.2 Cubic Variation methods

Cubic variation method is similar to the functional form optimizing the adiabatic

method for unstructured search which proved to reduce the resulting cost [68] [82]

[84]. In this method ρ(f) and τ(f) vary monotonically as cubic polynomial in f as

1.921f − 2.665f 2 +1.782f 3 and 1− [1.921f − 2.665f 2 +1.782f 3], respectively. This

method is completely monotonic where it satisfies the condition (ρ+τ=1) for all

values of f and have values always bounded between 0 and 1. And also it satisfies

adiabaticity condition, i.e, using this method never lead the relevant eigenvalues

(energies) of the evolving Hamiltonian H(f) to cross.

Fig. 5.6 shows the phase functions for cubic variation method vs. the f value

from 0 to 1. From this figure we can note that the cubic variation method has diver-

sity area and intensification with equal size( However smaller than linear variation

method), which gives a sign for requiring an intensive phase shifting and mixing ,

i.e, it may require larger number of steps to achieve high probability of finding a

solutions.

Fig. 5.7 shows the lowest 3 eigenvalues (Energy levels) of the evolving Hamilto-

nian H(f) vs. f in solving an instance of 3-SAT problem with one solution using

linear variation method. This figure shows that the eigenvalue of the ground state

(bold black curve) and the next two smallest higher eigenvalues correspond to non

solutions (gray and dark gray curve respectively), never cross, i.e., with non-zero

gap. As a result this figure reveal that evolution under the discrete Hamiltonian

H(f) with the cubic variation method satisfies the adiabaticity condition.

5.6 The Simulator

5.6.1 Description

Simulating the quantum computer (Algorithm) is such a hard issue causes in expec-

tational growth in required memory of the computer. This is due to represent a pure

quantum principles such as superposition and parallelism, where any operation must

be applied in once to all possible states in the superposition. In order to implement

the parallelism the vector/ matrix representation are used for the simulator. For
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Figure 5.6: Phase shift and state mix functions vs f for the Cubic variation method.

00.20.40.60.81
1.21.41.61.82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eigenvalu
e( energy
)

f

level 2level 1GT

Figure 5.7: Lowest two 3 eigenvalues vs. f for an instance with n=8, and one
solution. This instance was solved using the algorithm with cubic variation method.
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Figure 5.8: The simulator of Quantum search algorithms (The interface).

example, the satisfiability problem with n = 3 variables could be presented by state

vector of length 2n, i.e., with length 8 in this case where all possible states ( 8 states

) could be presented, Also any operator effect on this state vector must be a matrix

of 23 ∗ 23. The experiments presented in next sections are carried out using Core

i7 processor with 8 cores and with 16 Giga of memory, which is currently the best

available configuration.

Fig. 5.8 shows The simulator we use. It is created using a known computer

programming language, Java, and effectively can simulate the search behavior of

various Quantum Search Algorithms such as the quantum heuristic search (QHS),

the Quantum Adiabatic Algorithm with different variation methods, and the Grover

algorithm for database search.

5.6.2 Interface

The following Figures show the program interface

Fig. 5.9 shows the first tab of the interface, it shows the probability amplitude
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of each state in the superposition in initialization state where all of them have the

same real value, this amplitudes are shown as lines in a complex plane where X-axis

is the real part and Y- axis is the imaginary part. Also in in this figure we can see

that the how the program is easy to use where you can chose the problem instance

to be solved as well as the method (the algorithm) from the combo box. Also in

this Tab (amplitude tab) we can always now the Norm of the state vector, current

probability of finding the solution, and the average conflict number from the labels

marked as 1, 2, 3 , respectively, in the bottom part of the tab.

Fig. 5.10 shows the probability amplitude as lines in complex plane rotating

as effect of phase shift operators and mixing operators, The black lines are the

solutions.

Fig. 5.11 shows the second tab of the interface named the probability tab. It

shows the probability of finding the solution as function of number of steps. Here you

can compare various methods search behavior in solving the same problem instance

as shown in the Fig. 5.11.

Fig. 5.12 shows the final tab named Run-summary. here you can get a summary

of experimental results, it shows the algorithm name, resulting probability of finding

the solution P (solution), total number of steps, minimum search cost, and the step

at maximum P (solution).

5.7 The parameter ∆

A good performance of the discrete adiabatic algorithm requires an appropriate

choice of parameter ∆. In the discrete formulation, ∆ parameterizes the operators

of Eq.(9) rather than determining the time T required to perform them [68]. By

contrast, ∆ in the continuous formulation determines the time to perform the op-

erators as T = j ·∆. The recently presented variation methods as shown in Table.

1. were considering ∆ as a constant value, i.e., independent of j and n, except for

linear variation which corresponds to the continuous formulation uses ∆ = 1/
√
j.

The experiments to solve 3-SAT problems have shown that the performance of

the algorithm remains good with constant ∆ values, provided that ∆ is near some
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Figure 5.9: The initialization of the program where we chose the problem instance
and algorithm.

Figure 5.10: The amplitude tab of the interface shows the amplitudes as lines in a
complex plane.
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Figure 5.11: The probability tab of the interface shows propability of finding the
solution vs. Steps for each compared algorithms.

Figure 5.12: The Run-Summary tab summarizes the experimental results for each
used algorithm.
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Figure 5.13: Psoln vs number of steps j for the algorithm with quadric variation
solving a 8-variable 3-SAT instance with m=34 and 2 solutions, the solid black
curve represents ∆ = 1, the solid gray curve for ∆ = 1.5, the thin gray curve for
∆ = 2, and the dashed curve for ∆ = 2.5.

threshold value. For problems with n ≤ 20 this threshold found to be near 1.

Fig. 5.13 shows the algorithm behavior using the quadric variation method with

different values for ∆ 1, 1.5, 2, and 2.5. The figure shows that the a good perfor-

mance is achieved when ∆ = 1 where Psoln goes to 0.73 with moderate number of

steps j = 30 near ( .5 ∗ n2), and as the value of ∆ increases the Psoln goes to zero,

which mean when ∆ is too large (larger than 2) the initial state vector |ψ(h)⟩ follows

the evolving eigenvector to the wrong state when f=1, giving Psoln goes to zero as

j increases, as result of this results we use value ∆ = 1 for the experiments in next

sections except for the linear variation which uses ∆ = 1/
√
j.

5.8 The Energy Gap

The energy gaps plays an important role in the quantum adiabatic evolution, where

adiabatic theorem states that the evolution from the initial ground state to final
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Figure 5.14: The energy gap vs. f for the four variation methods. The values are the
difference between ground state eigenvalue and first higher eigenvalue corresponds
to non-solution of the evolving Hamiltonian H(f) for an instance of 3-SAT problem
with n=8 and one solution.

ground state be successful provided that the evolving Hamiltonian energies (eigen-

values) never cross, i.e., with non-zero gap between the relevant eigenvalues of the

system Hamiltonian H(f).

The energy gap g(f) is the difference between the ground state eigenvalue (the

lowest eigenvalue corresponds to the solution) and the smallest higher eigenvalue

corresponding to a non-solution in H(f). The search cost of the adiabatic algorithm

is dominated by the growth of 1/G2, where G = minfg(f) is the minimum gap over

f , i.e., the method with the bigger G has a better chance of decreasing the search

cost of the algorithm. Fig. 5.14 shows G for the three methods linear, cubic, and

quadric, as 0.10257, 0.1529, and 0.18217, respectively. From these values we can see

that the quadric method gives bigger value for G compared with the other methods,

giving insights for decreasing the average search cost.
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Table 5.1: The variation methods and the parameter configuration.

Variation methods ρ(f) τ(f)
Number of

∆
steps j

Linear f 1− ρ(f) n3 1/
√
n3

Quadric a · f − b · f2 1− ρ(f) n2/2 1

Cubic 1.921f − 2.665f2 + 1.782f3 1− ρ(f) n2 1

5.9 The Experimental Results and Discussions

In this section we presents the experimental results from solving random instances

of 3-SAT problems using the proposed method and the methods we described in

previous sections linear and cubic. As results, the corresponding probability of

finding solution and the search costs are shown.

5.9.1 The Parameter Configurations

Table 5.1 shows the different variation methods for the phase shift ρ(f), and mixing

functions τ(f), and values of the parameter ∆ used for each method as well as

the required number of steps j in the experiments. Although, the parameter ∆ is

originally to parametrize the time to perform the steps (operators) of the adiabatic

algorithm. Here we use the constant value of the parameter ∆, i.e., independent of

n and j, which proved to give a good results with cubic and other variation methods

[68] [84]. We use ∆ = 1 for cubic method rather using it’s original value 1.3218 as

originally presented in [68], where ∆ = 1 proved to give better results as we will

show in next sections.

5.9.2 Algorithm Search Behavior

In this section we compare the search behavior of the discrete adiabatic algo-

rithm using the three different variation methods as summarized in Table.1. First is

the linear variation method corresponds to the continuous adiabatic algorithm, this

method uses ∆ = 1/
√
j, phase shift ρ(f) and mixing τ(f) functions varies monoton-

ically as linear function of f , and number of steps j grows as cubic number of bits
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Figure 5.15: Psoln vs number of steps h for the 3 methods averaged over 10 random
instances of 3-SAT problems with n = 8.

n3. Second method is the cubic variation with ρ(f) and τ(f) varies monotonically

as cubic polynomial in f , constant ∆, and uses j grows as square number of bits n2,

and finally the quadric variation method as described in previous section.

Fig. 5.15 compares the search behavior of discrete adiabatic algorithm in solv-

ing random instances of 3-SAT problem using quadric, cubic, and linear variation

methods for n = 8. The fig shows that the quadric variation method requires num-

ber of steps only near n2/2, i.e., only 32 steps, to achieve moderate Psoln ≈ 0.62,

which gives faster search behavior when it is compared with the algorithm behavior

using cubic variation which needs number of steps at least as n2, i.e, 64 Steps, to

achieve Psoln ≈ 0.51. The Figure also shows that the linear variation corresponds

to the continuous version of algorithm gives high Psoln in most of the trials near

0.91 using ∆ = 1/
√
n3. However, it requires number of steps j at least grows as n3

which results in high search cost. The results are the average of solving 50 random

instances of 3-SAT problems.

Fig. 5.16,and Fig. 5.17 also compare the search behavior of discrete adiabatic

algorithm in solving random instances of 3-SAT problem using quadric, cubic, and
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Figure 5.16: Psoln vs number of steps h for the 3 methods averaged over 10 random
instances of 3-SAT problems with n = 16.

linear variation methods for n as 16, and 20 respectively. The figures show that

the quadric variation method continue to show the same search behavior for n = 8

and n = 16 where it required only 128 and 200 steps, respectively, i.e., n2/2 to

achieve moderate Psoln ≈ 0.62. By contrast the results of cubic variation method

start to show decrease in the achieved Psoln as ≈ 0.421 even with using the same

required number of steps as n2. The algorithm behavior with linear variation method

continue to show consistent results where it continue to achieve high Psoln ≈ 0.91

with number of steps grows as n3.

Fig. 5.18 summarizes the experimental results showing the median Psoln vs. the

number of bits n for the algorithm using the three methods. This figure shows that

the quadric variation method with only j grows as .5 ∗ n2 gives moderate Psoln near

0.62 continue at least for n ≤ 20. Therefore the median search costs are O(n2/2),

giving substantial improvement over all known classical method if it continue for

larger n. Also it shows cubic variation with j grows as n2 start with fairly high

Psoln with moderate value near 0.5 at small n = 8, However, it shows decrease

in the achieved Psoln as number of bit n increases but still gives search cost of
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Figure 5.17: Psoln vs number of steps h for the 3 methods averaged over 10 random
instances of 3-SAT problems with n = 20.
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Figure 5.18: The median of Psoln for the algorithm vs. the number of bits n using
the three methods. The same instances were solved using each method. we see 50
instances each n.
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Figure 5.19: Log plot of the median search cost vs the number of variables n for
the three variation methods. The values are based on the same instances of 3-SAT
problems used in Fig. 5.18

O(n2). Although, the linear variation method gives Psoln near to 1 for all n ≤ 20, it

requires j of O(n3) which results in increasing search cost C compared with other

methods. For comparison at n = 20, Psoln are 0.6327, 0.3187, and 0.9143 for quadric,

cubic, and linear, respectively. This results have revealed the improvement for the

search behavior of the discrete adiabatic algorithm using the quadric variation when

compared with the other methods linear and cubic. Also non-stable behavior shown

by the cubic variation method has raised the need of finding the better values of

parameter ∆ to improve the performance of the algorithm as n increases which we

will present in the next chapter.

The experiments also have shown that using constant ∆, i.e., independent on n

and j could give fairly high Psoln values, showing better use of quantum coherence

in the discrete formulation of adiabatic algorithm.
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Figure 5.20: Log plot of the median search cost vs the number of variables n using
the lines to show the grouth rate. The values are for the same instances of used in
Fig. 5.18

5.9.3 Resulting Search cost

The search cost is defined to be the expected number of steps required to find a

solution C = j/Psoln providing a commonly used proxy for the computational cost

of discreet methods. We used the median search cost instead of the average cost to

indicate the typical behavior of the algorithm.

Fig. 5.19 compares the median search cost C of the three variation methods when

used with the adiabatic algorithm. The figure shows that using quadric variation

with just enough number of steps j = 0.5∗n2 to achieve moderate Psoln as shown in

Figurs. 5.15, 5.16, and 5.17 reduces the search cost when compared with the other

methods. However, the algorithm with linear variation could achieve Psoln near 1 in

most of the trials as shown, the number of steps required grows as n3 giving a large

search costs far higher than those of other methods. The experiments show that also

the cubic variation could reduce the search cost compared with linear variation due

to the number of steps only grows as j = n2, However, the loss of Constant behavior

as n increases lead to exponential growth of the search cost. For comparison the
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figure shows that the median search cost at n = 20 for the quadric, cubic, and

linear methods to be 329, 1109, and 8749, respectively. which shows improve in the

resulting cost reduction using quadric variation method, due to its fairly high values

for Psoln and reduced number of steps.

Fig. 5.20 Shows the same results shown in Fig. 5.19 but in lines chart type in

order to compare the growth rates of each method. This fig shows the exponential

fit to the adiabatic algorithm for the linear , cubic , and quadric are e1.132·n, e1.02·n,

0.5 · e0.932·n, respectively . This fits show the improvement in the growth rate for the

quadric variation, However, it is a bit small improvement compared with the cubic

variation.

Here, the search cost is defined to be the expected number of steps required to

find a solution C = j/Psoln which is a commonly used proxy for the computational

cost of the discrete methods [68], pending further study of the clock rates of the

used operators.

5.10 Conclusions

Quantum adiabatic algorithm is a method of solving computational problems

by evolving the ground state with a slowly varying Hamiltonian. This algorithm is

a remarkable discovery because it offers new insights into the potential usefulness

of quantum resources in solving combinatorial search problems.

In this chapter, we have presented a new partial monotonic variation method for

the phase function in the discrete adiabatic algorithm in attempt to improve the

search behavior and decrease the over all search cost. this method is named quadric

variation method where it presents the phase functions ρ(f) and τ(f) as a quadric

polynomial in the step function of the algorithm f . We have studied the minimum

energy gap for the proposed method to examine if it obey the adiabaticity condition

or not and to compare with other methods. The experiments are carried out using

the discrete formulation of the adiabatic algorithm in to solve random instances of 3-

SAT problems to compare the proposed method and the recently proposed methods

such as linear variation , cubic variation method. With problem sizes feasible to
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evaluate by using simulation on current computers. The experiments have revealed

that using the quadric variation method improves on other variation methods cubic

and linear, in resulting search cost and search behavior on average. And also it

shows that this method could present farther improvement with better values of a,

b, and the parameter ∆ which will present in the next chapter.
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Chapter 6

Study on speeding up the
quantum adiabatic computation in
satisfiability problems

6.1 Introduction

In this chapter we extend the experimental study presented in the previous chap-

ter 5 concerning the discrete version of quantum adiabatic algorithm [92]. Here

we present a complete monotonic version of the quadric variation method for the

phase functions of the adiabatic algorithm. We aim to speed up the algorithm and

decrease the overall search cost on average. In addition, we present improved val-

ues for a parameter ∆ in the algorithm to be used with quadric variation as well

as the previously proposed methods. Experiments are carried out to examine the

performance of the discrete adiabatic algorithm by solving satisfiability problems

(3-SAT) using different variation methods such as, linear, cubic, annealing and the

proposed method. Two sets of parameter values are considered in the experiments,

the original and the improved values. As a result, the corresponding probability of

finding the solution, energy gaps and the search costs are shown.

6.2 The Discrete adiabatic algorithm

Originally, the adiabatic method is continuous process. However, in this paper

we use the algorithmically equivalent discrete formulation of the algorithm [68] [84]

acting on the amplitude state vector initially in the ground state of the Hamil-
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tonian H(0), which can be represented for n qubits quantum system as |ψ(0)
s ⟩ =

1√
2n
[1, 1, ..., 1]T [68]. Discretization of a continuous Hamiltonian is straightforward

process and proved to change the total run time of the algorithm only polynomially

[70].

Consider a discreet Hamiltonian H(f) in the general form

H(f) = τ(f)H(0) + ρ(f)H(c), (6.1)

where τ(f) and ρ(f) are mixing and phase shift function, respectively. Both of them

are functions of f (0 ≤ f ≤ 1), shown in Table.1, subject to the boundary conditions

τ(0) = 1, ρ(0) = 0, (6.2)

τ(1) = 0, ρ(1) = 1. (6.3)

Although, the two functions τ(f), and ρ(f) are not necessary to be monotonic

[85] (i.e. obey the constraint τ(f)+ ρ(f) = 1), here we consider only the monotonic

functions. In matrix form [68], the Hamiltonian H(c) could be presented as

H(c)
r,s = c(s)δr,s,where δr,s =

{
1 if r=s
0 otherwise

(6.4)

This Hamiltonian introduces a phase shift factor in the amplitude of assignment

s depending on its associated cost c(s), where the higher cost results in more phase

shift. The Hamiltonian H(0) can be implemented with elementary quantum gates

by use of the Walsh-Hadamard transform with elements Wr.s = 2−n/2(−1)r·s [68],

where H(0) = WDW and D is a diagonal matrix with the value for state r given

by the sum of the bits, i.e, the element Dr,r is just a count for the number of bits

equal to 1 in state r.

A single trial of the algorithm, as shown in Fig. 6.1, consists of j steps with

parameter ∆ and can be described as follows [69]:

1. Initialize the amplitude state vector to the ground state of H(0) giving equal

values for all states as |ψ(0)
s ⟩ = 1√

N
[1, 1, ..., 1]T .

2. For steps h = 1 to j, repeat the matrix multiplication :

|ψ(h)⟩ = Uh(f)|ψ(h−1)⟩. (6.5)
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Figure 6.1: Flowchart represents the discrete version of adiabatic quantum algo-
rithm.

where |ψ(h−1)⟩ is the amplitude state vector at the step h − 1, and Uh(f) is

unitary evolution operator for hth step which can be represented as

Uh(f) = e−iτ(f)H(0)∆ · e−iρ(f)H(c)∆. (6.6)

3. Measure the final system after the j steps take place. Then probability to find

a solution is given by Psoln =
∑

s ||ψ(j)||2.

6.3 The Monotonic Quadric variation method

Recently, various variation methods (scheduling methods as named in other articles)

for the phase shift function ρ(f) and the mixing function τ(f) in the adiabatic

algorithm have been presented in order to speed up the algorithm and decrease the
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Figure 6.2: Phase shift and mixing functions vs. f for the Quadric variation method.

overall search cost. Some of these methods was monotonic (means ρ(f)+τ(f)=1 for

all values of f) such as linear variation [24], cubic variation [68], and the scheduling

method in quantum annealing [14], and others were non-monotonic such as the

quadric formula has been used in [85] to solve unstructured search problem, in that

article ρ(f) = f +A · f(1− f) and τ(f) = 1− f +A · f(1− f) are used where A is

a constant value.

Here we propose a complete monotonic version of the quadric variation method

for ρ(f) and τ(f), where ρ(f) = 2 · f − f 2 and τ(f) = 1 − ρ(f). This formula are

easy to construct, and it was found to satisfy the adiabaticity conditions, i.e, using

this method doesn’t lead the relevant eigenvalues of the evolving Hamiltonian H(f)

to cross. This formula is the improved version of what we present in the previous

chapter where it was partially monotonic. We aim from using this formula to speed

up the search behavior of the adiabatic algorithm.

Fig. 6.3 shows the Lowest 3 eigenvalues of evolving Hamiltonian H(f) vs. f

in solving an instance of 3-SAT problem with one solution. In this evolution the

quadric variation method is used for the phase shift ρ(f), and mixing τ(f) functions.
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Figure 6.3: Lowest two 3 eigenvalues vs. f for an instance with n=8, and one solu-
tion. This instance was solved using the algorithm with quadric variation method.
The black curve shows the ground state, gray curve and dark gray curve represent
the smallest higher eigenvalues (energies correspond to non solutions) level 1, level
2, respectively.

This figure shows that the eigenvalue of the ground state (bold black curve) and

the next two smallest higher eigenvalues correspond to non solutions (gray and

dark gray curve respectively), never cross, i.e., with non-zero gap. Simply, this

figure reveal that evolution under the discrete Hamiltonian H(f) with the quadric

variation method follows the adiabatic theorem.

6.4 Numerical Example

In this section we present an example for the algorithm search behavior within few

steps in order to show how the values of the probability amplitudes shifts for each

step h using Quadric variation method. The amplitudes values are initialized with

equal values (Normalized) for all possible states. The amplitudes are presented in a

complex plane with aim to show the shift in the phases and the value mixing during

the steps. In this complex plane X-axis presents the real part of the amplitude and

Y-axis presents the imaginary part. (The amplitude is a complex number in the
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Table 6.1: an Example for 1-SAT problem.

Assignment Number of Conflicts c Corresponding Integer
00 0 0
01 1 1
10 1 2
11 2 3

form a+ ib).

Consider a 1-SAT problem with two variables v1 and v2. Given an expression

(NOT (v1))AND(NOT (v2)) (6.7)

This expression (an instance) has unique solution |00⟩ among four possible states

as shown in the Table 6.1. Conflict number is the number of unsatisfied clauses for

the assignments.

For initialization of the algorithm we prepare the following

1. Initialize the state vector with equal values of the amplitudes for all possible

states as 1/
√
N , where N = 2n and n is the number of variables(Qubits)

considered. so the initial state vector |ψ(0)⟩ is the uniform superposition of all

possible states ( here the all possible state are 4) as follows

|ψ(0)⟩ =


0.5
0.5
0.5
0.5

 (6.8)

2. Prepare the initial Hamiltonian H(0) and the final Hamiltonian H(c) which

encode the solution (the state with cost =0)of the problem in the lowest energy

state. These Hamiltonian are presented as described in the section 5.3. For

this example will be as follows

H(0) =


1 −0.5 −0.5 0

−0.5 1 0 −0.5
−0.5 0 1 −0.5
0 −0.5 −0.5 1

 (6.9)

H(c) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 (6.10)

76



CHAPTER 6. STUDY ON SPEEDING UP THE QUANTUM ADIABATIC
COMPUTATION IN SATISFIABILITY PROBLEMS

i

-i
1-1 0.5

h=0

Figure 6.4: A complex plane presents The probability amplitude at the initialization
step h = 0.

Now, Apply the unitary transformation (operator) Uh(f) on the initial state vector

|ψ(0)⟩ for j steps, i.e., for h = 0 to j. Here we consider 4 steps..

Figures 6.4-6.8 presents the steps of the algorithm, h = 0, h = 1, h = 2, h = 3,

and h = 4, respectively. Each figure shows the phase shift effect on the probability

amplitude associated with each state as well as the state mixing effects. The bold

black curve in the figures present the solution state |00⟩.

Finally, after 4 steps take place, measuring the final state vector |ψ(4)⟩ will give the

probability of finding the solution with P(soln) = 0.729 which is fairly high.

6.5 The parameter ∆

A good performance of the discrete adiabatic algorithm requires an appropriate

choice of parameter ∆. In the discrete formulation, ∆ parameterizes the unitary

transform rather than determining the time T required to perform it [68]. By con-

trast, ∆ in the continuous formulation determines the time to perform the operation

as T = j ·∆.
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Figure 6.5: A complex plane presents The probability amplitude of all the possible
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Figure 6.6: A complex plane presents The probability amplitude of all the possible
states at Step h = 2 presented.
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Figure 6.7: A complex plane presents The probability amplitude of all the possible
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Figure 6.8: A complex plane presents The probability amplitude of all the possible
states at Step h = 4 presented.
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Figure 6.9: Psoln vs number of steps j for discrete adiabatic algorithm with quadric
variation solving a 8-variable 3-SAT instance with m=34 and 2 solutions, the solid
black curve represents the algorithm for ∆ = 1, the solid gray curve for ∆ = 1.5,
the thin gray curve for ∆ = 2, and the dashed curve for ∆ = 2.5.

The experiments to solve 3-SAT problems presented in the previous chapter have

shown that the performance of the algorithm remains good with constant ∆ values,

provided that ∆ is below some threshold value. For 3-SAT problems with n ≤ 14

this threshold found to be below 1. However, The performance found to decline

with constant ∆ for bigger n (n > 14). Therefore, we present the improved values

of ∆ in order to improve the performance of the algorithm as n increases as well as

decreasing the resulting search cost.

6.5.1 The original setting of ∆

The most recently presented variation methods such as cubic variation [68], quantum

annealing [14], and the first version of the quadric variation [69] were considering ∆

as a constant value, i.e., independent of j and n, except for linear variation which

corresponds to the continuous formulation uses ∆ = 1/
√
j.

Fig. 6.9 shows effects of ∆ values on the performance of algorithm using the
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quadric variation method, it uses different values for ∆. The figure shows that the

best performance is found when ∆ = 0.7914 where Psoln could achieve 0.63 with

only j = 16 steps. Also it shows that as the value of ∆ increases over 1 the Psoln

goes to zero, which mean when ∆ is too large (larger than 2) the initial state vector

|ψ(h)⟩ follows the evolving eigenvector to the wrong state at f=1, giving Psoln goes

to zero as j increases.

6.5.2 The Improved setting of ∆

The experiments to solve 3-SAT problems presented in the previous chapter have

shown that the performance of the algorithm remains good with constant ∆ values

below some threshold value. For 3-SAT problems with n ≤ 14 this threshold found

to be below 1. However, The performance found to decline with constant ∆ for

bigger n (n > 14). Therefore, which raised the need for improved values of ∆ in

order to maintain the consistency of the algorithm as n increases.

Table 6.2. Shows the values of the parameter ∆ for each method in two sets.

First, are the original values have been used in the original articles [24] [68] [14] as

constant values independent of j and n. Second is the improved set which we present

in order to improve the performance of algorithm with the previous methods as well

as the proposed method. In the proposed formulas the parameter ∆ is a constant

depends on n. Specifically, ∆ is chosen to raise exponentially with respect to the

number of bits n. Using this formula could satisfy the condition ∆ → 0 as n→ ∞,

so the algorithm can approximate the continuous evolution, then it is expected to

give higher Psoln as j increases. This exponential formulas are found to be the

median of best ∆ for each n, where 200 instances are considered for each n.

6.6 The Variation Methods

Recently several variation methods for phase shift ρ(f), and mixing function τ(f)

in the discrete adiabatic quantum algorithm such as linear variation [24], and cubic

variation [68], and the quantum annealing [14] as shown in Table. 6.2.
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Figure 6.10: Phase shift and phase mix functions vs. f for the linear variation
method.

6.6.1 Linear Variation Method

Linear variation method is corresponding method to the continuous version of the

adiabatic algorithm (The original scheduling method for the adiabatic algorithm).

It varies the phase shift ρ(f) and mixing functions τ(f) of the adiabatic algorithm

linearly as simple monotonic function as f and 1 − f , respectively. This method

presents the original idea of the adiabatic evolution model to do a computations

[24] [25]. This method is completely monotonic where it starfishes the condition

(ρ(f)+τ(f)=1) for all values of f and have values always bounded between 0 and

1.

Fig. 6.10 shows the phase functions for linear variation method vs. the f value

from 0 to 1. From this figure we can note that the linear variation method has

diversity area and intensification with equal size, which gives a sign for requiring an

intensive phase shifting and mixing, i.e., requires higher number of steps to achieve

high probability of finding a solutions.
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Figure 6.11: Phase shift and phase mix functions vs. f for the Cubic variation
method.

6.6.2 Cubic Variation method

Cubic variation method is similar to the functional form optimizing the adiabatic

method for unstructured search which proved to reduce the resulting cost [68] [82]

[84]. In this method ρ(f) and τ(f) vary monotonically as cubic polynomial in f as

1.921f − 2.665f 2 +1.782f 3 and 1− [1.921f − 2.665f 2 +1.782f 3], respectively. This

method is completely monotonic where it satisfies the condition (ρ+τ=1) for all

values of f and have values always bounded between 0 and 1. And also it satisfies

adiabaticity condition, i.e., using this method never lead the relevant eigenvalues

(energies) of the evolving Hamiltonian H(f) to cross.

Fig. 6.11 shows the phase functions for cubic variation method vs. the f value

from 0 to 1. From this figure we can note that the cubic variation method has diver-

sity area and intensification with equal size (however smaller than linear variation

method), which gives a sign for requiring an intensive phase shifting and mixing,

i.e., it may require larger number of steps to achieve high probability of finding a

solutions.
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Figure 6.12: Phase shift and phase mix functions vs. f for the annealing method.

6.6.3 Quantum Annealing

Quantum annealing method is a scheduling method for the quantum adiabatic evo-

lution presented in [14]. In this method ρ(f) and τ(f) vary monotonically as poly-

nomial in f as f 4(35− 84f + 70f 2 − 20f 3) and 1− ρ(f) respectively. This method

is completely monotonic where it satisfies the condition (ρ(f)+τ(f)=1) for all val-

ues of f and have values always bounded between 0 and 1. And it also satisfies

adiabaticity condition.

Fig. 6.12 shows the phase functions for Annealing method vs. f values from 0 to

1. From this figure we can see that this method has diversity area and intensification

with equal size( however bigger than linear variation method).

6.7 The Minimum Energy Gap G

The adiabatic theorem states that the evolution from the initial ground state to

final ground state be successful provided that the evolving Hamiltonian energies

(eigenvalues) never cross, i.e., with non-zero gap between the relevant eigenvalues
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Figure 6.13: The energy gap vs. f for the four variation methods. The values are the
difference between ground state eigenvalue and first higher eigenvalue corresponds
to non-solution of the evolving Hamiltonian H(f) for an instance of 3-SAT problem
with n=8 and one solution.

of the system Hamiltonian H. The energy gap g(f) is the difference between the

ground state eigenvalue (the lowest eigenvalue corresponds to the solution) and the

smallest higher eigenvalue corresponding to a non-solution in H(f). The search

cost of the adiabatic algorithm is dominated by the growth of 1/G2, where G =

minfg(f) is the minimum gap over f , i.e., the method with the bigger G has a

better chance of decreasing the search cost of the algorithm. Fig. 6.13 shows G for

the four methods linear, cubic, annealing and quadric, as 0.1357, 0.1629, 0.16342,

and 0.18217 respectively. From these values we can see that the quadric method gives

bigger value for G compared with the other methods, giving insights for decreasing

the average search cost.
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Table 6.2: The variation methods and the parameter configuration.

Variation methods ρ(f) τ(f)
Number of ∆
steps j Original Improved

Linear f 1− ρ(f) n3 1/
√
n3 1/

√
n3

Quadric 2f − f2 1− ρ(f) 2· n 0.7914 1.17 · e−0.021·n

Cubic 1.921f − 2.665f2 + 1.782f3 1− ρ(f) n2 1.3214 1.22 · e−0.026·n

Annealing f4(35− 84f + 70f2 − 20f3) 1− ρ(f) n2 1.0 0.94 · e−0.041·n

6.8 The Experiments and Discussions

Table. 6.2 shows the different variation methods for the phase mixing function τ(f),

cost phase function ρ(f), and values of the parameter ∆ used in the experiments.

6.8.1 Algorithm Search Behavior

In this section we compare the search behavior of the discrete adiabatic algorithm

using the variation methods summarized in Table. 6.2, i.e., linear, cubic, annealing,

and quadric. Also we compare the resulting probability of finding the solution Psoln

using the original and the improved values of the parameter ∆. The results in the

next figures are the average of solving 100 random instances of 3-SAT problems,

same instances are solved for comparisons.

Fig. 6.2, and Figures 6.10-6.12 show the phase functions ρ(f) and τ(f) for each

variation method vs.f values from 0 to 1. From these figures, we can see that the

quadric variation method shown in Fig. 6.3 has a smaller diversification area (the

area bounded by the Y-axis and the two curves) and a bigger intensification area

(the area bounded by the two curves on the right-hand side of the figure) compared

with the other methods, and this indicates that the algorithm with quadric variation

method should have better results.

Fig. 6.14, and Fig. 6.15 compare the search behavior of algorithm using various

variation methods for number of bits n = 16. These figures use the original and the

improved values of parameter ∆, respectively. From these figures we can see that

the quadric variation method shows faster search behavior with number of steps j

only as (2 ·n), i.e., only 32 steps, where it could achieve Psoln more than 0.5, for both
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Figure 6.14: Psoln vs number of steps h for the 4 methods using original values of
parameter ∆. The figure shows the average behavior calculated over 100 random
instances of 3-SAT problems with n = 16.

values of parameter ∆, which is fairly high, giving 0.541 and 0.5874 with constant,

and improved ∆ values, respectively, with near 10% improve in case of using the

improved value of ∆. Also these figures show cubic and annealing methods with

number of steps grow as n2 gives average Psoln as 0.361 and 0.224, respectively, using

original values of ∆. And In case of the improved values of ∆, the Psoln improves

to achieve 0.85 for cubic and over 0.92 for annealing method, which shows great

enhancement of the search behavior of the algorithm with improved values of ∆,

However, annealing and cubic methods still require number of steps j at least n2

,i.e., 256 steps.

Fig. 6.16, and Fig. 6.17 compare the search behavior of algorithm using various

variation methods for number of bits n = 24, for both the original and the im-

proved values of parameter ∆, respectively. These figures show that the algorithm

with quadric variation method continues showing faster search behavior giving fairly

high Psoln as 0.522 and 0.581 with constant and improved values of parameter ∆,

respectively. Also the algorithm with cubic and annealing shows decreasing in the
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Figure 6.15: Psoln vs number of steps h for the 4 methods using improved values of
parameter ∆. The figure shows the average behavior calculated over 100 random
instances of 3-SAT problems with n = 16.

resulting Psoln as 0.123 and .147, respectively with original values of parameter ∆.

On the other hand the algorithm using cubic and annealing methods with improved

∆ values shows a great enhancement in resulting Psoln as 0.931 and 0.854, respec-

tively. The linear variation corresponds to the continuous version of algorithm gives

high Psoln in most of the trials near 95% using ∆ = 1/
√
n3 for both n=16 and 24.

However, it requires number of steps j at least grows as n3 which results in high

search cost. The results shown in figures 6.14,6.15,6.16, and 6.17 are the average of

solving 100 random instances of 3-SAT problems.

Fig. 6.18 summarizes the experimental results showing the average Psoln vs. the

number of bits n up to 28 bits using the original values of parameter ∆ (constant in

case of quadric variation). This figure shows that the quadric variation method with

only j grows as 2 ·n gives moderate Psoln between 0.52 and 0.58 continue for all n up

to 28 bits showing stable performance when compared with other methods where,

cubic and annealing methods start at n = 8 giving higher Psoln as 0.839 and 0.862,

respectively. Then the achieved Psoln decreases as number of bit n increases. For

88



CHAPTER 6. STUDY ON SPEEDING UP THE QUANTUM ADIABATIC
COMPUTATION IN SATISFIABILITY PROBLEMS

0
0.2
0.4
0.6
0.8
1

1 10 100 1000 10000

Psoln

Steps

LinearQuadricAnnealingCubic

Figure 6.16: Psoln vs number of steps h for the 4 methods using original values of
parameter ∆. The figure shows the average behavior calculated over 100 random
instances of 3-SAT problems with n = 24.

comparison at n = 28, Psoln riches 0.0887 for cubic and 0.1283 for annealing. This

results has raised the need of finding the better values of parameter ∆ to improve

the performance of the algorithm as n increases.

Fig. 6.19 summarizes the experimental results showing the average Psoln vs. the

number of bits n up to 28 bits using the improved values of parameter ∆. This figure

shows that the quadric variation method continue to show stable performance for

n up to 28 bits, However with near 10% improvement in the resulting Psoln to

be between 0.556 and 0.601. Also using the improved values of ∆ as exponential

function of n, as shown in Table. 1, strongly improved the performance of algorithm

with the cubic and annealing methods giving Psoln over 0.83 for annealing method

and 0.92 for cubic method. Although, the linear variation method gives Psoln near to

1 for all n, it requires j of O(n3) which results in increasing search cost C compared

with other methods.

In the results, the quadric variation method revealed to give average search

cost of O(n) giving substantial improvement over the other methods as well as the
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Figure 6.17: Psoln vs number of steps h for the 4 methods using improved values of
parameter ∆. The figure shows the average behavior calculated over 100 random
instances of 3-SAT problems with n = 24.

known classical methods for the problem size feasible to be simulated on the classical

computers.

The experiments also have shown that using improved ∆, i.e., dependents on

n gives fairly high Psoln values, showing better use of quantum coherence in the

discrete formulation of adiabatic algorithm.

6.8.2 Resulting Search cost

In this article the search cost is defined to be the expected number of steps

required to find a solution C = j/Psoln which is a commonly used proxy for the

computational cost of the discrete methods [68], pending further study of the clock

rates of the used operators.

Fig. 6.8.2 and Fig. 6.8.2 compare the average search cost C for all the methods

using original set and improved set of the parameter ∆, respectively. From these

figures we can see that the quadric variation has search cost in both cases of ∆ values

below that of the other methods, where it can achieve fairly high Psoln between 0.5
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Figure 6.18: The average Psoln vs. n for the four methods using the original values
of parameter ∆. The same 100 instances were solved.
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Figure 6.19: The average Psoln vs. n for the four methods using the improved values
of parameter ∆. The same 100 instances were solved.
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Figure 6.20: Log plot of the average search cost vs. n using the same instances in
Figure 6.18 for the original values of parameter ∆.
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Figure 6.21: Log plot of the average search cost vs. n using the same instances in
Figure 6.18 for the improved values of parameter ∆.
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Figure 6.22: Log plot of the average search cost vs. n using the same instances in
Figure 6.18 for the original values of parameter ∆ in a line graph.
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Figure 6.23: Log plot of the average search cost vs. n using the same instances in
Figure 6.18 for the improved values of parameter ∆ in a line graph.
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and 0.6 with number of steps j growing only as 2 · n which reduces the search cost

to be only of O(n), which is an observable improvement over the other methods

if it continue for larger n beyond the limit of simulation. In contrast, cubic and

annealing methods show higher search cost of O(n2) due to higher required number

of steps, at least grows as n2, in both cases of ∆ values. However, the search cost

reduces in fig. 6.8.2 with improved values of ∆ due to the improvement of Psoln.

Although, the algorithm with linear variation could achieve Psoln near 1 in most of

the trials, the number of steps required j grows as n3 results in a much higher search

costs of O(n3), which is far higher than those of other methods.

For comparison at n = 20, Fig. 6.8.2 shows that the average search cost for

the linear, cubic, annealing and quadric methods are 8424.14, 2887.41, 2722.49 and

78.64, respectively with original values of ∆, and Fig. 6.8.2 shows that the average

search cost for the same methods with improved ∆ are 8424.14, 419, 470, and 73.12,

respectively. These comparisons reveals the improvement in the resulting search cost

using quadric variation method due to reduced number of steps, also it shows the

search cost reduction in the other methods cubic and annealing using the improved

values of ∆ due to the strong enhancement in the Psoln as shown in previous section.

6.9 Conclusions

Quantum adiabatic algorithm is a method of solving computational problems

by evolving the ground state with a slowly varying Hamiltonian. This algorithm is

a remarkable discovery because it offers new insights into the potential usefulness of

quantum resources in solving combinatorial search problems. This article presents

an experimental study on the discrete formulation of the adiabatic algorithm in

solving 3-SAT problems. We presents a new monotonic variation method for the

phase functions of the algorithm (scheduling method) named, Quadric variation

method. In addition, we present an improved formula to find a better value of

parameter ∆ of the algorithm as linear polynomial in the problem size in order to

improved the algorithm search behavior and the over all search cost. With problem

sizes feasible to evaluate by using simulation on current computers, the experiments
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in solving 3-SAT problems have revealed that using the quadric variation method

improves on the other variation methods linear, cubic, and annealing in resulting

search cost and search behavior, where it gave search cost of only O(n). Also the

improved values of the parameter ∆ has strongly enhanced the algorithm search

behavior for all the variation methods.
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Summary

This thesis mainly presents a study on a novel paradigm recently presented to

design a new quantum algorithm based on adiabatic theorem, this algorithm is

known as quantum adiabatic algorithm. Here we manly presents a study on solving

combinatorial search problems using the discrete quantum adiabatic algorithm. We

aim by this research to speed up the adiabatic quantum algorithm as well as decrease

the overall resulting search cost. In order to do that we proposes a new variation

method for the phase functions in the adiabatic algorithm called Quadric variation

method in several versions. In addition, we present a better parameter configuration

for the algorithm.

Chapter 1 provides an introduction explains briefly the historical development for

the ideas to find alternatives to conventional computation and how it leads to think

about the quantum computation as a strongly possible alternative and the adiabatic

evolution as an idea for computation. Also this chapter describe the motivation of

research and specify the dissertation structure.

Chapter 2 gives an overview of the basic concepts and ideas related to this

research namely the basic principles for the quantum computation such as the qubits,

interference, and parallelism. At the same time, it defines the targeted combinatorial

search problem, Satisfiability problem. this chapter also describes the conceptual

differences between the adiabatic evolution model we study and the original quantum

computation model known as circuit model.

Chapter 3 describes the novel idea behind the adiabatic quantum evolution, and

how the adiabatic theorem could be used to evolve the computer system from the

initial state to the target final state. This chapter also presents a numerical example
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describes how to apply the adiabatic evolution method. Then it proceeds to describe

the conceptual differences between the local and the global adiabatic evolution, the

definition and the importance of the minimum energy gaps, and how to design a

practical adiabatic quantum algorithm.

Chapter 4 reports about the results of the experiments carried out to solve

instances of knapsack problems with quantum heuristic search algorithm (QHS).

This chapter describes in details the operators and the parameters used in the QHS

algorithm. Then it reports on the results obtained from solving random instances

for three different types of the knapsack problems, finally it presents a comparison

between the search behavior of the QHS and the Genetic algorithm using two types

of the constrain handling methods namely Penalty Function and Random Repair.

Ends with findings and conclusions

Chapter 5 describes a new variation method for the phase functions of the adi-

abatic quantum algorithm named Quadric variation method. This method was

the first proposed version as partially monotonic variation method. A number of

previously presented variation methods are briefly referenced showing the param-

eter configuration for each and the corresponding minimum energy gaps. Then it

proceeds to outline the main functions available in the simulator we uses for the

experiments. it reports on results obtained from the experimental study set up to

compare the proposed method with most recently proposed variation methods such

as cubic variation and linear variation. The experiments used random instances of

3-SAT problems with difference number of variables up to 20 bits. The chapter

concludes with summary of findings and suggestions for future works where the ex-

periments revealed that the quadric variation method improve on the other methods

such as linear and cubic in the resulting search cost and shows stable search behavior,

However more modification and better settings for the parameter are expected.

Chapter 6 extends the presented work and describes the second version of the

quadric variation method as a complete monotonic variation method. In addition,

it describes the improved formulas we suggests to find a values for the parameter ∆

of the algorithm in order to improve the algorithm search behavior and decrease the

resulting search cost. Then it proceeds to present a discussion for the experimental
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results of solving 3-SAT problems up to 28 bits, and presents a comparison for the

resulting probability of finding solution, corresponding minimum energy gaps, and

the search costs for all the methods. This chapter ends by concluding the find-

ings and the results reflecting the experiences gathered along the research process,

where the results have revealed that using the monotonic quadric variation method

improves on the other variation methods linear, cubic, and annealing in resulting

search cost and search behavior, where it gave search cost of only O(n). Also the

improved values of the parameter ∆ has strongly enhanced the algorithm search

behavior for all tested variation methods.
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