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Abstract

We study the problem to divide the spherical surface into five parts
of equal area by a network of edges of the shortest total length. It is
proved that the regular 3-prism gives the shortest network.

1 Problem and result

Fejes Téth ([1], [2]) posed the following problem: to divide the surface of the unit
sphere into n(> 4) parts of equal area, by the shortest possible net of edges. To
study it he invented an ingenious method, but even the method could give solutions
only for n = 4,6, and 12. In this paper we give a solution for n = 5 as follows.

Theorem  Among all networks of pentahedra, the regular 3-prism has the short-
est total length of edges.

(Proof)  Note that spherical networks made of pentahedra can have only two
topological types, ie prism and pyramid. By Proposition 1 and Proposition 2, it
s sufficient to compare the total length of edges of the regular 3-prism L(3-prism)
and that of the regular 4-pyramid L(4-pyramid). As is shown in the proofs of these
propositions,

L(3-prism) = 3 f(es,e3), L(4-pyramid) = 4 G(eq),

where functions f,§ are defined by (6) and (10), and e,, is the common length of
sides of the regular n-gon. To find e; and e; we use Lemma 1 below. Then we
can evaluate the two total lengths as L(3-prism) = 4.281867 and L(4-pyramid) ~
4.346337. Thus the theorem is established. (QED)

Proposition 1  Assume n < 4. Then, among all networks of n-prism type, the
reqular n-prism has the shortest total length of edges.

Proposition 2 Assume n < 5. Then, among all networks of n-pyramid type,
the regular n-pyramid has the shortest total length of edges.
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Lemma 1 Let a be the common length of sides of the regular n-gon of area S.

Then it is given by
cos %
ST T oar-35-
cos
2n

(Proof) Divide the regular n-gon into 2n congruent rectangular triangles, and
consider one of them. Let 2 be a side opposite to the rectangle, y be an other side
than a/2, 6 be an angle opposite to y. Then
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Eliminating v, z, @ in the above, we obtain the desired formula. (QE.D)

2 Proof of Proposition 1

Lemma 2.1 Consider all convex quadrangles where a pair of opposite sides a,b
and an area S are fired. Then the quadrangle that minimizes the sum of other two
sides x + y, is an isosceles trapezoid, ie x = y , that has a circumcircle.

(Proof)
Step 1 Regard the minimum of z + y as a function of S, and denote it by h(S).
We will show that A is a strictly increasing function of S. For any S, consider the
minimal quadrangle and denote its four angles by ¢; (i = 1,2,3,4). If ¢; < 7/2
for all 4, then

S=¢1+¢2+¢3+¢s—2r <0,

which is a contradiction. Hence ¢; > /2 for some ¢, and thus, without loss of gen-
erality, suppose that ¢; > w/2. Then consider a triangle that consists of an angle
¢1 and two sides of the quadrangle that emanate from the angle. Without loss of
generality we may suppose that these two sides are b and y. Let 2z be the other side
than b,y of the triangle. Then, preserving lengths b and z, and diminishing y con-
tinuously by 8, we can diminish area of the triangle and thus area of the quadrangle
by e. Consequently, by the definition of k, we can see h(S — ¢€) < h(S) — 6 < h(S).
Here note that € can take an arbitrary positive number as long as it is sufficiently
small. Therefore h is strictly increasing.

Step 2 Consider the minimal quadrangle @ of area S. Assume that it does not
have a circumcircle. It is well-known that the convex quadrangle of given four sides
and of the maximal area has a circumcircle. Hence there exists a quadrangle Q’
which has the same four sides as Q has, but has a larger area S’ than S. Repeating
the argument in Step 1, we can deduce that there exists a quadrangle Q” which
has smaller z +y than Q has, but has an area S” such that S < §” < S’. But this
implies h(S) < h(S”) < h(S’) = h(S), which is a contradiction. Accordingly the
minimal quadrangle has a circumcircle.




)1l : Shortest Spherical Network of Pentahedra

Step 3  Let @ be the minimal quadrangle of area S, and R be the radius of its
circumcircle. Divide the quadrangle into four isosceles triangles with bases a, b, z, ¥,
and denote them by T,, Ty, T, Ty respectively. Let a, 8, $,9% be angles of these
isosceles at the center of circumcircle.

Consider an isosceles T, and denote its two angles other than o by . Then

— cos? -
cosa —cos’ R and cos0=(1 cosa)cos R

COS ¥ = " "
sin®° R sinasin R

Thus, if we define two functions

(1 —cosa)cosR
sinasin R

sin? R

we have o = g(a, R) and area of the isosceles = g(a, R) + 2f(a, R) — 7.
Now note that ¢+ B+ ¢+ = 27 and the sum of areas of isosceles Ty, Ty, Ty, T
equals S. Accordingly we have

f(a, R) = arccos (

— cac?
) and g(a, R) = arccos (W) ,

F5,R) = foR) + [6R) + @R+ fw B =rt5 ()

and
G(z,y,R) == g(a,R) + g(b, R) + g(z, R) + g(y, R) = 27 . (2)

Step 4 If we solve (1) and (2) with respect to z and y, while R being regarded
as a parameter, we have z = z(R),y = y(R). Since it is required to minimize
z(R) + y(R) with respect to R, it must hold

dz dy
iB + B 0. (3)
Differentiation of (1) and (2) give
OF ds  OF dy  OF
0z dR 0Oy dR OR
0 &s G dy  0C
0z dR Oy dR OR
Then substitution of them into (3) results in
OF OF\ (060G 8G\ _0OF 08G )
0z Oy) \O0zx Oy) OR OR

Now an elementary computation gives

(OF _OF _ . 1 1 )
or Oy V1+cosz-hy +I+cosy-hy/’
0G 080G  /1+cosz _ VI+cosy
oz 8y hz hy ’
< OF 1 \/1—cosa+\/1—cosb+\/1—cosm+\/1—cosy
OR " sinR hg he hg hy ’
oG v1—cosa +1—cosb +1—cosz +/T—=cosy
— =—2cot R
3R 2co ( e A S B )
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where h; = V1 + cosz — 2cos? R and hy, ha, hy are defined similarly.
By substitution of them into the condition (4) it can be rewritten as

2c0s® R - hy /1 + cosy + hy V1 + cosz - (1 + cosy)
= 2cos’R-hyv1+cosz+hy+/1+cosy-(1+cosz) (5)

Step 5 Squaring both the left- and the right-hand side of (5) and subtracting
them, we have

2cos? R(cosz — cosy) (wy —wq) =0,

where
w; = 1-—4cos’?R+4cos*R+cosz(l—2cos’R)
+cosy (1 —2cos® R) + cosz cosy
wy = 2v/1+cosz+/1+cosyhghy.
Suppose that wi; = wy. Then we have wf — w3 = —h2 h2 w3 , where

w3 = 3(1 4 cosz)(1 4 cosy) + 2cos® R(2+ cosz + cosy) ~4cos? R .

However, as seen in the definition of h, hy, we have 1+ cosz — 2cos® R > 0 and
1+ cosy — 2cos? R > 0. Consequently

w3 > 3-2cos? R-2cos? R+2cos? R-(2cos? R+2cos® R)—4cos* R=16cos’ R > 0.

Thus the hypothesis w; = ws can not be maintained. Therefore we obtain cosz —
cosy = 0, ie. z = y. Since the quadrangle is circumscribed by a circle, it must be
an isosceles trapezoid. (QED)

Consider the minimal isosceles trapezoid in Lemma 2.1. Writing z, y instead of
a, b, and regarding half of the minimum, ie the length of one of its two equal sides
as a function of z,y, we denote it by f(z,y).

Lemma 2.2 The function f is given by

f(z,y) = arccos (—1+Sﬁ+sxsy +s§ +kc°’cy>

where

T Y . T LY S
cz=cos§,cyzcosa,szzsm—é,sy=sm§, a,ndkzcos—z-.

(Proof) We write simply by z instead of f(z,y). Divide the isosceles trapezoid by

its symmetry axis, and consider one of the two quadrangles made by the division.

Let ¢ be the angle between z/2 and z, and v be the angle between y/2 and z. If

we prolong both sides z/2 and y/2, then a triangle will be made, of which three

sides are /2 — /2, /2 —y/2, z, and two of its three angles are m — ¢, m — 1. Then
vis

T_YYy - T_% ' <__§) ' -
cos(2 2) cos(2 2) cosz+sin (5~ sin z cos(m — ¢),

T_Z) = T_Y - (E_H) - _
cos( 2) cos(2 2)cosz+81n 5~ 5 sin z cos(m — ) .
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Hence
— g2 _ g2 — cos2
Sy COSZ — Sy . \/1 S$ Sy + 23;5 sy COos 2 COs8“ 2
cos ¢ = oY sing = : ,
¢y sin z Cp Sin z
— g2 g2 — cos2
Sy COSZ — 8 . \/1 55 — 82+ 285 8y cosz —cos? z
cosYP = ————, siny =

Cy SINz Cy SInz

On the other hand, ¢ + 9 + n/2 + n/2 - 2w = S/2, ie ¢ + ¥ = w + S/2. Then,
eliminating ¢, in cos(¢ + ¥) = cos(r + S/2), we obtain a quadratic equation for
w = Co8 2,

(1+sxsy—kcmcy)w2——(sz+sy)2w+(—~1+sﬁ+szsy+s§+kczcy)=O.

Note that the coefficient of w? in the above equation does not vanish, because, if
it vanishes, then we have w = 1, which is a contradiction. Furthermore note that
the quadratic equation always has a root w = 1. Hence another root is given by

f(z,y). (QED)

Lemma 2.3  The function f(z,y) is strictly conver.
(Proof)

Step 1  We can see
0f _ma  Of 1y
Oz - dl’ By h d1 ’

where

d = 2(1—kczcy+sxsy)\/c§+c§——2kca,cy,
Ng = k(l+c§)cy—cm(1+cg)—cxszsy+ksmcysy,
ny = —(1+c)ey+tkco(l+c2)+kcgsssy—szcysy .

Step 2  Furthermore

Bf _mas  Pf ey 0f oy

0z? N do ’ Oz ay N dz ’ 3y2 d2 ’

dy = 4(c§+cz —2kczcy)% (1 —kegey+848)°,

Ngz = (l—kz)(sm+sy)(1+c3+sisy—-3kczcy+lccicy),
Moy = —(1—k%)(sz+3sy)(1—2c] - 2c§ +c2 612/ + 8z 8y + 2kcgcy — kcgszeysy),
Nyy = (1——k2)(sm+sy)(1+c§+s:sg—3kczcy+kcxc3)_

Hence the Jacobian J becomes
]

S5 B (8% N (1 — k) (55 + 5,)"
" 0z2  Oy? 0z dy/)  16(c2 + 2 — 2keg cy)? (1 — keg ey + s5.5y)°
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Note that if J > 0, then the function f is strictly convex. Thus it remains to prove
1+58z8y —kcgey > 0.

Step 3 Consider again the triangle with three sides /2 — z/2,n/2 — y/2, z that
appeared in the proof of Lemma 2.2.. It must hold (7/2 — z/2) + (7/2 — y/2) > 2
ie. m— 2z >z/2+ y/2. Hence, for w = cos z,

W > —CyCy+ Sz Sy -
Then the expression for z = f{z,y) given in Lemma 2 becomes

—1+ 82+ 58,8y +52+kcaoy
1+szsy —kczoy

Suppose that 14 sy 8y — kcg ¢y < 0. Then, after some computation, we can derive
k < 0. However, since S = 4m/(n + 2) with n > 3, this leads to a contradiction.
Thus we have 1+ s5 8y — kcgcy > 0. (QED)

Let us define a function

f@y)=z+y+ fz,y). (6)

Lemma 2.4 For n <4, the function f (z,y) is strictly increasing.

(Proof)  Ask when the following condition holds

~ ~

5 o) = 5 Fzn) =0 (7

Then, by the expressions given in Step 1 of the proof of Lemma 2.3, we have
di+ng =d; + ny =0.

Since

ng —ny = —(1+ k) (cz — ¢y) (1 — cacy + sz8y).

Hence we can deduce z = y. Then we have

— ___1___2_ ﬂ
“TATTk 2 |-

1 1-k
— | 2—4/—=]>1.
1+k(2 2 21

d

For n < 4 we see

Accordingly the condition (7) does not hold. Therefore the proof is completed.
(QED.)
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Proof of Proposition 1

A network of n-prism type consists of n quadrangles Q; (¢ = 1,2,---,n), and
two n-gons A and B. Let a; be the common side of A and Q;, and b; be the common
side of B and Q;. Denote the total legth of Q; by L;. Then it can be seen that the
total length of the network L is given by

n n n
2L=;Li+;ai+2b,—.
i= =

i=1
Since, by Lemma 2.1,
L; > a; + b, + 2 f(a;, b;),

we have
n

LZ;f(ai,bi)Jr; aH-Z bi=;f(ai,bi) .

=1

Then, Lemma 2.3, with aid of Jensen’s inequality, shows that

1 o -
- f(a’ia bz) Z f(av b) )
n =
where n "
‘dzlzai and 5=12bz-.
"3 n_i=1
Consequently

L -~ -

— > f(a,b) .

= > f(@p)
Now recall the isoperimetric property of spherical polygons: among all spherical
polygons of area S, the regular polygon has the shortest perimeter length. Thus,

if e, stands for the length of one side of the regular n-gon of area S, we have
@ > en,b > en. Then Lemma 2.4 implies f(@,b) > f(en, en). Therefore we obtain

L Z nf(en) en);

which proves the theorem. (QE.D)

3 Proof of Proposition 2

Lemma 3.1 Consider all triangles where a side a and an area S are fixzed. Then
the triangle that minimizes the sum of other two sides z+y is an isosceles, ie x = y.

(Proof)  Consider a triangle satisfying the given conditions, and let R be the
radius of its circumcircle. (Note that any triangle has a circumcircle.) Divide
the triangle into three isosceles triangles with bases a,z,y, and denote them by
T4, 1%, T, respectively. By a similar reasoning to that in Step 3 of the proof of
Lemma 1.1, we see that it is sufficient to minimize z + y when z,y satisfies both
conditions

F(z,y,R) = f(a,R) + f(z, R) + f(y,R) =7 + f; (8)

and
G(z,y, R) == g(a,R) + g(z,R) + g(y, R) = 2 . 9)
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Once F, G were defined, we can repeat the reasoning in Step 4 and Step 5 of the
proof of Lemma 1.1 without any change. Thus we come to the conclusion = = y,
which completes the proof. (QE.D)

Consider the minimal isosceles triangle in Lemma 3.1. Writing z instead of a,
and regarding half of the minimum, ie the length of one of its two equal sides as a
function of z, we denote it by g(z).

Lemma 3.2 The function g is given by

g(z) = arccos (%l(k_—cﬁ) ,

—kecg

where
z
cg=cos— and k =cos— .
2 2

(Proof) We write simply by z instead of g(z). Divide the isosceles triangle by
its symmetry axis, and consider one of the two triangles made by the division. Let
¢ be the angle opposite to the side z/2, and 9 be the angle between z/2 and z.
Prolong the side z/2 and draw a line which makes an angle w/2 — ¢ with the side
z. Then a triangle will be made, of which three sides are 7/2,7/2 —y/2, 2, and two
of its three angles are 7/2 — ¢, ™ — 1. Then

cos (E m) = cosE cos z + sin T sin z cos (ﬂ ¢)
2 2/ T2 2 2 ’
cos = cos(7r x) cos z + sin (W :c) sin z cos(m — )
— = —-— = — - = s(m — ) .
) ) 7732 o
Hence
sin ¢ = SI , cos¢=——————cg,_COS2z,
sin z sinz
cosy = % C?Sz, sing = ~————— c —.COSZ £ )
cz sinz ¢y Sinz
.z . ™ S
where s; = sin £. Now, from the assumption on area, we have ¢ + ¢ = 5 + 5
Hence follows a quadratic equation for w = cos 2,
(1—kcg)w® —(1—c)w+ecz(k—cz)=0.
It can be factored as
(w—=1)((1—kcg)w—cz(k—cz)) =0,
which gives the desired result. - (QED)

Lemma 3.3 The function g is strictly convez.



Bl . Shortest Spherical Network of Pentahedra

(Proof) By differentiation we have

dg ~2c; +k(1+c2)

oz 21 —keg)V/1+ 2 —2kcy

g (1-k)2+k(C3-3c,))/1-c2
8z 41 —kecg)2(1+c2 —2key)3/2

Since 0 > 3 — 3¢, > —2 for 0 < ¢; < 1, we see 2+k(c2—3¢c;)>2-1-2=0, and
thus the second derivative is positive. Thus the proof is completed. (QED)

Let us define a function
| §(@) =z +9(z) (10)

Lemma 3.4 Assume n <5. Then the function § is strictly increasing.

(Proof)  Using the expression for the derivative of g given in the proof of Lemma
3.3, from the condition that the derivative of § vanishes, it follows h(c;) = 0, where

h(€) = 3k*&* — 4k (1 + 2k%) €3 + 18k2 €% — 12k € + (4 — k?) .

Since h(1) = 4(1 — k)?(1 — 2k), we have k(1) is non-negative when n < 5. Further-
more,

R(€) = —12k(1+ €2 —2k€)(1 —k€) <0
for 0 < € < 1. Accordingly h(£) > 0 for 0 < £ < 1. Hence we obtain the conclusion.

(QED)

Proof of Proposition 2

A network of n-pyramid type consists of n triangles T} (i = 1,2,-+-,n) and an
n-gon A. Let a; be the common side of A and T;. Denote by L; the total length of
perimeter of T;. Then the total length of the network L is given by

n n
2L = Z L,-}-Z a; .
=1 i=1

Since Lemma, 3.1 shows that L; > a; + 2g(a;), we have

L>Zg(a, —|—Za, Zg(az .

i=1

Accordingly, by convexity of f proved in Lemma 3.3, Jensen’s inequality implies

— 2 §(a). (11)

Now the isoperimetric inequality shows that @ > e,. Then Lemma 3.4 implies that
§(a) > g(en). Therefore we obtain

L ._>. ng(en)a

which completes the proof.
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(QED.)
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