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Preface

A complex Finsler metric on a manifold is a smooth assignment of a complex Minkowski
norm on each tangent space, and thus the class of complex Finsler metrics contains Hermi-
tian metrics as a special sub-class. The geometry of complex Finsler manifolds was started
by G.B. Rizza [Ri], and, via the methods of tensor analysis, H. Rund([Rul], [Ru2]) devel-
oped the theory of connections on a complex manifold endowed with a complex Finsler
metric, and he derived the connection coefficients and presented the equation of geodesics
in close analogue with the real case (see also [Ic2],[Ic3], [Fm], [Ro], [Ail] and [Ai2]).

The ampleness of holomorphic line bundles is an important notion in algebraic geom-
etry, and this notion is generalized to the case of holomorphic vector bundles of higher
rank(see [Ha|, [Kol]). The geometry of complex Finsler vector bundles becames produc-
tive after S. Kobayashi [Kol], in which he suggested the importance of complex Finsler
geometry in the study of ampleness of holomorphic vector bundles.

Let m: E — M be a holomorphic vector bundle over a compact complex manifold M.
Denoted by E° the set of all non-zero elements of F, the multiplicative group C* = C\ {0}
acts on EY by scalar multiplication. Then the projective bundle ¢ : P(E) — M associated
with E is defined by P(E) = E°/C*, and the tautological line bundle L(E) over P(E) is
defined by L(E) = {([v], V) € P(FE) x E | V € [v]}. Then FE is said to be negative if L(F)
is negative, i.e., the first Chern class ¢;(L(F)) is represented a negative real (1,1)-form.
A holomorphic vector bundle is said to be ample if its dual E* is negative. By sending
any point v in EY to a point ([v],v) € P(E) x E°, we may identify E° with L(E)°. Thus
any Hermitian metric on L(F) is identified with a Complf;cj insler metric F' on E, and

1.
the first Chern class of L(E) is expressed by ¢i(L(E)) = [288 log I’ } . Using this fact,
7r

Kobayashi [Kol] showed that the negativity of E is equivalent to the existence of complex
Finsler metric on E such that v/—100log F < 0. If E is negative, we can construct a
complex Finsler metric F' on E such that v/~1901log F' < 0 (cf. [Ai6], [Ha-Ai]). We note
that, if F is negative, then P(F) is a Ké&hler manifold. The converse is not true, since if

M is a compact Kahler manifold, then P(E) admits a Kéhler metric for any holomorphic
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vector bundle E [Sh-So|. After the epoch-making study[Kol], many authors investigated
complex Finsler geometry, including [Ab-Pal], [Ca-Wo], [Wo2], [Ail] and [Pa]. In [Ail],
Aikou showed the local expressions of two types of complex Finsler connection. The first
one is the Finsler Hermitian connection which is treated in [Kol] and the second one is the
complex Rund connection which is treated in [Ru2]. Some special Finsler vector bundles
were also discussed in [Ai2], [Ai3], [Ai4], [Ai7] and [Ai9].

From the expression (3.28) of v/—190log F' in Sub-section 3.3.1, it follows that the
negativity of F is easier to describe than the ampleness of E from the viewpoint of differ-
ential geometry. Hence, in this thesis, we will investigate negative vector bundles instead
of ample vector bundles, and we shall show some results obtained from Kobayashi’s char-
acterization.

A complex Finsler metric is called a Rizza metric if F is strongly pseudo-convex along
fibers. If a Rizza metric F' is given on a holomorphic vector bundle E over a complex
manifold M, then the bundles 7 : E — M and ¢ : P(E) — M endow the structure of
smooth families of Kahler manifolds. Hence, in this thesis, the author investigates complex
Finsler geometry from the view point of differential geometry of smooth families of Kahler
manifolds.

On the other hand, G. Schumacher [Sc3] has studied the geometry of a smooth family
of compact Kahler-Einstein manifolds, and he showed that his method plays an important
role in the study of moduli spaces of Kéhler-Einstein manifolds. His fundamental tool is
the Lie derivation in a horizontal direction. Defining a horizontal distribution from the
smooth family of Kéhler-Einstein metrics, he applies the Lie derivation in the horizontal
direction only to relative tensors, i.e., to differentiable families of tensor fields on the fibers.
Such a horizontal distribution is nothing but the complex non-linear connection defined
in [Ail] if we investigate the geometry of complex Finsler bundle (E, F'), and the Lie
derivation in the horizontal direction induces the notion of partial connection in the sense
of [Ai6]. In this thesis we also apply Lie derivation to smooth families of tensor fields on
the fibers E, := 771(2) or P, = ¢~ 1(2).

The purpose of this thesis is to investigate some negativities of holomorphic vector
bundles by using the so-called averaging methods. We say that a holomorphic vector bun-
dle F is Griffiths-negative if E admits a Hermitian metric of negative curvature. Also we
say that E is Rizza-negative if E admits a Rizza metric of negative curvature. To com-
pare these two negativities, we shall introduce the notions of averaged Hermitian metrics
and averaged connections analogous to the real Finsler geometry (see [Ma-Ra-Tr-Ze] and
[To-Et]). The contents of this thesis is as follows.

Chapter 1 is the theory of complex vector bundle. First we shall explain the theory of



vector bundles in general and the notion of complex vector bundles. Then in Section 1.3
we shall introduce the Hermitian metric and Kéahler metric on the complex vector bundle.
In Section 1.4 we explain the theory of the sheaf cohomology for holomorphic vector
bundle over a complex manifold. Next, Section 1.5 discusses about the characterization
of complex line bundles. In the last Section, we list up some vector bundles over complex
projective space.

Chapter 2 will be started by the notion of connection and curvature of connection on
a smooth complex vector bundle. We shall discuss Hermitian connection and curvature of
connection on holomorphic vector bundle. It provides a brief review of Chern classes of
complex vector bundles and the ampleness vector bundles is equivalent to the existence of
Hermitian metrics of positive curvature. This chapter also presents the notion of Ehres-
mann connection and shows that the Ehresmann connection is induced by the Hermitian
connection on a Hermitian bundle.

Chapter 3 presents the notion of complex Finsler metrics and complex Finsler connec-
tions. In Section 3.1, we shall recall the notion of (complex) Minkowski space. Section
3.2 provides the notion of complex Finsler metric on vector bundles and the construction
of Rizza metrics on vector bundles which is determined by a pseudo Kéhler metric in
P(E). We also introduce the notion of partial connection in vertical sub-bundle and non
linear connection. Section 3.3 discusses a characterization of negative holomorphic vector
bundles which is given by Kobayashi’s theorem. This section also introduces the notion of
Rizza-negativity of complex vector bundles and provides a construction of Rizza metrics
in negative vector bundles.

Chapter 4 is devoted to the averaged Hermitian metrics and connection on the holomor-
phic vector bundle. In Section 4.1, we consider for a family of compact Kéhler manifolds
and introduce the definitions of vertical sub-bundle, horizontal sub-bundle, Hermitian
metric in vertical sub-bundle, and a proposition that gives a basic idea for this research.
Section 4.2 deals the special case of the previous section and apply Lie derivation to a
smooth families of tensor fields on the fiber P,. Section 4.3 introduces the averaged Her-
mitian structure and averaged connection. The last section discusses an application of the

averaged metric and connection.
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Chapter 1
Complex vector bundles

This first chapter provides the minimum of the theory of vector bundles and sheaf coho-

mology which we need in this thesis.

1.1 Vector bundles

Intuitively a vector bundle over a smooth manifold M may be regarded as a smooth family
of vector spaces (fibers) parametrized by points of the manifold M. We start with the

general notion of vector bundles.

Definition 1.1. Let £ and M be two smooth manifolds with a smooth submersion 7 :
E — M, and let V be a r-dimensional vector space. Then E is called a wvector bundle
of rank r if there exists an open covering U = {U,V,---} of M and a family of maps

{¢v, pv, -} satisfying the following conditions.

(1) Each map ¢y is a fiber preserving diffeomorphism from 7=(U) onto U x V, i.e.,

W(U) 25 UV

- |
v 4, y

is commutative, where p is the natural projection to the first factor.

(2) The restriction ¢, := PUl 1, 7 1(z) = {2} x V=V is a linear isomorphism for

every point x € U.
(3) IfUNV # 0, the diffeomorphism ¢y oy 1 (UNV)xV — (UNV) x V sends (z,v)

11



12 CHAPTER 1. COMPLEX VECTOR BUNDLES

to
(v © oy )(@,0) = (z, guv (x)v),

where gyy : UNV — GL(V) is a smooth map which takes values in the general
linear group GL(V) of V.

The group GL(V) is called the structure group of E. For every point z € M, the inverse
image 7 !(z) := E, is called the fiber over z. The vector space V which is canonically
linear isomorphic to each fiber E, is called the canonical fiber. The dimension of V is
called the rank of E and is denoted by rank(FE). If rank(F) = 1, then F is called a line
bundle.

The the family {(U,¢r)} of the pairs (U, ¢y) is called a local trivialization of the
vector bundle, and the mappings {gyy} are called the transition functions of the local
trivializations {(U, ¢r)}. The transition functions {gyy } for E depend on the open the
local trivialization {(U, ¢r)}.

Let {(U, )} be a local trivialization of a vector bundle E, and let {e;,--- ,e,} be a
basis of the canonical fiber V. Defining e;(z) = ¢, '(e;) for every point = € U, the set
ey = {ei, - ,er} forms a local field of basis of the fiber E, over each x € U. The family
{(U,er)} is called an open covering of E subordinate to the local trivialization {(U, ¢r7)}.
If UNV # ¢, then ey and ey are related by

ey = eyguv- (1.1)
The transition funcions {gyv } satisfy the cocycle conditions:
(1) gvv-gyy =Idon UNYV,

(2) gwv - gvu =gwuon UNVNW.

Conversely, if a family {gyy} of GL(V)-valued functions gy satisfying the cocycle
conditions with respect to an open covering U of M, we can construct a vector bundle

with canonical fiber V whose transition functions are the given {gyy }. In fact, we put

E:=][UxV)/~,
Ueld
where the equivalent relation ~ is defined by U x V 3 (z,() ~ (z,guv(z)() € V x V. For
an equivalent class [z, (] € E represented by (x,(), we define 7([z,(]) = . Then E is a

vector bundle with canonical fiber V.
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Example 1.1. (Trivial bundle) Let V be a vector space. The product space E = M xV
is a vector bundle over M called trivial bundle. The transition function {gyy} for £ =

M x V is given by gyy = 1 (identity). O

Example 1.2. Let E and E be two vector bundles over a smooth manifold M with
canonical fiber V and V respectively. We can find a common open covering U of M so

that the transition functions relative to U are given by {gyv} and {guv } respectively.

(1) (Direct sum) We define an element Gyry of GL(V @ V) by

guv O
O guv
Then we can easily show that the family {Gyy } satisfies the cocycle conditions and

so it defines a vector bundle which is denoted by E & F and called the direct sum of
FE and E.

(2) (Tensor product) We define an element Hyry of GL(V ® V) by

Hyy (v ®@70) = (guvv) @ (Guvo) -

Then we can easily show that the family { Hyy } satisfies the cocycle conditions and
so it defines a vector bundle which is denoted by E® E and called the tensor product
of E and E. O

Example 1.3. (Pull-back bundle) Let f be a smooth map from a smooth manifold N
onto a smooth manifold M. Let E be a vector bundle over M with transition functions
{guv} relative to an open covering U of M and canonical fiber V. We can construct a
vector bundle f*FE over N with the same canonical fiber V by attaching to w € N the
fiber E(, as follows. The pull-back bundle f*FE is defined by

fTE=A{(w,v) e Nx E| f(w) =7(v)}

and consider the surjective mapping f*m : f*E — N defined by f*m(w,v) = w. The

following is commutative.

FE Lo E
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The fiber (f*7)~(w) over w € N is given by the fiber Efy) over f(w) € M. The tran-
sition functions {f*gyy} of f*E are given by the pull-back of {gyv}, i.e., (f*guv)(w) =
guv (f(w)) at every point w € f~H({UNV). O

Example 1.4. (Dual bundle) Let E be a vector bundle over M with canonical fiber V.
We take the dual vector space E} of each fiber E, of E' and define

e =1] E;.

reM

Let m : E* — M be the natural projection defined by 7(E}) = z. Let {gyv} be the
transition function of E. Then we see that the function gj;,, defined by g7, =* g[}‘l/ values
in GL(V*) and that it satisfies the cocycle conditions. Hence E* admits a bundle structure
with canonical fiber V* and transition functions {gj;,,}. The vector bundle E* is called
the dual bundle of E. [

Let 7 : E — M and 7@ : E — M are vector bundles. A smooth map @ : E — E is
called a bundle homomorphism over the base map f : M — M such that

(1) To® = fom, ie., the diagram

PGB O
l@
v ——

S
S

is commutative,
(2) the restriction map @|g, : E, — Ef(z) is linear for every point x € M.

A bijective bundle homomorphism @ : £ — E is called a bundle isomorphism if its inverse
&1 is also a bundle homomorphism and the map f is a diffeomorphism. If there exists a
bundle isomorphism between E and E, the two bundles are said to be isomorphic.

In the special case where both E and E are vector bundles over the same base space M,
we denote by Hom(E, E) the space of all bundle homomorphism from E to E. Especially,
the notation End(F) denotes the set of all bundle morphism from E' to itself.

Let E and E be vector bundles over M. Then F is said to be isomorphic to E if there
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exists a bundle isomorphim @ : E — E such that its base map is the identity:

E 2., F

gl |7

M 1y

Let {guv} and {gyv} be the defining cocycles of E and E respectively, which are adapted
to a common open covering U = {U}. Then E is isomorphic to E if and only if there exist
smooth maps @y : U — GL(r,V) on each U € U such that

guv = Puguv (1.2)

on UNV. If E is isomorphic to E, we write E 2 E and we do not distinguish isomorphic

vector bundles.

Definition 1.2. Let 7 : E — M be a vector bundle. A sub-manifold G of E is said to be

a sub-bundle of F if it satisfies the following conditions.
(1) The restriction 7|g : G — M is a vector bundle.

(2) The inclusion ¢ : G — E is a bundle homomorphism.
Then we have

Proposition 1.1. Let E and E be two vector bundles over M and @ : E — E a bundle

homomorphism. Then
(1) Im(®) := D(E) is a sub-bundle of E.
(2) Ker(®) :={ve E|P(v) =0} is a sub-bundle of E.
We denote by 0 simply the trivial bundle M x {0}. Let now E; (j = 1,--- ,k) be
vector bundles over M and ¢; : E; — E;41 (j =1,--- ,k — 1) a bundle homomorphism.

The sequence
L 451 @2 @k—l
0—F —F—-— E,—0

is said to be ezact if Im(®;_1) = Ker(®;) for each j. The following proposition is useful.
Proposition 1.2. Let E, F and G be vector bundles over M. We suppose that the

sequence

0SE2Zr X g—o
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is exact. Then there exists a splitting A of the sequence, i.e., there exists a bundle homo-
morphism A : G — F such that W o\ = I, where Ig is the identity morphism of G. Then
F is isomorphic to the direct sum Im(®) @ Im(N).

1.2 Complex vector bundles

In this section we shall introduce the notion of complex vector bundles. Let E be a vector
bundle over a smooth manifold M. Then E is said to be a complex vector bundle if it

satisfies the following conditions:
(1) each fiber E, is a complex vector space of complex dimension r, i.e., F, = C",

(2) the restriction ¢, : B, — {2} x V.= C" is a complex linear isomorphism at every

point z € U.

The transition functions gy : U NV — GL(V) take values in GL(V) = GL(r,C).
If 7 : E— M is a complex vector bundle, there exists an endomorphism Jg € End(E)
defined by Jgs = v/—1s. The endomorphism Jg is called the complex structure of E, since

it satisfies
JpolJg=—Ig. (1.3)

Conversely, if a real vector bundle of even rank has a complex structure Jg, E¥ becomes

a complex vector bundle by defining
(a++v—1b)s = (alg + bJE)s

for every s € E, where Ig € End(F) is the identity morphism of E.
If the base manifold M is a complex manifold, then there exists a special class of

complex vector bundles.

Definition 1.3. A complex vector bundle E over a complex manifold M is called a
holomorphic vector bundle if it admits local trivializations {(U,¢y)} whose transition
functions gyy : UNV — GL(r,C) are holomorphic. In the case of r = 1, the bundle F is

called a holomorphic line bundle.

Example 1.5. (Holomorphic tangent bundle) Let M be a complex manifold. Let O,
be the germ of holomorphic function defined on a neighborhood of a point p € M, which

is identified with the ring C[z!,--- | 2™] of convergent power series of 2!, -- -, 2™. Here we
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assume that p = (0,---,0) via a cubic coordinate system (A", (z1,---,2™)) centered at
the origin (0, --- ,0).

We denote by Tp1 OM the vector space of derivations D : O, — C, where D is said to

be a derivation if it is complex linear and satisfies Leibniz’s rule:

D(f-g) = f(2)Dg+ g(2)Df.

For all f € O, we have f(z) = f(p) + (linear term) + h(z), where h(z) involves higher

order terms. Since Dh = 0, we have

for (v, ,v™) € C™ defined by v* = Dz* € C (o = 1,--- ,m). Hence we have an
isomorphism Tp1 VM >~ Cm. We put

with the natural projection 7 : THOM — M defined by Tr(Tpl’OM) =p.

We shall introduce a complex structure on T, so that the projection 7 is a holomorphic
submersion. The topology of T} is defined by the standard method so that 7 is continuous.

Let U be an open covering of M. We introduce an open covering of Ty; by U = {=~*(U)}.

Let zy = (25, - ,2) be a complex coordinate on U € U. We define ¢y : 7= H(U) —
U x C" by
vy
euD)=(p, |  |):=(p (7))
o

for D =) v (0/02f)p € Tp" M. Then for each U € U, these mappings ¢y are homeo-

morphisms, and by definition, the coordinate change on 7—1(U N V) is given by

Oz
326

B

puodyt s (p (o)) = (o [ D Gy

B

Thus the transition cocycle is given by the Jacobian of the coordinate change of the base
manifold M, and hence Tjs is a holomorphic vector bundle over M. T is called the

holomorphic tangent bundle of M.
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Let Tr M be the real tangent bundle of M. The complex structure J € End(Tr M) on
M is naturally extended to its complexification TR M @ C. Since JoJ = —1I, the eigenvalues
of J are £1/—1, and the vector space T,} OM and its conjugate W are eigenspaces
corresponding /—1 and —/—1 respectively. Then we obtain the decomposition of Tr M

as follows:
ToM @ C =Ty © Ty (1.4)

The bundle Ty = ][] Tpl’OM is called the anti-holomorphic tangent bundle of M. [
peEM

Example 1.6. (Holomorphic cotangent bundles) Let M be a complex manifold. For
the holomorphic tangent space Tp1 O at a point p € M, we denote by €57, the dual space
of Tpl’OM. We set

Q=[] Qups
peEM

and define the projection 7 : Qyr — M by m(Qamp) = p. Then m : Q) — M is also
a holomorphic vector bundle of rank m called the holomorphic cotangent bundle of M.

According to the decomposition (1.4), we also obtain the decomposition
TeM* @ C = Qup & Q.

O

Example 1.7. (Canonical line bundle) Let M be a complex manifold of dim¢ M = m.
For the holomorphic cotangent bundle €2, the line bundle Kj; defined by

Ky = N"Qu

is called the canonical line bundle of M. O
For later use we define the notion of sections of vector bundles.

Definition 1.4. Let 7 : E — M be a complex vector bundle over M. A smooth map
s: M — E satisfying 7o s = id is called a section of E. A collection ey = (e, - ,e,) of
local sections e; : U — E on U C M is called a frame field on U if {ei(z), - ,e,(z)} is a
basis of F, at each point x € U.

Let A(U) be the set of all C-valued smooth functions on an open set U C M. If we
take a local frame field ey = (ey,--- ,e,) on U, any section s of E is expressed uniquely in
the form s = Y (/e; for some 7(= rankE) smooth C-valued functions ¢/ € A(U), where
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(¢t,---,¢") is called the component of s with respect to {(U,ey)}. The correspondence
eu:m H(U)2s— (z,(¢h -+ ,¢") € U xV defines a local trivialization {(U, py)} of E.

1.3 Hermitian metrics and Kahler metrics

Let E be a complex vector bundle over M.

Definition 1.5. A Hermitian metric h on E is a smooth field of Hermitian inner product
on the fibers of F, i.e.,

(H1) h(s,t) is complex linear in s, where s,t € F,,

(H2) h(s,t) = h(t,s),

(H3) h(s,s) >0, and the equality holds if and only if s = 0,
(H4) h(s,t) is a smooth function on M if s,t € A(F).

The pair (E, h) is called a Hermitian vector bundle.

Given a local frame field ey = (e, -+ ,e,) on U, we set h;5(z) = h(e;, e;) (1 <d,5 <r).
The matrix (h;;) is Hermitian, ie., h;; = hj. Further (h;;) is positive-definite, i.e.,
> h;5(2)¢"¢7 > 0 and the equality holds if and only if ¢* = --- = (" = 0.

Since h is Hermitian metric, there exists an open covering {(U,ey)} of E such that
h;j = 0;;. Such a frame field ey is called a unitary frame field. If we take an open
covering {(U, er/)} consisting of unitary frame fields ey, the transformation law show that
the transition functions gy take values in the unitary matrix U(r). Thus the structure
group GL(V) = GL(r,C) is reducible to U(r) if E admits a Hermitian metric. Conversely

E admits a Hermitian metric if its structure group GL(r,C) is reducible to U(r).

Remark 1.1. Given a complex vector bundle F, we can introduce a Hermitian metric h
on E. Hence the structure group GL(r,C) of a complex vector bundle is always reducible
to U(r). O

Let M be a complex manifold. If a Hermitian metric g is given on the holomorphic

tangent bundle Ty, then (M, g) is called a Hermitian manifold. For the local frame filed

0 0 L L by th .
950 Bam , the metric g 1s given by the m X m matrix

) 0 0
QaB(Z) =g 920798 )"
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We define a real (1,1)-form I, by

) 5
I, = 5 Zgag(z)dzo‘ Adz. (1.5)
We can always define a Hermitian metric on M, but II, is not closed generally.

Definition 1.6. A Hermitian manifold (M, g) is called a Kdhler manifold if dIll, = 0.

Such a metric g is called a Kdhler metric on M.
In a local coordinate (z1,---,2™) on U C M, I, is closed if and only if

9905 09,5 9905  09ay
027 0z 9zv  9Z8°

(1.6)

In a Kéhler manifold (M, g), the form II, is closed real two-form. By Poincaré lemma,
there exists a local one-form ¢ satisfying 11, = dyy. Since ¢y is real one-form, we can
put pu = Yy +u. Here ¢y is (0,1)-type. Since I, is of (1,1)-type and I, = (0+ )¢y,
we have

8%20, 5¢U =0, Hg Iaw(]—l—é%.

Since 0Yy = 0, by Dolbeault’s lemma, there exists a function fi defined on U such that
Yy = 0fy. Further we have

I, = 0y + Oy = dfy + 00 fu = d0(fu — fu),

since 1y = % = Ofy. If we put Ky = v—1(fy — fu), then Ky is a local real function,
and II, is given by
I, = /-190Ky (1.7)

and the matrix g,5 can be written as

P Ky
9ap2) = 02207zP°

(1.8)

The local function Ky is called a Kdhler potentials.

Conversely, if a metric g on M is given by this form, then its Kahler form II, is closed.

Remark 1.2. The Kéhler potentials {Ky} of a Kéhler manifold (M, g) are locally de-
fined, and the Kahler form II; can be written as II|y = V—100K;; on each U. Then
V—100Ky = v/—1900Ky implies /=100 (Ky — Ky) = 0, i.e., Ky — Ky is pluri-harmonic.
If we put ¥y := O(Ky — Ky7), then since 0%, = 0 and 0%y = 0, there exists a function
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fuv on U NV satisfying
Yyv = dfuv = 0fuv + dfuv.

Since ¥y is (0,1)-form, dfyy = 0 shows that fr, is anti-holomorphic. Hence O(Ky —
Ky — fuv) =0, and gyy := Ky — Ky — fyv is a holomorphic function. Since Ky — Ky =
fuv + guv is real, and thus if we put kyy = (fuv + guv)/2, we have

Ky — Ky = kyv + kyv

for a holomorphic function kyy. O

Example 1.8. (Riemann surface) Let M be a Riemann surface. M has the structure
of smooth manifold of real dimension two. Since such a manifold is conformally flat, M
admits a Riemannian metric ds? in the form ds? = f?(dz ® dz + dy ® dy) for some local
function f. Since dz = dx + v/—1dy and dZ = dx — \/—1dy, the metric ds® is written as
ds* = f2dz®@dz. The Kéhler form I1, is given by II, = v/—1f?dz Adz. Since dim¢ M = 1

the form 11, is closed, and so any Riemannian surface is a Kéhler manifold. [

1.4 Sheaf cohomology

Let F be a sheaf of abelian groups over M, and U = {U;} a locally finite covering of M.
In the sequel we use the notation I'(Uj, F) for the set of sections of F over U;. For every

collection of indices (i, - ,i,) we put Ui,...;, := U, N---NU;, and
Cq(u,]:) = {fio---iq S F(Uig---iqaf)} .

An element {f;,..;,} of CY(U,F) is called a g-cochain of F. We define the coboundary
operator v : C4(U, F) — CITYU, F) by

q+1

Doty = IV (Frpigr)

k=0

where i), denotes the deletion of the index 75 and p is the restriction map to the sub-
set Uio-~~iq c U

i ig 1

{C1U,F),v} is a complex:

By direct calculations, it is proved that v o v = 0, and thus

0—C'UF) LCctU,Fr) L - L oUF) L
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This complex is not necessary exact. The exactness of this complex is informed by coho-

mology groups. We set

ZYU,F) :=ker(v)={feCiU,F)|v(f) =0},
BiU,F):=Im(v) ={v(f)| f € CT (U, F)} and B°U,F) = {0}.

Since v ov =0, BY(U, F) is a submodule of Z4(U, F). Then the quotient group

i, 7 = 2L

is called the g-th cohomology group with respect to the covering U.

Lemma 1.1. We have HO(U, F) = I'(M, F), i.e., H(U, F) consists of global sections of
the sheaf F.

PROOF. By definition H°(U, F) = Z°(U, F). We have v{f;} = f; — fi =0 on U; N U;
for {f;} € Z°(U, F). Hence we have f; = f; on U; N U; which shows that {f;} is a global
section of F.

Conversely, we define a zero-cochain {f;} by fi = f|y, for any f € I'(M,F). Since f
is global, we have f; = f; on U; N Uy, and thus we have v{f;} = 0. Consequently any
element of I'(M, F) defines an element of Z°(U, F).

Q.E.D.

We denote by 4 the collection of all locally finite open coverings of M. We define a
preorder 7 <7 on U by U < V if V is a refinement of Y. By this preorder the collection Ll
is a directed set. Let U,V € U be two locally finite open covering, and i : C4(U, F) —
C1(V, F) be its restriction morphism. Then the following is commutative diagram at each

stage:
12

s U, F) —L— U, F) L

ﬂgl ﬂgl
s CIV,F) —— OV, F) S

This commutative diagram implies
(21U, F)) € 21V, F), ™ (BYU,F)) € BIV,F)

for every q. Thus it also induces a morphism 74 : HY(U, F) — HI(V, F).
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Definition 1.7. The g-th cohomology group H(M, F) with coefficient sheaf F is defined
by the direct limit

HY(M,F) = lim HY U, F). (1.9)
u
Lemma 1.1 implies
H(M,F)=T'(M,F). (1.10)

Let ¢ : F — G be a morphism of sheaves of abelian groups. Each ¢y : I'(U, F) —
I'(U,G) induces morphisms ¢ : C4(U, F) — C9(U,G) which sends a cochain {fi,...;,} to
{¢ ( figei q)} From the commutativity ¢ orv = v oy, the sheaf morphism ¢ sends cocycles
to cocycles and coboundaries to coboundaries. Therefore the sheaf morphism ¢ : F — G
induces the morphism of cohomology groups ¢ : HI(U,F) — HIU,G). Let V be a

refinement of &. Then the commutative diagram

HIYU,F) —2— HIU,G)

u u
| |

HI(V,F) —— HI(V,G)

induces a morphism ¢ : H4(M, F) — H9(M,G) of cohomology groups.
Let

L

0 F—Y5¢ 5 H 0

be a short exact sequence of abelian groups over M which implies the short exact sequence

0 —— CIU,F) —2 c1U,6) —2 C1U,H) — 0.

For any [h] € HY(M,H) with h € Z9(U,H), we choose a refinement V > U and g €
C4(V,G) such that 7{(h) = ¢9(g) if we need.

ciu,g) —2  CUUH) SR

u u
o | " |

CIV.G) 59 2 CIWV,H) 3 lg)
Then, since v(h) = 0, we obtain
T (w(9)) = v(¢(9)) = v(nli(h)) = 75 (v(h)) = 0.

Thus v(g) comes from C9T1(V,F), i.e., there exists f € CI(V, F) such that v(g) =
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V().
0 _ 0 _ 0
Ci(V, F) s oW F)sf - CIT2(V, F) 5 v(f)
14 L4+1 14+2
C1V,G)>y¢g LA CrIV,G) > v(g) LA CI2(V,G) 30
(pq qu+1 qu+2
CiV,H)>h —~4— C'V,H)30 —L— CI2(V,H)
0 - 0 = 0

Further we obtain

(T2 ov)(f) = (v o ™) (f) = v(v(g) = 0.

Since 14%2 is injective, we have v(f) = 0, i.e., f € Z97Y(V,F). Hence f defines a coho-
mology class [f] € H9T (U, F). Then we define v* : HI(U, H) — HT (U, F) by

whch induces a morphism v* : H9(M,H) — HI (M, F) (¢ > 0).

Definition 1.8. The morphism v* : HI(M,H) — HITY(M,F) is called the connecting

morphism.
The following theorem is basic in cohomology theory.

Theorem 1.1. Given a short exact sequence 0 - F — G — H — 0 of sheaves over M,

there arises a long exact sequence of cohomology groups:
o HTNM,H) L HYM, F) — HY(M,G) — HU(M,H) 2> -

Let E be a holomorphic vector bundle over a complex manifold M. We denote by
I'(U, E) the set of all sections of E over an open set U. Then, for any s,t € I'(U, E), we
define (s +t)(x) := s(z) + t(x) and (f - s)(x) := f(x)s(x) for every smooth function f at
each z € U. The collection {I'(U,E)} (U € U) forms a sheaf A(FE) of germs of smooth
sections of E. We also denote by O(FE) the sheaf of germs of holomorphic sections of E.
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Remark 1.3. From (1.10) we have H°(M, A(E)) = I'(M, E). Since the structure sheaf A
of any smooth manifold M is fine, the sheaf A(E) is fine. Then H9(M, A(E)) =0 (¢ > 1).
On the other hand, if F is a holomorphic vector bundle over a complex manifold M, the

sheaf O(F) of germs of holomorphic sections is not fine, since the structure sheaf O is not
fine. O

Let E be a holomorphic vector bundle of rank r over a compact Hermitian manifold
M. We denote by AP4(E) the sheaf of germs of E-valued smooth (p, ¢)-forms. Any section
@ of AP(E) is of the form ¢ = 3 e; ® ¢ for some ¢! € AP4. The Dolbeault operator O
is extended to 9 : APY(E) — APIL(E) by

5(,0 = Zei X 5gpi.

Since F is holomorphic, this definition is well-defined.! Denoted by QP(E) the sheaf of

germs of E-valued holomorphic p-forms, a fine resolution of ?(F) is given by

0 — QP(E) — APY(E) -2 4 (B) -2 Ap2(E) 25 ...

Then we have the Dolbeault theorem for E-valued holomorphic forms:
HP(M,Q(E)) = HY(M, E), (1.11)
where (p, q)-th Dolbeault cohomology group Hg’q(M7 E) is defined by

ker {5 : (M, APY(E)) — I'(M, Ap’q+1(E))}
or (M, Ap4~—1(E))

Hg’q(M, E) =

We shall state Hodge’s theorem for holomorphic vector bundles. If a Hermitian metric
h is given on FE, then its dual E* admits a natural Hermitian metric. Then Hodge star
operator x : AP? — A""P"4 ig extended to x : APUE) — AP E*) by xp =
> (x¢") ® €f, where {ef} is the dual frame field of {e;}. Then an inner product (-,-) on
APA(E) is defined by

(p, ) = /Mcp A 1),

With respect to this metric, the space APY(F) is a pre-Hilbert space. The formal adjoint
9* : APUE) — APIL(E) is defined by 0* = — (x0dox), and the d-Laplacian A :

'If F is a complex vector bundle, the operator 0 is not well-defined, since we can not use any holomorphic
frame field ey on U. Even if E is holomorphic, we can not define dp by 0p = > e; ® dp".
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APYU(E) — AP4(E) is also defined by A = 00 0* 4+ 0* 0 0. We set
HPIUE) =ker {A: APYE) - APYE)} = {p € API(E); Ap = 0}.

Then there exists an operator G : AP4(E) — HP4(E)* such that G is commutative with

the both 0 and 0*, and moreover Hodge’s decomposition holds:
API(E) = HP(E) & AG (API(E)).

Theorem 1.2. (Hodge’s Theorem) Let E be a holomorphic vector bundle over a com-
pact Hermitian manifold M. Then dimc HP?(E) < 400 and the following isomorphism
holds:

HPU(E) = HY'(M, E) = H(M, Q°(E)).

1.5 Line bundles

Let L and L be complex line bundles over a smooth manifold M. With respect to an
open covering U of M, we denote by {(U, ¢r)} and {(U, ¢r)}) the local trivialization of
L and L respectively. Then L and L are isomorphic if and only if there exists a smooth
function @y : U — A* satisfying juv = Py - guv - Py L, where {gyv} € Z1 (U, A*) and
{guv} € Z1 (U, A*) denote the transition functions of L and L respectively, and A* is the
multiplicative sheaf of germs of non-vanishing complex-valued smooth functions on M.
From
Juv - 9pv = il
U
we have {guv - g1} = {v(®)}uy. Hence the cocycles {giv} and {gyy} define a cohomol-
ogy class in H'(M, A*). Consequently the set of isomorphic class of complex line bundles

is naturally identified with the cohomology group H'(M, A*):
{Complex line bundles}/{isomorphic} ~ 1Y (M, A").

Thus there exists a one-to-one correspondence between the set of all equivalent classes of

complex line bundles over M and the cohomology group H (M, AY).

Proposition 1.3. The equivalence class of complex line bundles over a smooth manifold
M is naturally identified with the cohomology group H'(M, A*).
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Remark 1.4. If M is a complex manifold, replacing the sheaf A* by O*, the equivalence
class of holomorphic line bundles over a complex manifold M is naturally identified with

the cohomology group H' (M, O*):
{Holomorphic line bundles}/{isomorphic} ~ (M, 0%).

Under this identification, we can consider H' (M, O*) as an abelian group by defining

for all [L], [f)] € HY(M,O*). This abelian group H'(M,0*) is called the Picard group of
M, and is sometimes denoted by Pic(M). O

Let M be a smooth manifold. We are concerned with the exponential sequence of

sheaves
0—7Z -5 A5 A —0, (1.12)

where e : A — A* is defined by e(f) = exp(2mv/—1f). This short sequence induces the

long exact sequence of cohomology groups

*

- — HY(M,A) —— H' (M, A*) —L— H*(M,Z) —— H?>(M,A) —— ---.

Since A is a fine sheaf, we have H'(M, A) = H?(M, A) = 0, and thus the connecting map
v . HY(M, A*) 5 [L] — v*([L]) € H*(M,Z) is an isomorphism. Therefore we obtain the
identification

HY(M, A*) = H*(M,Z). (1.13)

Hence any complex line bundle L over M is determined by the class v*([L]) € H?(M,Z).
Definition 1.9. The class ¢;(L) € H?(M,Z) defined by
a(L) = —-v*([L)]). (1.14)
is called the first Chern class of L.
Therefore the first Chern class ¢; (L) defines a characterization of complex line bundles.

Proposition 1.4. If ¢;(L) = ¢;(L), then L is isomorphic to L as a complex line bundle.
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If L is a holomorphic line bundle over a complex manifold M, the exponential sequence
of sheaves
0—7Z-50-50"—0, (1.15)

induces the long exact sequence of cohomology groups
C— HY(M,0) — HY (M, 0%) 55 H2(M,Z) — H2(M,0) —>

The first Chern class ¢1(L) of a holomorphic line bundle L is also defined by (1.14) for the
connecting map v* : H(M,O*) — H?(M,Z). Then we obtain

Proposition 1.5. Let L and L be two holomorphic line bundles over a compact complex
manifold M. If L is isomorphic to L, then we have ¢1(L) = ¢1(L) in H*(M,Z).

Remark 1.5. Since the sheaf O is not fine, v* : H'(M, 0*) — H?(M, Z) is not isomorphic.
Thus the converse of Proposition 1.5 is no true. [
1.6 Vector bundles over complex projective spaces

In this section, we shall list up some vector bundles over the projective space P" for later
discussions. Let p : C*™ — P denote the natural projection, where C"* := C™1\ {0}.

For the natural coordinate system (¢%,¢!,---,¢") on C"*!, we shall write the projection
as p(C0, ¢l -+ (™) =[¢0: ¢ -+ : (™. Then p: Ct! — P is a C*-bundle.
If we set U; := {[CO s (M ePm ‘ ¢t # 0}, the collection U = {U; }o<i<p is an open

covering of P".

Example 1.9. (Tangent bundle and Fubini-Study metric) Setting n° = ¢*/¢° (i # 0)
on Uy, the projection p is a submersion given by p(¢%, ¢, ---,¢") = (9',--- ,7") on Uy,
and the derivative dp is given by

e If i > 1, then

" 0(¢t/¢0) o ol o 1 9
<acz> Z act ot ZE(W ¢O o'

=1 =1
e If i =0, then

o (3%5) =3 sty =22 (ow) o

=1
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w (ZC (a{z)) -0

and thus the holomorphic tangent bundle Tp» over P" is spanned by

0 0
1 (55) o (57)
with the relation (1.16). If we put
i 0
e3¢ (5
the line bundle ker(dp) is spanned by €. In deed
~ 0\ 1 ¢\ 0
dp (;X 80) _ZCO <X X ¢0 ) ont

=1

Hence we have

implies
n ) XOCZ x!
X'— € ker(d = ===
; aci (dp) 00~ (0
— X0:xt.....xn=¢0:¢tim

!

2 X A e A

29

(1.16)

We shall show that the natural Hermitian metric (e,8) on C"*! induces a Kihler

metric on P". We define a Hermitian metric § on TC@”H by

1

b= —
€]

> d¢t @dd,

where we put ||€]] = /(E,E) = > }Ci‘z. Denoted by p: C* x C"1 5 (A, ¢) — A-( =
12 () € C™ the action of the multiplicative group C* := C\ {0} on C**!, the Hermitian

metric ¢ is invariant by the action y, i.e., u36 = 0 for any A € C*. Therefore there exists

a Hermitian metric g on Tpn such that § = p*g.

Let 5& be the J-orthogonal complement of £ in TC@"H. We denote by p : Tg@”*l —
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Egl the orthogonal projection, i.e.,
p(Y)=Y —§(V,€) £:=Y1.
Since ker(dp) is spanned by &, each ECJ- is naturally identified with Tj,P", where [(] = p(C).
T.Cr+

p dp

[a

55 - TigP"

Further there exists Y € TC@”“ for any Y €T (P"™ such that Y is identified with Y+,
since dp¢ : Tg@”“ — TjgP"™ is surjective. Then a Hermitian metric g on P" is defined by

P a(Y,Z) =6 (YL, ZL)
_ ||61||2<Y ~3(V,6), 7 - 5(2,€)€)
_ ”51”4 [(e.)(v.2) - (v.€)(€, 2)].

Thus g is given by

1E]F S d¢t @ d¢ — (32 ¢det) @ (3 ¢7ddY)
1)

and the form II; associated with g is given by

_VATEIP X d¢ A dlt — 3o ¢lgt A

11
o2 ER

VTP G P+ ) S dC A S — 30 GG A
2 (IO + IS + -+ + [¢7[?)?

VLA P P Ydn' A di — 3 atdn’ A i
2 L+ P+ P2

_ VLA nlP) S dn' Adi = S idn’ A n'di
2 (1+ [Inl*)?

VI
= Y= 0810g(1 + [l

which is nothing but the Fubini-Study metric IIpg. [J
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Example 1.10. (Hyperplane bundle) Let F = F(¢°,--- (") be a homogeneous poly-
nomial of degree k on C"*!, and V(F') the zero-set of F:

V(E) = {(¢" ¢ e CF P, ¢ =0}

For the natural projection p : C"™ — P", the subset Z = p(V(F)) C P is called a
analytic hypersuface of degree k. A hyplerplane is a hypersurface of degree one, and a

hyperquadric is a hypersurface of degree two. For a hypersurface Z of degree k, we set

ZﬁUi:{[Coi"'ifn]EUi Ri::F(CO,-'-;{:,C”):O}'
()
Then we have L
§:<g> EO*(UiﬁUj),
J

and therefore {R;} defines a holomorphic line bundle over P" with the transition functions

¢\
H© = (&)

with respect to the open covering & = {U;}. Such a line bundle is usually denoted by
O(k). In particular, any hypersurface H = V(F') defined by a polynomial F' of degree one
is isomorphic to @”H, and it defines the line bundle O(1). We denote this line bundle by
H, and we call H the hyperplane bundle over P™. It is trivial that the k-th tensor power
of H is given by O(k) := H®*. All hyperplanes are linearly equivalent to each other as
divisors so that H is well-defined (In fact, the line bundle H is defined by the transition
functions h;;) 1= h%ij) which is independent of the choice of polynomial F(()).

For a homogeneous polynomial F of degree k on C"!, we set sE([¢) = Ri([¢]) =
F(,--- ,(”)/({i)k on the open set U;. Then, on the intersection U; N U; # ¢, we have

r= 35 : h@j)([d)-

Therefore st = {sZF } defines a global holomorphic section of the line bundle H®*. Tt is
trivial that the zero set {[¢] = [¢*:---: ("] € P"|sF([¢]) = 0} is given by F(¢%,--- ,(") =
0. Therefore an analytic hyersurface is defined as the zero set of a global section s of
HE®*,

Conversely, let s = {s;} be an arbitrary global holomorphic section of H®*. Then s
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satisfies s;([¢]) = s;([(]) - h’(“ij)([g']) on U; NUj, ie.,

Nk ik
(&) sy s P = () sa((C7 2+ P
This shows that
n ik
F(¢% - .¢M) = (¢) i1 ¢
defines a holomorphic function F' on Cn+! satisfying homogeneity condition F(\ - () =

M. F(¢). Therefore F must be a homogeneous polynomial of degree k. [J
Proposition 1.6. The space I’ (H@)k) of global holomorphic sections of H®* is identified

with the space of homogeneous polynomials of degree k.

Example 1.11. (Tautological line bundle) Let L be the disjoint union of lines in C"*!,
For a line I defined by vector ¢ € Crt!, we define 7 : L — P" by 7(le) = p(¢), where
p: Cntl - P! is the natural projection. In another way, LL is defined by

L={(¢,V)eP"xC" |¢eV}.

The fiber 71([¢]) over [(] = I; € P" is given by the line [ C C"T1.
We show that = : . — P™ is a holomorphic line bundle. Since any point of L is

represented uniquely in the form
(t¢® - 1) = 1(¢%, - (") e €
for (¢0,--+,¢") € C" and t € C, we have
={t(¢%--,(MeC" |teC,( #0}

on Uj. If we set t; = t¢/ on 7~ 1(Uj), then t; is uniquely determined by the element
in 77 Y(U;). Then, since ¢(¢%,---,¢") 2 t; x (¢° : -+ : (") € C x Uj, we define a
homeomorphism ¢; : 771(U;) — U; x C by

i (t(C0, -, ¢M) = ((¢O - CM)ty)

It is trivial that ¢; is C-linear on fibers. If t(¢%,--- , (") € 7= Y(U;j), where U;; := U; NU;,
tj = t¢7 and t; = t¢* lead to

CZ

C]
This shows that the coordinate change ¢; o 90]7 is holomorphic, and thus 7 : . —» P" is a

t; =



1.6. VECTOR BUNDLES OVER COMPLEX PROJECTIVE SPACES 33

holomorphic line bundle. L is called the tautological line bundle over P™. The transition

functions {l(;;} of I with respect to the covering {U;} of P" is given by

ip (€)= § = B () (1.17)

This relation shows that L is the dual of H. [J

Proposition 1.7. The tautological line bundle L is the dual of the hyperplane bundle H:

L = H*. (1.18)

Remark 1.6. The hyperplane bundle H has many global holomorphic sections, but the

tautological line bundle IL has no non-zero global holomorphic section:
HO(P™, O(L)) = 0.

In fact, if we suppose that L has a global section 7, then, for every point [(] € P", 7 defines
a point (7°([¢]), -+ ,7"([¢])) € C™*! which lies on the line l;. By projecting to the j-th
component, we obtain a holomorphic function f7 : P* — C, i.e., f/([¢]) = 7/([¢]). Since
P™ is compact, and so P” has no non-constant holomorphic function. Hence this function
is constant. The functions f°,--- , f* defined in this way are constant. The constant point
fo defined by the functions should be the origin, since the point lying on all lines through

the origin is the origin itself. Hence IL has no non-zero global holomorphic sections. [

Example 1.12. (Euler sequence) Let H be the hyperplane bundle over the projective
space P"™. By Proposition 1.6, any holomorphic section of H is naturally identified with
a linear functional on C"*'. For holomorphic sections o, ---,¢™ of H, we consider a
(1,0)-type vector field 5

() =27z (1.19)
on P". Since dp(c(X()) = dp(o(()) for all A € C, the definition dp(co)([¢]) = dp(c(()) is

well-defined. Then we define a bundle morphism

P(o®, - ,0") :=dp <Z aﬂ'(g)a(ZJ : (1.20)

This map P is surjective. Furthermore the kernel of P is the trivial line bundle spanned
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by the section £ = (¢%,---,¢") € H®(*1, Thus we have an exact sequence
0 — 1pn — HEOH) 5 Tpo — 0, (1.21)

Tensoring this sequence with the tautological line bundle I over P", we obtain the so-called

Euler sequence (cf. [Zh]):

0—L— O0%") L L@Tp — 0. (1.22)



Chapter 2

Hermitian connections

In this chapter we shall introduce the concepts of connections on complex vector bundles.
In section 2.2, we will discuss Hermitian metrics, connections and curvatures on holomor-
phic vector bundles. In section 2.3, we shall express the first Chern class of a complex
vector bundle. The last section is devoted to show that the Hermitian connection on a

Hermitian bundle defines an Ehresmann connection.

2.1 Connection and curvature

Let E be a smooth complex vector bundle of rank r over a smooth manifold M. We denote
by AP(E) the sheaf of germs of smooth E-valued p-forms on M, especially A(E) := A°(E).

Definition 2.1. A connection V on E is a homomorphism V : A(E) — A'(E) satisfying
the Leibniz rule:
V(f-s)=df @ s+ fVs (2.1)

for all f € A and for all s € A(E).

Let Jg be a complex structure of a complex vector bundle £. We shall extend the
definition of connection to the case of complex vector bundles. A connection V on (E, Jg)
is required to satisfy the Leibnitz rule (2.1) for every s € A(F) and complex-valued
function f € A. This assumption is equivalent to that V satisfies (2.1) and V/—1s =
v/—1Vs. Since v/—1s = Jgs, this condition is equivalent to

VJg = 0. (2.2)

In the sequel, we are concerned with a connection V on (E, Jg) satisfying (2.2). Such a

connection V is called a complex connection on E.

35
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We shall give a local description of a complex connection V. Let ey = {e1, -+ ,e,} be

a local frame field of E over open set U. The connection form w = (w;) of V with respect

to ey is defined by
Ve; = Zei ®w§-, (1<j<r) (2.3)

or, simply by Ve = e ® w in matrix notation. Each w} € I'(U, A) is a local one-form on

U C M. For an arbitrary s = Y ('e; € A(FE), its covariant derivative Vs is given by
Vs=> e @ (d'+ Y wich). (2.4)
We can extend V to a homomorphism V : A*(E) — A*1(E) by requiring
Vip®s)=de® s+ (—1)kpAVs (2.5)
for every ¢ € A* and s € A(E). From (2.1) we have
V23(fs) =V (df @ s+ fVs) = —df AVs—+df ANVs+ fV3s = fV2s

for every f € A and s € A(E), which shows that R = V? : A(E) — A%(E) is a homomor-
phism. Hence we can identify R as a section of A?(End(E)). We set

Definition 2.2. The operator R = VoV is called the curvature of V. The End(E)-valued

two-form (2 = (Q;) is called the curvature form of V.

By direct calculations, we have Re; =) e; ® (dwji» + 3w A wj"). Hence the curvature
form §2 = (£2}) is given by (2 = dw; + > w;, Aw™:

2 =dw+wAw. (2.7)

Let (é1,---,€,) and (e1,--- ,e,) be two local frame fields over U. Then there exists a
smooth local function A = (A;) :U — GL(r,C) satisfying é = e - A:

&i(0) = 3 ei(2) Al (). (2.8)

Applying (2.5) to this relation, we have

Vi =Y (Ve Al ey daf) =3 e @ (D wjdl +aay).
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If we put Vé; =5 & ® (ZJ;, we have

s = (AT (dak + Yo wkar).
From (2.8), the curvature forms Q; and fZJ’ relative to e and € also satisfy the relation
Q8= (AN, AP,
Hence we obtain

Proposition 2.1. Let e and ¢ be two local frame fields with common domain. The con-

nection forms w and © of a connection V relative e and é are related by
O =AY dA + wA). (2.9)
The curvature forms 2 and 2 of V relative to e and é are related by
Q2 =A"'0A. (2.10)

We shall list up the connections on some associated vector bundles with the given

vector bundle.

Example 2.1. (Connection on trivial bundle) Let £ = M x C" be the trivial bundle.
In this case, F admits a natural flat connection. In fact, for a frame filed e = (eq,- - , e,),
the connection V is defined by Ve; = 0. U

Example 2.2. Let F and E be two vector bundles over a smooth manifold M with

connections V and V respectively.

(1) (Connection on direct sum) The connections V and V define a connection V@V
on the direct sum F & F by

(Ve V)(s®3) = (Vs) D (Vs)
for every section s of E and § of E respectively. The connection form of V & V is

w
iven b
o |

- N
? , and its curvature form of V @ V is given by ? .
w O 1

(2) (Connection on tensor product) In terms of the same notations in (1), the
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connection V ® V induced on the tensor product E ® E is defined by

(VeV)(s®3) =(Vs) @5+ s® (V3)

for every section s of E and § of E respectively. The connection form of V ® V is

given by w® I+ g ®w, and its curvature form of V®V is given by Q®IE+IE®(~2.

(3) (Connection on determinant bundle) The r-the exterior product A"E = E A
-+ AN E, r =rank(FE), is called the determinant bundle of E and denoted by det E.
This line bundle is defined by det (gyy) for the transition function {gyv}, and is
locally spanned by ej A - -+ Ae, for a local holomorphic frame field {eq,--- ,e,} of E.

If a connection V is given on F, then V induces a connection D by
D(esN---Nep)=(Ver)N---Nep+---+e1 A+ AVe,.

Therefore the connection form for D on det E is given by the trace of w:

tr.(w) = Z wl.

Also the curvature form for D on det F is given by the trace of (2:

tr.(Q)=> 1.
O

Example 2.3. (Connection on pull-back bundle) Let f: N — M be a smooth map
between smooth manifolds NV and M. Let E be a vector bundle over M. A connection on
FE induces a connection f*V on the pull-back bundle f*FE by

(V) [7s = [(Vs)

for any s € I'(E). The connection form of f*V is given by the pull-back f*w of the
connection form w of V. The curvature form of f*V is also given by the pull-back f*{2 of

the curvature form 2. O

Example 2.4. (Connection on dual bundle) Let E* be the dual bundle of a vector
bundle F over M. A connection V on F induces a dual connection V* on E* as follows.
Let (-,-) the natural pairing between E and E*. For a frame field e = (e1,--- ,e,) of E,
its dual frame field e* = (el, e ,er) is defined by <ej, ei> = 5; The dual connection V*
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of E* is defined by d(s,s*) = (Vs, s*) + (s, V*s*) for every section s of F and s* of E*

respectively. Since <Vej, €i> + <ej, V*ei> = 0, the connection form w* of V* is given by
w* = —"w,

and its curvature form §2* is given by
F = -0,

The curvature tensor R = _Q;'-ei ® el of V is a section of End(E) = E ® E*. For the
connection D induced on End(E) from V, (2.7) implies

DR:Z(dQ;: ei®ej+9§/\Vei®ej+Q§®ei/\Vej)
:Z (d();-—l—z{)?/\w;l—z{)zl/\w?) e;® e
= 0.
Therefore we obtain the so called Bianchi identity

DR = 0. (2.11)

g

A connection V on a vector bundle F is said to be flat if the curvature R of V vanishes

identically, i.e., VoV = 0. Then we have

Proposition 2.2. A connection V on E is flat if and only if there exists an open covering
{(U,ev)} of E such that the frame field ey is parallel, i.e., Vey = 0.

PrOOF. We take an open covering {(U,er)} of E. On each U, we take another frame
field éy. Then there exists a smooth function A : U — GL(r,C) such that éy = ey A.
From (2.8) the respective connection forms @ and w of V relative to €y and ey are related
by (2.9). The condition Véy = 0 is equivalent to @ = 0, i.e., the differential equation
dA + wA = 0. Then we have

0=d(dA) = —d(wA) = —dwA+wANdA = —dwA —w ANwA = —A,

which shows that the equation dA + wA = 0 is completely integrable if and only if 2 = 0.

Q.E.D.
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A vector bundle F is said to be flat if E admits an open covering {(U, er7)} such that
its transition functions {gyy } are locally constant in GL(r,C). If E is flat, such an open
covering {(U, ey)} is called a flat structure of E.

We suppose that E admits a flat connection V. Then F admits an open covering
{(U,er)} with parallel fields {er/}. Then the relation

wy = gpvdguy + gpvwuguv (2.12)

implies wyy = wy = 0 on UNV. Hence we have dgyy = 0, i.e., the open covering {(U, err) }
is a flat structure on E.

Conversely, if E admits a flat structure {(U,er)}, then we define a connection V by
Vey = 0 on each U. Then, because of flatness of {(U, ey)} and (2.12), V is a well-defined

connection on E. Hence we have

Proposition 2.3. A vector bundle E is flat if and only if E admits a flat connection V.

2.2 Hermitian connections

Let E be a holomorphic vector bundle of rank r over a complex manifold M. According
to the decomposition (1.4), the sheaf A'(FE) is also decomposed as A'(E) = AY(E) @
AYY(E). Hence the connection V is also decomposed as V = V10 4+ Vo1 where V1.0 :
A(E) = AY(E) and V%! : A(E) — A%(E). A connection V on a holomorphic vector
bundle E is said to be of (1,0)-type if the connection forms w;'- of V with respect to a

holomorphic open covering {(U, s7)} are (1,0)-forms, i.e.,
vl = 0. (2.13)

Proposition 2.4. Let E be a holomorphic vector bundle over a complex manifold M.

Then E admits a (1,0)-type connection. Such a connection V satisfies V%1 o Vo1 = 0.

PROOF. For a holomorphic open covering {(Uy, So)} of E, we denote by vV the trivial

connection on each F|y, = U, x C" defined by V@54 = 0. Such a family {V(Q)} of local
flat connections forms a zero-cochain with values in Q!(End(FE)). Then Ay, = v -

v determines a one-cocycle, and thus A determines a cohomology class [A

(Ba) (ﬁa)] €
HY(M,QY(End(E)). Since Q'(End(E)) is a sub-sheaf of A%(End(E)), and AY(End(FE))
is fine, there exists {A } € AY9(End(FE)) such that

A A, —A

(Ba) — M8 ()
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on U, NUg # ). Hence we obtain
(e) (8)
VoA, =V A,
on U,NUg. Consequently we obtain a globally defined (1, 0)-connection V = {V(a) +A, 1
ie., VO =0.
Q.E.D.

The converse is also true (see e.g., [Ko2]).

Proposition 2.5. If a complex vector bundle E admits a complex connection V such that

VOl o VOl =0, then there exists a holomorphic vector bundle structure in E such that V
is of (1,0)-type.

Let (E,h) be a Hermitian vector bundle, and let ey = (e, -+ ,e,) be a local frame
field of E over U. The smoothness of assignment M 3 z — h(z) means that h({,n) is a
smooth function on M for all ¢,n € A(E). We put h;; = h(e;,e;) on U. Then, since h is

Hermitian, we have h;; = h;.

Definition 2.3. Let (E, h) be a Hermitian bundle over a complex manifold M. A con-

nection V on FE is said to be metrical if it satisfies
dh(u,v) = h(Vu,v) + h(u, Vv) (2.14)

for all u, v € A(E).
In the sequel we assume that E is a holomorphic vector bundle.

Theorem 2.1. Let (E,h) be a Hermitian vector bundle over a complex manifold M.

There exists a unique metrical connection V of (1,0)-type on (E,h).

PROOF. Let ey = (e1,--- ,e,) be a local holomorphic frame field on an open set U.
The assumption (2.14) is given by dh;; = > (h,,;wi" + hlmﬁ) Since dh;; = Ohy; + Ohy;

and w is (1,0)-form, we obtain wj = > h"™Ohm. Hence such a connection V is uniquely

determined.
Q.E.D.

The unique connection V determined in Theorem 2.1 is called the Hermitian connection

on (E,h). The connection form w = (w;) of Hermitian connection V of (E, h) is given by

w=h"toh (2.15)
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in matrix notation. Since
2(ej) = VoVHle; = Vil o vlle; 4+ VOl o vl

the curvature form 2 = (Q;) must be (1,1)-type. Consequently 2 = 0w + 0w + w A w
implies Ow + w A w = 0 and
2 = Ow. (2.16)

We write w;- =5, Fja(z)dza so that F;a are given by

i im Ohjm,
Iy(z)=>_h ﬁ. (2.17)

_ - - 5 - .
We also write (2 = R;.a ﬁdzo‘ A dzP so that R;,a 5 are given by

i im O*hjm im y pg Ohpm ONjg
Rioz=—D h"o—2f5+ > hmhI—TR o (2.18)

Let L be a holomorphic line bundle over a complex manifold M. Suppose that L
admits a Hermitian metric h. Let {(U, ey)} be an open covering of L, where e is a local
holomorphic frame field of L over U. The local function hy(z) := h(ey, er) defined on U
is smooth and positive. Denoted by {gyy} the transition functions of L with respect to
{(U,ev)}, the local functions {hy} are related by

hu = lguv |’ hy (2.19)

on UNV # (.

From (2.15) the connection form w = (wyy) of the Hermitian connection V on (L, hr)

with respect to ey is given by
wy = hi; Ohy = dlog hy, (2.20)
and from (2.16), the curvature form 2 = ({2r7) is given by
Qu = 0wy = 00log hyr. (2.21)

Example 2.5. Let L be the tautological line bundle over the complex projective space P™.
We use the notations in §1.6. For the open covering U = {U,}o<j<n of P", the transition
functions {l(;;)} of L are given by l(;;) = ¢t/¢7, where (€%, ¢t -+, ¢™) is the homogeneous

coordinate system on P". From (2.19) any Hermitian metric h on L is given by a family of
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positive functions {hy, : U; — R} satisfying ‘Ci‘Q hy, ([¢]) = ‘ij hy, ([¢]) on U; N U; # 0.
If we define hy; by
2 n 2

2
CO
> — Kj

¢

<
e

Ck

414+ Cj

hu, ([¢]) =

k=0

on each Uj, then {hy,} defines a Hermitian metric hy, on L. Hence the connection form
w of the Hermitian connection V on (L, hy,) is given by w = dlog K, and the curvature
form {2 of V is given by 2 = 00log K j- Therefore

V=102 = —/-180log K; = —2IIFg

shows that /—1(2y, is negative, i.e., (L, h,) is of negative curvature. [J
Example 2.6. Let h = Y h;;(2)e' ® ¢l be a Hermitian metric on E. Then & induces a
natural Hermitian metric det(h) on the determinant bundle det E by

det(h) (e A+ Aeper A+ Aep) = det (hy3) .
The Hermitian connection V on (E, h) induces the natural connection D on (det E, det(h))
as shown in Example 2.2. The connection form for D is given by

tr(w) = wa = Z hima;;?dza = Ologdet (hz‘j) ,

and the curvature form {2 is given by
tr(2) = Y 02! = 99log det (h;;) .

O

Definition 2.4. The curvature tr(£2) = Y 2! of the determinant bundle (det E, det(h))
is called the Ricci curvature of (E,h). The real (1,1)-form Ric(h) defined by

Ric(h) = v—1 0dlogdet (h;3) (2.22)

is called the Ricci form of (E, h).

If we put Ric(h) = V=13 R, 5d2" A dz”, then the Ricci curvature R,z of Ric(h) is
given by
R.e 02 log det (hﬁ)
af T §z0pE8
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Example 2.7. Let M be a Riemannian surface with a Kéhler metric
ds* = 2g(2)dz ® dz. (2.23)

Since Ty is a holomorphic line bundle, its connection form w is given by w = ¢~ 'dg =
dlog g(z), and its curvature {2 is given by 2 = dw = ddlogg(z). The curvature tensor
1 . .
Ry,7 is given by
Rijj=——F2". (2.24)

Hence its Ricci tensor R;7 is given by

1 9%logg(z)
Ry1 = — ——.
29(z) 020z
O
Let (M, g) be a Hermitian manifold with its Hermitian connection V. The connection

form w§ of (M, g) is given by wg = 3 I'g. d2”7 with coefficients

,89 =
o ad 8o
g =3 9" 22 (2.25)

Hence

Proposition 2.6. A Hermitian manifold (M, g) is a Kdahler manifold if and only if its

Hermitian connection V satisfies the condition

rg =rs. (2.26)

We put R,5.5 = ngBRa 5- Then we have

+Y g 090 0 I8 (2.27)

Rapns = 0z70z 027 0z9

For an arbitrary point (z,¢) € Th \ {0}, we put
Hy(20) = H<2||4 S Rog 5(2)C0C O, (2.28)

Definition 2.5. The function Hy : Ths \ {0} — R defined by (2.28) is called the holomor-
phic sectional curvature of (M, g) at z € M in the direction ¢ € Tyy.
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Example 2.8. (Riemannian surface) Let M be a Riemannian surface with a Kahler
metric ds® = 2g(z)dz ® dz in (2.23). Since its curvature tensor R} ; is given by (2.24), its
sectional curvature Hy(z,() is given by

2 1 9%logg(z
Hy(2:0) = o (2000 e ) = - ST PEIE )

Hence the sectional curvature of a Riemannian surface is independent of the direction ¢
and is nothing but the Gaussian curvature K,(z) of (M,g). If M is compact, then by

Gauss-Bonnet theorem, the characteristic x(M) is given by
(M) = / K,dv,
X Con Y

where the volume form dV} is given by dV; = /—1¢(z)dz A dz. Hence we have

= [ oo = [

27 M 2T

Ric(g) = /M a1 (M), (2.30)

where ¢1 (M) = ¢1(T) is the first Chern class of Ty, (see later section). O

Example 2.9. (Poincaré disk) Let A = {z € C | |2| < 1} be the unit disk in C with the
Poincaré metric

gn = dz ® dz. (2.31)

(1— 2%
This manifold (A, ga) is a Kéhler manifold of dimg A = 1. Then, its holomorphic sectional

curvature (or Gaussian curvature) is given by (2.29) with g(z) = W By direct
— |z

calculations, we have

” ( 1 )_ 2
0:07 " \a(1-[:22) (1 oP)*

Consequently we get Hg,(2,() = —4, i.e., the holomorphic sectional curvature H,, is

negative constant. This shows that (A, ga) is a hyperbolic manifold. O

Definition 2.6. A Hermitian vector bundle (E,h) is said to be flat if its Hermitian

connection V is flat.

To characterize the flatness of Hermitian metrics, we define a function Fy : E — R by

Fi(z,0) =Y ()¢ (2.32)
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for the components h;; = h(e;, e;). This function Fj, is smooth on the whole of the total

space F.

Proposition 2.7. A Hermitian bundle (E,h) is flat if and only if there exists an open
covering {(U,ey)} with respect to which the function Fj, is independent of the base point
z€ M.

PrROOF. We suppose that the Hermitian connection V of (E,h) is flat. Then, by
Proposition 2.3, there exists a flat structure {(U, er)} satisfying Ve = 0. From Ve = 0
and the compatibility condition (2.14), we have dh(e;,e;) = 0, i.e., the components h;;
relative to {(U, ey)} are all constants. Hence the function F}, is independent of the base
point z € M. Therefore the flatness of (F,h) is equivalent to the existence of an open
covering {(U, err)} of E relative to which the function F}, is independent on the base point
ze€ M.

Q.E.D.

2.3 Chern classes

2.3.1 First Chern class of complex line bundles

From Proposition 1.4 any complex line bundle over a smooth manifold M is determined by
its first Chern class since H'(M, A*) is naturally identified with H?(M,Z) via connecting
map v* : H' (M, A*) — H?*(M,Z). In this sub-section, we shall express the first Chern
class ¢1(L) = —v*(L) of L as a class in the de Rham cohomology group H% (M, C) in
terms of the curvature of a connection V on L. For this purpose, we shall keep in mind
two resolutions of constant sheaf C on M given by the de Rham complex and the Cech
complex respectively.

Let L be a complex line bundle with a Hermitian metric h over a smooth manifold M.
We may assume that we are concerned with an open covering {(U, sy7)} of L such that
sy is a unitary frame field on U, i.e., h(sy,sy) = 1. U NV # (), we may put sy =
exp(2my/—1kyy)sy for some {kyy} € CH(U,.A), and the transition functions {gyy} €
ZY U, A*) are given by gyy = exp(2mv/—1kyy) € U(1). The relation

Sy = exp(27rv —1]€U\/) exp(27rv —1kvw)3w = exp(27r\/ —1(k‘UV + k'VW))SW
shows that kyw — kyw + kyy takes values in Z on U NV NW # (. If we set

covw = kvw — kuw + kuv = v(k)uvw,
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then {cyvw} € Z%(U,7Z) determines a cohomology class [cyyw] € H?(M,Z):

cUvw
|
14
kvy —— cuovw
| |

v —— 1

Hence the image v*([L]) of [L] = [guv] € H(M,A*) is given by the class [cpvw] €
H?(M,Z) and the first Chern class of L is given by ¢1(L) = —[cyvw].

In the sequel we shall consider the class [cyyw] as a class in H2(M,C) = H% (M, C).
For this purpose we are concerned with an arbitrary connection V of L. Denoted by
w = (wy) the connection form of V with respect to {(U, syy)}, the curvature form 2 of V
is given by 2 = dw +w Aw = dw = (dwy), since L is a line bundle. Hence df2 = 0 implies
that £2 determines a cohomology class [2] € H% (M, C).

The relation wy = g[}‘l/ngv + g(}‘l/ngUV = g(}%/dgyv +wy on UNV # () implies
Wy —wy = g[}‘l/ngV = 2mv/—1dkyv, ie.,

dkyy =

1
o/ TV o)

Then the commutative diagram

1 J 1 L,
w — ———dwy = ———
omv/—1 U omv—1 U or /-1
a a
1
14
2mv—1
v

l

kyy —%— dkyy =

‘|

i d
cuvw — CUvVw ———

‘|

@y —2

0
shows that 1*([L]) = [coymw] is represented by [ mlﬁrz} _ [*/2?9] e,
er(L) = {\/2?9} . (2.33)
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Proposition 2.8. Let {2 be the curvature form of a connection V on a complex line bundle

V-1
L over a smooth manifold M. Then the first Chern class ci(L) is given by [29]
s

Remark 2.1. If L is a holomorphic line bundle over a complex manifold M. The curvature

2 of a Hermitian metric h on L is given by (2.21). Hence ¢ (L) is given by

0= [ 0] = [ oorst].

O

The natural inclusion j : Z < R induces an inclusion j* : H*(M,Z) — H?*(M,R) =
H2 ,(M). A cohomology class in H?(M,C) = H2,(M,C) is said to be integral if it lies

. v—1
in the image j*H?(M,Z). Thus {29} for the curvature {2 of V is integral.
T
v—1

Conversely we suppose that a closed two-form I7 such that {Q_H } € Hyp(M,C) =
T

. v —1 .

H?*(M,C) is integral, i.e., [2]]} = j*[cvyw] for some [cpyw| € H?(M,Z). We put
T

II = dIly on U C M. By tracing the reverse of the steps above, there exists {kyy} €

CY(U, A) satisfying dkyy = /—1IIy — /—1y = /—1{v(II)}yv and

1
o (kVW — kuyw + kJUv) =cyvw € ZQ(U,Z).
If we define gy € CHU, A*) by guy = exp(—v/—1kyy ), then we obtain
gvw - gy - guv = exp(—V—=1(kvw — kuw + kuv)) = exp(=2mv—1 x cpyw) = 1,

ie., {gvv} € Z' (U, A*) and {gyy} determines a complex line bundle L € H(M, A*).
Let {(U,err)} be an open covering of L with transition functions {gyv}. Then, for an
arbitrary connection V on L, we put Vey = ey ® wy. The relation betwenn wy and wy
implies

wy —wy = gvdguy = —V—1dkyy = {v(II)}uv,

and the class [I7] coincides with the curvature class [dwy] = [£2] in H2(M,C) = H? (M, C).

V-1
Proposition 2.9. If there exists a closed two-form II on M such that [217] 15 integral,
T

then it gives the first Chern class c¢i1(L) of a complez line bundle L over M.
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2.3.2 Chern forms and Chern classes of vector bundles

In this subsection, we shall give a brief review of Chern classes of complex vector bundles.
Let m : E — M be a complex vector bundle of rank r over a smooth manifold M. We
take a complex connection V on E with curvature 2V. Then we put
an i N
det (%Q +tlp ) =Y (B V)EF. (2.34)
k=0
Then it is verified that the form c;(E, V) is a well-defined closed 2k-form on M and so it
defines a cohomology class [c(E, V)] € H?*(M,C). The form c;(E, V) is called the k-th
Chern form. The Chern forms ¢, (E, V) are defined by a complex connection V on E. For
a proof of the following lemma, see p. 161 of [Zh].

Lemma 2.1. The cohomology classes [c,(E, V)] are independent on the choice of a com-

plex connection V of E.

Thus we can compute the Chern forms c;(E,V) in terms of the curvature 2V of
the Hermitian connection V of a suitable Hermitian metric g of E. Then it is easily
proved that the Chern forms c(E, V) are real forms, i.e., cx(F, V) = cx(F, V). Hence it
defines a de Rham cohomology class cx(E) = [cx(F, V)] € H#5(M,R) under the natural
inclusion H?*(M,R) c H?*(M,C). (More strictly, it is proved that the Chern classes
ck(E) are integral, i.e., the classes ¢;(F) are contained in the image of the natural inclusion
H?*(M,7) ¢ H**(M,R).) It is trivial that co(E) = 1 € HY5(M,R). Other important

classes are given by

am = [y 0l

-1 A .
ea(B)= | (ngz,’g—rz“rzf) ,
i<k

(5) ’ det (Qj)

in terms of curvature 2 = (Q]J ) of V. The total Chern form c¢(E,V) of E is defined by

cr(E) =

(B, V)= c(E,V) = det <\/2T19V + I) (2.35)

s
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and the total Chern class of E is defined by

=> c(E) € Hpp(M,R), (2.36)

where H7, (M, R) is the de Rham cohomology ring. We shall list up some basic properties
of Chern classes (cf. [We]).

Proposition 2.10. Let f : N — M be a smooth map between smooth manifolds. For a
complex vector bundle E over M, the Chern classes cx(f*FE) of the pull-back bundle f*E

are given by

c(f7E) = fer(E). (2.37)

PROOF. In fact, for a connection V on FE, the induced connection f*V defines a con-
nection on the pull-back bundle f*F, and the curvature 277V is given by 2"V = f*QV.
Hence the Chern forms cx(f*E, f*V) are given by cx(f*E, f*V) = f*cx(E,V), which

implies ¢, (f*E) = f*cp(E).

Q.E.D.

Proposition 2.11. Let E and E be complex vector bundles over M. Then
c(EDFE)=c(E)-c(E). (2.38)

PROOF. To prove this proposition, let V and V be connections on F and E respectively.

. . 7 0
The curvature of V & V on the direct sum E @ E is given by( 0 0 ) . This implies

FQ-FIE 0] V=1 VA

det 27 —det( ~—0+1 det ( X—0 + 1
) 0 FQ+I~ e<27f +E>Ae<2ﬂ +E>’
21

which implies ¢c(E®E, V& V) = ¢(E, V)Ac(E, V), and thus we have ¢(EGE) = ¢(E)-c(E).

Q.E.D.

Proposition 2.12. Let E* be the dual bundle of a complex vector bundle over M. Then

e(E*) = (~1)Fer(E). (2.39)
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PROOF. In fact, a connection V on E induces a connection V* on E* by w* = —tw.
Hence the curvature 2V is given by 2V = —t0V.
(—1)*

Hence we have ci(E*,V*)
Yeer(E, V), which implies ci(E*) = (—1)*ci(E)

Q.E.D.
Proposition 2.13. Let E be a complex vector bundle of rank r over a smooth manifold
M, and L a line bundle over M. Then

ca(E®L)=c(E)+rc(L).

(2.40)

PROOF. In fact, for a connection VE on E and a connection V£ on L, the induced
connection VE®L is defined by VE®L =
by QE@L

VE®1+I®VE, and its curvature 2F®L is given
NF ©14+1® 2" Hence we have

V=1
c(E® L, VE @ vE) =

o > (QE®L)J c1(E,VE) +re (L, VD),
J
which implies (2.40).

Q.E.D.
Let (E,h) be a holomorphic Hermitian vector bundle over a complex manifold M. If

we denote by V the Hermitian connection on (E,h), the k-th Chern form ci(E, V) is of
(k, k)-type. Especially the first Chern form ¢;(F, V) is given by the Ricci form Ric(h) of
(E,h):

V-1
J — g e =0

c1(E, ZQ aalogdet (hig) =~ > R,5dz* AdZ°.
Example 2.10. We shall compute the first Chern class ¢;(7pn) of the tangent bundle
T N

pn of complex projective space P™. For this purpose, we shall consider the Fubini-Study
metric ITpg on P"™. Because of

J-1 .
s = —00log (1+¢[*)
the volume element dV of (P", IIpg) is given by
1 V-1\" 1 1, 71 >
dV:U;kS=< ) ACY AdCY - A dC A dC.
n! 2 (1+I¢))m
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Thus (2.22) implies
Ric(Ilpg) = (n+ 1) g,

namely, Fubini-Study metrics satisfies the so-called Einstein condition. From this we get

On the other hand, by the Euler sequence (1.22), if we take a Hermitian metric on
H® D) we have an orthogonal decomposition HE"+) = Tpn & 1pn for the hyperplane
bundle H over P". Thus the total Chern class of H®™tD is given by ¢ (H@(”‘H)) =

¢(Tpn) - c(Lpn) = c(Tpn) - 1. Since ¢ (HE D) = ¢(H)"+! and ¢(H) = 1 + ¢1(H), we have
¢ (To) = (1+ e (H))™

Because of ¢ (Tpn) = > ¢ (ITpn), we have

1
Cl(H) = n+ 161 (T[pm) =

1], (2.41)

~

which is the positive generator of the cohomology group H Lpz)y=z. O

2.3.3 Positive lines bundles and ample line bundles

Let L be a holomorphic line bundle with a Hermitian metric h, and let {(U,er)} be an
open covering of L with transition functions {gyy }. If we put h(ey,ey) = hy(z) on each
U, the local function hy is smooth and positive, and moreover it satisfies hy = hy| gUV]2
on UNV. The Hermitian connection V of (L, h) is given by the local (1,0)-form w = dlogh
and its curvature 2 is given by 2 = 9d1log hyy. The first Chern class ¢1(L) is represented
by

V-1

Cl(L,V) = ?Q

Definition 2.7. A holomorphic line bundle L is said to be positive if its first Chern class

c1(L) is represented by a positive real (1,1)-form.

By this definition, a holomorphic line bundle L is positive if and only if L admits a
Hermitian metric h whose curvature /—1§2 = /=100 log h is positive-definite. Then the
form —/—1£2 = /—190901og h defines a Kihler metric on M.

Example 2.11. Let H be the hyperplane bundle over a complex projective space P™.
Since ¢1(H) is given by (2.41), H is positive. [
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Let (M, g) be a compact Kéhler manifold. Since the Kéhler form II,; defined by (1.5)
is closed, it determines a cohomology class [II,] € H3,(M,R) C H% (M, C). We take an
open cover U of M so that I, is expressed as 11, = V—100Ky on each U € U, where Ky
is the Kihler potential for g on U. If we put ay = —v/—190Ky, then we have

daU =d (—\/ —18KU) = \/—185KU = HQ‘U'

Therefore [day] represents the class [II,] in H?,(M,C). From Remark 1.2 there exists
{kyv} € CYHU, O) satisfying Ky — Ky = kyy + kyy. Then we have

ay —ay =—v—10 (KV — KU) =—v-10 (kUV + kUV) =d (—\/ _1kUV)
since kyy is holomorphic. We set hyy = —v—1kyv, ie., v(a)yy = d (hyv).

Now we suppose that [[1,] is integral, ie., [II;] = j*[cyyw] for some [cyvw]| €
H?(M, 7).

d
ay —— day =11,

’| /|

hoy —4— d(hyv) —2 0

/| /|
covw —— covw —— 0
/|
0
We set gyy = exp(2myv/—1hyy). Then {gyy} € CHU, O*) satisfies

gvw - 9oy - guv = exp(2mvV/—1hyw) - exp(—2nv—1hyw) - exp(2rv/—1hyy)
= exp(2mvV—leyvw)
=1.

Hence {gpyv} € Z'(U,O*) determines a holomorphic line bundle L € H'(M, O*). Further,
from Proposition 2.9, the first Chern class ¢;(L) is represented by the positive real (1,1)-

1
form 2—]]9. Thus L is positive.
7

Conversely, if there exists a positive holomorphic line bundle L over M, then its first
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Chern class ¢1(L) is represented by the curvature {2 of a Hermitian metric h on L:

[\?56 log h} € H* (M, 7).

™

C1 (L) =

Then the closed form v/—1(091log h)/2n defines a Kihler metric on M which is integral.
A compact Kéahler manifold (M, g) is called a Hodge manifold if the Kahler class [II]

is integral. Therefore we obtain

Theorem 2.2. ([Mo-Kol|) A compact complex manifold admits a positive holomorphic line
bundle if and only if M is a Hodge manifold.

Let L be a holomorphic line bundle over a compact complex manifold M. Since M
is compact, dim¢ H°(M, O(L)) is finite. Let {sq, -+ ,sn} be a set of linear independent
sections of L of the complex vector space of global sections. The vector space is called a
linear system on M. If the vector space consists of all global sections of L, it is called a

complete linear system on X. Then a rational map ¢z : M — PV is defined by

oii(2) = 1£0(z) o (), (2.42)

where we put ¢y (s;) = (2% f') € U x C for a local trivialization ¢y : 771(U) — U x C.
This rational map is defined on the open set in M which is the complementary to the
common zero-set of the sections s; (0 < i < N). It is verified that the rational map P L

obtained from another basis {Sg, -, 5y} is transformed by an automorphism of P".

Definition 2.8. A holomorphic line bundle L over M is said to be very ample if the
rational map ¢ : M — P determined by its complete linear system |L| is a holomorphic
embedding. L is said to be ample if there exists an integer m € Z such that L®™ is very

ample.

Let {U;} be the open covering of PN defined in §.1.4. Suppose that L is a very ample
line bundle over a compact complex manifold M with a basis {sq,--- , sy} of HO(M,O(L))
which defines a holomorphic embedding ¢ : M — PV, Under this embedding, we can
think of [f?:---: fV] as a coordinate system on the embedded M in PY. We define an
open covering {V;} of M by V; = {z € M | sj(2) # 0} = cpﬁl‘(Uj)ﬂM. With respect to this
covering, the local trivialization ¢; : 771(V;) — V; x C of L is given by ¢;(s;) = (zg.), f(ij)),
and the transition functions {g;.} are given by g;i(2) = f(’k)(z)/f(l])(z)

On the other hand, the transition functions {h(;)} of the hyperplane bundle H over
k

PV is given by the form hijry = gﬂ for the covering {U;} of PV (cf. Example 1.11). Hence
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{h(jry} satisty the relations

and thus we have L = 90\*L|H'

Lemma 2.2. Let L be a very ample line bundle over a complex manifold. Then L is

isomorphic to the pull-back bundle @TL\H of the hyperplane bundle H over the target space
PN Of (P|L\ .

The following well-known theorem shows that any Hodge manifold M is projective

algebraic, i.e., M is embedded into a projective space PV.

Theorem 2.3. (Kodaira’s embedding theorem) Let L be a holomorphic line bundle
over a compact complex manifold. If L is positive, then it is ample, i.e., there exists an

integer ng such that for all N > ng the map o) : M — PN is a holomorphic embedding.
The converse of this theorem is also true, i.e., we have

Proposition 2.14. A holomorphic line bundle L over a compact complex manifold M is

positive if and only if L is ample.

PROOF. We suppose that L is ample. Then there exists a basis {sg, - ,sny} of
HO(M,0O(L™)) such that @im(z) : M — PN defined by (2.42) is a holomorphic em-
bedding. By Lemma 2.2, the line bundle L™ is identified with cp|*Lm|H. Thus there exists

a Hermitian metric g on L™ such that

1
2my/—1

where g(z) is defined by g = Zfio ’fi(z) ’2. Since Hl is positive, the (1, 1)-form v/—199 log g(z)

is positive, and thus

A(L™) = mer(1) = |5 —00ogg(2)].

(D) = & [

L 9010 g(z)]

1
2my/—1

is positive. Consequently L is positive.
Q.E.D.

Remark 2.2. From the proof above, an ample line bundle L admits a Hermitian metric

of the form
9= = {3 1) (2.43)

for some sections s;(z) = (2%, fi(z)) € H*(M,0(L™)). O
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2.3.4 Compact Riemannian surfaces

Let E be a holomorphic vector bundle over a compact complex manifold M. The Serre du-
ality HP4(M, E) = H*P"=9(M, E*)* and Dolbeault isomorphism H?4(M, E) = HI(M, 27 (E))
imply

HIY(M,QP(E)) = H" (M, Q"P(E*))*.

Putting p = ¢ = 0, we have HY(M, O(E)) = H"(M, 2"(E*))* (see, e.g., [Ko2]).
Now we suppose that M is a compact Riemannian surface. Since dim¢ M = 1, we

have
HY(M,0(E)) = HY(M, 2Y(E*))* = HY (M, O(E* ® Ky))*

and

dime HY(M, O(E)) = dimc H' (M, O(E* @ Ky))
for the canonical line bundle Ky = 2); of M. The integer
g :=dimc H' (M, Oy) = dime H® (M, O(Kyy))
is the genus of M.
The degree deg(L) of a holomorphic line bundle is defined by deg(L) = / a(L) €Z.

M
If we apply the well-known Riemann-Roch theorem

dime H°(M,O(L)) — dim¢ HY (M, O(L)) = deg(L) +1—g¢
to the case of L = K, we have
dime HY (M, O(Ky;)) = dime H (M, QY (K3,)) = dime HY(M, Oyy) = 1
since M is compact and thus H°(M, Oy;) = C. Consequently we have
deg(Kp) =29 — 2.
The Euler characteristic is given by
X(M) = /Mcl(TM) = —deg Ky =2 — 2g.
Any compact Riemannian surface M is determined completely by its genus g:

(1) if g = 0, then M is holomorphically isometric to the Riemannian sphere P! =
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CU {oo},
(2) if g =1, then M is holomorphically isometric to a torus C/A,
(3) if g > 1, then M is hyperbolic, i.e., M admits a Kéhler metric of negative curvature.

In the case of g = 0, i.e., M = P! then since ¢;(Ty;) > 0, its tangent bundle is positive
(or equivalently ample). In the case of g > 1, then its tangent bundle T, is negative since
c1(Ty) < 0.

2.4 Negative vector bundles and Griffiths-negativity

The ampleness of holomorphic line bundles is an important notion in algebraic geometry,
and it is equivalent to the positivity in the sense of differential geometry. It is natural to
generalize the notion of ampleness to the case of higher rank.

Let M be a compact complex manifold with a complex coordinate system {U, (z%)},

and let 7 : £ — M be a holomorphic vector bundle. Since we shall work in an open set

U C M, we fix a local holomorphic frame field (e1,--- ,e,) on U. Since any v € 71 (U)
is represented as v = Y. (%e;, we shall think (z,¢) = (2%,---, 2™ ¢, -+ ,(") as a local
holomorphic coordinate system in w=!(U), where (¢!,---,(") is the fiber coordinate in
E,.

Let ¢ : P(E) — M be the projective bundle associated with E. Denoted by [v] the
point of P(E) corresponding to v = (z,() € E, the tautological line bundle L(E) — P(E)
is defined by

L(E)={([v],V)eP(E) x E|[v] € V}. (2.44)

Definition 2.9. ([Kol]) A holomorphic vector bundle E over a compact complex manifold
M is said to be negative if the tautological line bundle L(E) is negative, i.e., ¢1 (L(E)) < 0.

A holomorphic vector bundle E over M is said to be ample if its dual E* is negative.

Suppose that F admits a Hermitian metric h = Zhijei ® &, For all u € E, and
X eT, M, we set
Ru®X) =Y Rj,s(x)u'u X*XP

for the curvature tensor R;5,5 of (E,h) where R,z :=>_ hliRiaB‘

Definition 2.10. A holomorphic vector bundle is said to be Griffiths-negative if E admits
a Hermitian metric h of negative curvature, i.e., R(u® X) < 0 at any point z € M for all

non-zero u € F, and non-zero X € T, M.
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Remark 2.3. Let E be a holomorphic vector bundle endowed with a Hermitian metric h.
Denoted by {2 the curvature form of the Hermitian connection V on (£, h), the curvature
form 2* of the induced connection V* on the dual bundle E* is given by 2* = —t42 (cf.
Example 2.4). Therefore the curvature R* of V* is given by

R(u' ®X)=—> R* juXu X5,
where R 0= 2 hjl_hm’_“RmZaB. Hence
R (v @ X) ==Y R* gu;Xu X8

== Z le_aBumXaulXﬁ
= —-Ru®X).

Thus F is Griffiths-negative if and only if E* is Griffiths-positive. O

We show a sufficient condition for the negativity of Hermitian bundles.

Theorem 2.4. If a holomorphic vector bundle E over a compact complex manifold M is

Griffith-negative, then E is negative.

PROOF. Let h be a Hermitian metric on E of negative curvature. We define a function
Fy, on E° by Fy(z,¢) = h(v,v) = Zhij(z)g“i(_j. If we set F; = F},/|¢7|* on each Uj, then

{F};} satisfy the relation
N 2
<] 2
Fj = (!le Fy = || F

Hence the family {F};} defines a Hermitian metric on L(£). Some direct calculations imply

that the curvature form 90log F; = d01log F of this metric is given by

1 .
_ — N Ry 500 9,
00 log F, = th 70556
0 —(log F1) ;5
_ 0PlogFy ., ——
Ndz® A dzP — PAV(I
HcH?Z Gap(e) N N =) Saa g VAT

1 B PlogFr e ; =

Hence R(v ® X) < 0 implies that L(E) is negative, and thus E is negative.

Q.ED.
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Remark 2.4. Let E? (resp. L(E)?) denote the open sub-manifold of E (resp. L(E))
consisting of all non-zero elements. We define an open covering {U;} of P(E) by U; =
o N U)N{[v] € P(E) | ¢/ # 0}. Further we define ¢; : U; — U; x C" by

it = (0 (5. 5))-

Then {Uj,t;} defines a local trivialization ¢; : Uj x C — L(E)y, of L(E) by ¢;([v],A) =
At;([v]). Using this local trivialization, we define a map 7: E® — P(E) x E by

7(v) = ([v],v) = t;([v]) = @;([v], ).

This holomorphic map 7 maps E° biholomorphically onto L(E)°. Then, for any Hermitian

metric hy gy on L(E), we define the norm ||v| 5 of v € E® by |v]|; = \/h]L(E)(T(’U),T(’U)).
Extending this definition continuously on F, we obtain a function F': E — R by

F(z,¢) = vl -

This function F' defines a complex Finsler metric on E, not Hermitian metric in general.
Hence the converse of Theorem 2.4 is an open problem. Kobayashi[Kol| characterized
negativity of holomorphic vector bundles in terms of complex Finsler metrics ( see Theorem
3.1 in the next chapter). O

2.5 Ehresmann connections

Let F be a holomorphic vector bundle over a complex manifold M. We define the vertical
sub-bundle V' of the total space Tg by V = ker(gl\;r) with dr = (r, dr) for the derivative
dr : T, o)F — T:M at v = (2,() € £ . The fiber V,, C T,E over v € E is the tangent
space of the fiber 7=1(7(v)) at v € E, ie., V,, = {Y € T,E | dr(Y) = 0}. The vertical
sub-bundle V = E is a holomorphic vector bundle over E with standard fiber C". Since
the projection 7 is a holomorphic submersion, we have (f]\7 Jo & Tr@yM = Im(dm,) =
T,E/ker(dm,) = T,E/V, which induces the exact sequence of holomorphic vector bundles

over F:

where j“\]\; =7*T.
A subspace H, C T, F is called the horizontal subspace at v € E if H, is complementary
to V,, i.e., T,E =V, ® H,. Although the vertical space V,, is uniquely determined at each
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point v € E the horizontal subspace H, is not canonically determined.
The multiplier group C* = {cI € GL(r,C); c € C*} C GL(r,C) acts on the total space
as a sub-algebra of End(FE) by the rule py : E 3 v +— puy\(v) := (2,A-() € E.

Definition 2.11. An Ehresmann connection on E is a smooth distribution H : £ > v +——
H, C Tg of a horizontal subspace H, at each point v € E in a C*-invariant way, i.e., the
selection is required that

Hy.p = dpx(Hy) (2.46)

for all A € C* and v € F, and H, depends on v € E smoothly.

An Ehresmann connection H on F is also called a horizontal sub-bundle of Tg. Given

an Ehresmann connection H on F, Tg splits into a C'°*° decomposition
Tp =V & H. (2.47)

In another word, an Ehressmann connection H is a smooth distribution which assigns

to each point v € F a linear sub-space H, C T,FE such that dim¢ H, = dim¢ M and

H, NV, = {0}. Further dr is an isomorphism on H, i.e., dm,(H,) = Tr,yM. Thus an

Ehresmann connection H is equivalent to determine a C° splitting v of the short exact

sequence (2.45), namely, v is a C* bundle morphism 1 : Tu — Tr satisfying dr o1 = id:
L dr

(@) - - Tg Q.

T
(]
The splitting (2.47) is written as Ty = V @& 1(Thy).
For any section X € A(Ty), there exists a unique X7 € A(H) such that dr(X) = X.
Such a section X is called the horizontal lift of X. Then 7o py = 7 implies

dmye (XH(N-0)) = (dmy o dpy-1) (X (N -v)) = dry (dpy— (XH(X-0))).

The assumption (2.46) shows duy—1 (XH (X -v)) = X (v). Consequently any horizontal
lift X satisfies
XT(Nv) =duy (X (v)).

An alternative definition of Ehresmann connection is given by a left splitting P of
the sequence (2.45), i.e., V-valued (1,0)-form P on E satisfying «(Z)P = Z for every
Z e A(V), and

Py = i3 Pro (2.48)

for every A € C*. Then the horizontal sub-bundle H is defined by H = ker(P).
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Definition 2.12. For a smooth curve ¢ : I = [0,1] — M in the base manifold M, a curve
¢y + I — E starting a point v € E ) is called the horizontal lift of ¢ with respect to H if
it satisfies ¢,(0) = v, 7o &, (t) = ¢(t) and

ZEP=0. (2.49)

Since dim I = 1, this differential equation is integrable, and it has a unique solution

¢¢ with the initial condition v = ¢,(0). Consequently the horizontal lift ¢, = (c(t), X (t))

exists for every curve ¢ = ¢(t) in M and for any point v € E ). Then we define a map
Te : Eeo) = Ee(1) by

Te(v) = (1), v € Eygy. (2.50)

Since the solution of (2.49) depends smoothly on the initial condition v, the map 7, is a
diffeomorphism between the fibers. For any A € C*, X - ¢,(t) = ux (¢y(t)) = (e(t), \X(t)).
Hence (2.48) implies

AN @)\ e\ L (de L (dé
Pz, < 7 ) = Py\3, <d,u>\ <dt)> = (urPrz,) <dt> =P, <dt>
oy d
= CUP <dt>

=0.

Therefore A - ¢,(t) is the horizontal lift of ¢ = c(¢) through the point A - v € E.). The
uniqueness of the solution of (2.49) shows that A - ¢, = ¢x.,(t), and so we obtain ¢y.,(1) =
A ¢y(1) = A - 7e(v), namely

Te(A-v) = X 7.(v) (2.51)

for any v € E. ) and A € C*. The derivative d7.o of 7. at v =0 is given by

dreo(v) = lim Tel041:0) Z7e(0) _ pypy Telt-0) 7e(v).
’ t—0 t t—0 t
Denoting 7. by 7. = (7}, ,77), 7 is given by
1
87'61 (’*)7’61 ¢
SO0 - SO h
, , or.
7.(v) = : : c | = (ZCL}CC'“ 72%0), al' := 22 (0).
a¢
ot/ or/,

CT
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Therefore 7. is a linear map. Since 7,-1 = (7.)~!, the map 7. : Ey = Ec(1y defined by

(2.50) is a linear isomorphism between the fibers.

Definition 2.13. The C-linear isomorphism 7. is called the parallel displacement of v

along ¢ with respect to H.

Let X be a tangent vector at z € M, and let ¢ = ¢(t) be the integral curve of X through
the point z = ¢(0). Then, for the parallel displacement 7., we define Vx : A(E) — A(E)
by

T_l vic — Uz
Vo= 3 lefe)] = tim Ay @y

Since the parallel displacement 7. is a linear isomorphism, the map Vx is a linear mor-
phism. Furthermore
e (fle(®)v(e(t)) — f(2)v(z)

Vix(f -v) = Jim = t

7o (v(e(t) —v(2)

= lim f(c(t)) . + lim " v(2)
= f(2)Vxv+ X(f)v(2)
shows that V satisfies the Leibnitz rule
Vx(f-v)=f -Vxv+ X(f)-v. (2.53)

Consequently any Ehresmann connection H determines a covariant derivative V in F.

Conversely we shall show that any covariant derivative V on E determines an Ehres-
mann connection on Tx. Then the natural action p of C* on E induces a holomorphic
vector field £ on T defined by

Ew)=> ¢ <6(Zi>v >~ (v,0) (2.54)
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for all v = (2,() € E.

Definition 2.14. The vector field £ on E defined by (2.54) is called the tautological

section of V' or radial vector field on E.

The tautological section £ is invariant by the action p of C* on F, i.e.,

dur(€) = €. (2.55)

0 0
Indeed, d — ] =A , implies
“%wl (wXCP

dux(€) = dux <ZC’< )( <>>
) 0
(2
2 9¢" ) 2.0
9
= A —
2. <3C’> (2A0)
)
= M| —
2. (3C’>(z,x<)

=E&(z,A- ().

0
¢t

Hence £ is the fundamental vector field on F with respect to the action of C*.
Let V : A(E) — AY(E) be a connection on E such that V%! = 9. Then V induces
a natural Ehresmann connection H. Indeed the induced connection 7V := V : A(V) —

AY(V) defines a covariant derivative on V, since V =2 E. For local expression of V, we

denote by {Zi;, e ,&;;L} the dual of vector fields {821’ e 8?’”

0 _ (0
aza'_ﬂ 0z |-

Then we can easily prove that the V-valued (1,0)-form P defined by

P=ve=3(

satisfies P(Z) = Z for every Z € A(V), i.e., H = ker(P) is an Ehresmann connection.
Further P satisfies Py, = (f-v,V(f-v)) = (f -v,df @ v+ f- Vo) for any v € A(E)

and f € C°°(M). Thus any Ehresmann connection H is determined by a section (v, o) of

} on Ty defined by

6(Zi>v ® (dci +) gﬂ‘r;a(z)c?zva) ~ (v,Vv) e E@ AYE)  (2.56)
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the bundle E @ A!(E) satisfying
f-o)=(f-v,df @v+[-0)

for any v € A(E), 0 € AYE) and f € C®(M).

As shown in the above, any connection V of (1,0)-type on E defines an Ehresmann
connection H in the sense of Definition 2.11. In particular, the Hermitian connection V
on a Hermitian bundle (F, h) defines a natural Ehresmann connection H.

Let E be a holomorphic vector bundle with a Hermitian metric h = h,;;(z)ei ® €.
The Hermitian connection V of (E, h) is given by (2.15).

Proposition 2.15. Let c¢: (0,1) — M be a smooth curve. Then the parallel displacement

e along c is linear isomorphism and preserves the metric h, i.e., for all u, v € E )
h(7e(w), 7e(v)) = h(u,v). (2.57)

Let zg € M be a fixed point, and Cjy be the set of all closed curve based on z5. We put
Yy = {7. | ¢ € Cy}. Since the displacement 7, : E,, — E,; is a linear isomorphism, relative
to the basis {s1(z0), - ,sr(20)} of E,,, any element of ¥, is represent by an element (T;)
of GL(r,C). Then, by (2.57) we have }_ h,s7] 77 = hy;. Hence ¥ is a subgroup of unitary
group U(r).
Definition 2.15. The group @ is called the holonomy group of (E,h) with reference
point zg € M.

Let (E,h) be a Hermitian bundle, and P : Ty — V the connection on E defined by
(2.56):

PZZ@?Z‘@Pi’

where we put P’ := V(' = d(* + Zw}(j. Then we define T' € A%(V) by
T =VP. (2.58)
By definition, we have
T(X,Y)=VxP(Y) - VyP(X) - P([X,Y]).

From (2.56), we have T = V2 = (7*R)(€). In local coordinate, the form T is given by

T=>Y" a(zi @ (M 2id) =3 880. ® (D Riyp(2)7dzo ndz7)
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We call T the torsion form of (Vi, V).

In the case of E = Ty, i.e., E is the holomorphic tangent bundle of a complex manifold
M, then the bundle E\; is naturally identified with V. Therefore we may consider the
differential dm as another morphism dr : Ty — V with the form

0
d7T = Z % & dZ
Then we define another torsion 7' € A%(V) by
T = V(dr), (2.59)

that is,
T(X,Y) = Vxdr(Y) — Vydn(X) — dr[X,Y]

for all X,Y € A(Tg). Then we have
0
,8_ o
T= EV—aCﬂAdz §—8<a®w5/\dz Eaga (E Ig (z dzﬁ/\dz‘Y)

Therefore T = 0 if and only if (2.27) is satisfied, i.e., (M, k) is a Kéhler manifold.

Proposition 2.16. A Hermitian manifold (M, h) is Kdhler if and only if its torsion form

T vanishes identically.






Chapter 3

Finsler metrics and connections

In this chapter, we will focus on the geometry of complex Finsler vector bundles. As
an application of the geometry of Kahler fibrations, we shall study the geometry of the
vertical sub-bundle V' with the Hermitian metric g defined by a Rizza metric F'. We shall
introduce the notion of Rizza-negativity of complex Finsler metrics. The fundamental tool
in this chapter is a partial connection on V' ([Ha-Ai], [Ai6], [AiS8]).

3.1 Complex Finsler metrics

3.1.1 Complete circular domains and Minkowski functionals

We shall recall the notion of (complex) Minkowski space (cf. [Th], [Pa-Wo]). Let V be a

complex vector space of dim¢V = n.

Definition 3.1. We call a function || - || : V — R a Minkowski norm on V if it satisfies
(1) ||¢]| = 0, and ||¢|| = 0 if and only if { = 0,
(2) IAC) = |AI - [l¢] for all A € C and ¢ €V,
(3) |I<|l is C*° on V \ {0}, and is continuous on V.

A complex vector space V is said to be a complex Minkowski space if a Minkowski norm
| - || : V— Ris defined on V. The unit ball D = {¢ € C" | ||| < 1} is called the indicatriz

of the given Minkowski norm.

We shall fix a basis {s1,---,s,} of V and identify V with C" with coordinate system
(Cl, o, ,(”). If we set f(C) = HCHQ, then f satisfies the following conditions:

67
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(f1) f(¢) >0, and f(¢) =0 if and only if ( =0,

(f2) fON) =|M? - f(¢) forall A€ C and ¢ €V,

(f3) fis C* on V\ {0}, and is continuous on V..

The function f is called a complexr Finsler metric on V = C". A complex Finsler
metric f is said to be strongly pseudo-convex if f is strongly pluri-subharmonic outside of

the origin, i.e., the Levi form

*f iz
Ly(Z,7) = ZWZ Z

is positive-definite for all Z = (Z ... ,Z"). Hence the complex Hessian ( fij) defined by

0% f
= = 3].
1) aCZaC] ( )
is positive-definite.

Definition 3.2. ([Pa-Wo]) A domain D in C" satisfying the following conditions is called

a complete circular domain.
(1) If ¢ € D and A € C with |A\| < 1, then A\ = (AL, -+, A\(") €D
(2) If ¢ € D and ) € C with |A| < 1, then A\ € D.

In the sequel we usually treat complete circular domains with smooth boundaries. For

a bounded complete circular domain D, its Minkowski functional mp is defined by

mp(Q) ::inf{i ]tC¢D,t>O}, (eC™ (3.2)

Moreover, if we set
fpo =mp. (3.3)

Then it is trivial that fp satisfies fp(A() = |[A?fp(¢) for all ( € C® and A\ € C, i.e., fp
is a complex Finsler metric on C*. Moreover it is also trivial that ¢ € D if and only if
fp(¢) < 1, i.e., the domain D is the indicatriz of the corresponding fp. If D is strongly

pseudo-convex, then
((fp)i7) >0, ((log fp)s;) > 0. (3.4)
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Hence there exists a one-to-one correspondence between the set of all complete circular
and strongly pseudo-convex domains with smooth boundaries and the set of all strongly

pseudo-convex Finsler metrics.

Proposition 3.1. ([Pa-Wo|) Let Dy and D2 be two complete circular domains in C™ with
smooth boundaries. Then, D; is biholomorphic to Dy if and only if the Finsler metric fp,
of D1 is related to fp, of D2 by fp, = fp, o A for some A € GL(n,C).

By this proposition, the following characterization of Hermitian inner product is proved:

Proposition 3.2. ([Pa-Wo]) Let D be a complete circular domain in C"*. The following

statements are equivalent:
(1) D is biholomorphic to the unit ball B = {¢ € C" | 3 [¢']* < 1},

(2) the associated Finsler metric fp is of the form

n 2

) =)

Jj=1

3 aich

k=1

for some A = (Ai;) € GL(n,C),
(3) fp is smooth at the origin.

Example 3.1. ([Ai3]) Let D be a domain in C" defined by

n
D= {g eC” | Z}g"\ﬁ It < 1}.
i=1
D is complete circular and strongly pseudo-convex domain. We shall construct the complex
Finsler metric fp whose indicatrix is the given D. We suppose that A\ € 9D for some
A € R. Then we have A2 ||C[|* + A% - [¢"|* = 1, where we put ||C|* = Z:;l ‘C’f. Setting
A2 =1/m2 =1/ fp, we have
[ sil
o e
Therefore the function fp defined by

06 = 5 {1612+ Il + ajeni*}

is a complex Finsler metric on C" whose indicatrix is the given D. We note that this

= 1.

Finsler metric fp is invariant by U(n — 1) x U(1). O
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3.1.2 Complex Finsler metrics on C"*!' and Kéahler metrics on P"

In Example 1.9, it is shown that the natural Hermitian metric on C"*! induces a standard
Kéhler metric IIrg on the projective space P". Conversely it is natural to ask whether
any Kihler metric on P” is induced from a Hermitian metric on C**!. This is not true
in general. In fact, any Kéhler metric on P” is induced from a strongly pseudo-convex
Finsler metric on C**1.

For a complex Finsler metric f on C"! we shall correspond a real closed (1, 1)-form

1= V1001051 =v=1Y 28]

i.j=0

dCP A dC.

IT is invariant by the action u of C*. Indeed, since A*log f(¢) = log f(A-() for any A € C*,

we have

pi Il = V=1 90log f(\- ()
= VT adlos (1A £(0))
=+/—100 (log A2 + log f(C))

= /=1 0dlog f(C)
= 1II.

Therefore there exists a closed real (1,1)-form ITpr» on the complex projective space P"
such that p*IIpn = II, where p : Crt! = P" is the natural projection.

We shall provide a more geometrical description of the Kahler metric IIpn by the
same way as in Example 1.9. The holomorphic tangent bundle Tpn is locally spanned
by the vector fields {dp (8/0¢")} with the relation (1.16), and ker(dp) is spanned by the
tautological section £ on Cn ! defined in Example 1.9. Any strongly pseudo-convex Finsler
metric f defines a Hermitian metric h on Cntl by h=>5" fiiji@)dfj , where f;5 are defined
by (3.1). Then we also define a Hermitian metric § on Crtl by

1
oY, Z)=——h(Y,Z 3.5
Y, 2) O (Y, 2) (3.5)
forall Y, Z e TC@”H. Here we notice that the norm ||€]| of £ is defined by ||E]|* = £(C).
The homogeneity condition (f 2) implies that the Hermitian metric ¢ is invariant by the
natural action p of C*, i.e., Lgd = 0. Therefore there exists a Hermitian metric g on P”
such that § = p*g.
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Let SCL C Tg@"“ denote the §-orthogonal complement to the line bundle spanned by
E and p: TC@"H — ECL the orthogonal projection, i.e., p(Y) =Y —§(Y,E)E := Y. Then
Egl is naturally identified with T};P", and a Hermitian metric g on T} is defined by

(p*g)(YJ_,ZJ_) = <YJ_’ ZJ.)
1 1
iG] [h(Y, Z) - mh(Y,S)h(E,Z)
0? logf
Z 8(’80

forall Y, Z € T<@”+1. The fundamental form Ilpr of this metric is given by
IIpn = +/—1001og f. (3.6)

For the non-homogeneous coordinate (¢*,---,¢") on U; = {[¢] € P" | (* # 0}, the local

function

351 = o F(0) ~ o/ = tog | 1 (0)

satisfies v/—100g; = v/—190g; = v/—1901og f on U; N U;. Hence the real (1,1)-form
Ipn = /—109g; (3.7)

defines the Kéhler metric on P" with Kéhler potentials {g;}. Especially, if the function
fis given by f(¢) = Y_¢/C* (ie., f(¢) is the fundamental function of the flat metric
S d¢t ® d¢* on C"*1), the induced Kihler metric on P” is the Fubini-Study metric ITrg.

We shall show that the converse of this fact is also true.

Proposition 3.3. A Kdhler metric IIpn on the projective space P defines a strongly

pseudo-convex Finsler metric on C"1 uniquely up to a positive constant multiple.
For the proof of this proposition, we use the following example.

Example 3.2. Let H be the sheaf of germs of pluri-harmonic functions on M. By the 90-
Poincaré lemma, for any pluri-harmonic function Ky on U C M, there exists a holomor-
phic function ¢y satisfying Ky = (pu +@u)/2. Moreover, if Re(py) := (¢ +¢0)/2 =0,
then ¢y = 0y x v/—1 for some real-valued constant function ;; on U. Hence we have the

following exact sequence of sheaves:

T

0—RYS 088y —o, (3.8)



72 CHAPTER 3. FINSLER METRICS AND CONNECTIONS

Therefore, we have the long exact sequence of cohomology groups in the case of M = P"
0 — H(P",R) —— H(P",0) —— H°(P",H) —— H'Y(P",R) ——

| | |
R C 0

This implies H°(P", H) = R. Hence any pluri-harmonic function on P" is constant.

PROOF of Proposition 3.3. We express Ilpr locally as Ilpn = \/jaégj on Uj for a
C*°°-function g; on U;. Since g; — g; is pluri-harmonic, Remark 1.2 implies that there
exists a one-cocycle K;; € ZYU; N Uj, Opn) satisfying g; — g; = Kjj +K7@-j on U;NU; # ¢.
Then {K;;} is a one-cocycle on P", and since H!(P", O) = 0, we may put K;; = (K; —
log ¢7) — (K; — log (") for a zero-cochain {K;} on P". Hence we have

g; — (Kj + K;) +1og (7> = gi — (Ki + K;) + log ']
If we put
fi([¢]) = exp{g; — (K; + K;)}

on U;, we have [¢72f;([¢]) = |¢%?f:([¢]). Thus we have a function f(¢) = |¢7|*f;([¢]) on
Cr1. Tt is clear that f satisfies the conditions (f 1), (f 2) and (f 3). Moreover, because

of v/—1901log f = v/—19d1og f; = v/—19dg; > 0 and
V—=100f = v/—1f (8510gf + dlog f A 510gf) )

the function f defines a strongly pseudo-convex Finsler metric on C**1.
We suppose that we get another Finsler metric f from another Kéhler potential {g;}-
Then, since v/—199g; = v/—109g;, the function log f — log f is pluri-harmonic function

on P". Hence it is a constant ¢. Consequently we have f = e¢f.

Q.ED.

3.2 Complex Finsler bundles

3.2.1 Complex Finsler metric on vector bundles

Let E be a holomorphic vector bundle over a complex manifold. If rank(FE) = 1, then any
Finsler metric on E is reducible to a Hermitian metric, and so we assume rank(E) > 2 in

the sequel.



3.2. COMPLEX FINSLER BUNDLES 73

Definition 3.3. A complex Finsler metric on E is a smooth assignment to each fiber
E, = n7Y(2) of a Minkowski norm || - ||,. We call (E,| - ||) a complex Finsler vector
bundle.

We shall fix a local holomorphic frame fields ey = (e1,- -+ ,e,) of E on U C M and the
local coordinate system (z',---, 2" (% -+, (") € U x C" on 7~ Y(U) defined in §2.4. We
define a function F : E — R by F(z,¢) = ||v||*>. Then F satisfies the following conditions:

(F1) F(z,{) > 0 and F(z,¢) =0 if and only if v = (2,{) =0,
(F2) F(z,X) = |A]*F(z,¢) for all A € C,
(F3) F is smooth on E° := E\ {0}.

Conversely, if a function F' : F — R satisfying these condition is given on FE, then
it defines a unique complex Minkowski norm || - || on E. Thus, in the sequel, we always
identify a complex Minkowski norm || - || with F' and we shall call F' a complex Finsler

metric in E.

Example 3.3. Let h be an arbitrary Hermitian metric on E. With respect to an open
cover {U, (ev)}, we put h;; = h(e;, ej). The function Fj, : £ — R defined in the proof of
Theorem 2.4 is a complex Finsler metric in . We remark here that this function F}, is
smooth on E. Conversely, it is easily shown that if a complex Finsler metric F' is smooth

on FE, then F coincides with the function Fj, defined by a Hermitian metric h. [

Proposition 3.4. ([Kol]) Any complex Finsler metric on E is identified with a Hermitian

metric on the tautological line bundle L(E).

PrOOF. We shall fix an open covering U of M, and we define an open covering {U;}
of P(E) by Uj = ¢~ (U) N {¢? # 0} for each U € Y. Then the transition functions {I;;)}
of L(E) relative to {U;} are given by (cf. (1.20)):

_¢
-5

For any complex Finsler metric /' on E, we define a positive function F; on U; by

L) ([v])
1
Then, it is easily verified that

Fj([v]) = llsj PF([w).- (3.9)
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Thus the family {F};} defines a metric on L(E£).
Conversely, since any Hermitian metric on L(E) is defined by the family {F;} of

positive functions satisfying (3.9), we can define a complex Finsler metric F' on E by
F(z,¢) = |¢7*F;([v]) (see Remark 2.4).

Q.E.D.

Definition 3.4. A complex Finsler metric F' is called a Rizza metric if F is strongly

pseudo-convex on each fiber E,.

Example 3.4. Let D be a strongly convex domain in C**! with smooth boundary. The
Kobayashi metric Fp is defined by

Fp(z,¢) = igf {}1%} ,

where the infimum is taken all holomorphic maps ¢ : A(R) — D satisfying ¢(0) = z and
dp(d/dt)y = ¢ for all (z,{) € Tp. By the early work due to Lempert[Le|, the function
F = Fl% defines a Rizza metric on Tp. O

For every point z € M, we define a function F, : E, — R by F.(¢{) = F(z,(). We set

O,
C oo

9(2,€) (3.10)

Since I is a strongly pseudo-convex on E, = C", the Hermitian matrix (g,;) is positive-
definite. Then each fiber F, =2 C" admits a Kéhler metric g, defined by

9:(Y, Z) = Zgﬁ(z,g)yzﬁ (3.11)

forallY,Z € T E,. Hence E — M is a smooth family of Kihler manifolds {E,, v—190F,}
parameterized by z € M.

3.2.2 Construction of Rizza metrics

We take an open covering {U(;} of P(E) defined in the proof of Proposition 3.4. The
collection {U, (;y := P, NU;)} defines an open covering of P,. If a Rizza metric I is given
on E, then F gives a Kéhler metric on the projective space P(E,) := P,. Indeed, the local

function

&) (0]) = log Lgpmo]
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defined on U, (;) gives a Kéahler form IT, on P, by II, = \/—18560), and the real (1,1)-
form
Ippy = V—190log F (3.12)

is a pseudo Kdhler metric on P(E) in the sense that it is positive definite only in vertical

directions.

Conversely we suppose that P(E) — M is a smooth family of Kéhler manifolds
{P,, IIp_ }.cnr- Denoted by IlIp, = \/—18560) for a smooth function &; in U, j),

&(j) — Gy = Kj) T Fj) (3.13)

for some k(;jy € Z' (U, ;yNU, (j), Op,) since & ;) —&;y is pluri-harmonic on U, ;) NU, (j) #
0 (cf. Remark 1.2). Then H'(P., Op,) = 0 assures that we can take k(; € C°(U, (;), Op,)
satisfying
ki) = (k) —log ¢7) — (kg —log ¢"),
where {k(;} are smooth in z € U. Then (3.13) implies
&5y — (k) + k() +1og (7P = By — (k) + k) +log ¢,

Putting F;)(z,[C]) = exp [& ;) — (k¢ + k()] we have

I PFG (2, K1) = ISP F (2 [€])

on U, ;) NU, ;. Since F{; depends on z € M smoothly, if we define a smooth function
F:E° 5 Rby
F(z,¢) = ¢ "F) (2 €D, (3.14)

then F satisfies (F3) for any (z,¢) € E° and XA € C*. Hence we can extend F continuously
on the whole of E by setting F(z,0) = 0, i.e., F' defined by (3.14) is complex Finsler

metric on F.
Denoted by F, := F‘Eg the restriction of F to the fiber £V := E,\{0},
V—=1801log F. = /=100 (log F; |z ) = V—1806; (3.15)
from the construction of F'. Further

_ 1/ - 1 .
0Dlog - = <8(‘3Fz — 0P A an> (3.16)
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show that the matrix (g,;) defined by (3.10) is positive-definite. Thus any pseudo Kéhler

metric IIpgy on P(E) determines a Rizza metric F' on E.

Proposition 3.5. Let E be a holomorphic vector bundle over a compact complex manifold
M. If P(E) — M is a family of Kdahler manifolds parametrized by M, then E admits a

Rizza metric.

The Kéhler potentials {&;)} of IIp, are not uniquely determined. Let F be a Finsler
metric obtained from another Kihler potentials {QNS(]-)}. It follows from ﬁaées(j) =
ﬁ@é@m that log F, —log F’, is pluri-harmonic on P,, and thus it is a constant o, in P,.
Consequently we have F, = ¢°*F,. The corresponding Finsler metrics F' and F satisfy the
relation F' = ¢?(3)F for a smooth function o(z) on M. Hence the Rizza metric obtained

from IIp(g) is unique up to the conformal factor e??) on M.

Corollary 3.1. Any pseudo Kdhler metric Ilp gy on P(E) determines the conformal class
of a Rizza metric F on E.

3.2.3 Partial connection D on (V,g)

A horizontal sub-bundle H of the holomorphic tangent bundle Tr over E is called a

complex non-linear connection if
(N1) H is invariant by the natural action p of C* on E,
(N2) H is smooth on EY and continuous on E.

If H is smooth on F, then H is an Ehresmann connection on E in the sense of Definition
2.11.

Let F' be a Rizza metric on E derived from the given pseudo Kahler metric IIp(g) on
P(E), and g the Hermitian matrix defined by (3.10). The tangent space T¢E, is naturally
identified with the fiber V{; ¢) of the vertical sub-bundle V" over (2,() € E. Hence g defines

a Hermitian metric on V' by

0 0
g ((% ac) = 4i5(2,C). (3.17)

If a complex non-linear connection H is given on F, then we can define a partial connection
D:AV)— A(H*®V) of (1,0)-type on V. Denoted by

P=Y a(zi @ (d¢ + Y Npd=")
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the projection P : Tp — V with ker(P) = H, a partial connection D on V is defined by

where £y u denotes the Lie derivative by X7. We shall determine a non-linear connection
H so that D satisfies

Dyng=0 (3.19)
for all X € A(Tys). If we write the horizontal lifts X1, -- , X,,, with respect to H of local
f field 4 9
rame fields —, -+, —— as

0z1" T ozm

then (3.19) can be written as

o ( O°F l
aci <azaa§j - ZNagla‘> =0

Hence we define H by

39
Né:Zgﬂ e 8@ =Y gt (3.20)

where gﬂ denote the components of the inverse of (gij).

Proposition 3.6. ([Ail], [Ai6]) Let F' be a Rizza metric on a holomorphic vector bundle E.
Then there exists a complex non-linear connection H on E so that the partial connection
D associated with H satisfies (3.19).
From the homogeneity condition (F3), the local functions N, satisfy
N (2,4 ¢) = ANL(2,€) (3.21)
for any A € C*. This homogeneity is equivalent to the assumption (N1), and thus we

obtain

Lemma 3.1. The local basis {X1, -, X} of H is invariant by the action u of C*.
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PRrOOF. Indeed we obtain

iy ((i),,-Treo (), )
= dpy <8§a>(z y 2 Na(z,Odun (58Cl><z,<)
N <8za> (A0 2 Nalz: O (;Cl> (220)
B <8§a> (a0 2 Moz €) <58Cl> (2A0)

= Xa(zv A C)
Q.ED.
The partial connection D defined by (3.18) is of (1,0)-type:
0 0 0
Doz =Dx,n-=Y Il 22
aci Xa o Z el (3.22)

where I}, = 0;N!. From (3.19) the coefficients I'"’, also expressed as

Il =Yg Xalgin) = > _ g™ (%gzi;” ~ Nk %%Z‘) : (3.23)

The action p of C* on E induces the tautological section £ of V' defined by (2.54). Then

we obtain

Proposition 3.7. The partial connection D on (V,g) satisfies
D.,E=0 (3.24)
and the Rizza metric F' is constant along H, i.e.,

X, F = 0. (3.25)

3.3 Negative vector bundles and Rizza-negativity

A characterization of negative holomorphic vector bundles is given by Kobayashi[Kol]. In
this section, we shall discuss the negativity (or ampleness) of holomorphic vector bundles

by using complex Finsler geometry, and we present a proof of Kobayashi’s theorem.
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A holomorphic vector bundle E over a compact complex manifold M is negative if its

tautological line bundle L(F) is negative. From Remark 2.1 and Proposition 3.4, the first
VA
Chern class ¢1(L(E)) is given by [288 log F} for a complex Finsler metric F' on E.
T
Thus L(E) is negative if and only if

V—1001log F < 0 (3.26)

or equivalently IIpp) = v — 1001og F' defines a Kihler metric on the total space P(E).
Kobayashi’s characterlzatlon is obtained by analyzing the positivity of the form Ilpg).
The curvature form Q; of D is defined by

6(] Z aCz ® Q;’

and we write _Q]Z =5 K;agdza A dz” so that

z]aﬁ Zgl] XﬁXagz] + nglpza‘rjﬁ (327)

3.3.1 A curvature formula and Kobayashi’s theorem

We will use the following proposition for the proof of Kobayashi’s theorem,

Proposition 3.8. Suppose that a holomorphic vector bundle E admits a Rizza metric F.

Then the curvature 00 log F of the Hermitian metric on L(E) is given by
ddlog F = Z gz NdZ° =" 0,0;(log F)P* A P, (3.28)
where 0; := 0/9Ct, 0; := /(7 , and we put

Z JaBC C
with P :=d¢* + > Nidz“.
For the proof of the formula (3.28), we first show some useful formulae.

Lemma 3.2. Let N be the coefficients of the non-linear connection H defined by (3.20).
Then
Y FAL:=0, F;A- =0, (3.29)

where Aij = 35N2w F; .= 0;F and F; :== O;F.
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PROOF. It is sufficient to prove the first identity. From (3.20), we have
Yy~ Y6
=3 gimcimaigk <Z g" 833@)
=3 gimC™ <Z%%+Zgzié£§w>
=2 <Z gim gg‘z afjgg‘l * azangag‘m>
-y (- e T o)

o m agkm zl a F 89E7ﬁ
ZC < Z acz a8<l+ Oz

)

since Y (™gg. = 0 (cf. [Ko3]).

Q.ED.
Lemma 3.3.
XoF5=0, XaF;=0. (3.30)
PROOF. Indeed, from (3.25) and (3.29), we have
o (OF o (OF
XoFs=— (=) - N ==
70z <3C7> 2 “oc! (3C]>
d (OF A o (OF
- 36 () ~ g (a0)
d (OF
-2 (2 AL
i (820‘ aagl) +Z 2aj
= O’
and XF; = XaF3 =0.
Q.ED.
PROOF of Proposition (3.28). From (3.25) we have
OF OF OF —O0F
R Nl R —_— = Nl —_—. 31
0z% Z coct 0z Z *oct (3:31)
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Then (3.30) implies

00log F = ——OVF nOVE + 8(8VF - LS REP AT+ a (> rP)
and
b )
=Y 0F AP+ F0P

=y <Z XaFydz® + Zﬂ;ﬁ) NP+ F (ZXBNZ;@/\ ="+ AL PIA dza)

=Y FXgN, dzP Ndz*+ ) g;P7 NP,

where 9V denotes the partial derivative in the vertical direction. Therefore we have

= B 9ij FZF} i A D7 1 _ATE 7.8 a
8810gF——Z<F— w2 | PPAPT+ 5y FXpN d2f A dz

1 R
= - (log F);P’ A Pi + i > FiXN dzf A dz”.
Here we note that
S RNIN = X RN - SR
= X3
z ; (M)

OF; OF,
ml l
azaﬁzﬂ Z 078 9z

- Z (XB a¥ij — Zg Xagz‘mXij) '
- Z (Xb’ agz] Z gklrz]fxrjlﬁ> ¢
- Z ﬁl]

Therefore
99log F = — > (log F);P' A Pi + — ( ZKQMC%J> 428 A 2"
- % > (Y Kapig¢'d) dz ndzP — 3 (1og F);;P A P,
i.e., we complete the proof of the curvature formula (3.28).

Q.E.D.
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As shown in Theorem 2.4, if E is Griffiths-negative, then E is negative. The converse

is not true in general.

Theorem 3.1. ([Kol]) A holomorphic vector bundle E over a compact complex manifold

M is negative if and only if E admits a Rizza metric F with negative W.

PROOF. Since the second term of (3.28) is negative definite in the vertical direction in
P(E), (3.26) is satisfied if and only if ¥ is negative.

Q.E.D.

Definition 3.5. ([Ha-Ai]) A holomorphic vector bundle E is said to be Rizza-negative if

FE admits a Rizza metric F' of negative curvature, i.e.,
K(ZoX"):=) K;,32'X*ZIXP <0

at any point (z,¢) € E? for any non-zero Z € Viz,¢) and XH ¢ H o).
From the curvature formula (3.28) and Theorem 3.1, we obtain
Theorem 3.2. ([Ha-Ai]) If E is Rizza-negative, then E is negative.

PRrROOF. Since F is a Rizza structure, the identity ¢(£,£) = F(z,() and Schwarz
inequality assure the negativity of the second term of the expression of d9logF in each
TigP,. Further, if (£, F) is Rizza-negative, then ) ¥, 5XO‘Xﬁ K(& ® X implies
(3.26), i.e., E is negative.

Q.E.D.

As a special case, we consider the case where the Rizza metric F' is derived from a
Hermitian metric h, i.e., F' = Fj,(2,{) = > h;;(2 2)¢*¢J for the components h;; of h. Then
V,zisgivenby ¥, 5 = > R;5,5(% 2)¢?¢J for the curvature tensor R;5,5 of (E, h). Therefore, if
(E, h) is Griffiths-negative, then /=190 log F}, < 0 which gives another proof of Theorem
2.4.

We shall state another characterization of negative vector bundles due to [Ca-Wo].
We denote by ©@™F the symmetric tensor product of E. Then we have Grothendieck’s
identification:

HP (P(E),H) =2 HP(M,o™E™) (3.32)

for all p > 0 and m > 0. Let v : HP (P(E),H) — HP(M,®™E") be the isomor-
phism. The bases {0g,---,on} of H? (P(E), H) is identified with a bases {wq, -+ ,wn} of
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H°(M,®™E*) by setting v*wp = 0. Then a Hermitian metric h%™ on ©@™F is defined by
N
h®™ (A, B) =) wy(A)wy(B) (3.33)

b=0

for all A, B € A(®™FE). Then it induces a Finsler metric F' on E by setting

F(v) = [h®™(@™0, @™0)] /> = %/nem(@me, @) (3.34)

In [Ca-Wol, it is proved that the metric A®™ on ®™E has negative curvature, and thus the
Finsler metric F' defined by (3.34) has negative curvature ¥. From the discussion above,

we have

Theorem 3.3. ([Ca-Wo)]) Let w : E — M be a holomorphic vector bundle of rank(E) > 2

over a compact complex manifold M. The following statements are equivalent.
(1) E* is ample,
(2) E admits a Rizza metric with negative ¥,

(3) there exists a sufficiently large m € Z and a Hermitian metric h*™ on the symmetric

product @™ E with negative curvature, namely, ©™FE is Griffiths-negative.

3.3.2 A construction of Rizza metrics on negative vector bundles

For a negative vector bundle E over M, we shall construct a Rizza metric F' with negative ¥
(cf. [Ai6] and [Ha-Ai]). From Definition 2.9 the line bundle L(E) is negative, and so L(E)*
is ample. Hence there exists a sufficiently large m € Z such that L := L(E)**™
ample. Then Theorem 2.3 shows that we can take a bases {0, - ,on} of H'(P(E), L)

such that

is very

P(E) 3 [v] — (oo([v]) : - : ow([v])) € PY

defines a holomorphic embedding ¢¢ : P(E) — PV. Then Lemma 2.2 shows that L @ H
for the hyperplane bundle H over PV.
Since PV admits the Fubini-Study metric, the first Chern form of H is given by

N p12\ !
V-1 T
Y5010 721;0‘2 |
2m 77

on V= {[T":-: TN e PN |T*#£0}. On U; := p~(U)N{¢ # 0} C P(E), we put

op ={0jp}, (b=0---,N), where o;; are holomorphic functions on U;. Then a canonical
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Hermitian metric hw}H of cp}H is defined by

N o ()2 -1
epmalle]) = (Eb|3i<][$1(>[12])| )

on go;l(Va) N Uj. Since H is ample and ¢y is holomorphic embedding, we have

Lz;léa log hyssza([e]) > 0. (3.35)

The corresponding Hermitian metric Ay, on L is given by the functions

~1
i) = (g losa(iDl

on each Uj. Since L = L(E)*™, the corresponding Hermitian metric on L(E) is given by

hi (), ( \/Zb0| ajb(]

on Uj. Then, since 7(v) = ¢7¢t;([v]) = ([v],¢?) on Uj, we shall define a complex Finsler
metric F' on F by

the functions

F) = 0P by = {30 losal DI (3.36)

This definition is independent on the choice of the neighborhood Uj, since {h]L( E)J} satisfies
I¢7Phigy,; = €' PR (k) on U N U;j # 0. From (3.35), the function F defined by

\/Zb ,low ([v (3.37)

Fv) = [ZN (o) ® (| }Wm

b:O
is a Rizza metric satisfying (3.26).

Proposition 3.9. ([Ai6], [Ha-Ai]) Let E be a negative vector bundle over a compact
complex manifold M. For the holomorphic embedding ¢y : P(E) — PN, the function F
defined by (3.37) is a Rizza metric on E with negative .



Chapter 4
Averaged metrics and connections

In this chapter, we shall be concerned with averaged Hermitian metrics and connections on
holomorphic vector bundles. In the first section, we consider a smooth family of compact
Kahler manifolds and a proposition due to Schumacher[Sc3] which gives a basic idea for
this research will be quickly reviewed. In the third section, we shall introduce the notions
of averaged Hermitian metrics and averaged connections analogously to the real Finsler
geometry (see [Ma-Ra-Tr-Ze] and [To-Et]), and in the last section, we show that Rizza-

negetivity implies Griffiths-negativity of holomorphic vector bundles.

4.1 Family of Kahler manifolds

Let & and M be complex manifolds, and let ¢ : 2~ — M be a holomorphic submersion.
Denoted by Ty and Ty the holomorphic tangent bundles over 2~ and M respectively, we

obtain a short exact sequence of holomorphic vector bundles:

0 A N o, (4.1)

where the vertical sub-bundle ¥ is defined by ¥ := ker{(figvb Ty — m} and % = (¢, do)
for the derivative d¢ of ¢. The fiber 7(, ,, over (z,w) can be identified with the tangent
space Ty 2>, i.e., Vo w) = TwZ, where 2, := ¢~ 1(2). Then any smooth complement of
¥ defines a smooth horizontal vector sub-bundle 5# C Ty. Such a bundle 7 is defined
by # = ker(Z?) for a smooth morphism & : Ty — ¥ satisfying & o1 = id.

We denote by (z,w) = (2!,---,2™,w!,--- ,w") a local complex coordinate for .2,
where z = (2!,--- ,2™) and w = (w!,--- ,w") denote the ones for M and .2, respectively.

Since & may be considered as ¥-valued (1,0)-form on 2" then & can be written as

85
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P = Z 860 ® (dw® + Z./\/'C‘jdzo‘) for some local functions NS. Then the horizontal lifts
w
X, with respect to # of local frame fields {0/0z“} are given by

Fa 8,20‘ ZNO‘CE)C

For any tangent vector X on M and its horizontal lift X with respect to /¢, we set

.@X%’U = @ (EX%U), (42)

where Ly is the Lie derivative by X#. Then Zyxv is linear in X” and satisfies the
Leibniz rule Py (fv) = X7 (f)v + fDxrv, ie., D is a partial connection on ¥ .

We suppose that 2~ admits a pseudo Kéahler metric IT4, i.e., Il is a smooth family
of Kéhler forms I1, on the fibers 2, of Z". Thus we consider ¢ : &~ — M as a family of
compact Kéhler manifolds {27, I1,} smoothly parametrized by z € M.

Since the bundle ¥ may be thought as the bundle of vectors that tangent to the fibers
of ¢, the relative Kéahler forms {II,} define a Hermitian metric g in ¥ by

Owa’ Owd

0 0 v—=1 ~
g <, ) =g 1= 5 Zgal_;dwa A di®.
Then we assume that 2 satisfies
Pg=0. (4.3)

Since Z is defined by the Lie derivative in the horizontal direction J#, this assumption
means that the the metric g is preserved by the parallel displacement relative to 2, i.e.,

We express g,; as g,5 = 0,0;® for a local smooth function &, where 9, = 9/0w® and
Op = 0/0w’. Then the assumption (4.3) can be written as

0 e\
owe < 0z20wb ZngN>

Hence, if we define 57 by

L1
c be
§=Y 0 (4.4)

for the the components gBC of the inverse of (g), the partial connection Z satisfies the
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assumption (4.3). For a smooth (r,r)-form n on 27,

8za/ / Lx,n  and aza/ 77—/ Lz, (4.5)

where Xy := X, denotes the conjugate of X,.

Proposition 4.1. [Sc3] Let ¢ : Z — M be a family of compact Kdhler manifolds
{Z., 1.} parametrized by z € M, and let A be the horizontal sub-bundle of Ty defined
by (4.4). Then we have

(EXQHZ)‘%Z =0 a'nd ([:Xadv)‘%fz = 07 (46)

where dv = (v/—1)" det(g,z)dw' A dwl A - A dw" A dw™ = IT% /7! is the relative volume

form in ¥ induced from Il,. Further we obtain

X </ z dv) = [, £xeav=0 (4.7)

for any vector filed X in M. Thus the volume of each fiber (Z~,11,) is constant.

Remark 4.1. Let £2); denote the holomorphic cotangent bundle, and let gzvl, - ,c?zvm
denote the local frame field of the pull-back 5{4 = ¢*2y. For the zero-cochain N' =
SSNE(D/0we) @ dz® of I'(Ty @ ),
0
[ON] := [Z ONE ® 5 @dza] e HW(2,V @ )

is an obstruction for the existence of holomorphic splitting of (4.1), i.e., extension class,

ONS 0
[8/\/ <8za>] {Z Owb 8wc ] € H%l(%’Tf%)

is an obstruction for the infinitesimal triviality of (4.1), i.e., Kodaira-spencer class. O]

and

4.2 Partial connections on ¥

In this section, we shall be concerned with the special case of the previous section, i.e., we
treat the case of 2~ = P(FE) for a holomorphic vector bundle E over a compact complex
manifold M. Following to [Sc3], we will apply Lie derivation only to relative tensor fields,
i.e., to smooth families of tensor fields on the fibers P(E,) :=P,.
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We suppose that E admits a Rizza metric F' which induces a Hermitian metric g =
> gﬁdCi ®d¢7 on the vertical sub-bundle V defined by (3.17). We denote by £ the com-
plex distribution of codimension one defined by the complex orthogonal to the tautological
section &, i.e., ET:={Z € V| g(Z,&) = 0}, and by Z+ = p(Z) the orthogonal projection
of Z onto £+:

1
7t =7 —g(Z E)E.

F
Then
ins (50) [ ), ( ,o) 6(z,<>]
_ < > . -7 (( )<z< <>> dn(E(2,0))
N <8(Zl (220) << <>(z,c>’5(z’0> f)
and
g << 080'><z,<> ,f:<z,<>> =3 (5T
= 305N x 5
Y <<5(Zi>(z,xg) £ AO) - i\
lead to

: ot | . [P
CZ)(Z,AC) F(z,C)g<<agz (0 (z, Q) 802 A0)

6 )
8 1 1 a
‘ N2 F(z.0) ; E(z, A
<5C’>(z,xc) N2 F(z¢)” <<a<1)(2,)\§)7 (2, AQ)
< 9

N———

E(z, )\C)]

Therefore duy(Z+) = AZ*, and thus we have
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Lemma 4.1. The orthogonal projection Z+ satisfies
dux(Z+) = \z+ (4.8)

for all A € C*.

We define a Hermitian metric § on V' by
1
82, W) = £g(Z, W)

for all Z,W € A(V). Let H be the non-linear connection on E determined in Proposition
3.6, and let D be the partial connection on (V, g) determined by (3.18). Then

lg(DaZ,f)f‘?

1
L_ 1 _ _
DoZ+ =D, (Z Fg(Z,é')E) DoZ

implies
DoZ+ = (D, Z)* (4.9)
for any Z € A(V'). Further we have

Proposition 4.2. The partial connection D is compatible with §:

D§ = 0. (4.10)

(Do) (Z+, W)
— X, (5 7zt Wl)) ) (Dazi, Wi) ) (ZL, DQWL)

= o (R[ozw) - otz m))

(0(DaZ, W)~ —0(DaZ,)9(E,W)] ~ 3 [0(Z, DalW) ~ 29(Z,£)g(€, DaW)]

9(DaZ, W)+ g(Z, DaW) ~ £0(DaZ. £)9(E. W)~ 50(Z,E)g(E, Do)

Q.E.D.
Let ¥ be the vertical sub-bundle of Tp(g). The fiber 7, o) of ¥ over (z,[(]) € P(E)
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is naturally identified with E(J-z o Since § is invariant by the action u of C*, there exists a

Hermitian metric g on ¥ such that § = p*g:

* 1 1
(Po) (25, W) = 0(25, W) = — |9(Z,W) — 59(Z,£)9(E, W) | . (4.11)
for any Z,W € A(V).
Let X1, -+, X,, be the horizontal lifts of local frame fields 861, e 3am with respect
z z

to H. From Lemma 3.1 the basis { X7, -+ , X,,} is invariant by the action p of C*. Further,

since the projection p : EY — P(E) commutes with the action u, we have

dp ((Xa(z,A- () = dp (dur(Xa(z,€)) = d(p o pr)(Xa(z, () = dp ((Xa(2, ()

Thus X, (z,[¢]) = dp(Xa)(z,[¢]) makes sense, and hence we shall define a horizontal sub-
bundle 7 of Tp(g) by # = dp(H). Then {&1,--- , X} defined by

Xa(z,[C]) = dp(,0)(Xa) (4.12)

spans the horizontal sub-space J7{; [¢]) at (z, [(]) € P(£). We also define a partial connec-
tion Z on ¥ by the Lie derivative with respect to ¢ similarly to the previous section (cf.
(4.2)). We set Z = dp(Z*) for any Z € A(V). Then 2 odp = dp o P implies

Dol = P([Xa, 2)) = 2 (|dp(Xa), dp(25)| ) = dp (P (| X0, Z4])) |

where %, := Px,,. Hence
Do = dp(DaZ"). (4.13)

Then Proposition 4.2 and
(Dag)(Z, W) = Xa (g(Z, W)) s (@aé, W) p (Z %W)

— dp(Xa) (3(Z,W)) = g (dp(DaZb). dp(W ™)) = g (dp(25), dp(DaWH))

= dp(X,) (g(Z, W)) —5 (DQZJ‘, WL) —§ (ZL, Dan)

= X, ((p*g)(ZL, WL)) 5 (Dazl, Wl) ) (Zi,DaWi)

— X, (5(2{ Wl)) ) (Dazl, Wl) ) (ZL, DaWL>

= (Dad) (Z+-, W)

—0
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lead to
Proposition 4.3. ([Ha-Ai]) The partial connection 2 on ¥ is compatible with g:
Pg = 0. (4.14)

The parallel displacement with respect to ¢ is an isometry with respect to the metric
g on ¥. Then the volume form dv defined by dv = II7=1/(r — 1)! for the restriction

Il := IIp(g)| p. is preserved by the parallel displacement, i.e., [Lx,dv] [p, = 0. Hence we
have 9
— dv = dv = 0. 4.1
aza/m v=[ cra=0 (4.15)

Hence we obtain
Proposition 4.4. ([Ha-Ai]) The volume of each fiber {P,,g.} is constant.

Remark 4.2. Yan[Ya] proved this proposition by direct methods in the case where E is
the holomorphic tangent bundle T}; over a complex manifold M. [

From Proposition 4.4, if a Rizza metric F' is given in F, then we can apply Proposition
4.1 to the family of Kéhler manifolds ¢ : P(£) — M with the pseudo Kéhler form ITp(g).

4.3 Averaged metrics and connections

In this section, we shall show that we can define a Hermitian metric on E from the metric

g on ¥ by taking an L? inner product.
We define 7, € A(E1) by Z, := (uv)L for any u € A(FE), where u" = Zu’(z)aaCZ

A(V') denotes the vertical lift of u. Further we introduce a Hermitian structure h on E

S

by the L2-inner product

h(u,v) := / g(u,v)dv, (4.16)
for any u,v € A(FE), where u = dp(Z,) and v = dp(Z,).

Definition 4.1. The Hermitian metric h on E defined by (4.16) is called the averaged

metric of g.

Further we define V : A(Th) x A(E) 3 (X,u) — Vxu € A(E) by

h(Vxu,v) ::/ 9(Dxreu,v)dv, (4.17)

z
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where X7 denotes the horizontal lift of X to P(E) with respect to #. Since Z is of
(1,0)-type, V is also of (1,0)-type. Further it is obvious that Vxu is linear in X and the

Leibniz rule is checked as follows:
W(Vx(fu), v / [9(X(f)ii + f Do 0, 0) } dv
X(flu+ fVxu,v)
for any f € C°°(M) and u,v € A(E).
Theorem 4.1. ([Ha-Ai|) The connection V is the Hermitian connection on (E,h).

PROOF. Since Z is of (1,0)-type, the connection V is also of (1,0)-type. Hence it is
enough to show that V is compatible with h. From (4.17) and Proposition 4.3, we obtain

(Vxh)(u,v) = X(h(u,v)) — h(Vxu,v) — h(u, Vxv)

=X ([ g@vdv) - | 9(Pyrti,t)dv— | g(@, Dyrev)dv
([ s@o) - | I

:/ [X7 (003, )) — 0(Zxor ) — (i, P D) }

z

~ [ @rn@a

z

=0.
Hence V is compatible with h.
Q.E.D.
Definition 4.2. The Hermitian connection V defined by (4.18) is called the averaged
connection of 9.
4.4 Rizza-negativity and Griffiths-negativity

Let h be the Hermitian metric on E defined by (4.16), and let h; = h(s;,s;) be the
components of h with respect to a local holomorphic frame filed s = {s1,---,s,} of E.
We write the curvature form Q; of V as Q; => R;.a deo‘ A dzP so that

Im
Rijap : Z hl] = —030ah;; + Z R O himOghyj, (4.18)
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where 0, := 0/02% and 05 := 0/0z°. On the other hand, (4.14) and (4.15) imply
Ol = [ Aala(GuF))d = / o(Z5,3;)dv

and

O30uhs; = /P (025,50 = | {a(95205,5) + (905 755 o

z

where 95 := Yx;. Hence (4.18) implies

—Ri505+ Z hlmﬁahmﬁghlj = /P {g(%@agi,gj) + 9(Zasi, _@5§j)}dv.

z

Setting g(%ﬁ@ag’i,gj) = =505, We get
Rijaﬁ . Z hzﬁ(‘)ahmﬁghlj = /P {%ﬁaﬁ — g(@ofs}, @@%)}dv. (4.19)
Let zyp € M be an arbitrary point, and let s = {s1,---,s,} be a local frame field in

(E,h) such that s is normal at zo € M, i.e., h;;(z0) = d;; and 9ah;5(20) = 0. Then (4.19)

implies

Rijaj(20) = [/P {‘%ijag = 8(Zasi, gﬂgj)}dv] ,

z=20

and thus
R R L ivall?
S Ry p(0)ui XOui XP = [/P {3 Higuu XWX - HZ(%&)U xe| }dv]
for all (u') € C" and (X%) € C™, where we put

HZ(@a@)UiX“ g g (Z(@a'éi)uiXa, Z(gﬂgj)quﬁ> '

z=z0

This implies

ZRijaB(ZO)uiXaquﬁ < [ / {Z%ijaguiXaquﬁ}dv] (4.20)

z Z=2Z0

We will use the notation Z(u ® X”) for the Hermitian form

RUuR X7 Z JaﬁulXauﬁXﬂ
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From (4.20) we obtain

Theorem 4.2. ([Ha-Ai]) Let 2 be the partial connection on (¥,g) determined by the
horizontal sub-bundle 72, and let V be the averaged connection of &. Then the curvatures
R of V and Z of @ satisfy

Ru® X) < / BT X7 )dv (4.21)
P,

forallue E, and X € T,M at every point z € M.

Definition 4.3. We say that the partial connection 2 has negative curvature (resp. semi-
negative curvature) if Z(u ® X”*) < 0 (resp. %(u® X?) < 0) for all non-zero u € F,
and non-zero X € T, M at any point z € M.

Hence (4.21) implies

Theorem 4.3. ([Ha-Ai]) If the partial connection & on (¥,g) has negative curvature

(resp. semi-negative curvature), then E is Griffiths-negative (resp. Griffiths-semi-negative).

By the definition of 2 and (4.13), we have

i (s (5. (%) )]) (o ()

and
o (2)'ni (3 (299
_ DBDQ;)G - %g <D5Da88<i,8> £
(2 (299
1
=-> K <@a§z> :
Therefore

o 8 \* d\*
g (-@B-@asiasj) =9 (dp (DﬁDa <8CZ> ) ,dp <8<J> )
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implies

Proposition 4.5. Let D be the Finsler connection on (V,g), and let 9 be the partial
connection on (¥,g) as above. Then the curvatures K of D and % of 9 satisfy the
relation

1
AU X)) = K (Zu e Xy (4.22)
at every point (2,¢) € E° for anyu € E, and X € T,M.

Therefore, if F' has negative curvature, then (4.22) implies

Ru®X)< | ZuoX)dv <0,
P,

and we have

Theorem 4.4. ([Ha-Ai]) Let E be a holomorphic vector bundle over a complex manifold
M. If E is Rizza-negative, then E is Griffiths-negative.

Therefore Theorem 2.4 concludes the following relation:

F is Rizza-negative. = F is Griffiths-negative. = F is negative.
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