- 1 Recombinant Sox enzymes from *Paracoccus pantotrophus* degrade hydrogen
- 2 sulfide, a major component of oral malodor
- 3
- 4
- 5 ATIK RAMADHANI¹, MIKI KAWADA-MATSUO², HITOSHI KOMATSUZAWA²,
- 6 and TAKAHIKO OHO¹*
- 7
- ⁸ ¹ Department of Preventive Dentistry, Kagoshima University Graduate School of
- 9 Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- ² Department of Oral Microbiology, Kagoshima University Graduate School of Medical
- 11 and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- 12

13 **Topic of the manuscript:**

- 14 For the first time we report our findings on the H₂S-degrading activity of a mixture of
- 15 seven recombinant Sox enzymes from *Paracoccus pantotrophus* with respect to oral
- 16 malodor prevention. Oral malodor is a common problem, but effective methods to

- 17 control it have not been established. Major malodorous components are volatile sulfur
- 18 compounds including H_2S . We show the possibility of applying bacterial Sox system
- 19 to oral malodor prevention.
- 20
- 21 **Running headline:** *P. pantotrophus* rSox enzymes degrade H₂S
- 22
- 23 *Correspondence author.
- 24 E-mail: oho@dent.kagoshima-u.ac.jp; Tel: +81-99-275-6180; Fax: +81-99-275-6188.
- 25

26 Abstract

27	Hydrogen sulfide (H ₂ S) is emitted from industrial activities, and several chemotrophs
28	possessing Sox enzymes are used for the removal of H_2S . In dental field, oral malodor
29	is a common problem and major malodorous components are volatile sulfur compounds
30	(VSCs), including H_2S and methyl mercaptan. <i>Paracoccus pantotrophus</i> is an aerobic,
31	neutrophilic facultatively autotrophic bacterium that has sulfur-oxidizing (Sox) enzymes
32	to use sulfur compounds as an energy source. In this study, we cloned Sox enzymes of
33	P. pantotrophus GB17 and evaluated their VSC-degrading activity with respect to oral
34	malodor prevention. Six genes, <i>soxX</i> , <i>soxY</i> , <i>soxZ</i> , <i>soxA</i> , <i>soxB</i> , and <i>soxCD</i> , were
35	amplified from <i>P. pantotrophus</i> GB17. Each fragment was cloned into a vector for the
36	expression of 6×His-tagged fusion proteins in <i>Escherichia coli</i> . Recombinant Sox
37	(rSox) proteins were purified from whole-cell extracts of <i>E. coli</i> using nickel affinity
38	chromatography. The enzyme mixture was investigated for the degradation of VSCs
39	using gas chromatography. Each of the rSox enzymes was purified to apparent
40	homogeneity, as confirmed by SDS-PAGE. The rSox enzyme mixture degraded H_2S
41	in dose- and time-dependent manners. All rSox enzymes were necessary to degrade

42	H_2S . The H_2S -degrading activity of rSox enzymes was stable at 25-80°C, and the
43	optimum pH was 7.0. The amount of H_2S produced by periodontopathic bacteria or
44	oral bacteria collected from human subjects decreased after incubation with rSox
45	enzymes. These results suggest that the combination of rSox enzymes from <i>P</i> .
46	pantotrophus GB17 could be useful for the prevention of oral malodor.
47	
48	Key words: hydrogen sulfide, oral bacteria, oral malodor, <i>Paracoccus pantotrophus</i> ,

- 49 sulfur-oxidizing enzyme
- 50

51 Introduction

52	Hydrogen sulfide (H ₂ S) is emitted from industrial activities, especially from biogas and
53	protein-rich industrial wastes. H_2S has high toxicity and is very corrosive to internal
54	combustion engines. Currently, many commercial chemical technologies are used for
55	H_2S removal in industry (41). However, these chemical H_2S removal processes are
56	expensive due to high chemical requirements, energy, and disposal costs, and they tend
57	to have short-term effects. Biological treatment methods for H ₂ S removal are
58	desirable, and several studies have investigated this (10, 32). The oxidation of H_2S is
59	mediated by various aerobic lithotrophic and anaerobic phototrophic bacteria (35).
60	In dental fields, oral malodor, the presence of unpleasant or foul-smelling
61	breath, is a common problem throughout the world and can cause significant social or
62	psychological effects on those who are suffering from it (6, 15, 21). Oral malodor is a
63	mixture of malodorous components, including volatile sulfur compounds (VSCs), such
64	as H_2S , methyl mercaptan (CH ₃ SH), and dimethyl sulfide (6, 15). VSCs are produced
65	in saliva, gingival crevices, on the tongue surface, and in other areas via the putrefactive
66	activities of microorganisms on sulfur-containing amino acids, such as cysteine and

67	methionine $(3, 6)$. H ₂ S and CH ₃ SH are primarily responsible for oral malodor and
68	comprise approximately 90% of the VSC content in mouth air (43).
69	VSCs also have adverse effects on oral tissues. It has been shown that H_2S
70	damages gingival epithelial cells (42), increases the permeability of oral mucosa <i>in vitro</i>
71	(24), and causes apoptosis in human gingival fibroblasts (2). H_2S was predominantly
72	detected in the pockets (27) associated with periodontal bacteria, including
73	Fusobacterium nucleatum, one of the most active oral bacteria to produce H ₂ S from
74	L-cysteine (26). Many reports have also demonstrated that the presence of CH ₃ SH is
75	involved in the induction or progression of periodontal disease. Exposure to CH_3SH
76	inhibits cell migration in periodontal ligament cells (18), epithelial cell growth and
77	proliferation (38). <i>Porphyromonas gingivalis</i> , a black-pigmented anaerobic bacterium
78	and a major pathogen in adult periodontitis, produces large amounts of CH ₃ SH in
79	human serum (26) from L-methionine.
80	There have been several attempts to prevent and reduce oral malodor (6, 40, 45).
81	Mechanical prophylaxis using a toothbrush and a tongue scraper is a basic method to
82	remove bacterial cells and substrates from the oral cavity, but the organisms still grow

83	and accumulate. Mouth rinses containing antimicrobial agents, such as chlorhexidine
84	and cetylpiridinium chloride, have been used to reduce bacterial numbers, leading to a
85	reduction in oral malodor (9, 47). Additionally, zinc ions have been used to reduce
86	VSCs through their oxidizing effects on the thiol groups in VSC precursors (1, 16).
87	However, the effects of specifically formulated mouth rinses for treating oral malodor
88	are, in general, unclear (40). Therefore, new methods to control VSCs in the oral
89	cavity should be established for the prevention of oral malodor.
90	The purpose of this study was to examine the possibility of applying
91	sulfur-oxidizing (Sox) enzyme system to control oral malodor. We chose the
92	sulfur-oxidizing bacterium, Paracoccus pantotrophus, which is an aerobic,
93	Gram-negative, neutrophilic facultatively autotrophic bacterium that grows using
94	thiosulfate or molecular hydrogen as an energy source and heterotrophically using a
95	large variety of carbon sources (13). The Sox enzyme system in <i>P. pantotrophus</i> has
96	been studied so far. The sox gene region of <i>P. pantotrophus</i> comprises 12 open
97	reading frames and seven genes, soxXYZABCD, encode proteins essential for sulfur
98	oxidation in vitro (34). The Sox proteins of <i>P. pantotrophus</i> are located in the

- 99 periplasm (12), and four proteins, SoxXA, SoxYZ, SoxB, and SoxCD, are required for
- 100 H_2S -, sulfur-, thiosulfate-, and sulfite-dependent horse cytochrome *c* reduction (34).
- 101 We report the cloning of sox genes from *P. pantotrophus* GB17 soxX, soxY, soxZ,
- 102 *soxA, soxB*, and *soxCD* and the characteristics of recombinant Sox (rSox) enzymes.
- 103 We investigated rSox enzymatic degradation of VSCs produced by periodontopathic
- 104 bacteria and oral bacteria.
- 105

106 Materials and methods

- 107 *Bacterial strains and culture conditions*
- 108 All strains were cultivated at 37°C. *P. pantotrophus* GB17 (NBRC 102493) was
- 109 obtained from NBRC (Kisarazu, Japan) and used throughout this study. Seed cultures
- 110 were grown aerobically in brain heart infusion (BHI; Becton, Dickinson and Company,
- 111 Sparks, MD, USA) broth supplemented with 4 mM magnesium sulfate. Escherichia
- 112 coli XL II was grown aerobically in Luria Bertani (LB; Difco Laboratories, Detroit, MI,
- 113 USA) medium. P. gingivalis W83 was grown anaerobically in GAM broth (Nissui
- 114 Medical Co., Tokyo, Japan) supplemented with hemin (5 μ g mL⁻¹) and menadione (1 μ g

- 115 mL⁻¹). *F. nucleatum* ATCC10953 was grown anaerobically in BHI broth
- 116 supplemented with 5 mg mL⁻¹ yeast extract and 0.3 mg mL⁻¹ cysteine-HCl. Ampicillin
- 117 $(100 \ \mu g \ mL^{-1})$ was added when appropriate.
- 118
- 119 DNA manipulation
- 120 Standard DNA recombinant procedures, such as DNA isolation, restriction
- 121 endonuclease digestion, ligation, transformation of competent *E. coli* cells, and agarose
- 122 gel electrophoresis, were carried out as described by Sambrook *et al.* (37).
- 123 Chromosomal DNA was isolated from *P. pantotrophus* GB17 cells using the Dr.
- 124 GenTLE (from yeast) High Recovery DNA extraction kit (Takara Bio Inc., Shiga,
- 125 Japan).
- 126
- 127 DNA amplification
- 128 To improve the fidelity of the PCR assay for soxX, soxY, soxZ, soxA, soxB, and soxCD
- 129 genes, we used Tks Gflex DNA polymerase (Takara Bio Inc.). The reaction mixture
- 130 (50 μ L total) contained 25 μ L of 2× Gflex PCR buffer (containing 2 mM of Mg²⁺ and

131	400 μ M dNTPs; Takara Bio Inc.), 1 μ L of Tks Gflex DNA polymerase (Takara Bio
132	Inc.), 0.01 nM each primer, 1 μ L DNA template, and the volume was adjusted with
133	nuclease-free water (Roche Diagnostics, Indianapolis, IN). The reaction was carried
134	out for 30 cycles under the following conditions: initial denaturation at 94°C for 1 min,
135	denaturation at 98°C for 10 s, annealing at 48°C for 15 s, and extension at 68°C for 2.5
136	min.
137	
138	Cloning of sox genes from P. pantotrophus GB17

- 139 Six sox genes (soxX, soxY, soxZ, soxA, soxB, and soxCD) were amplified by PCR from
- 140 the 5'-terminus of the sox gene (13 kbp): soxX fragment (474 bp), soxY fragment (423
- bp), *soxZ* fragment (330 bp), *soxA* fragment (873 bp), *soxB* fragment (1695 bp), and
- 142 soxCD fragment (2431 bp). These short double-stranded DNAs were compatible with
- 143 a *Bam*HI site on the 5'-end and a *Hind*III site on the 3'-end. The primers were
- 144 designed to create *Bam*HI and *Hind*III restriction sites (underlined) within the PCR
- 145 product (Table 1). The pQE30 vector (Qiagen, Tokyo, Japan) was used for
- 146 construction of histidine-tagged recombinant proteins. Each DNA fragment,

147	containing a sox gene, was digested with BamHI and HindIII and ligated into the pQE30
148	vector for the expression of 6×His-tagged fusion proteins. To obtain the Sox products
149	of P. pantotrophus GB17, E. coli XL II competent cells were transformed with each
150	resulting plasmid (<i>soxX, soxY, soxZ, soxA, soxB</i> , and <i>soxCD</i>). Positive colonies were
151	selected and re-plated on tryptic soy (TS; Becton, Dickinson and Company) agar
152	containing ampicillin (100 μ g mL ⁻¹). The nucleotide sequences of the inserted
153	fragments were confirmed by PCR to verify that the fragments were correct and did not
154	contain nucleotide substitutions or deletions. BLAST nucleotide sequence analysis
155	was also performed for DNA sequence identification.
156	
157	Preparation of recombinant Sox proteins
158	The transformants were grown in LB medium with ampicillin (100 μ g mL ⁻¹) at 37°C
159	until the optical density at 550 nm (OD_{550}) reached 0.5.
160	Isopropyl- β -D(-)-thiogalactopyranoside was added to the culture at a final concentration

- 161 of 1 mM, and the cultures were grown for an additional 4 h. The cells were harvested
- 162 by centrifugation $(5,000 \times g, 15 \text{ min}, 4^{\circ}\text{C})$ and lysed using an ultrasonic sonifier

163	equipped with a microtip (Model W-220-F; Heat Systems Ultrasonics Inc., Plainview,
164	NY, USA) on ice. The cell extract was obtained by centrifugation $(10,000 \times g, 15)$
165	min, 4°C) and subjected to Ni-NTA resin (Qiagen) affinity column chromatography.
166	The purification procedures followed the manufacturer's instructions, and the purity of
167	the recombinant Sox proteins was analyzed by SDS-PAGE. Eluted proteins were
168	refolded by sequential dialysis against a urea-decreasing phosphate buffer at 4°C (48).
169	The amounts of proteins were determined using the Lowry method with bovine serum
170	albumin as the standard (19).
171	
172	SDS-PAGE and Western blotting
173	SDS-PAGE was performed using 15% polyacrylamide gels according to the method of
174	Laemmli (17). After electrophoresis, the gel was stained with Coomassie brilliant blue
175	R-250. The low molecular weight electrophoresis calibration kit (Amersham
176	Pharmacia Biotech, Uppsala, Sweden) was used for molecular mass markers. For
177	Western blotting, the proteins subjected to SDS-PAGE were transferred
178	electrophoretically to a nitrocellulose membrane according to the method of Burnette

179	(8). After blocking with 2% skimmed milk in Tris-buffered saline (20 mM Tris, 150
180	mM NaCl, pH 7.2) containing 0.1% Triton X-100 (TBS-T), the membrane was reacted
181	with HRP-conjugated mouse anti-6×His monoclonal antibody (Wako Pure Chemical
182	Industries Ltd., Osaka, Japan). The membrane was washed three times with TBS-T,
183	and fluorescence detection was performed using a chemiluminescence detection system
184	(Clarity western ECL blotting, Bio-Rad Laboratories, Inc., Hercules, CA).
185	
186	Enzyme assay
187	We investigated the ability of a rSox enzymes mixture reconstituted from rSoxX,
188	rSoxY, rSoxZ, rSoxA, rSoxB, and rSoxCD to degrade H ₂ S generated from NaHS. The
189	assay mixture (1 mL) for the determination of H ₂ S-degrading activity contained various
190	amounts of <i>P. pantotrophus</i> GB17 cells or rSox enzymes and 20 nmol of sodium
191	hydrogen sulfide (NaHS) to generate H_2S in 10 mM phosphate buffer (pH 7.0). All
192	the reactions were performed in sterile 15-mL polypropylene tubes sealed with a

- 193 silicone plug. The NaHS was added to start the reaction. After incubation for 2 h at
- 194 37°C, a sample (2.5 mL) of the vapor above the assay mixture in the tube was removed

105	•	. 1 .	•	1 1	1 1	1	, 1	/ 11	00 0014
195	115110 9	oas_fight	SVringe	and anal	vzed hv	oas chron	iatooranhy	(model	$(- (- 2)) \Delta$
1)5	using a	gas-tight	Synnge	and anai	yzcu Uy	gas emon	latography	(mouci	00^{-2014} ,

- 196 Shimadzu Corp., Kyoto, Japan) using a glass column packed with 25% β,
- 197 β '-oxydipropionitrile on a 60-80-mesh Chromosorb W AW-DMCS-ST device
- 198 (Shimadzu Corp.) fitted with a flame photometric detector at 70°C. The concentration
- 199 of VSCs was determined using standard H₂S and CH₃SH gas prepared with a Permeater
- 200 PD-1B (Gastec, Ayase, Japan).

201 The assay mixture (1 mL) used to determine the rSox enzyme activity to degrade

202 VSCs produced by periodontopathic bacteria were prepared following the method of

- 203 Yoshimura *et al.* (49). Briefly, bacterial strains were grown at 37°C until an OD₅₅₀ of
- about 0.6 was reached. The cells were harvested and washed three times with a
- buffered salt solution (40 mM potassium phosphate buffer, 50 mM NaCl, pH 7.7).
- 206 The cells were suspended in the buffered salt solution to an OD_{550} of 0.3 for *F*.
- 207 nucleatum ATCC10953 and OD₅₅₀ of 1.0 for P. gingivalis W83. To determine H₂S, a
- 208 reaction mixture was prepared consisting of 100 µL of F. nucleatum ATCC10953 or P.
- 209 gingivalis W83 cell suspension and 0.5 nmol each of rSoxX, rSoxY, rSoxZ, rSoxA,
- rSoxB, and rSoxCD, and buffered salt solution was added to a tube and sealed with a

211	silicone plug. The reaction was initiated by adding 30 μ L of 33 mM L-cysteine. For
212	the determination of CH ₃ SH, 30 μL of 33 mM L-methionine were added instead of
213	L-cysteine. The assay mixtures were kept at 37°C and after a 2-h incubation, the
214	reactions were stopped by adding 500 μ L of 3 M phosphoric acid. Then, 10 min later,
215	a sample (2.5 mL) of the vapor above the assay mixture was analyzed by gas
216	chromatography, as described above.
217	The assay mixture used to determine the degrading activity of H ₂ S produced by
218	oral bacteria was prepared as described by Tonzetich and Johnson (44) with
219	modifications. Paraffin-stimulated whole saliva was collected from three healthy and
220	non-smoking participants (28-58 years of age), which was approved by the ethics
221	committee of Kagoshima University (authorization number 572). The bacterial
222	sediment was collected by centrifugation (10,000 \times g, 15 min, 4°C) and washed three
223	times with buffered salt solution. The bacterial sediment was disrupted by
224	ultrasonication on ice and suspended in the buffered salt solution to an OD_{550} of 1.0 to
225	measure the extracellular H_2S produced from L-cysteine by oral bacteria. The reaction
226	mixture (3 mL) consisted of 2 mL bacterial suspension and 0.5 nmol each of rSoxX,

227 rSoxY, rSoxZ, rSoxA, rSoxB, and rSoxCD in buffered salt solution. The subsequent

- 228 procedures were as described above.
- To evaluate heat stability, rSox enzymes were mixed and heated at 25 to 100°C
- 230 for 30 min and subjected to the H₂S-degrading assay. To examine the effect of pH on
- rSox enzyme activity, 10 mM phosphate buffer with pH 4 to 9 was prepared.
- 232
- 233 Statistical analysis
- 234 Data were averaged for three independent experiments. Statistical analysis was
- 235 performed using Student's *t*-test or one-way analysis of variance (ANOVA) followed by
- 236 Dunnett's test. P-values < 0.05 were considered to indicate statistical significance.
- 237
- 238 **Results**
- 239 Purification of recombinant Sox proteins
- 240 Figure 1A shows purified recombinant proteins. rSoxX migrated at 23 kDa; rSoxY at
- 241 18 kDa; rSoxZ at 21, 22, and 43 kDa; rSoxA at 43 kDa; and rSoxB at 68 kDa (Fig. 1A).
- 242 In Western blot analysis, the anti-6×His antibody reacted with the rSoxX, rSoxY,

243	rSoxZ, rSoxA, and rSoxB proteins (Fig. 1B). rSoxCD was separated into two bands
244	(51 and 54 kDa) by SDS-PAGE, and the 54-kDa band reacted with the anti-6×His
245	antibody. Because the 6×His was attached to rSoxC, we suggest that the 51-kDa band
246	was rSoxD and the 54-kDa band rSoxC. rSoxZ showed three bands and the antibody
247	to 6×His reacted with all of these components, so we suggest that the 43-kDa band was
248	a dimer, and the 21-kDa band lacked some portion of rSoxZ (the 22-kDa band).
249	
250	P. pantotrophus <i>GB17 activity to degrade</i> H_2S
251	Whole cells of <i>P. pantotrophus</i> GB17 were examined for degradation of H ₂ S generated
252	from NaHS. <i>P. pantotrophus</i> GB17 cells showed H ₂ S-degrading activity, and the H ₂ S
253	concentration decreased in a cell number-dependent manner (Fig. 2). Approximately
254	50% of H_2S was degraded when a bacterial suspension containing 1.0×10^7 cells was
255	used.
256	
257	rSox enzyme activity to degrade H_2S

258	A combination of the six rSox proteins (rSoxX, rSoxY, rSoxZ, rSoxA, rSoxB, and
259	rSoxCD) was investigated for its ability to degrade H ₂ S generated from NaHS. After
260	incubation, the rSox enzymes mixture showed degradation of H_2S in a dose-dependent
261	manner (Fig. 3A). The concentration of H_2S decreased significantly and reached a
262	stable level after 0.125 nmol of proteins were used. In time-course experiments, the
263	ratio of H_2S concentration (sample/control) decreased to approximately 45% at 2-h
264	incubation and was stable thereafter (Fig. 3B). In the thermal stability study, the
265	amount of H_2S in the assay mixture increased gradually as the temperature was raised
266	(Fig. 4A). However, the amount of H_2S was still significantly lower than that in the
267	control even after heating at 80°C. After heating at 100°C, there was no difference in
268	the amount of H_2S compared with the control. Regarding the effect of pH on rSox
269	enzyme activity, the percentage of H ₂ S concentration (sample/control) was lowest at pH
270	7.0, and higher values were observed at other pH values (Fig. 4B).

271

272 Effect of each component of the rSox enzyme mixture on H_2S degradation

273	Table 2 shows the effects of the components of the rSox enzyme mixtures on
274	degradation of H_2S . In this experiment, the rSoxX and rSoxA or rSoxY and rSoxZ
275	pairs were omitted from the assay, because those pairs of enzymes work together in the
276	Sox system (12, 34). When a mixture of rSox enzymes reconstituted from all rSox
277	enzymes was used, the H ₂ S level decreased significantly compared with the control (no
278	rSox enzymes). In the other cases, omitting certain rSox enzymes from the assay, H_2S
279	levels were not significantly different from the control, and the H ₂ S ratios relative to
280	control levels were approximately 70%. Bovine serum albumin, which was used as a
281	non-sulfur-oxidizing control, showed no reducing effect of H_2S .
282	
283	rSox enzyme activity to degrade VSCs produced by periodontopathic bacteria and oral
284	bacteria
285	We first determined the ability of rSox enzymes to degrade H_2S produced by F .
286	nucleatum ATCC10953 and P. gingivalis W83. The rSox enzyme mixture
287	significantly degraded the H_2S produced by the two bacterial strains (Table 3). We
288	also determined CH ₃ SH degradation by the rSox enzyme mixture and found that it

289	could decrease the CH ₃ SH level, but that the difference was not significant compared
290	with the control (no enzymes). Next, oral bacteria were collected from human saliva
291	and used to produce H_2S . The rSox enzyme mixture significantly degraded H_2S
292	produced from the oral bacteria from all subjects, although the degree differed among
293	the subjects (Table 4).
294	
295	Discussion
296	In this study, we firstly demonstrated the degradation of H ₂ S by the rSox enzymes from
297	<i>P. pantotrophus</i> GB17 in view of oral malodor prevention. We produced rSox
298	enzymes to examine their VSC-degrading activity. We first attempted to construct
299	rSoxXA, rSoxYZ, rSoxB, and rSoxCD proteins, but only rSoxB and rSoxCD proteins
300	were obtained successfully. Thus, we next constructed each enzyme as rSoxX, rSoxY,
301	rSoxZ, and rSoxA. We demonstrated that the combination of rSoxX, rSoxY, rSoxZ,
302	rSoxA, rSoxB, and rSoxCD proteins degraded H ₂ S, and the activity was almost constant
303	after reaching the maximum effect (Fig. 3A). Regarding the use of recombinant Sox
304	enzymes, rSoxXA expressed in E. coli was found to be functional in the reconstituted

305	enzyme system to activate H_2S -dependent cytochrome <i>c</i> reduction (35). This report is
306	the first to describe a Sox system composed of each recombinant Sox protein for
307	degrading H ₂ S.
308	High cytochrome <i>c</i> -reducing activity by the Sox system was observed using H ₂ S
309	as the substrate (34), and to achieve optimal activity, SoxXA, SoxYZ, SoxB, and
310	SoxCD were required (12, 34). In the present study, we demonstrated that all of the
311	enzymes – rSoxX, rSoxY, rSoxZ, rSoxA, rSoxB, and rSoxCD – were necessary for H_2S
312	degradation (Table 2). The central protein of the Sox enzyme system is SoxYZ, to
313	which the sulfur substrate is covalently linked, oxidized, and finally released as sulfate
314	by three other Sox proteins (11). SoxXA binds the sulfur substrate and covalently
315	links it to the thiol of the single cysteine 110 residue of the SoxY subunit. SoxY forms
316	a complex with SoxZ. The outer sulfur atom is oxidized by sulfur dehydrogenase
317	SoxCD, yielding SoxY-cysteine-S-sulfate. Finally, SoxY-cysteine-S-sulfate is
318	hydrolyzed by the dimanganese SoxB protein to yield sulfate and to regenerate SoxY
319	for a new reaction cycle of SoxYZ (13, 36). When SoxB or SoxYZ was omitted from
320	the assay mixture, approximately 12 or 9%, respectively, residual H ₂ S-dependent

321	activities were observed compared with the mixture of SoxXA, SoxYZ, SoxB, and
322	SoxCD (34). SoxCD was also required to achieve the maximum rate of
323	H ₂ S-dependent cytochrome <i>c</i> reduction, showing a residual rate of 19% when SoxCD
324	was omitted, compared with the mixture of all Sox enzymes. The results obtained in
325	this study are consistent with those previous results.
326	In <i>P. pantotrophus</i> GB17, each sox gene encodes a protein with a different
327	molecular mass: SoxX, 16,421 Da; SoxY, 13,830 Da; SoxZ, 11,850 Da; SoxA, 31,884
328	Da; SoxB, 61,897 Da; SoxC, 43,442 Da; and SoxD, 37,637 Da (12). In this study, the
329	estimated molecular masses of rSox enzymes by SDS-PAGE were larger than those
330	predicted by the nucleotide sequences (Fig. 1A). All rSox proteins, except rSoxD, had
331	a 6×His tag, but the differences observed were larger than the size of 6×His
332	(approximately 1.2 kDa). Previous reports (12, 29) also showed that the purified Sox
333	proteins had different molecular masses from predicted ones (SoxX, 16 kDa; SoxY, 12
334	kDa; SoxZ, 16 kDa; SoxA, 29 kDa; SoxB, 59 kDa; SoxC, 47 kDa; and SoxD, 50 kDa)
335	under denaturing SDS-PAGE. Friedrich <i>et al.</i> (12) reported that the molecular mass of
336	SoxY determined by SDS-PAGE differed from that predicted by the nucleotide

337	sequence due to an unknown reason. Furthermore, Quentmeier et al. (29) also found
338	that the SoxC and SoxD proteins had different molecular masses determined by
339	SDS-PAGE versus those deduced from the nucleotide sequence of the mature protein.
340	Mobility on SDS-PAGE gels may be affected by amino acid composition,
341	glycosylation, or phosphorylation of the protein. In this study, the amino acid
342	composition and predicted pI value were obtained using the Compute pI/Mw tool in
343	ExPASy. None of the rSox enzymes seemed to have a unique amino acid
344	composition, and the pI value was between 4.5 and 6.6. These characteristics do not
345	seem to affect the mobility of the proteins on SDS-PAGE gels. BLAST nucleotide
346	sequence analysis showed the identities of all of the sox genes of <i>P. pantotrophus</i> GB17
347	used in this study, so the reason for the differences in mass observed remains unclear.
348	The optimal pH for the H ₂ S-degrading activity of rSox enzymes was 7.0, and the
349	activity was stable at 25-80°C. <i>P. pantotrophus</i> was isolated as <i>Thiosphaera</i>
350	pantotropha originally (33), was reclassified as Paracoccus denitrificans (20), and then
351	renamed (31). T. pantotropha GB17 obtains energy through the Sox system and can
352	grow at pH 6.5-10.5, with an optimum pH of 8.0, and at a temperature of 15-42°C, with

353	an optimum at $37^{\circ}C(33)$. Another report showed optimal growth conditions of <i>P</i> .
354	denitrificans at pH 7.5-8.0 and 30-37°C (11). These findings suggest that the Sox
355	system functions under these pH and temperature conditions, which seem reasonable.
356	We also found that whole cells from <i>P. pantotrophus</i> GB17 could degrade H ₂ S even
357	after heating at 100°C (data not shown). Recently, thermophilic sulfur-oxidizing
358	bacteria have been isolated from geothermal fields (25, 39). Although it is not clear
359	whether these bacteria contain the Sox system, Sox enzymes might have thermophilic
360	properties. Indeed, Ghosh et al. (14) suggested that the Sox system originated in
361	ancient thermophilic bacteria and evolved through extensive horizontal gene transfer.
362	Further studies are necessary to clarify the mechanism of the thermal stability of the
363	rSox enzymes. In possible clinical applications, heat stability of rSox enzymes would
364	be advantageous, because the intra-oral temperature changes after ingestion of various
365	cold/hot meals and beverages (4, 22).
366	In this study, we demonstrated that rSox enzymes significantly degraded H_2S
367	produced by periodontopathic bacteria. The reducing effect of rSox enzymes in
368	reaction mixtures with P. gingivalis or F. nucleatum was smaller than that obtained in

369	reaction mixtures with NaHS. We examined the effect of rSox enzymes on the growth
370	of these bacterial cells and found no significant effects (data not shown). rSox
371	enzymes also showed potential to decrease the CH ₃ SH produced by <i>P. gingivalis</i> . The
372	Sox system, reconstituted from SoxXA, SoxYZ, SoxB, and SoxCD, mediates
373	thiosulfate-, sulfite-, sulfur-, and H_2S -dependent cytochrome <i>c</i> reduction(12, 34), but no
374	reports have demonstrated the CH ₃ SH-dependent reduction. The availability of
375	CH ₃ SH as a substrate for Sox system needs to be clarified in further studies. We also
376	demonstrated that H ₂ S produced by oral bacteria collected from human saliva decreased
377	after incubation with rSox enzymes. These results indicate the potential of rSox
378	enzymes to reduce the H ₂ S produced in the oral cavity.
379	Many randomized controlled trials have reported reducing effects of mouth
380	rinses containing chlorhexidine, cetylpyridinium chloride, or metal ions on oral
381	malodor, while several studies have reported no significant effects (7, 30, 40).
382	Systematic reviews have reported that available data are insufficient to determine
383	precision (5) and concluded that the strength of the recommendation to use these
384	ingredients for oral malodor reduction is graded to be 'weak' (40). It is unclear

385	whether the Sox enzyme-reducing effect on H ₂ S is superior to existing components or			
386	not. Chlorhexidine and cetylpyridinium chloride act to suppress the bacterial growth			
387	and they may be accompanied by several adverse effects on oral tissues. The Sox			
388	system seems to be advantageous in this point because the target of it is not oral bacteria			
389	or oral tissues but H ₂ S produced by oral bacteria. Furthermore, many studies have			
390	reported that H_2S participates in physiological regulation in human body (28, 46, 50).			
391	The Sox system has potential to be an effective agent for controlling body systems as			
392	H ₂ S regulator.			
393	For the final goal of clinical application of this enzyme system, more data are			
394	necessary. Toxicity of Sox enzyme system should be examined and stability of rSox			
395	enzymes against proteases present in saliva is also required. Maximum effect of the			
396	rSox enzymes mixture appeared 2 h after reaction started (Fig. 3B). In this study, we			
397	examined the rSox enzymes activity using assay mixtures in the tube sealed with a			
398	silicon plug. Since many components including type and amount of sulfur source, pH			
399	of the oral fluids, salivary flow rate, and oxygen levels in saliva and dental plaque affect			
400	VSC formation in mouth (23), it is unclear how long it will take to obtain the maximum			

401	effect of the rSox enzymes mixture in the oral cavity. We expect the reducing effect of			
402	the rSox enzymes to last for long time as possible. The effect lasted for 4 h in the			
403	present assay, but it is also unclear how long the effect will last in the oral environment.			
404	Further studies are necessary to clarify these points before clinical application.			
405	In conclusion, we found that the combination of seven rSox enzymes from <i>P</i> .			
406	pantotrophus GB17 has H ₂ S-reducing activity. The results suggest that the rSox			
407	system could be useful for the prevention of oral malodor.			
408				
409	Acknowledgements			
410	We thank Dr. Yuichi Oogai, Department of Oral Microbiology, Kagoshima University			
411	Graduate School of Medical and Dental Sciences for his help. This study was			
412	supported in part by a research grant from the Futokukai Foundation (A. R.).			
413				

415 No conflict of interest declared.

417 **References**

418	1.	Ademovski, S. E., G. R. Persson, E. Winkel, A. Tangerman, P. Lingstrom, and
419		S. Renvert. 2013. The short-term treatment effects on the microbiota at the
420		dorsum of the tongue in intra-oral halitosis patients - a randomized clinical trial.
421		Clin. Oral Investig. 17:463-473.
422	2.	Aoyama, I., K. Yaegaki, B. Calenic, H. Ii, N. Ishkitiev, and T. Imai. 2012. The
423		role of p53 in an apoptotic process caused by an oral malodorous compound in
424		periodontal tissues: a review. J. Breath Res. 6:017104.
425	3.	Aylikci, B. U., and H. Colak. 2013. Halitosis: From diagnosis to management. J.
426		Nat. Sci. Biol. Med. 4:14-23.
427	4.	Barclay, C. W., D. Spence, and W. R. Laird. 2005. Intra-oral temperatures
428		during function. J. Oral Rehabil. 32:886-894.
429	5.	Blom, T., D. E. Slot, M. Quirynen, G. A. Van der Weijden. 2012. The effect of
430		mouthrinses on oral malodor: a systematic review. Int. J. Dent. Hyg.
431		10:209-222.

432	6.	Bollen, C. M., T. Beikler. 2012. Halitosis: the multidisciplinary approach. Int. J.
433		Oral Sci. 4:55-63.
434	7.	Borden, L. C., E. S. Chaves, J. P. Bowman, B. M. Fath, G. L. Hollar. 2002. The
435		effect of four mouthrinses on oral malodor. Compend. Contin. Educ. Dent.
436		23:531-536, 538, 540 passim; quiz 548.
437	8.	Burnette, W. N. 1981. "Western blotting": electrophoretic transfer of proteins
438		from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose
439		and radiographic detection with antibody and radioiodinated protein A. Anal.
440		Biochem. 112:195-203.
441	9.	Carvalho, M. D., C. M. Tabchoury, J. A. Cury, S. Toledo, G. R. Nogueira-Filho.
442		2004. Impact of mouthrinses on morning bad breath in healthy subjects. J. Clin.
443		Periodontol. 31:85-90.
444	10.	Cha, J. M., H. J. Shin, S. H. Roh, S. I. Kim. 2007. Hydrogen sulfide removal by
445		immobilized <i>Thiobacillus novellas</i> on SiO_2 in a fluidized bed reactor. J.
446		Microbiol. Biotechnol. 17:320-324.

447	11.	Dahl, C., C. Friedrich, A. Kletzin. 2008. Sulfur Oxidation in Prokaryotes, eLS
448		doi:10.1002/9780470015902.a0021155. John Wiley & Sons, Ltd.
449	12.	Friedrich, C. G., A. Quentmeier, F. Bardischewsky, D. Rother, R. Kraft, S.
450		Kostka, H. Prinz. 2000. Novel genes coding for lithotrophic sulfur oxidation of
451		Paracoccus pantotrophus GB17. J. Bacteriol. 182:4677-4687.
452	13.	Friedrich, C. G., D. Rother, F. Bardischewsky, A. Quentmeier, J. Fischer. 2001.
453		Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a
454		common mechanism? Appl. Environ. Microbiol. 67:2873-2882.
455	14.	Ghosh, W., S. Mallick, S. K. DasGupta. 2009. Origin of the Sox multienzyme
456		complex system in ancient thermophilic bacteria and coevolution of its
457		constituent proteins. Res. Microbiol. 160:409-420.
458	15.	Hughes, F. J., R. McNab. 2008. Oral malodour - a review. Arch. Oral Biol. 53
459		Suppl 1:S1-7.
460	16.	Kleinberg, I., D. M. Codipilly. 2002. Cysteine challenge testing: a powerful tool
461		for examining oral malodour processes and treatments in vivo. Int. Dent. J. 52
462		Suppl 3:221-228.

463	17.	Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the
464		head of bacteriophage T4. Nature 227:680-685.
465	18.	Lancero, H., J. Niu, P. W. Johnson. 1996. Exposure of periodontal ligament
466		cells to methyl mercaptan reduces intracellular pH and inhibits cell migration. J.
467		Dent. Res. 75:1994-2002.
468	19.	Lowry, O. H., N. J. Rosebrough, A. L. Farr, R. J. Randall. 1951. Protein
469		measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
470	20.	Ludwig, W., G. Mittenhuber, C. G. Friedrich. 1993. Transfer of Thiosphaera
471		pantotropha to Paracoccus denitrificans. Int. J. Syst. Bacteriol. 43:363-367.
472	21.	Madhushankari, G. S., A. Yamunadevi, M. Selvamani, K. P. Mohan Kumar, P.
473		S. Basandi. 2015. Halitosis - an overview: part-I - classification, etiology, and
474		pathophysiology of halitosis. J. Pharm. Bioallied Sci. 7:S339-343.
475	22.	Michailesco, P. M., J. Marciano, A. R. Grieve, M. J. Abadie. 1995. An in vivo
476		recording of variations in oral temperature during meals: a pilot study. J.
477		Prosthet. Dent. 73:214-218.

478	23.	Morita, M., H. L. Wang. 2001. Association between oral malodor and adult
479		periodontitis: a review. J. Clin. Periodontol. 28:813-819.
480	24.	Ng, W., J. Tonzetich. 1984. Effect of hydrogen sulfide and methyl mercaptan on
481		the permeability of oral mucosa. J. Dent. Res. 63:994-997.
482	25.	Odintsova, E. V., H. W. Jannasch, J. A. Mamone, T. A. Langworthy. 1996.
483		Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic,
484		sulfur-oxidizing, thermophilic bacterium. Int. J. Syst. Bacteriol. 46:422-428.
485	26.	Persson, S., M. B. Edlund, R. Claesson, J. Carlsson. 1990. The formation of
486		hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol.
487		Immunol. 5:195-201.
488	27.	Persson, S. 1992. Hydrogen sulfide and methyl mercaptan in periodontal
489		pockets. Oral Microbiol. Immunol. 7:378-379.
490	28.	Pichette, J., J. Gagnon. 2016. Implications of hydrogen sulfide in glucose
491		regulation: how H_2S can alter glucose homeostasis through metabolic hormones.
492		Oxid. Med. Cell. Longev. 2016:3285074.

493	29.	Quentmeier, A., R. Kraft, S. Kostka, R. Klockenkamper, C. G. Friedrich. 2000.
494		Characterization of a new type of sulfite dehydrogenase from Paracoccus
495		pantotrophus GB17. Arch. Microbiol. 173:117-125.
496	30.	Quirynen, M., H. Zhao, C. Soers, C. Dekeyser, M. Pauwels, W. Coucke, D.
497		Steenberghe. 2005. The impact of periodontal therapy and the adjunctive effect
498		of antiseptics on breath odor-related outcome variables: a double-blind
499		randomized study. J. Periodontol. 76:705-712.
500	31.	Rainey, F. A., D. P. Kelly, E. Stackebrandt, J. Burghardt, A. Hiraishi, Y.
501		Katayama, A. P. Wood. 1999. A re-evaluation of the taxonomy of Paracoccus
502		denitrificans and a proposal for the combination Paracoccus pantotrophus
503		comb. nov. Int. J. Syst. Bacteriol. 49 Pt 2:645-651.
504	32.	Ramirez, M., J. M. Gomez, G. Aroca, D. Cantero. 2009. Removal of hydrogen
505		sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed
506		with polyurethane foam. Bioresour. Technol. 100:4989-4995.

507	33.	Robertson, L. A., J. G. Kuenen. 1983. Thiosphaera pantotropha gen. nov. sp.
508		nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J.
509		Gen. Microbiol. 129:2847-2855.
510	34.	Rother, D., H. J. Henrich, A. Quentmeier, F. Bardischewsky, C. G. Friedrich.
511		2001. Novel genes of the sox gene cluster, mutagenesis of the flavoprotein
512		SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus
513		pantotrophus GB17. J. Bacteriol. 183:4499-4508.
514	35.	Rother, D., C. G. Friedrich. 2002. The cytochrome complex SoxXA of
515		Paracoccus pantotrophus is produced in Escherichia coli and functional in the
516		reconstituted sulfur-oxidizing enzyme system. Biochim. Biophys. Acta (BBA) -
517		Proteins and Proteomics 1598:65-73.
518	36.	Rother, D., J. Ringk, C. G. Friedrich. 2008. Sulfur oxidation of Paracoccus
519		pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic
520		thiol-disulfide oxidoreductase SoxS. Microbiology 154:1980-1988.
521	37.	Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a
522		laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, NY.

523	38.	Setoguchi, T., M. Machigashira, M. Yamamoto, Y. Yotsumoto, M. Yoshimori,
524		Y. Izumi, K. Yaegaki. 2002. The effects of methyl mercaptan on epithelial cell
525		growth and proliferation. Int. Dent. J. 52 Suppl 3:241-246.
526	39.	Skirnisdottir, S., G. O. Hreggvidsson, O. Holst, J. K. Kristjansson. 2001.
527		Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus
528		scotoductus. Extremophiles 5:45-51.
529	40.	Slot, D. E., S. De Geest, F. A. van der Weijden, M. Quirynen. 2015. Treatment
530		of oral malodour. Medium-term efficacy of mechanical and/or chemical agents:
531		a systematic review. J. Clin. Periodontol. 42 Suppl 16:S303-316.
532	41.	Syed, M., G. Sereanu, P. Falletta, M. Béland. 2006. Removal of hydrogen
533		sulfide from gas streams using biological processes - A review. Can. Biosys.
534		Eng. 48:2.1-2.14.
535	42.	Takeuchi, H., T. Setoguchi, M. Machigashira, K. Kanbara, Y. Izumi. 2008.
536		Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an
537		elevated p21 Cip1 level in Ca9-22 cells. J. Periodontal. Res. 43:90-95.

538	43.	Tonzetich, J. 1971. Direct gas chromatographic analysis of sulphur compounds
539		in mouth air in man. Arch. Oral Biol. 16:587-597.
540	44.	Tonzetich, J., P. W. Johnson. 1977. Chemical analysis of thiol, disulphide and
541		total sulphur content of human saliva. Arch. Oral Biol. 22:125-131.
542	45.	van den Broek, A. M., L. Feenstra, C. de Baat. 2008. A review of the current
543		literature on management of halitosis. Oral Dis. 14:30-39.
544	46.	Vandiver, M., S. H. Snyder. 2012. Hydrogen sulfide: a gasotransmitter of
545		clinical relevance. J. Mol. Med. (Berl) 90:255-263.
546	47.	Wigger-Alberti, W., K. Gysen, E. M. Axmann, K. P. Wilhelm. 2010. Efficacy of
547		a new mouthrinse formulation on the reduction of oral malodour in vivo. A
548		randomized, double-blind, placebo-controlled, 3 week clinical study. J. Breath
549		Res. 4:017102.
550	48.	Wingfield, P.T. 1995. Purification of recombinant proteins, pp. 6.1.1-6.2.15. In
551		J.E. Coligan, B.M. Dunn, H.L. Ploegh, D.W. Speicher, and P.T. Wingfield (ed.),
552		Current protocols in protein science, vol. 1. John Wiley & Sons, Ltd, New York.

- 553 49. Yoshimura, M., Y. Nakano, Y. Yamashita, T. Oho, T. Saito, T. Koga. 2000.
- 554 Formation of methyl mercaptan from L-methionine by Porphyromonas
- 555 gingivalis. Infect. Immun. 68:6912-6916.
- Zhou, C. F., X. Q. Tang. 2011. Hydrogen sulfide and nervous system regulation. 556 50.
- .76-35 557 Chin. Med. J. (Engl) 124:3576-3582.
- 558

Fragment	Primer	Sequence $(5' \text{ to } 3')^a$
rSoxX	rSoxX-Forward	AG <u>GGATCC</u> ATGAGCAGCCATCTATGG
	rSoxX-Reverse	CT <u>AAGCTT</u> GTCGAGCCTGTAGAGATC
rSoxY	rSoxY-Forward	AG <u>GGATCC</u> ATGATCCTTTCAAGACGC
	rSoxY-Reverse	GC <u>AAGCTT</u> AATCTCCTGTTACTGGAC
rSoxZ	rSoxZ-Forward	AG <u>GGATCC</u> ATGGCAGATGATGCAAAG
	rSoxZ-Reverse	TG <u>AAGCTT</u> GATGTTGCGGCGCTTAGG
rSoxA	rSoxA-Forward	GA <u>GGATCC</u> ATGCCGCGCTTTACCAAG
	rSoxA-Reverse	GG <u>AAGCTT</u> GAAGCATTGCCCTTTCGA
rSoxB	rSoxB-Forward	AC <u>GGATCC</u> ATGATTACCCGACGTGAG
	rSoxB-Reverse	CA <u>AAGCTT</u> AACGCTCCTTCGTGATTG
rSoxCD	rSoxCD-Forward	GT <u>GGATCC</u> ATGAAAGACGAGCTCACC
	rSoxCD-Reverse	AG <u>AAGCTT</u> CTGTCTCATGCGTCACTT

Table 1. Oligonucleotide primers used in this study

^a Nucleotides underlined in each primer sequence show the position of the

restriction endonuclease site incorporated to facilitate cloning.

Sox enzymes added to the assay					ded to th	ne assay	H ₂ S (ng/ml) ^a	Ratio to
X	A	Y	Z	В	CD	BSA ^b		control (%)
-	-	-	-	-	-	-	16.9 ± 3.8	
+	+	+	+	+	+	-	6.4 ± 1.1*	37.9
-	-	+	+	+	+	-	11.9 ± 2.5	70.4
+	+	-	-	+	+		11.5 ± 2.1	68.0
+	+	+	+	-	+	-	12.0 ± 4.1	71.0
+	+	+	+	+	-	-	12.0 ± 1.5	71.0
-	-	-	-	-	-	+	17.2 ± 4.7	101.8

Table 2. Effect of each rSox enzyme on degradation of H₂S generated from NaHS

To determine the role of each rSox component, an enzyme mixture was prepared as shown in the table. Prepared rSox enzyme mixture (0.125 nmol each) was reacted with 20 nmol of NaHS for 2 h at 37°C.

^a Values are the means \pm SDs of three independent experiments.

^b BSA, bovine serum albumin (0.125 nmol) was used as a non-sulfur-oxidizing control.

*P < 0.05 compared with the control (without rSox enzymes or BSA), as determined

by ANOVA followed by Dunnett's test.

Bacterial strain	H_2S (i	ng/ml) ^a	CH ₃ SH (ng/ml) ^a			
	rSox e	nzymes	rSox enzymes			
	(-)	(+)	(-)	(+)		
F. nucleatum ATCC10953	26.7 ± 2.2	12.1 ± 1.9*	ND	ND		
P. gingivalis W83	19.6 ± 4.5	9.1 ± 3.5*	22.0 ± 2.9	15.9 ± 1.8		

Table 3. rSox enzyme activity to degrade VSCs produced by periodontopathic bacteria

^a Values are the means \pm SDs of three independent experiments.

*P < 0.05 compared with the control (without rSox enzymes), as determined by Student's

t-test.

ND, not determined.

Subject	H_2S	(ng/ml) ^a	Ratio (%)
	Control	rSox enzymes	(rSox/Control)
А	23.8 ± 3.8	13.3 ± 4.7*	55.9
В	22.3 ± 6.3	$6.5 \pm 0.7*$	29.1
С	8.1 ± 1.1	2.7 ± 0.2*	33.3

Table 4. rSox enzyme activity to degrade H₂S produced by oral bacteria

^a Values are the means \pm SDs of three independent experiments.

*P < 0.05 compared with the control (without rSox enzymes), as

determined by Student's *t*-test.

562 Figure legends

564	Fig. 1	SDS-PAGE (ΎA`) and Western	blotting	(\mathbf{B})) analy	ses of	purified r	Sox	proteins.
201			. · ·	, and the obtern	oroung	(Ľ	<i>j</i> unury	500 01	Juilliou I	004	procenn

- 565 (A) rSox proteins were suspended in SDS-PAGE reducing buffer (1% SDS, 1%
- 566 2-mercaptoethanol) and heated at 100°C for 3 min. Samples were subjected to
- 567 SDS-PAGE (15% polyacrylamide), and the gel was stained with Coomassie brilliant
- 568 blue R-250. Lanes: 1, molecular mass markers; 2, rSoxX (3 μg); 3, rSoxY (3 μg); 4,
- 569 rSoxZ (3 μg); 5, rSoxA (3 μg); 6, rSoxB (3 μg); 7, rSoxCD (6 μg). (B) rSox proteins
- 570 on the gel were transferred electrophoretically to a nitrocellulose membrane, and the
- 571 membrane was reacted with an antibody against 6×His. Lanes: 1, rSoxX (1.5 μg); 2,
- 572 rSoxY (1.5 μg); 3, rSoxZ (1.5 μg); 4, rSoxA (1.5 μg); 5, rSoxB (1.5 μg); 6, rSoxCD (3
- 573 μg).
- 574
- 575 **Fig. 2** *P. pantotrophus* GB17 activity to degrade H₂S generated from NaHS.
- 576 Various amounts of cell suspension of *P. pantotrophus* GB17 were incubated with 20
- 577 nmol NaHS for 2 h at 37°C. Values are the means \pm SDs of three independent

578 experiments. *P < 0.05 compared with the control (no *P. pantotrophus* GB17 cells),

as determined by ANOVA followed by Dunnett's test.

580

581 Fig. 3 rSox enzyme activity to degrade H₂S generated from NaHS. (A) Various

amounts of rSox enzyme mixture were reacted with 20 nmol NaHS for 2 h at 37°C.

583 Values are the means \pm SDs of three independent experiments. *P < 0.05 compared

with the control (no rSox enzymes), as determined by ANOVA followed by Dunnett's

test. (B) rSox enzyme mixture (0.125 nmol each enzyme) was reacted with 20 nmol

586 NaHS for 1 to 4 h at 37°C. The assay was carried out with (sample) or without

587 (control) the rSox enzyme mixture. Values are the means \pm SDs of three independent

588 experiments.

589

590 Fig. 4 Heat stability of rSox enzymes (A) and effect of pH on the H₂S-degrading

591 activity of rSox enzymes (B). (A) After rSox enzyme mixture (0.125 nmol each

- 592 enzyme) was treated at 25 to 100°C for 30 min, the samples were reacted with 20 nmol
- 593 NaHS for 2 h at 37°C. Open bar, control (no rSox enzymes); solid bars, rSox

594	enzymes. Values are the means \pm SDs of three independent experiments. * $P < 0.05$
595	compared with the control, as determined by ANOVA followed by Dunnett's test. (B)
596	The assay was carried out with (sample) or without (control) rSox enzyme mixture
597	(0.125 nmol each enzyme) in 10 mM phosphate buffer (pH 4 to 9) containing 20 nmol
598	NaHS for 2 h at 37°C. Values are the means \pm SDs of three independent experiments.
599	

Kyorinsha, 3-46-10, Nishigahara, Kita-ku, Tokyo 114-0024, Japan

Fig. 1, Ramadhani

Kyorinsha, 3-46-10, Nishigahara, Kita-ku, Tokyo 114-0024, Japan

Fig. 2, Ramadhani

innovative, web-based, database-driven peer review and online submission workflow solBtige 48 of 49

Fig. 3, Ramadhani

Fig. 4, Ramadhani