The 2015 International Chemical Congress of Pacific Basin Societies (PACIFICHEM 2015) Honolulu, Hawaii, December 15-20, 2015

Preparation of imidazolium-group-containing cyclic siloxane indicating ionic liquid nature

¹<u>Takuya Kubo</u>, ²Sayako Koge, ²Joji Ohshita, ¹Yoshiro Kaneko*

¹Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan ²Graduate School of Engineering, Hiroshima University, Hiroshima, Japan

Abstract

Ionic liquids have been widely studied for their remarkable potential. However, little has been reported regarding the preparation of ionic liquids containing inorganic frameworks. Recently, cage-like oligosilsesquioxane (POSS) with an ionic liquid nature was developed by Chujo et al.¹ More recently, we have also reported the preparation of ionic liquids containing random- and cage-structured oligosilsesquioxanes by the hydrolytic condensation of quaternary ammonium-group-containing and imidazolium-group-containing organotrialkoxysilanes using superacid catalysts, such as bis(trifluoromethanesulfonyl)imide (TFSI).²

In this study, as a new siloxane based ionic liquid, imidazolium-group-containing cyclic siloxane was prepared by the hydrolytic condensation of 1-[3-(dimethoxymethylsilyl)propyl]-3-methylimidazolium chloride (DSMIC) using superacids, such as TFSI and trifluoromethanesulfonic acid (TFSA), as catalysts.³

Imidazolium-group-containing cyclic siloxane with TFSI anion (Im-CyS-IL-TFSI) was prepared by the following procedures: DSMIC was stirred in water/methanol mixed solvent of TFSI at room temperature. The resulting solution was heated in an open system until the solvent completely evaporated. The resulting crude product was heated at 100 °C for 2 h, washed with water, and then dried to obtain Im-CyS-IL-TFSI. ¹H NMR, ²⁹Si NMR, and MALDI-TOF MS results of Im-CyS-IL-TFSI indicated that this product was a mixture of cyclic tetra- and pentasiloxanes. Im-CyS-IL-TFSI showed fluidity at 0 °C.

On the other hand, when the hydrolytic condensation of DSMIC was performed using aqueous TFSA, we also found that ionic liquid containing cyclic tetra-, penta-, and hexasiloxanes (Im-CyS-IL-TFSA) was obtained. Im-CyS-IL-TFSA showed obvious fluidity over 20 °C.

References

- 1. Y. Chujo et al., J. Am. Chem. Soc., 132, 17649 (2010).
- 2. Y. Kaneko et al., Bull. Chem. Soc. Jpn., 87, 155 (2014).; RSC Adv., 2015, 5, 15226.
- 3. T. Kubo, S. Koge, J. Ohshita, and Y. Kaneko, Chem. Lett., 2015, 44, 1362.