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Abstract

Background and aims

Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil

peptide (HNP)-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study

was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mecha-

nism of liver injury induced by HNP-1.

Methods

Transgenic (TG) mice expressing HNP-1 under the control of a β-actin-based promoter

were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N

(WT) mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of

HNP-1 on hepatocytes in vitro.

Results

After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were signifi-

cantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tis-

sues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher

protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phos-

phorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all

more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in

the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver

tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT

mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the

decreased level of Bcl2 in a concentration-dependent manner in vitro.
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Conclusions

HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepa-

tocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p

expression.

Introduction

Alcoholic liver disease (ALD) is a well-known disease that can progress from simple steatosis

to liver cirrhosis [1]. Currently, the incidence and mortality of liver diseases are high world-

wide [2,3], and alcohol consumption significantly affects the pathology of chronic liver dis-

eases [2,3]. Mortality related to alcohol increased from 1990 to 2010, and alcohol accounted

for 2.8% of all deaths worldwide in 2010 and for 47.9% of deaths from liver cirrhosis [3]. Thus,

ALD is a significant risk factor for liver cirrhosis and hepatocellular carcinoma, and a major

cause of death [4,5]. However, the treatment protocol for ALD is not well established. Liver

damage in ALD is caused by excess alcohol consumption and generally the disease develops in

individuals who drink�60 g/day of ethanol for�5 years [4]. More than 95% of patients with

ALD develop hepatic steatosis and 20–40% develop alcoholic steatohepatitis (ASH), which

subsequently progresses to hepatic fibrosis, liver cirrhosis, and hepatocellular carcinoma [4,5].

The pathology of ALD varies with gender, age, nutritional status, genetic predisposition, smok-

ing status, and pattern of drinking, and the mechanism of pathological progression is uncer-

tain [4,5].

Increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST)

are simple indices of liver damage. ALT and AST are widely used for screening, diagnosis, and

prediction of prognosis in patients with liver diseases, and serve as an index of hepatocellular

death [4,5]. This is a common event not only in hepatitis B virus (HBV) [6] and hepatitis C

virus (HCV) [7] infections, but also in alcoholic steatohepatitis (ASH) [4,8] and nonalcoholic

steatohepatitis (NASH) [9], and is caused by necrosis or apoptosis. Hepatocyte apoptosis is a

biochemically regulated process characterized by DNA fragmentation [10]. Apoptosis of hepa-

tocytes containing Mallory bodies occurs in ALD, and activation of caspase induces signifi-

cantly greater hepatocyte apoptosis as a key trigger in pathological progression of ALD [8].

Neutrophil infiltration in the liver is a histological characteristic of alcoholic hepatitis (AH)

[4,5,8,11,12] and similar histopathological changes are observed in rodent models [13]. Hepa-

tocyte apoptosis is also induced by neutrophil infiltration in patients with ASH [11,12]. Specifi-

cally, neutrophils infiltrate the hepatic parenchyma, and neutrophil-derived reactive oxygen

species (ROS) and proteases damage hepatocytes [14]. Neutrophil infiltration is associated

with the severity of AH and neutrophils are involved in alcoholic liver injury [5,11–14]. How-

ever, the roles of neutrophils in development of alcoholic liver injury have not been fully

determined.

Defensins produced by human neutrophils are classified into α- and β-defensins. The α-

defensins include human neutrophil peptide-1 (HNP-1), which is stored in azurophil granules

of neutrophils [15]; HNP-2, -3 and -4 which are mainly secreted by neutrophils, along with

HNP-1; and human defensin (HD)-5 and -6, which are found in Paneth cells and other cells in

the small intestine [16]. The sequences of HNP-1 and -3 are identical except for one amino

acid at the 3’ end, and the functions of these peptides appear to be the same [17]. In a serum

proteomics study of patients with ulcerative colitis (UC) indicated for leukapheresis, we found

that HNP-1 is a novel biomarker for the pathology of UC [18] and a possible factor involved in
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aggravation of the disease [19]. Infiltration of neutrophils and polymorphonuclear leukocytes

in the liver is a histological characteristic of ALD and NASH [20], and leukapheresis may be an

effective therapy for severe alcoholic hepatitis [21]. Ludwig also suggested that the pathologies

of NASH and ALD are similar and involve mitochondrial disorder, oxidative stress, endotoxin,

and TNF-α [22]. We have also shown that HNP-1 enhances hepatic fibrosis in a NASH mouse

model fed a choline-deficient L-amino acid-defined (CDAA) diet [23].

Based on these findings, we hypothesized that HNP-1 promotes aggravation of alcoholic

hepatitis. In this study, we show that HNP-1 does not influence alcoholic steatohepatitis, but

enhances hepatic fibrosis and hepatocyte apoptosis. We also show that HNP-1 upregulates

expression of a microRNA that is known to inhibit expression of the anti-apoptotic factor B-

cell lymphoma 2 (Bcl2). These findings provide new insights into the mechanism of progres-

sion of ALD and may facilitate development of treatment for ALD.

Material and methods

Animal experiments

The CAG promoter was used to generate HNP-1 transgenic mice expressing HNP-1 cDNA

[23]. There is no rodent model of ALD that replicates human ALD with progression to fibrosis

or cirrhosis without addition of a secondary insult [24], but we speculated that long-term alco-

hol feeding may lead to development of mild fibrotic deposition and may increase inflamma-

tory cell infiltrates. Therefore, groups of mice were allowed to ingest 10% ethanol freely for 8

or 24 weeks: an 8-week intake group (7 HNP-1 TG [TG] mice and 6 wild-type [WT] mice)

and a 24-week intake group (11 TG mice and 6 WT mice). Mice were sacrificed after 8 or 24

weeks of ethanol intake. Blood was collected by cardiopuncture and the liver was preserved.

All mice were male, and TG and WT mice were aged 9–10 and 9 weeks, respectively. The

experimental protocols used in this research were approved by the ethical committee of Kago-

shima University (Permit Numbers: MD13024).

Biochemical measurements

ALT, lactate dehydrogenase (LDH), glucose, triglycerides, and total cholesterol in serum were

determined by SRL (Tokyo, Japan). The level of serum HNP-1 was determined using a HNP1-3,

Human, ELISA kit (Hycult Biotech). Liver NFκ-B activity was determined using a TransAM1

NFκ-B family ELISA Kit (Active Motif).

Histological study

Liver tissue was immersed in 10% formalin and fixed with paraffin. Two tissue sections per

liver were stained with hematoxylin-eosin (HE) to evaluate the severity of inflammation. Neu-

trophils were counted in 4 randomly selected high-power fields (HPF = 0.09766 mm2 at mag-

nification 400×) and expressed as number of cells per square millimeter of liver surface [25].

Hepatic fibrosis was evaluated by Sirius Red, AZAN, and α-smooth muscle actin (α-SMA)

staining. Immunostaining was performed using antibodies against α-SMA (Millipore, Biller-

ica, MA), F4/80, CD68 (both from AbD Serotec, Raleigh, NC), and phospho-NF-κBp65 (Cell

Signaling, Beverly, MA). Apoptosis was evaluated by TUNEL staining using an apoptosis

detection kit (DeadEnd TUNEL, Promega, Madison, WI). Six spots were randomly selected

from each stained section, and apoptosis was evaluated in 12 fields per liver. Images were

taken at 40× magnification and the positive area was evaluated using a QuickGrain digital

image analyzer (Inotech, Hiroshima, Japan). The severity of hepatic steatosis was evaluated by
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imaging of lyophilized liver tissue stained by oil red-O and the triglyceride level in liver tissues

as previously described [23].

RNA isolation, reverse transcription, and real time quantitative

polymerase chain reaction

Total RNA was isolated from liver tissue stored at -80˚C using Trizol reagent (Invitrogen) and

a PureLink1 RNA Mini Kit. cDNA was synthesized from 0.5 μg of total RNA using a Prime

Script RT Reagent Kit (Takara). Then, real-time polymerase chain reaction (PCR) with

SYBR1 Green I intercalation was performed using a StepOnePlus™ Real-time PCR System

(Applied Biosystems). Gene expression levels were analyzed using the ΔΔCt method, with the

level of each gene was corrected based on that of Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH). PCR primer sequences are shown in S1 Table.

Western blot analysis

Protein extraction from liver tissue and cells was performed using T-PER and M-PER tissue

protein extraction reagents (Thermo Fisher Scientific Inc.), respectively. Protein levels were

determined using a DC™ (detergent compatible) protein assay kit (Bio Rad) to adjust to 1 μg/

μl. The primary antibodies used in the study were those against type 1 collagen, catalase (both

from Millipore), α-SMA (Abcam, Cambridge, UK), CD14 (Santa Cruz Biotechnology Inc,

Santa Cruz, CA), toll-like receptor (TLR)-4, phosphorylated NFκ-Bp65 (p-NFκ-Bp65), NFκ-

Bp65, interleukin (IL)-6, caspase 3, caspase 8, cleaved- poly (ADP-ribose) polymerase (PARP),

apoptosis signal-regulating kinase (ASK)1, phosphorylated ASK1 (p-ASK1), c-Jun N-terminal

kinases (JNK)1, JNK2, phosphorylated JNK (p-JNK), Bid, Bak, Bax, Bim, Bcl2, protein kinase-

like endoplasmic reticulum kinase(PERK), CCAAT-enhancer-binding protein homologous

protein (CHOP), and p53 upregulated modulator of apoptosis (PUMA), β-actin, (all from Cell

Signaling). Anti-rabbit-horseradish peroxidase (HRP) and anti-mouse-HRP (both from Santa

Cruz Biotechnology) were used as secondary antibodies. The ECL (ECL Prime Western Blot-

ting Detection Reagents, GE) reaction was developed using a Fluor Chem FC2 Imaging System

(Alpha Innotec) and quantified with Image J Software.

MicroRNA analysis

MicroRNA extraction and reverse transcription. miRNAs from mouse liver tissues and

human cells were extracted and purified using a miRNeasy Mini Kit (Qiagen, 217004). RNA

was eluted in 30 μL of RNase-free water and stored at -80˚C. Reverse transcription was per-

formed using a miScript II RT Kit (Qiagen, 218161). The resulting cDNA was used for quanti-

tative real-time PCR.

Real-time PCR using a pathway-focused miScript miRNA PCR array. miRNA expres-

sion was evaluated using a 96 well-plate miScript miRNA PCR array (Qiagen, MIMM-114Z),

which contains miScript primers for 84 well-characterized miRNAs and duplicates of 6 inter-

nal reference miRNAs. After an initial incubation step of 15 min at 95˚C, the PCR thermo-

cycle consisted of denaturing at 94˚ for 15 s, annealing at 55˚ for 30 s, and extension at 70˚ for

30 s. Relative quantification was performed by the ΔΔCT method.

Detection of microRNA 34a (miR34a-5p) by real-time PCR. Expression of miRNA 34a-

5p was analyzed using a target-specific miScript primer assay (forward primers) and the miS-

cript SYBR Green PCR Kit (Qiagen 218073), which contains the miScript Universal Primer

(reverse primer) and QuantiTect SYBR Green PCR Master Mix. The miScript PCR Control

primer is RNU6-2 and the target primer is mmu-miR-34a-5p (MIMAT0000542).

HNP-1 and alcoholic liver disease
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Cell culture

SK-Hep1 human hepatocellular carcinoma cells (European Collection of Cell Culture) were

used. Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10%

fetal bovine serum (FBS) and 1% penicillin in 5% CO2 at 37˚C. Recombinant HNP-1 was

obtained from the Peptide Institute (Osaka, Japan) [23].

Caspase-3/7 detection. Caspase-3/7 activity was evaluated using CellEvent™ Caspase-3/7

Green Detection Reagent (Life Technology). SK-Hep1 cells were adjusted to 1×105/ml and cul-

tured in a 6-well plate for 24 h. After removal of supernatant, 3 ml/well each of recombinant

HNP-1 (0, 10, 40, and 100 ng/ml) was added in DMEM and the cells were incubated for 6 h at

37˚C in 5% CO2. CellEvent™ Caspase-3/7 Green Detection Reagent was then added to a final

concentration of 5 μM and incubated for 30 min at 37˚C in 5% CO2. Caspase 3/7 activity was

evaluated by fluorescence microscopy.

Detection of cell death. SK-Hep1 cells were cultured at a density of 1×104/100 μl/well

(96-well plate) for 24 h. To evaluate the influence of ethanol, 100 μl/well of DMEM containing

ethanol (0, 10, 50, 100, 200 mM) was added to the SK-Hep1 cells after removal of supernatant

and the cells were incubated for 6 h at 37˚C in 5% CO2. Next, to evaluate the influence of

HNP-1,100 μl/well of DMEM containing recombinant HNP-1 (0, 10, 40, 100 ng/ml) was

added and the cells were incubated for 6 h to evaluate the influence of HNP-1. To study the

influence of HNP-1 in the presence of ethanol, 100 μl/well of DMEM containing recombinant

HNP-1 (0, 10, 40, 100 ng/ml) was added and the cells were incubated for 1 h and the superna-

tant was removed. Then, 100 μl/well of DMEM containing recombinant HNP-1 (0, 10, 40, 100

ng/ml) was added to DMEM medium containing 100 mM ethanol [26], and the cells were

incubated for 5 h. Cell death was evaluated using a Cell Death Detection ELISA Plus (Roche

Molecular Biochemicals).

Statistical analysis

All data are expressed as the means ± standard deviations. In the animal studies, the dif-

ferences between groups were analyzed using the non-parametric Man-Whitney U-test.

In vitro studies, results are analysis by Tukey test. Statistical analysis was performed

using IBM SPSS Statistics 20 (IBM Japan, Tokyo, Japan). The significance level was set at

P < 0.05.

Results

Transgenic expression of HNP-1 increases liver weight gain and

exacerbates liver injury in mice

In TG mice, serum HNP-1 levels were 33.8±11.5 (n = 7) and 56.5±16.4 (n = 11) in an 8-week

ethanol intake groups and a 24-week ethanol intake groups, respectively. In contrast, HNP-1

was not detected in serum of WT mice with or without ethanol intake. There was no difference

in liver to body weight ratio after 8-week ethanol intake between TG and WT mice (4.8±0.7 vs.

5.0±0.3, P = 0.70). In contrast, this ratio was significantly higher in the TG mice compared

with WT mice after 24-week ethanol intake, although there was no difference in body weight

between these mice (S2 Table). Biochemical data did not differ significantly between TG and

WT mice without ethanol intake (data not shown). Serum ALT levels after 8-week ethanol

intake in TG mice was similar to that in WT mice (55.3±17.3 vs. 51.3±11.0, P = 0.64). In con-

trast, ALT after 24-week ethanol intake was significantly greater in TG mice than in WT mice

(S2 Table).
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Effect of HNP-1 on inflammatory cell infiltration and hepatic steatosis

induced by ethanol in vivo

Alcoholic liver injury is characterized by infiltration of polymorphonuclear leukocytes and

inflammatory cells [4,5,11–14,20]. Histological findings did not differ between TG and WT

mice without ethanol intake (S1 Fig), but infiltration of inflammatory cells including neutro-

phils in the liver in TG mice was higher than that in WT mice in HE-stained liver tissue after

8- and 24-week ethanol intake (S1 Fig). In addition, nuclear enlargement and cell degeneration

of hepatocytes were more common in TG mice compared with WT mice in HE-stained liver

tissue after 24-week ethanol intake (S1 Fig). In contrast, comparison of the severity of hepatic

steatosis by oil red-O staining indicated no difference in fatty changes in the liver between TG

and WT mice after 24-week ethanol intake (S2A Fig). There was also no difference in the

amount of triglycerides in the liver between TG and WT mice after 8- and 24-week ethanol

intake (S2B Fig).

Transgenic expression of HNP-1 enhances liver fibrosis

There was no difference in hepatic fibrosis between TG and WT mice after 8-week ethanol

intake. In contrast, after 24-week ethanol intake, hepatic fibrosis was significantly greater

in TG mice than in WT mice (Fig 1A and 1B). The levels of collagen1A1 mRNA and colla-

gen1 protein in liver tissue were also significantly greater in TG mice than in WT mice

after 24-week intake (Fig 1C). These findings suggest that HNP-1 might promote hepatic

fibrosis in mice with ALD. In addition, after 24-week ethanol intake, there were signifi-

cantly more α-SMA-positive cells in liver tissue and a significant increase in α-SMA pro-

tein, an index of activation of hepatic stellate cells, in TG mice (Fig 2A and 2B and S3 Fig).

These results indicate that HNP-1 further activated hepatic stellate cells that were activated

by 24-week ethanol intake.

Greater macrophage infiltration and CD14 and TLR4 levels in HNP-1 TG

mice with ethanol intake

Kupffer cells are hepatic macrophages that play an important role in development of alcoholic

liver injury [4,5,27]. The levels of F4/80-positive and CD68-positive macrophages (S4 Fig and

Fig 3A) and of proteins such as CD14 and TLR4 (Fig 3B) were significantly higher in liver tis-

sue of TG mice than in WT mice after 24-week ethanol intake.

NFκB and IL6 activation by ethanol in liver of HNP-1 transgenic mice

Since activation of hepatic stellate cells and infiltration of Kupffer cells were found in liver

tissue of TG mice, NFκB and IL6 were examined to determine if NFκB activation down-

stream of TLR4 produced inflammatory cytokines [27,28]. The number of NFκBp-65-posi-

tive cells in liver tissue after 24-week ethanol intake was significantly greater in TG mice

than in WT mice (Fig 4A and S5 Fig). NFκB-p65 DNA binding activities were significantly

greater (Fig 4B) and protein levels of p-NFκB-p65, NFκB-p65 and IL6 were significantly

higher (Fig 4C) in liver tissue of TG mice after 24-week ethanol intake compared to those of

WT mice.

Hepatic apoptosis is exacerbated by ethanol in HNP-1 Tg mice

Hepatocyte apoptosis was examined in TG mice because this process occurs in liver tissue of

ALD patients [5,8,11,12]. Many TUNEL-positive hepatocytes were observed in liver tissue of

TG mice after 8- and 24-week ethanol intake, and the number of positive cells was significantly

HNP-1 and alcoholic liver disease
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Fig 1. Hepatic fibrosis assessed by Sirius red and Azan staining, and collagen 1 expression. (A) Sirius red staining.

(B) AZAN staining. (C) Expression of collagen 1a1 mRNA and type 1 collagen protein in liver tissue. Results are shown as

means ± SD (7 TG mice and 6 WT mice in the 8-week intake group, and 11 TG mice and 6 WT mice in the 24-week intake

group). WT, wild type; TG, HNP-1 transgenic mice. *P = 0.001, **P<0.05

https://doi.org/10.1371/journal.pone.0174913.g001
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greater in liver tissue of TG mice compared with WT mice after 24-week ethanol intake (Fig

5A). Next, we studied apoptosis-related molecules in liver tissue after 24-week ethanol intake.

Fas gene expression was significantly higher in liver tissue of TG mice (Fig 5B) and expression

of proteins such as caspase 8, caspase 3, and cleaved-PARP was also greater in liver tissue of

TG mice (Fig 5C). In addition, p-ASK1, ASK1, p-JNK, JNK1, JNK2, Bax, Bak and Bim expres-

sion levels were significantly higher in liver tissue of TG mice after 24-week ethanol intake (Fig

6), and Bcl2 expression was significantly inhibited in these mice (Fig 6). Hepatic expression of

Bcl-2 mRNA after 24-week ethanol intake was also lower in TG mice compared to WT mice

(S6 Fig), although the difference was not significant (P = 0.07). These results suggest that

HNP-1 might be involved in hepatocyte apoptosis.

HNP-1 influences miRNA expression in the liver

Expression levels of 84 miRNAs in liver tissues from TG and WT mice were compared after

24-week ethanol intake, and six miRNAs were found to be significantly overexpressed in livers

from TG mice compared to WT mice (S3 Table). Among these miRNAs, miRNA-34a-5p

showed the largest significant difference (S3 Table).

Fig 2. Expression of α-smooth muscle actin in liver tissue. (A) Semi-quantification for positive area of immunostaining using anti-α-smooth

muscle actin antibody in the 24-week model. (B) α-smooth muscle actin expression assessed by Western blot analysis. Results are shown as

means ± SD (n = 11 in TG mice and n = 6 in WT mice). SMA, smooth muscle actin. *P = 0.001, **P<0.05

https://doi.org/10.1371/journal.pone.0174913.g002
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ER stress is enhanced by HNP-1

The level of catalase, an antioxidant enzyme, tended to be higher in TG mice after 8-week etha-

nol intake and was significantly higher in these mice after 24-week ethanol intake, compared

to WT mice (S7 Fig). The protein level of CHOP was also significantly higher and that of

PUMA showed a tendency to be higher in liver tissue of TG mice after 24-week ethanol intake,

suggesting that ER stress was increased (S7 Fig).

Apoptosis of SK-Hep1 induced by ethanol was enhanced by HNP-1

HNP-1 increased caspase 3/7 activity in SK-Hep1 cells in a concentration-dependent manner

and promoted apoptosis of these cells (Fig 7A and 7B). Similarly, in the presence of 100 mM

Fig 3. Expression of F4/80, CD68, CD14 and toll-like receptor 4 in liver tissue. (A) Semi-quantification of positive cells for

immunostaining using anti-F4/80 or anti-CD68 antibody. (B) Semi-quantification of CD14 and toll-like receptor 4 protein expression

assessed by Western blot analysis. Results are shown as means ± SD (n = 11 in TG mice and n = 6 in WT mice). *P<0.05.

https://doi.org/10.1371/journal.pone.0174913.g003
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ethanol, HNP-1 further promoted apoptosis of SK-Hep1 cells (Fig 7B). In the presence of 100

mM ethanol, an analysis of apoptosis-related protein expression showed that HNP-1 signifi-

cantly decreased Bcl2 expression in a concentration-dependent manner (Fig 8). HNP-1 also

tended to increase expression levels of caspase 3, p-ASK1, ASK1, p-JNK, and Bax in SK-Hep1

cells in the presence of ethanol (Fig 8). In addition, HNP-1 decreased mRNA levels of Bcl2 and

increased miRNA34a-5p expression in SK-Hep1 cells in the absence of ethanol (Fig 9A), and

these effects were similar in the presence of 100 mM ethanol (Fig 9B).

Discussion

Neutrophil infiltration in the liver is a prominent feature of ALD, and is related to the severity

of the disease [4,5,11,12,20]. In addition, our preliminary data suggest that serum levels of

HNP-1 in patients with alcoholic liver disease are higher than those in healthy controls (data

not shown). Under inflammatory conditions, HNPs induce production of cytokines and che-

mokines, which may contribute to progression of ALD [11–14,20]. However, the role of neu-

trophils and HNP-1 in ALD is still unknown. Thus, we have established a strain of TG mice

expressing HNP-1 cDNA under the control of a β-actin-based CAG promoter [23]. In the

Fig 4. NFκB and IL-6 expression in liver tissue. (A) Semi-quantification of positive cells for immunostaining using anti-NFκB-p65 antibody in the 8-

and 24-week model. (B) Semi-quantification of the nuclear NFκB-p65 activities in liver tissue. (C) Protein levels of NFκB-p65 and interleukin-6 in liver

tissue assessed by Western blot analysis. Results are shown as means ± SD (7 TG mice and 6 WT mice in the 8-week intake group, and 11 TG mice

and 6 WT mice in the 24-week intake group). *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0174913.g004

HNP-1 and alcoholic liver disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0174913 April 12, 2017 10 / 20

https://doi.org/10.1371/journal.pone.0174913.g004
https://doi.org/10.1371/journal.pone.0174913


current study, we examined the effects of HNP-1 on ALD pathogenesis in an ethanol-induced

mouse ALD model. HNP-1 did not influence the degree of hepatic steatosis, but increased

Kupffer cell infiltration in liver and promoted hepatocyte apoptosis, accompanied by increased

hepatic fibrosis.

In this study, liver weight of TG mice was increased compared with that of WT mice after

24-week ethanol intake. We speculated that the increased liver weight in TG mice was due to

increased hepatic steatosis. However, we also found that HNP-1 did not influence hepatic stea-

tosis caused by ethanol. Hepatic steatosis is an initial lesion in alcoholic liver injury and occurs

by deposition of triglycerides, phospholipids, and cholesteryl esters in hepatocytes, which sug-

gests that hepatic steatosis may be directly or indirectly associated with hepatic expression of

lipogenic genes. Genes such as SREBP-1, ACC and SCD1 showed no differences in expression

levels between TG and WT mice after 24-week ethanol intake (data not shown). These findings

suggest that HNP-1 has no effect on these lipogenic genes, and the mechanism of increased

liver weight in TG mice remains undetermined.

Hepatocyte apoptosis is an important pathologic feature of ALD [4,5,8,11–14]. Apoptotic

hepatocytes often colocalize with infiltrating neutrophils, suggesting an inflammatory response

triggered by apoptosis [4,5,8,11–14]. HNP-1 induces cancer cell apoptosis directly [29] and

intracellular expression of HNP-1 induces apoptosis that inhibits tumor growth [30,31]. HNP-

Fig 5. Evaluation of apoptosis in liver tissue. (A) Evaluated by TUNEL staining. (B) Relative expression of Fas mRNA in liver tissue in the 24-week

model. (C) Protein levels of caspase 8 and caspase 3, and cleaved-PARP evaluated by Western blot analysis in liver tissue in the 24-week model.

Results are shown as means ± SD (n = 11 in TG mice and n = 6 in WT mice).

https://doi.org/10.1371/journal.pone.0174913.g005
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1 also increases inhibition of proliferation and apoptosis in the 4T1 breast cancer model

mouse and enhances mitochondrial damage and apoptosis in 4T1 cells [32]. Chemokine

release and HNP-1-induced inflammation and apoptosis occur in human bronchial and alveo-

lar epithelial cells [33]. These reports suggest that HNP-1 has concentration-dependent pro-

inflammatory and apoptotic effects in vitro and in vivo. The current study suggests that HNP-1

induces similar apoptotic effects in ALD.

Chronic alcohol consumption promotes small intestinal permeability and allows invasion

of the liver by lipopolysaccharide (LPS) through the portal vein [27,34]. LPS binds to LPS-

binding protein (LBP) and activates hepatic Kupffer cells via CD14, Mac-1, and TLR-4

[27,28,34]. The activated Kupffer cells produce inflammatory cytokines, such as IL-1, IL-6, IL-

8 and TNF-α, and ROS [27,28,34]. LPS also stimulates mesenchymal cells in bone marrow to

produce granulocyte-colony stimulating factor (G-CSF), which promotes production of bone

marrow neutrophils [35]. Neutrophils migrate to inflamed sites, and thus onset of ALD in

TLR4-knockout mice is inhibited and ethanol-induced liver injury is relieved in CD14- or

LBP-knockout mice [36,37]. The current study showed that expression of CD14 and TLR4 in

Fig 6. Evaluation of apoptosis-related protein using Western blot analysis in liver tissue in the 24-week model. Results are shown as

means ± SD Results are shown as means ± SD (n = 11 in TG mice and n = 6 in WT mice). *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0174913.g006
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liver tissue after 24-week ethanol intake was significantly higher in TG mice compared with

WT mice, and that Kupffer cells significantly increased in TG mice, which suggests that the

activated Kupffer cells might produce inflammatory cytokines and ROS. Catalase expression

was also significantly greater in liver of TG mice after 24-week ethanol intake, which suggests

that excessive generation of ROS induces strong oxidative stress. Kupffer cells and neutrophils

invade the liver and produce ROS [11–14,27,34,38], and HNP-1 secreted by neutrophils acts as

a chemotactic factor in macrophages and T lymphocytes [39]. Our findings suggest that pro-

motion of Kupffer cell migration and infiltration is followed by production of chemokines,

inflammatory cytokines, and ROS by the activated Kupffer cells, which then lead to hepatocel-

lular damage.

TNF family members trigger apoptosis through high Bax expression via caspase 8 from Fas

and through a pathway in which JNK is activated via ASK1 from Fas to produce high Bax

expression. Apoptosis is also enhanced by inhibition of Bcl2, an anti-apoptotic protein. HNP-1

Fig 7. Apoptosis in human hepatic adenocarcinoma cell line SK-Hep-1 by ethanol and HNP-1 assessed by caspase 3/7 activity and DNA

fragmentation. (A) Activity of caspase 3/7. (B) DNA fragmentation. *P<0.05, §A405 nm-A480 nm. Results are shown as means ± SD (n = 4 for each

group).

https://doi.org/10.1371/journal.pone.0174913.g007
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induced apoptosis of SK-Hep1 cells via caspase 3/7 and more strongly induced apoptosis in

the presence of ethanol in vitro, while significantly decreasing Bcl2 expression. All these effects

occurred in a concentration-dependent manner. These findings suggest that HNP-1 directly

inhibits Bcl2 expression to promote hepatocyte apoptosis.

After 24-week ethanol intake, miRNA-34a-5p was significantly upregulated in liver tissue

of TG mice compared to WT mice. Members of the miRNA-34a family are mediators of the

p53 tumor suppressor gene, and p53-dependent upregulation induces cell cycle arrest and apo-

ptosis [40,41]. miRNA-34a directly inhibits Bcl2 expression, and miRNA-34a expression leads

to G1 cell cycle arrest and Bcl2 downregulation [40,41]. In addition, Bcl2 expression is inhib-

ited in miRNA-34a upregulated transgenic mice [42]. High miRNA-34a expression has also

been observed in a chronic ethanol-fed rat model and in liver tissue of patients with alcoholic

liver injury [43]. Strong overexpression of miRNA-34a was found in liver tissue of ethanol-fed

mice and in ethanol-treated N-Heps, HiBECs, and HepG2 cells [44]. In addition, HNP-1

affected expression of miRNA-34a-5p in vitro in SK-Hep1 cells with a decrease in Bcl2 expres-

sion, although the change of Bcl2 mRNA expression was not significant. In contrast, HNP-1

did not induce significant apoptosis in ethanol-treated HepG2 cells (data not shown). Cell

specificity, concentrations of HNP-1 and ethanol, and time courses of expression of protein

and mRNA require further study. On the other hand, expression of proteins including CHOP

Fig 8. Relative expression of apoptosis-related protein in human hepatic adenocarcinoma cell line SK-Hep-1 assessed by Western blot

analysis. Results are shown as means ± SD (n = 4 for each group). *P<0.001.

https://doi.org/10.1371/journal.pone.0174913.g008
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increased in TG mice after 24-week ethanol intake, indicating elevated ER stress, although we

did not examine an association between HNP-1 and ER stress in vitro. Bax activation and

translocation to mitochondria promotes downstream CHOP signaling [45], with a proposed

mechanism of ER stress-induced apoptosis as the intrinsic pathway. PUMA expression also

tended to be higher in TG mice after 24-week ethanol intake. PUMA activates pro-apoptotic

proteins, Bax and Bak, releases cytochrome C, and inhibits Bcl2 expression [46]. Thus, HNP-1

Fig 9. Expression of mRNA levels of Bcl2 and microRNA 34a-5p in the human hepatic adenocarcinoma cell line SK-Hep-1. (A) In

the absence of ethanol. (B) In the presence of 100 mM ethanol. Results are shown as means ± SD (n = 4 for each group). *P<0.05,

**P<0.01.

https://doi.org/10.1371/journal.pone.0174913.g009
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enhances miRNA-34a expression in the presence of ethanol or induces ER stress, which might

result in inhibition of Bcl2 expression and promotion of apoptosis.

We previously showed that HNP-1 directly promotes proliferation of LI90 hepatic stellate

cells [23] and promotes liver fibrosis in a mouse model of NAFLD. In addition, HNP-1 con-

centration-dependently activated LI90 cells in the absence and presence of ethanol (data not

shown), and neither induced apoptosis of LI90 cells nor affected protein expression of Bax and

Bcl2 in these cells (data not shown). These results suggest that HNP-1 might directly activate

hepatic stellate cells and promote liver fibrosis, but not affect apoptosis in stellate cells. In con-

trast, hepatocyte apoptosis is significantly increased in patients with alcoholic hepatitis, and

the disease severity is correlated with liver fibrosis [4,5]. Studies in animal models show pro-

gression of liver fibrosis after increased hepatocyte apoptosis and activation of hepatic stellate

cells by inflammation and chemokine production [47]. Furthermore, apoptotic bodies due to

hepatocyte apoptosis are phagocytozed by Kupffer cells and hepatic stellate cells, which trigger

activation of hepatic stellate cells, enhanced expression of genes such as TGF-β, and progres-

sion of hepatic fibrosis [47]. These findings suggest the presence of a mechanism in which

onset of hepatocyte apoptosis induces liver fibrosis in ALD. Therefore, HNP-1 in ALD may

enhance liver fibrosis via both hepatocyte apoptosis and hepatic stellate cells activation,

although further studies in primary hepatocytes and stellate cells are needed.

Treatment for severe alcoholic hepatitis includes administration of corticosteroids, pen-

toxifylline, anti-TNF-α antibody, and plasma exchange and hemodialysis, but the efficacy is

unclear [4,5]. The plasma concentrations of inflammatory cytokines such as TNF-α, IL-1,

IL-6 and IL-8 are high in patients with alcoholic hepatitis [4,48]. White blood cells, and in

particular neutrophils, are increased by inflammatory reactions [20,21,35]. The significance

of hepatocyte apoptosis has been shown in alcoholic liver injury models [13,47,49]. Hepato-

cyte apoptosis colocalizes with neutrophil infiltration, and thus it is likely that apoptosis

triggers inflammation [4,5,8,11–14]. Therefore, leukapheresis may be an effective treatment

for alcoholic hepatitis[21,48]. The current results suggest that HNP-1 might promote liver

fibrosis and hepatocyte apoptosis in progression of ALD. HNP-1 strongly inhibits spontane-

ous apoptosis of human neutrophils [50], and increases macrophages, azurophilic granules,

and T lymphocytes in bacteria-infected mice, in which induced HNP-1 accumulation is

accompanied by increased leukocyte accumulation in the infected sites [51]. In alcoholic

liver injury, prolongation of the neutrophil lifespan by HNP-1 might cause persistence of

HNP-1 effects and aggravation of the pathology. Therefore, removal of HNP-1 may be effec-

tive for inhibition of progression of ALD.

We used the CAG promoter to drive HNP-1 expression. This promoter results in nonspe-

cific gene expression in vivo [23]. However, HNP-1 probably circulates through the human

body, including in liver tissues. α-Defensins including HNP-1 become biologically active after

synthesis, processing into mature peptides, and extracellular release [52]. These observations

suggest that the precise cell types expressing HNP-1 may not markedly affect the results of our

experiments.

Conclusion

Onset of ALD induces LPS and oxidative stress via acetaldehyde and ROS, which activate

Kupffer cells and produce inflammatory cytokines such as TNF-α and chemokines such as

MCP-1. Neutrophils then migrate to the inflamed sites and infiltrate the liver. The current

study shows that HNP-1 secreted upregulates miRNA-34a and inhibits Bcl2 expression, which

may directly induce and promote hepatocyte apoptosis. In turn, hepatocyte apoptosis may

promote liver fibrosis. The study also suggested that HNP-1 secreted by neutrophils activates
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hepatic stellate cells in patients with alcoholic liver injury to increase production of collagen

and promote liver fibrosis. Thus, HNP-1 secreted by neutrophils is an important mediator of

the progression of hepatic fibrosis and hepatocyte apoptosis in alcoholic liver disease.
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