The International Congress of Immunology 2016, August 21-26, 2016, Melbourne

Immunogenicity of M13 phage vaccine displaying N-terminal region of amyloid beta peptide: comparison of M13 phage vaccine expressed as g3p fusion and g8p fusion.

Ryuji Miyahara¹, Akiko Shimotsu¹, Yui Matsushita¹, Taisuke Shinozaki¹, Mai Tsukada¹, Masahito Hashimoto¹, Kazuhisa Sugimura², Shuhei Hashiguchi¹

Abstract

Antibodies against amyloid- β peptide (A β) can reduce amyloid deposits and are considered as a potential therapeutic approach for Alzheimer's disease^{1,2}. We have recently shown that M13 phage stimulate an innate immune response and induce a strong primary IgG response in mice without any inflammatory adjuvant materials^{3,4}. Even a single immunization with 10¹¹ pfu of phage induced a long-lasting antibody response. To investigate the potential of M13 phage as a vaccine carrier for A β peptide, the sequences of 1-15 region of A β were genetically linked to the N-terminus of M13 gene 3 protein or gene 8 protein, that correspond to A β -g3p phage and A β -g8p phage, respectively. When C57BL/6 mice were immunized subcutaneously with 10¹¹ pfu of A β -g3p phage in PBS solution, anti-A β IgG response was induced in two weeks after the secondary immunization. In the case of A β -g8p phage, anti-A β IgG response was induced during a primary response. Anti-A β antibody titer was comparable in the two mice groups. We also observed that A β -g8p phage induced IgG class switch in athymic (nu/nu) BALB/c mice, indicating that there are different immunological mechanisms of phage vaccine between g3p fusion and g8p fusion. Considering safety and habitual presence of an M13 phage, A β -15-displaying M13 phage may be promising as a safe AD vaccine.

References

- 1) Schenk D, et al. Nature, 400, 173-177, (1999).
- 2) Bard F, et al. Nat Med, 6, 916-919, (2000).
- 3) Hashiguchi S, et al. Biochem Biophys Res Commun,402, 19-22, (2010).
- 4) Tanaka K, et al, J.Neuroimmunol, 236, 27-38, (2011).

¹Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan

²Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan