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Abstract 

 

Chicken egg yolk immunoglobulin (IgY) is a functional substitute for mammalian IgG 

for antigen detection. Traditional IgY purification methods involve multi-step procedures 

resulting in low purity and recovery of IgY. In this study, we developed a simple IgY 

purification system using IgY-specific peptides identified by T7 phage display technology. 

From disulfide-constrained random peptide libraries constructed on T7 phage, we 

identified three specific binding clones (Y4-4, Y5-14, and Y5-55) through repeated 

biopanning. We synthesized two peptides derived from Y4-4, Y5-55 phage clones. In 

surface plasmon resonance analysis, those peptides showed high binding specificity to 

IgY-Fc and moderate affinity for IgY-Fc (Kd = 7.3 ± 0.2 μM for Y4-4 and 4.4 ± 0.1 μM 

for Y5-55). To evaluate the ability to purify IgY, we performed immunoprecipitation and 

affinity high-performance liquid chromatography using IgY-binding peptides; the result 

indicated, that these peptides can be used as affinity ligands for IgY purification. To avoid 

the viscous property of egg yolk in the purification process, we also optimized the egg 

yolk delipidation technique using distilled water dilution followed by ammonium sulfate 

precipitation to remove insoluble lipids from the egg yolk. Finally, we then used a 

peptide-conjugated column to purify IgY from pre-treated egg yolks. Here, we report the 

construction of a cost-effective, one-step IgY purification system, with high purity 

(~92%) and recovery. 

 

 

 

 



3 

 

Schematic overview of this research 

 

 

 

Schematic diagram for the development of IgY binding peptide using T7 phage display 

technology and its applications for antibody purification in this study. 

 

(A) Disulfide-constrained random peptide libraries (X3CX7–10CX3 random peptides, 

where X represents the randomized amino acid positions) were constructed on T7 phage 

using phage display technology (described in Chapter 2). (B) Three IgY binding phage 

clones (Y4-4, Y5-14, and Y5-55) were successfully identified thorough repeated 

biopanning against IgY from random peptide libraries (described in Chapter 3). (C) 

Biotinylated IgY-binding peptides derived from Y4-4 and Y5-55 phage clones were 

synthesized for their characterizations (described in Chapter 3). (D) Egg yolk were pre-

treated using an optimized delipidation technique (described in Chapter 4) and used in 

affinity column conjugated with biotinylated Y4-4 peptide to purify IgY (described in 

Chapter 5). 
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Chapter 1 

 

General Introduction 

 

1.1 Background 

An antibody is a large Y-shaped protein produced by the immune system of the host body 

to prevent the pathogen from harming the body (1). There are many types of pathogens 

like virus, bacteria or chemicals, which are called antigens. When an antigen invades into 

the host body, the antibodies will be produced by plasma cell to mark the antigen and 

finally to degrade them. Antibodies can specifically target and neutralize foreign antigens 

by binding to them (2-3), activate the phagocytosis and complement system of the 

immune system . Antibodies consist of two heavy (H) and two light (L) chains (Figure 1), 

where the L- chain can consist of either κ or λ chain. N-terminal domains of the H chain 

and L chain which being called variable region (VH and VL), represent the most diverse 

amino acid sequence. The hypervariable region is also known as complementarity 

determining regions (CDR), the binding specificity of antibody against the antigen is 

determined by the amino acid sequence of this portion. On the other hand, the portion 

other than the variable domain are called constant regions (CH1,2,3 and CL), has a constant 

amino acid sequence, this part is mainly involved in effector functions such as the 

promotion of cytotoxicity by natural killer cells and phagocytosis by activated the 

phagocytic cells of the complement system. 
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Figure 1 The basic structure of an antibody. 

 

The ability of antibodies to recognize their antigens with exquisite specificity 

and high affinity makes them an attractive class of molecules to bind extracellular targets 

and generate a desired pharmacological effect. Antibodies also benefit from their ability 

to harness an active salvage pathway, mediated by the neonatal Fc receptor (FcRn), 

thereby enhancing their pharmacokinetic (PK) life span and mitigating the need for 

frequent dosing. The antibodies and antibody derivatives approved in the United States 

and the European Union span a wide range of therapeutic areas, including oncology, auto-

immunity, ophthalmology, and transplant rejection. They also harness disparate modes of 

action like a blockade of ligand binding and subsequent signalling, and receptor and 
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signal activation, which target effector functions, namely antibody-dependent cellular 

cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), and delivery of the 

cytotoxic payload. Antibodies are generated by the assembly of two heavy chains and two 

light chains to produce two antigen-binding sites and a single constant domain region. 

The constant domain sequence in the heavy chain designates the subtype. The light chains 

can belong to two families ( and ), with most of the currently marketed antibodies 

belonging to the k family. The antigen-binding regions can be derived by proteolytic 

cleavage of the antibody to generate antigen-binding fragments (Fab) and the constant 

fragment (Fc, also known as the fragment of crystallization). The Fab comprises the 

variable regions (variable heavy (VH) (4) and variable light (VL)) and constant regions 

(CH1 and C/C). Within these variable regions reside loops called complementarity 

determining regions (CDRs) responsible for direct interaction with the antigen. Because 

of the significant variability in the number of amino acids in these CDRs, there are 

multiple numbering schemes for the variable domains (5, 6) but only one widely used 

numbering scheme for the constant domain (including portions of the CH1, hinge, and 

the Fc) called the EU numbering system (7). 

 

There are two general methods to generate antibodies in the laboratory. The first 

utilizes the traditional methodology employing immunization followed by recovery of 

functional clones either by hybridoma technology or, more recently, by recombinant 

cloning of variable domains from previously isolated B cells displaying and expressing 

the desired antigen-binding characteristics. There are several variations of these 

approaches. The first approach includes the immunization of transgenic animals 

expressing subsets of the human Ig repertoire (8) and isolation of rare B-cell clones from 
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humans exposed to specific antigens of interest (9). The second approach requires 

selecting from a large in vitro displayed repertoire either amplified from natural sources 

(i.e., human peripheral blood lymphocytes in Ref. (10) or designed synthetically to reflect 

natural and/or desired properties in the binding sites of antibodies (11, 12). This approach 

requires the use of a genotype-phenotype linkage strategy, such as phage or yeast display, 

which allows for the recovery of genes for antibodies displaying appropriate binding 

characteristics for the antigen.  

 

The antibody has different varieties known as isotypes or classes. In mammals 

there are five antibody isotypes could be found, which are known as IgA, IgD, IgE, IgG 

and IgM. Here, each type of the isotypes named with an “Ig” that stands for 

immunoglobulin and each of the immunoglobulin has differed in their properties, 

functions and location of the action. IgA is mainly found in the mucosal areas like gut, 

respiratory tract, urogenital tract, saliva and tears of the mammalians. The function of IgA 

is to prevent the colonization of the antigens. IgD found in B cell surface and functions 

as an antigen receptor on B cell and basophils and mast cell to produce antimicrobial 

factors (13). IgE mainly attaches to the basophils and give protections from parasitic 

worms, also binds to allergens and triggers histamine release from mast cell for the 

allergic reaction. Among the antibodies, IgG is the most important and abundant 

immunoglobulin found in the mammalian cell. IgG has the ability to cross the placenta to 

give passive immunity to the fetus (14). And finally, IgM expressed on the surface of the 

B cells gives protection in the early stages of B cell mediated immunity (15). There are 

other isotypes of antibodies, such as IgY and IgW which are not found in mammals. IgY 

is major serum antibodies for birds and replies, also found in egg yolk of the birds plays 
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the equivalent role as IgG in mammalians. IgW is mainly found in sharks and skates, 

which works like mammalian IgD (16). 

 

Table 1 Comparison of properties between different isotypes of antibody. 

 

 

 

  

Properties IgA IgD IgE IgG IgM 

Molecular 

forms 

Monomer or 

dimer 

Monomer Monomer Monomer Pentamer 

% total Ig in 

serum 

10-20 <1 <1 70-80 10 

Where found 

in body 

Found in 

bodily 

secretions. 

Found on 

B –cell 

surface 

Attach to 

basophils and 

mast cells. 

Blood & 

extracellular fluid 

Blood & 

extracellular 

fluid 

Functions Protect 

external 

openings 

Unknown; 

may be 

antigen 

detection 

Allergic 

response and 

defend 

infection by 

the large 

parasite. 

Long-term Ab that 

protects the body. 

Appear 

earlier in 

the infection 

and offer 

valuable 

defence 

during a 

critical 

stage of the 

infection. 

Transferrable 

to offspring’s 

Via 

colostrum 

and breast 

milk. 

No No Via placenta No 
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1.2 Introduction of IgY 

IgY antibodies refer to a predominant class of immunoglobulin serum found in oviparous 

animals, plays the equivalent role of mammalian IgG. Recently IgY targeted as an 

alternative for mammalian antibodies (17). As purposeful homologues of mammalian IgG, 

IgY antibodies are transferred to egg yolk via the particular receptor placed on the 

membrane of ovarian follicle to verify passive immunity for the developing offsprings. 

(18-19). the use an avian antibody as a research tool is not a novel concept. As early as 

1893, Klemperer described an experiment in which he showed that the immunization of 

a chicken resulted in a transfer of specific antibodies into the egg yolk. 

 

In the year of 1990s, for the availability of commercial secondary reagent like 

IgY-purification kits the use of IgY-antibody increase more widely. The production and 

use of IgY-antibody are designated internationally as a standard terminology since 1996. 

In order to minimize painful situations due to invasive antibody sampling, ECVAM 

(European Centre for the Validation of Alternative Method) recommended the use of IgY 

instead of mammalian IgG. ECVAM also recommended about the practice of rearing of 

laying hens, chicken immunization, use of adjuvants, IgY extraction methods, storage of 

IgY, etc. In the meantime, there was a lot of research work, which were covering all the 

aspects of IgY-technology perhaps due to the advantages of using IgY antibodies. 

 

The immunization of chickens provides an attractive alternative (20-21) to use 

mammals as hosts for antibody production. IgY is the major low molecular weight 

immunoglobulin which considers as distinctive properties that can be exploited in various 

ways in research, diagnostics and therapy. One important advantage arises from the 
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phylogenetic distance and genetic background that distinguishes birds from mammals. 

This improves the likelihood that an immune response will be elicited against antigens or 

epitopes that may be non-immunogenic in mammals. The deposition of IgY into the egg 

yolks of the immunized bird then provides an elegant source of polyclonal 

immunoglobulins. Since polyclonal IgY can be recovered from the eggs of laying hens 

for prolonged periods, this approach provides a long-term supply of substantial amounts 

of antibodies. In addition, such antibodies exhibit biochemical and structural features, 

which can render them superior in virtually all types of immunoassays, especially those 

designed to detect molecules in specimens like mammalian blood or serum (22-23). Due 

to the technical difficulties of avian hybridoma techniques, and the problem that existing 

immortalized B cell lines (such as the ALV-induced bursa-derived lymphoma line DT40) 

undergo Ig gene conversion during in vitro culture (24), the production of chicken 

antibodies languished somewhat until it became possible to generate monoclonal IgY 

through the in vitro selection from combinatorial antibody libraries by phage display (25). 

In the chicken, only a single functional V and J segment is present in the light and heavy 

chain gene loci. As a result, diversification of the avian immune repertoire is introduced 

into the rearranged V (D) J segments by gene conversion using pseudo V genes as donors. 

This greatly simplifies the construction of combinatorial recombinant antibody libraries 

while the selective power of phage display provides a way of accessing unique binders. 

 

1.3 Importance of IgY antibody 

For the antibody production, immunization of chicken provides an attractive alternative 

to the using mammals as host (26-29). IgY has some distinctive properties which can be 

used for various types of research and therapy. Distinguishable phylogenetic and genetic 
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properties of IgY from mammalian immunoglobulin can be used accustomed to being 

elicited highly specific antibody against conserved mammalian proteins. IgY doesn’t 

show any cross-reactivity with class IgG, rheumatoid factor (RF), human anti-mice 

antibodies (HAMA) and heterogeneity glycoprotein (30), As a result, IgY provides a 

distinctive feature in various immunology and diagnostic identification methods with 

reducing the risk of the false-positive result (31). Immunized chickens IgY depositional 

properties into egg yolks could be a distinguished originator of polyclonal 

immunoglobulin with several edges over existing class antibodies. Besides those 

advantages, IgY technology has some moral values like, as isolation from egg yolk does 

not need animal trauma (31). Chicken Antibodies can be easily sampled by a non-invasive 

method based on the simple action of egg collection, instead of the stressful bleeding of 

animals to obtain serum. IgY technology also offers economic advantages because the 

costs of handing hen are lower than those for rabbits. Furthermore, a large amount of 

antibody can be produced from one hen, approximately 17–35g of total IgY/chicken/year, 

of which 1–10% can be expected to be antigen-specific. If chickens and rabbits are 

immunized with the same mammalian antigen, the chickens respond with an Antibody-

specificity that can rarely be achieved in rabbits, as for instance, PIIINP (32), parathyroid 

hormone-related protein (33) and YKL-40 glycoprotein (34). The cost-effective and 

availability of huge antibodies explore the new fields of IgY applications, such as 

immunotherapy applied to several viral and bacterial infections in veterinary and human 

medicine.  
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Figure 2 Overall potential use of IgY antibodies (38). Immunized birds naturally deposit 

protective antibodies in the yolk of their eggs. These antibodies are termed IgY, they can 

be used as passive immunotherapies in humans, animals for the research and diagnostic 

immunoassays. Furthermore, from avian lymphoid organs, the recovered B-cell 

population can be processed as bulk, leading to naïve or immune libraries of recombinant 

antibody fragments. By using standard phage display methods subsequent screening of 

antigen-specific monoclonal antibodies can be performed. Alternatively, sophisticated 

single-cell sorting methods can be applied to the initial B-cell population in order to select 

B-cells producing an antibody of interest. 

 

Generally, one of the most intriguing and extraordinary characteristics of IgY is 

the lack of most interactions with mammalian immune components. This makes IgY 

especially suited to applications in which the use of its mammalian counterparts is prone 
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to unwanted cross-reactivity. For instance, in proteomics, pretreating of serum samples 

with IgY to specifically neutralize highly abundant serum components was found to 

improve downstream analyses (35). In another study, the identification of 

underrepresented serum proteins and disease marker candidate discovery was simplified 

when specific IgY was used as a blocking reagent (36-37). This approach was facilitated 

by the general characteristics of IgY such as the ease of production and the low incidence 

of cross-reactivity. 

 

1.4 Structural and functional properties of IgY 

IgY is a low molecular weight serum immunoglobulin isotype found in amphibians, 

reptiles, and birds. Among the three avian isotypes (IgY, IgM and IgA), IgY is the most 

abundant in serum and in the laying hens its concentrations ranging from 5 to 15 mg/ml 

in (39-40) compared to the lower concentrations of IgM (1-3 mg/ml) and IgA (0.3-0.5 

mg/ml). In chicken, the organs which are responsible for antibody production differ 

significantly from those in mammals. The central lymphoid organs are represented by the 

thymus and bursa of Fabricius (BF), whereas peripheral lymphoid organs include the 

spleen, harderian glands, bone marrow, conjunctival-associated lymphoid tissue (CALT), 

bronchial-associated lymphoid tissue (BALT) and gut-associated lymphoid tissue 

(GALT). In chickens instead of lymph nodes, the lymphoid nodules associated with the 

lymphatics (41). The bursa of fabricius is located above the cloaca in the caudal body 

cavity and plays a crucial role in avian B cell development and antibody diversification 

(42). From a small number of B cell precursors, cells expressing surface immunoglobulin 

undergo rapid proliferation such that at about two months of age there are approximately 

104 follicles in the BF (43). A few weeks after hatching, about 5% of the bursal cells 
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migrate into the blood and then into the spleen, thymus, and caecal tonsils, where they 

produce immunoglobulins subsequently. The spleen is the largest secondary lymphoid 

organ which is important in the production of antibodies and for antigen processing after 

hatching (44). IgY contains two heavy chains and two light chains, similar to mammalian 

IgG. But compared to IgG IgY have higher molecular weight due to an extra heavy chain 

constant domain (Table 2), lacks a well-defined hinge region and IgY has unique 

oligosaccharide side chains (45). It has been assumed that the extra domain (CH2) is the 

evolutionary precursor to the mammalian IgG hinge region (46). In mammals, IgG forms 

immune complexes by opsonization activate the complement system and facilitate 

protection for the foetus by transport across the placenta. IgE usually sensitizes effector 

cells and mediates anaphylactic reactions (47). But IgY appears to combine the function 

of mammalian IgG- and IgE since it not only provides defence against infections (48) but 

may also mediate anaphylaxis (49). In compares to mammals, basophils are much more 

numerous in birds than mast cells (50) and antibody-dependent hypersensitivity and fatal 

systemic anaphylaxis (51-52) are mainly mediated by these cells (53). Besides its function 

and interaction with Fc receptors, IgY differs from IgG in a variety of aspects, as 

mentioned earlier, the phylogenetic distance between the avian immune system and 

mammalian proteins most likely increases the immune response towards the respective 

antigens. This means that IgY can often be raised against epitopes on highly conserved 

proteins while other mammals cannot provide an immunological response (54-55). 

Compared to mammalian IgG, IgY is lacking the flexible hinge region which makes them 

more rigid immunoglobulin. This hinge-less structure is also found in mammalian IgE. 

IgY, therefore, exhibits structural features of both mammalian IgE and IgG, a finding also 

supported by a structural analysis of the IgY Fc portion (56). Potentially reduced 
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molecular flexibility might be associated with decreased susceptibility to proteolytic 

degradation or fragmentation. Nevertheless, IgY can be fragmented by papain or trypsin 

(57). IgY, like mammalian IgG, is reasonably stable and can be stored for several months 

under standard conditions (58). In contrast to IgG, the antigen binding activity of IgY 

decreases significantly under acidic conditions. To identify the IgY structural and 

functional characteristics a comparison between the mammalian IgG and IgY, IgY-Fc is 

given in next page (59-64). 
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Table 2 Functional comparison between IgG, IgY and IgY-Fc. 

Functional 

characteristics 

IgG IgY IgY-Fc 

Species Mammals Birds, Reptiles, 

Amphibians 

Lungfish 

Birds, 

Amphibians, 

Lungfish 

Molecular weight (kD) 150 180 118 

Isoelectric point (pI) 6.4-9.0 5.7-7.6 5.2-7.3 

Number of constant domains 4 3 2 

Carbohydrate content (%) 2-4 4 0.6 

Hinge region Yes No No 

Antigen valence 2 2 2 

Major serum antibody Yes Yes Yes 

Source Serum Chicken 

serum/egg yolk 

Chicken 

serum/egg yolk 

Concentration (mg/ml) 10-12 8-10 3-12 

Mammalian complement binding Yes No No 

Rheumatoid factor binding Yes No No 

Fc receptor binding 
No Yes No 

Mediates anaphylaxis 
No Yes No 

Binding to protein A 
Yes No No 

Binding to protein G 
Yes No No 
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1.5 Applications of IgY  

IgY-based immunoassays are being used to measure the concentration of proteins or 

peptides via ELISAs, RIAs or other assays in clinical chemistry and basic research. IgY 

antibodies are used in immunohistochemistry for detection of antigens of viral, bacterial, 

plant and animal origin, to assess the incidence of intestinal parasites in domestic animals 

(65) and the contamination of foods with toxins or drugs (66).  

 

1.5.1 Therapeutic use of IgY 

Eggs constitute a very common component of our diet and are therefore tolerated by the 

human immune system. Administration of IgY may, therefore, represent an attractive 

approach to immunotherapy with a reduced risk of toxic effects. Chicken antibodies are 

well-established as anti-toxins and/or for passive vaccination. For instance, specific anti-

venom IgY can neutralize bacterial toxins (67) and be used to treat snake bites (68-75). 

Indeed, anti-venom IgY shows a higher bioactivity than antidotes raised in horses (76). 

In such applications, egg yolks can provide a continuous supply of potentially superior 

reagents. Today’s consumers have become increasingly interested in foods that 

supposedly promote health and reduce the risk of disease. The different use of IgY is 

listed below. 

 

1.5.1.1 Treatment of intestinal infection 

For most of the viral and bacterial pathogens, the adherence is a major prerequisite for 

the successful colonisation, especially with respect to the host’s respiratory and intestinal 

mucosae. It has been shown that IgY antibodies specific against Salmonella antigens are 

able to inhibit in vitro the adhesion of this bacterium to epithelial cells (77). Carlander et 
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al. (78), and Sarker et al. (79) investigated the action of hyper-immune bovine colostrum 

(HBC) and isolated IgY against human rotavirus from infected children. The oral 

administration of IgY showed a significant protective effect (79). An anti-human rotavirus 

(strains Wa, RV5, RV3, ST3) IgY was also effective, although to a lower extent than with 

HBC. 

 

1.5.1.2 Treatment of Helicobacter pylori 

Therapeutic use of IgY against Helicobacter pylori has also been investigated in animals 

(80) and humans (81-82). Shin et al. (83) identified the immune-dominant proteins of H. 

pylori. Antibodies specific for these proteins were more effective as a prophylactic 

reagent as compared to antibodies directed against the whole bacterial lysate. Altogether, 

all studies demonstrated a curative effect of the anti-H. pylori Antibody. In most cases, 

no complete H. pylori eradication could be achieved. But in view of the increasing 

bacterial resistance, the use of specific IgY minimizes the use of antibiotics. Horie et al.  

(84) carried out a study with 42 volunteers to test the protective effect of a drinking yogurt 

fortified with anti-H. pylori urease IgY, obtaining a significant decrease in urea breath 

values of the treated group (fed with IgY-yogurt). 

 

1.5.1.3 Treatment of colitis and celiac disease 

The colitis and celiac disease refers to an immune-mediated disorder, an autoimmune 

enteropathy, triggered by the ingestion of gluten in the genetically susceptible patient. 

This disease primarily affects the gastrointestinal tract and is characterized by chronic 

inflammation of the small bowel mucosa that may lead to atrophy of intestinal villi, 

malabsorption, and a variety of clinical manifestations (85). Worledge et al. (86) 
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demonstrated significant protective effects of IgY specific against tumour necrosis factor 

(TNF) after oral application in an experimental rat model of colitis. TNF is implicated in 

the pathogenesis of inflammatory bowel disease. The oral use of antibodies is considered 

to have fewer systemic side-effects than the intravenous infusion of a humanized murine 

anti-TNF monoclonal antibodies (Infliximab, Centocor, Malvern, Pennsylvania, USA). 

Sunwoo and Sim (87) identified gluten proteins which play a role in the autoimmune 

disorder of the celiac disease and reported on the use of IgY against gluten protein. The 

authors immunized chickens with gliadins and low- and high molecular glutenin. The 

isolated IgY can be used in different forms, such as table eggs, liquid and powdered eggs, 

and encapsulated nutraceuticals for the treatment of celiac disease. 

 

1.5.1.4 Treatment of cystic fibrosis 

Cystic fibrosis (CF), known as the most common fatal genetic disease of the Caucasian 

population in Europe and the USA. It caused by a mutation in the gene for a chloride 

channel protein, which results in the secretion of an abnormally thick mucus. This leads 

to secondary infections in the respiratory tract, caused by several bacterial species, one of 

which, Pseudomonas aeruginosa infects virtually all CF patients. Researchers found the 

benefits of IgY as a prophylactic tool for CF patients (88). They treated CF patients orally 

with an aqueous IgY anti-P. aeruginosa solution (70 ml, 0.7 mg/ml IgY), as a mouth rinse. 

Approximately 8 hours after the treatment, a high level of the specific chicken Abs could 

be demonstrated in the saliva via an ELISA. Later, the IgY concentration gradually 

declined and was completely undetectable in the saliva 16 hours after the treatment. These 

oral IgY treatments were successful in reducing chronic P. aeruginosa infections in CF 

patients (89). 
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1.5.1.5 The use of IgY in veterinary medicine 

In veterinary medicine, powdered whole eggs or egg yolks have been used as an 

inexpensive source of IgY for the treatment of enteric diseases. The IgY has been used in 

the treatment of calves and piglets with specific Antibodies against Escherichia coli (K88, 

K99, 987P), rotaviruses and coronavirus (90). Several types of research have been 

reported (91- 94) that IgY has significant prophylactic and therapeutic benefits for the 

treatment of diarrhea in calves and piglets. Pokorova et al. reported that IgY can be used 

to protect dogs against canine parvovirus by interacting with canine parvovirus surface 

components (95). Sunwoo et al. demonstrated in vitro a marked growth inhibiting the 

effect of specific IgY on E. coli 0157: H7, showing that growth inhibition was actually 

caused by binding of specific IgY to bacterial surface antigens, which caused significant 

changes in the bacterial surface structure (96). Another effect of IgY binding to bacterial 

surface antigens is a marked impairment of bacterial attachment to the intestinal mucosa 

(97, 77). Therefore, therapeutic IgY administration might reduce the clinical use of 

antibiotics, minimizing the risk of bacteria developing antibiotic resistance. 

 

1.5.2 The use of IgY in immunoassays 

One of the most intriguing and extraordinary characteristics of IgY is the lack of most, if 

not any, interactions with mammalian immune components. This property of IgY is suited 

to applications in which the use of its mammalian counterparts is prone to unwanted 

cross-reactivates. In proteomics, pretreating of serum samples with IgY to specifically 

neutralize highly abundant serum components were found to improve downstream 

analyses (98). In another study, the use of IgY as blocking reagents simplified the 

identification of underrepresented serum proteins and disease marker candidate discovery 
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(99-100). This approach was facilitated by the general characteristics of IgY such as the 

ease of production and the low incidence of cross-reactivity. In the case of immunoassays, 

homologous mammalian immunoglobulins may have deleterious activities on the 

performance of many different types of immunoassays. In particular, approaches using 

immunoglobulins as bioactive molecules to capture or detect the analyte is often affected 

by heterophilic antibodies and/or high levels of non-specific binding. It was estimated of 

the prevalence of assay interference by heterophilic antibodies range from 1 to 80% (101-

106). In addition, antigen-independent specific binding via immunoglobulin Fc receptors 

or lectins and non-immunoglobulin-based interactions, e.g. those mediated by 

complement factors (107), can result in false-positive and false-negative results (108-109).      

 

To avoid this problem, chicken IgY offers several advantages over their 

mammalian homologues since they do not interact with rheumatoid factor (RF), human 

anti-mouse IgG antibodies (HAMA), complement components or mammalian Fc 

receptors. Nowadays most currently used immuno-tests are based on murine monoclonal 

antibodies, here monoclonal IgY can be used (110) as a way of avoiding interference by 

RF and heterophilic antibodies in human serum samples (111). It has shown that 

monoclonal and polyclonal IgY antibodies bind neither to mammalian Fc receptors CD64 

and CD16A (111) nor to the human high-affinity IgE receptor, despite having similarities 

in the amino acid sequences of human IgE and avian IgY. For some diagnostic 

applications, the advantages of IgY may be undermined by the prevalence of anti-chicken 

antibodies in certain individuals. One study (112) demonstrated that 15 in 28 egg-allergic 

patients exhibited specific IgE binding against one or more egg yolk-derived antiviral 

chicken immunoglobulins. In contrast, according to another study, the overall allergenic 



25 

 

potential of IgY in animal models appear to be low.  

 

 

 

 

1.6 Summary 

Today, there is no doubt that chicken IgY can be produced and used in similar ways to the 

use of mammalian antibodies. Depending on the circumstances, the use of IgY shows 

significant advantages over the use of mammalian Antibodies. In summary, the IgY 

technology is a fast developing field and in this chapter, the IgY technology has been 

introduced with some of its uses. The ready availability of polyclonal IgY and the rise of 

recombinant technologies made IgY available for more widely used in research, 

diagnostics and therapeutics. It is to be expected that in future the studies on the 

therapeutic use of IgY will be intensified and offer new alternatives and solutions to 

science, to medicine and to the society as a whole. 
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Chapter 2 

 

Construction of random peptide library using T7 phage display 

technique 

 

2. 1 Introduction to Phage-display technique 

Phage display technology has been used as a screening method for the generation/ 

identification of functional peptides, proteins, or monoclonal antibodies (1), studying 

protein/DNA–protein interactions, screening cDNA expression, epitope mapping of 

antibodies, engineering human antibodies (2), optimizing antibody specificities, 

identifying peptides that home to specific organs or tissues, and generating immunogens 

for vaccine design (3–6). This technique offers two basic features 1. The linkage of 

genotype and phenotype, 2. The ability to construct peptide or protein display libraries 

which could contain up to 1010 different variants (7). The physical linkage between the 

displayed target protein and the encoded gene facilitates characterization of the target 

protein on phage and target protein-displaying phage could be isolated by selection 

process with its desired binding property. Phage display was first described by G. Smith 

in 1985 and used to display short peptide fragments (8), and the then first patent (9) was 

filed in 1991. Since then, this technique has proven to be a reliable method for the 

generation of peptides with potential therapeutic or diagnostic use (10). In 1990 phage 

display of single-chain V-domain antibody fragments (scFv) was reported, and target-

displaying phage was recovered on the basis of antigen binding (11). It becomes a major 

discovery platform for the identification of fully human monoclonal antibodies (12). 

More recently Fab fragments of antibody displaying-phage library have described, which 

can be readily reformatted to full-length IgG antibodies without loss of binding function. 
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E. coli filamentous bacteriophages (f1, fd, M13) are commonly used for phage display 

technique. Phage proteins pIII (13) and pVIII (14) are used for displaying of antibodies 

and peptides. The successful expression of gene 8 is responsible for the production of 

phage major coat protein (pVIII) and it can produce up to 3000 copies, therefore it is used 

to elevate detection signal when phage-displayed antibody associated with the antigen. 

Moreover, modifications of pVIII are made to increase the potency of the display onto 

pVIII coat protein (14). On the other hand, minor coat protein (pIII) consists of 406 amino 

acid residues and expressed at the phage tip in 3 to 5 copies. As a result, larger peptides 

and folded proteins are displayed as fusions with pIII protein, whereas pVIII, for 

preserving its functionality only short peptides (6–7 residues) without cysteine residues 

could be used for display (15). The major limitation of the phage display technology is 

the loss of coat protein functionality, however, this problem could overcome by hybrid 

phages and coat protein modifications (14).In this step, the virion consist of the complete 

wild-type genome and a copy of fusion gene was inserted into phage genome (16) or as 

phagemid (17) vector. The phagemid vector contains the origins of replication for phage 

and its host, gene 3 with appropriate cloning sites and an antibiotic-resistance gene. 

Moreover, the phagemid encoding polypeptide-PIII fusion requires hybrid with helper 

phage for packing into the M13 particle. The helper phage contains a slightly defective 

origin of replication (such as M13KO7 or VCSM13) and supplies all the structural 

proteins required for generating a complete virion. Thus, both wild pIII protein and target 

polypeptide pIII fusion protein will be present on the phage surface. The ratio of 

polypeptide-PIII fusion protein to wild-type pIII may range between 1 to 9 and 1 to 1,000, 

which depends on the type of phagemid, growth conditions, the nature of the polypeptide 

fused to pIII and proteolytic cleavage of antibody-PIII fusions (18). This ratio also ensures 
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that the fusion protein, used as a minor component of the phage coat, does not affect 

phage viability. However, when hyper-phage was used, achieving this ratio is unnecessary. 

Hyper-phage has wild-type non-functional pIII gene, as a result, antibody fused pIII is the 

only source of pIII for phage assembly.  

 

 

 

Figure 1 Schematic presentation of phage display systems. The displayed molecules on 

the various protein are indicated by a red circle (30). 

 

 

Therefore, it allows the use of increasing the number of scFv for fusion and also 

10-fold increases the binding of phage to antigen could be achieved comparing to 

M13KO7 helper phage. Hybrid phage system enables displaying of larger proteins with 

all five M13 coat proteins as N-terminal fusions with pIII, pVIII, (19) pVII, pIX (20) and 
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also as C-terminal fusions with pVI, pIII, and pVIII (21-22). The usage of T7 phage is an 

alternative for M13 phage display system (23). One of the advantages of T7 phage display 

system is its extreme robustness and stability in conditions that inactivate other phages 

(24-25). In this system, small peptides (less than 50 residues) in high copy number (415 

per phage), larger peptides or proteins (up to 1200 amino acid) in low (0.1-1 per phage) 

or mid-copy number (5-15 per phage) could be displayed with stop codon on the C-

terminal of pX capsid protein. T7 phage display over M13 display techniques is connected 

with the fact that the capsid is not involved in the phage to host adsorption and avoid the 

secretion of displayed peptides through the periplasm and the cell membrane. However, 

this approach restricts the possibility of posttranslational modification of polypeptides in 

eukaryotic systems (23). The T4 phage HOC/SOC bipartite display system (26) could be 

applied to cDNA expression. This system allows larger proteins in high copy number and 

inserts with stop codon on the C-terminal of SOC (small outer capsid) protein that occurs 

in 810 copies or N-terminal of HOC (highly antigenic outer capsid) protein that occurs in 

155 copies. Phage  is also capable of displaying complicated, high molecular mass 

proteins as fusions with N- or C-terminal of PD head protein that occurs in 405 copies or 

C-terminal of PV tail protein that occurs in 6 copies (27-28).  Phage-display system does 

not require translocation through the Escherichia coli membrane. In comparison to 

filamentous phage system, lambda phage display showed a higher immune response in 

spite of displaying a wide variety of proteins in multiple copies. 

 

2.2 T7 phage display system 

T7 phage is lytic viruses with double-stranded linear genome DNA of about 40kbp 

comprising 60-degree genes (30-31). This phage attached via the Lipopolysaccharide 

http://www.thefreedictionary.com/Lipopolysaccharide
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(LPS) on the surface of E. coli and infected by injecting DNA into the cell. Phage 

assembly takes place inside the E. coli cell and mature phage released by cell lysis. As a 

result, T7 phage display enables various peptides or proteins to be displayed on the 

surface of lytic T7 phage particles with a reduced bias of amino acids generated by the 

mixed nucleotides in the display peptides. Unlike the filamentous phage display systems, 

peptides or proteins displayed on the surface. It takes 2-3 hours at 37 °C for plaques 

formation and cultures lyse 1–2 hours after infection, decreasing the time allows to 

perform the multiple rounds of growth usually required for the selection process. The T7 

phage particle is extremely robust, stable to harsh conditions like detergents and 

denaturants including 1% sodium dodecyl sulfate (SDS) and urea (up to 4 M) (32). This 

property of T7 phage expands the variety of agents that can be used in biopanning 

selection procedures. T7 phage is an excellent general cloning vector. There are 

commercial in vitro packaging systems available by which purified DNA could be 

obtained in large amounts (32).  

 

  

Figure 2 Structure of T7 bacteriophage.  
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2.2.1 T7 phage structure and assembly 

T7 is an icosahedral phage contains a capsid shell composed of 415 copies of the T7 

capsid protein (expressed by gene 10) arranged as 60 hexamers on the faces of the shell 

and 11 pentamers at the vertices (33). Remaining part of the phage is attached by the 

head-tail connector vortex (gene 8), a short conical tail (genes 11 and 12) and 6 tail fibres 

(gene 17) (shown in Figure 2). T7 phage assembly process is similar to that of other 

double-stranded DNA phages (34). DNA is packaged into a scaffolding protein (gene 9) 

made the procapsid shell, capsid protein, the head-tail connector, and an internal protein 

structure (genes 13, 14, 15, and 16). The DNA is usually packaged in a linear concatemers 

forms, and when it enters the procapsid shell the scaffolding protein is released and a 

conformational change occurs to form the mature particle. Tail and tail fibres attach at the 

head-tail connector vertex. In the T7 Phage Display System, the T7 capsid protein is 

mainly used to display peptides or proteins on the surface of the phage. The capsid protein 

is normally made in two forms, 10A (344 aa) and 10B (397 aa). 10B is produced by a 

translational frameshift at amino acid (aa) 341 of 10A and makes up about 10% of the 

capsid protein (35). However, the entire functional capsids can be composed of either 10A 

or 10B or of various ratios of the proteins. This property provided the initial suggestion 

that the T7 capsid shell could accommodate variation and the unique 10B region of the 

capsid protein could be used for displaying target protein or peptide. 
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Figure 2 Diagrams for T7phage display technology. 

 

 

2.2.2 Construction of T7 phage library 

Construction of T7 phage library usually performed by using commercially in vitro 

packaging systems. T7Select Cloning Kit vectors from Merck (Kenilworth, NJ, USA) is 

most commonly used commercial cloning kit used for T7 phage display technology. In 

this procedures vector arms are prepared and ligated with target inserts, the resulting DNA 

is incubated with an in vitro packaging extract, and the phage products are used for 

infection of a suitable host. There are multiple cloning sites in the T7 vectors, which are 

compatible with many existing vectors, including the pET vectors used in the T7 

expression system. The target insert DNA usually contain a limited coding region for 

variant amino acids (Figure 3). The vector arms and T7 packaging extracts provided in 



42 

 

the T7Select System routinely produce > 108 recombinant plaques per µg of arms. The 

high-efficiency T7 packaging extracts (2 × 109 plaques per µg intact DNA) are made with 

a specially designed phage that reduces the non-recombinant cloning background to 

below 0.1%. (36).  

 

 

 

Figure 3 Schematic diagram for the construction of peptide-displaying T7 phage 

library. 
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2.3 Experimental procedures 

2.3.1 Design of the structure of random peptide-displaying T7 phage library 

The design of the insert random peptides to the T7 phage is a cyclic peptide having a 

disulfide bond with Cysteine and Cysteine reduce, using four kinds of forms of X3CX7-

10CX3. Here X represent the random amino acid sequences. 

 

 

Figure 4 Design of random peptide displaying T7 phage libraries. 

 

2.3.2 Design of insert DNA for the T7 phage library 

The DNA fragment encoding the sequence of the random peptides (X3CX7-10CX3) was 

amplified using biotinylated primers containing the restriction enzyme sites Eco RI and 

Hind III (indicated by underline). The design of the primers was given below.  

 

KEB553 

(With Eco RI restriction site) 
Bio-ATGAATACCAGGATCCGAATTCAGGTGGAGGTTCG 

KEB547 

(With Hind Ⅲ restriction site) 
Bio-ACTATCGCCGGCCGCAAGCTTTTATCC 

 

2.3.3 Amplification of insert DNA by PCR 

Random peptide coding inserts DNA was amplified by polymerase chain reaction (PCR) 
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using the primers. DNA polymerase (Takara Bio, Dalian, China) was used to amplify the 

gene under following conditions: 95ºC for 5 min, 30 cycles (95ºC 30 s; 60ºC 30 s; 72ºC 

60 s), and a final extension of 72ºC for 3 min. The PCR products were analyzed on 2% 

agarose gel.  

 

2.3.4 Restriction enzyme treatment of insert DNA 

After confirming the insert DNA amplification by PCR, The insert DNA was used for the 

Hind Ⅲ and Eco RI restriction enzyme treatment for 2 hours in RT and analyzed on 2% 

agarose gel.   

 

2.3.5 Streptavidin beads treatment 

First, streptavidin beads were taken into the tube and the water portion of the beads was 

removed by pipetting. The restriction enzyme treated DNA was added and incubated for 

1 h with shaking. Finally, DNA sample was recovered from a new tube and analyzed on 

2% agarose gel. 

 

2.3.6 Ligation of insert DNA with T7 vector arms 

After SA bead purification, the purified DNA was ligated with a T7select10-3b vector 

using T7select packaging kits (Novagen) manufactures instruction. 

 

2.3.7 Amplification of synthetic phage in E.coli  

E.coli (BTL5403) cell was grown into 2TY culture media and T7 packaging solution was 

added to the bacterial culture and the synthetic phage was amplified by 2 hours of 

incubation. Amplified phage was recovered by centrifugation for 30 min at maximum 
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speed. After recovering the phage in the culture supernatant, 50% polyethene glycol was 

added and incubated overnight at 4 ℃ to perform a precipitation reaction. Finally, the 

precipitate phages were recovered by centrifugation and dissolved in PBS buffer solution 

for further experiments. 

 

 

 

 

2.4 Results and Discussion 

This experiment was conducted to construct random peptide displaying T7 phage library. 

Total four types of random peptide-displaying phage library were constructed, where in 

every library, the insert DNA consists 7, 8, 9 and 10 random peptide expressing amino 

acid sequences between two cysteine residues respectively (Figure 4). After designing the 

insert DNA for four kinds of phage library, the synthetic insert DNA was amplified by 

PCR using Hind Ⅲ and EcoRI restriction site containing primers. Figure 5 shows the gel 

electrophoresis analysis of the amplified DNA by PCR. This result confirms that the 

(113base pair) DNA was amplified successfully. 
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Figure 5 Gel electrophoresis analysis of the amplified insert DNA by PCR. Arrow 

indicates the target PCR product. 

 

After the amplification of insert DNA with Hind Ⅲ and Eco RI restriction site 

containing primers. The insert DNA was purified by Hind Ⅲ and Eco RI restriction 

enzyme treatment respectively. In figure 6, the gel electrophoresis image shows the insert 

DNA was sliced successfully by both of the restriction enzymes respectively. 
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Figure 6 The gel electrophoresis analysis of the insert DNA after Hind Ⅲ and Eco RI 

restriction enzyme treatment. , Lane 1 indicates the marker line, Lane 2: Insert DNA 

before restriction enzyme treatment, Lane 3: after Hind Ⅲ restriction enzyme treatment. 

Lane 4: after Eco RI restriction enzyme treatment. Arrow indicates the target PCR product. 

 

After the Hind Ⅲ and Eco RI restriction enzyme treatment, the insert DNA 

solution exhibit different types of sliced primers and end product of restriction enzyme 

treatment. To purify the insert DNA from those unwanted by-product, Streptavidin beads 

treatment was used. Figure 7 shows that after SA beads treatment the insert DNA was 

purified successfully. 
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Figure 7 The gel electrophoresis analysis of the insert DNA after Streptavidin beads 

treatment. Lane 1 indicates the marker line, Lane 2: Insert DNA before Streptavidin beads 

treatment, Lane 3: after Streptavidin beads treatment. Arrow indicates the target PCR 

product. 

 

The purified insert DNA of random peptide displaying was incorporated into 

T7select10-3b vector (Novagen) by using T7select packaging kits manufactures 

instruction and synthetic phage was replicated using E.coli (BTL5403) cell culture 

(Figure 8). And after successful amplification, single phage clones (Figure 9) were 

isolated into semi solid top agarose medium (2TY-top agarose). Finally, the amino acid 

sequences of the random peptide-displaying single phage clones were analyzed (Table 1). 
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Figure 8 E.coli (BTL5403) cell culture after growing in to 2TY liquid medium.  

 

 

Figure 9 T7 phage clones grown into the semi-solid top agarose medium. 
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Table 1 Amino acid sequence analysis for phage library. In this process, 5 phage clones 

were randomly collected and their amino acid sequences were examined to confirm the 

condition of phage libraries.  

 

Randomly collected 

clones 
Amino acid sequences 

Clone-1 STNCSF*FGEIVHCAFL 

Clone-2 SLSCSWYCGHMSCCGGE 

Clone-3 STSCSLQLGGLGHCANV 

Clone-4 SFRCSLHCGHFSCCVMP 

Clone-5 SFDCTCYCGRLIFCVER 

 

After comparing 5 random phage clones displaying amino acid sequence it was 

observed that all the phage clones displayed disufide constrained random amino acid 

sequence X3CX9CX3 (X= random amino acid, *= stop Codon) with two cysteine amino 

acid residue in 4th and 10th position except clone-1 shows one mutation (stop Codon).   

 

 

 

2.5 Summary  

Phage display is a powerful technique for identifying peptides or proteins that have 

desirable binding properties. In this method, target peptide or protein could be displayed 

on the surface of a phage as a fusion to a protein. The most common bacteriophages used 

for phage display are M13, fd filamentous phage, T4, T7, and λ phage. Among these, T7 

phage display enables various peptides or proteins to be displayed on the surface of lytic 
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T7 phage particles with a reduced bias of amino acids generated by the mixed nucleotides 

in the display peptides. Increased peptide diversity and rapid plaque formation properties 

(2–3 h) (24) made T7 phage-based screening procedures superior to those of a filamentous 

phage-based (like M13). In this chapter, the construction of random peptide-displaying 

T7 libraries was described briefly, including the designing, amplification and purification 

procedure of insert DNA, construction and amplification of synthetic phage libraries 

using T7Select Cloning Kit.    
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Chapter 3 

 

Isolation and Identification of IgY binding peptides from random 

peptide libraries 

 

3.1 Introduction 

Combinatorial phage-displayed random peptide libraries are very valuable research tools 

for studying the interaction between peptides and other substances or materials. From all 

different available molecular display techniques, phage display has become the most 

popular approach (1). Screening phage-displayed random peptide libraries is an effective 

technique for identifying peptides that can bind to its target molecules and regulate their 

function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope 

mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-

specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or 

organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems 

and other applications. In the past, scientists have been focused on identifying B/T cell 

epitopes (2-10), disease-specific antigen mimics (11-13), receptor agonists/antagonists 

(14-15), enzyme inhibitors (16-22) and protein partners (23-30). In recent years, there is 

an increasing number of researchers who apply this technique to new areas of chemistry 

(31-33) and materials (34-44) science. Although phage display is a powerful technique, 

its efficiency still depends on several factors. Choosing suitable phage display libraries (i. 

e. the number of phage-displayed amino acid residues), using applicable selection 

condition, ensuring the stability and the quality of phage display libraries and following 

the appropriate screening protocols are all important factors that could impact the quality 

and desirability of the ligand peptides generated. Considering those key parameters 

functional target peptides are more likely to be obtained. Furthermore, a combination of 
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peptide-displaying phage libraries with bioinformatics resources may improve the quality 

of peptides. Tian et al. (45) and Sandman et al. (46) used genetically-encoded non-natural 

amino acids into phage-displayed libraries for obtaining wider chemical diversities. 

Woiwode et al. (47) also constructed a new phage-displayed hybrid system with synthetic 

chemistry through one-compound-one-clone principle (each compound was encoded by 

a unique nucleotide sequence inserted in a non-coding region of the phage genome). 

These new techniques wider the advance the possible applications and potentials of phage 

display going forward. Target specific peptides can be identified by affinity selection 

called biopanning. For biopanning, molecule-displayed phage libraries are incubated with 

an immobilized target, followed by extensive washing to remove non-binding phages. 

Specific binders are usually eluted using acid or high salt and are enriched by 

amplification in the appropriate host cells. The biopanning procedure usually performed 

three to five times in order to obtain target binder that binds with high affinity (Figure 1). 

 

This chapter described the isolation and identification of IgY-binding peptides 

from random peptide-displaying phage libraries. The previous chapter described the 

construction of four types of random peptide libraries. By using biopanning process, IgY-

binding phages were isolated from four types of random peptide libraries. The binding 

properties of IgY-specific phage were evaluated by ELISA, Surface plasmon resonance 

(SPR) and immunoprecipitation, respectively.       
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Figure 1 The schematic diagram of biopanning with phage-displayed random peptide 

libraries. Random peptide-displayed on phage libraries could be used for a number of 

target candidates, including purified antibodies (B-cell epitopes), receptors (agonists or 

antagonists), enzymes (enzyme inhibitors), and carbohydrates (antigen-mimetic peptides). 

After three to five rounds of biopanning, specific individual phage clones are selected and 

analyzed. 

 

 

 

 

3.2 Experimental procedure 

3.2.1 Materials 

Polyclonal IgY and IgG were purchased from Acris Antibodies GmbH (Herford, 

Germany), Athens Research & Technology (Athens, GA), and ICN/Cappel Biomedicals 

(Aurora, OH), respectively.  
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3.2.2 Isolation of IgY binding phages from random peptide displaying Phage 

Library by the biopanning procedure. 

The T7 phage libraries displaying typically X3CX7–10CX3 random peptides, where X 

represents the randomized amino acid positions generated using mixed oligonucleotides 

on template DNA, were constructed using the T7Select vector 10-3b from Novagen 

(Tokyo, Japan), according to methods described previously (Chapter 2). 96-well 

microplate wells (Nunc Maxisorp) were coated with IgY dissolved into the solution 

(5.5μg / 200μl / well) and blocked with 0.25% BSA in PBS. The T7 phage libraries (1 × 

1010 pfu) of X3CX7–10CX3 were incubated for 1 h in wells coated with BSA to remove 

non-specific phages and were then added to IgY-coated wells. After 2-1 hour incubation, 

the plate was washed 5–30 times with PBS containing 0.1% Tween 20 (PBST). 

Escherichia coli BLT5615 cells (300 μL) (Novagen) in log-phase growth (the OD600 0.7-

0.8) were added to the wells, infected with phages for 10 min, and propagated in the 2TY 

medium at 37 °C. After bacteriolysis, 5M NaCl (0.1 times of the bacterial culture solution) 

was added and phages were recovered from the culture supernatant by centrifugation 

(15000 rpm for 20 min). Then, 50% polyethylene glycol (0.2 times of the bacterial culture 

solution) was added for precipitation reaction. After centrifugation (15000 rpm for 20 

min), the supernatant was discarded, the remaining phage pellet was dissolved in PBS, 

and the recovered phage solution was used for the next round of biopanning.  

 

3.2.3 Preparation of Synthetic Peptides 

C-terminally amidated synthetic peptides Y4-44 and Y5-55 were synthesized by solid 

phase synthesis using Fmoc chemistry. The protected peptides were coupled to the resin 

with NHS-PEG4-biotin (ThermoFisher, Waltham, MA). After removal of the protecting 
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groups, the peptides were mildly oxidized to form intra-molecular disulfide bonds in 

DMSO containing 1% pyridine. The generated disulfide-constrained peptides were 

purified by reversed phase-HPLC. The purity of the peptides was checked on Acquity 

SQD ultra-performance liquid chromatography system (Waters Corp., Milford, MA) and 

the disulfide bond formation of the peptides was confirmed by MALDI-TOF mass 

spectrometry on Voyager System 6366 (Applied Biosystems). The physicochemical 

properties of these peptides are summarized in Table 1. After lyophilization, the peptides 

were dissolved in the appropriate buffers and used for assay after centrifugation. 

 

Table 1 Physicochemical characterization of IgY binding peptides used in this study. 

 

Peptide Purity (%) 
Theoretical mass 

(Daltons) 

MALDI-TOF-MS 

(Daltons) 

Biotin-PEG4-Y4-4 96 2442.8 2442.9 

Biotin-PEG4-Y5-55 94 2482.8 2482.9 
  

 

 

3.2.4 Identification of synthetic peptide binding with IgY by ELISA 

The wells of a Microplate (Nunc Maxisorp) were coated with IgY, IgY-Fc, hIgG (Chugai 

Pharmaceutical Co., Ltd., Tokyo, Japan), mIgG (PharMingen, San Diego, CA, USA), 

human serum albumin, and BSA (50 ng/50 μL/well) overnight at 4 °C, washed three times  

with PBST, and blocked for 2 h with 0.5% BSA in PBS. Phage solution was added to each 

well and incubated for 2 h. After washing the plate, bound phage was detected with 

biotinylated anti-T7 phage antibody (Novagen,) and horseradish peroxidase (HRP)-

conjugated streptavidin (SA) (Vector Laboratories, Burlingame, CA, USA). For IgY-

binding 2nd and 3rd phage libraries binding capacity was identified by same ELISA 

procedure as described here. 
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For peptide binding, biotinylated peptide (40 nM) was pre-incubated with HRP-

conjugated SA (10 nM) to form a tetrameric peptide complex. The mixture was added to 

IgY-coated wells of a plastic plate. After 1 h incubation, the wells were washed five times 

with PBST, and binding was detected with tetramethylbenzidine (Wako Pure Chemical, 

Osaka, Japan) reagent. Finally, 1 M hydrochloric acid (40 μL/well) was added to stop the 

reaction and binding was measured by the absorbance at 450 nm in a microplate reader 

(680XR, Bio-Rad, Hercules, CA, USA).  

 

3.2.5 Surface Plasmon Resonance (SPR) Analysis 

SPR analysis was performed on a BIAcore T200 (GE Healthcare, Little Chalfont, UK) at 

25 °C. All reagents and sensor chips were purchased from GE Healthcare. IgY and IgY-

Fc were immobilized on a CM5 sensor chip according to the manufacturer’s instructions. 

The amount of the immobilized IgY was adjusted to within 1300–4800 response units. 

The association reaction was monitored by injecting the peptides into the sensor chip at a 

flow rate of 50 μL/min for 180 s. The dissociation reaction was performed in HBS-EP 

buffer (10 mM HEPES; pH 7.4 containing 150 mM NaCl, 3 mM EDTA, and 0.005% 

Tween 20).Binding kinetic parameters were calculated using BIA evaluation Version 3.2 

Software (GE HealthCare).  

 

3.2.6 Immunoprecipitation on Streptavidin beads 

Immunoprecipitation was performed on SA beads by washing with PBS. Biotinylated 

IgY-binding peptides (100 mM) were added and shaken for 30 min. Next, IgY and human 

IgG (30 μg/100 μL) were added, shaken for 1 h, and centrifuged. The supernatant was 

removed and dispersed precipitated beads were mixed with buffer and centrifuged. 
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Finally, 30 μL of precipitated beads was used for SDS-PAGE analysis. For SDS-PAGE 

analysis of the obtained fractions, the sample was mixed with SDS sample buffer and 

subjected to SDS-PAGE on a 4–20% gradient gel (Mini-PROTEIN TGX; Bio-Rad).After 

electrophoresis, the gel was stained with Coomassie Brilliant blue R-250 stain solution 

(Bio-Rad). 

 

 

 

3.3 Results and Discussion 

3.3.1 Isolation of IgY- specific phage clones from random peptide libraries 

IgY-binding T7 phage clones were enriched by five rounds of biopanning against IgY 

from two random libraries, X3CX7–8CX and X3CX9–10CX3, where X represents random 

amino acid positions. The binding activities of the phage libraries after biopanning were 

examined by ELISA (Figure 2). Phage binding increased after repeated biopanning in 

both libraries, but in the X3CX7–8CX library, binding to human serum albumin was 

observed indicating non-specific binding. In contrast, the X3CX9–10CX3, the library 

showed increased binding to IgY. The phage was randomly cloned after 4 and 5 rounds 

of biopanning of the X3CX9–10CX3 library and subjected to binding screening by ELISA.  
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Figure 2 Isolation of IgY-specific phage clones from T7 phage-displayed random 

peptide libraries. Isolation of IgY-specific phage from the initial libraries (X3CX7–8CX 

or X3CX9–10CX3). After five rounds of biopanning, specific phage enrichment against 

IgY was examined by ELISA. Lib, phage libraries before biopanning; 1st–5th, phage 

after 1–5 rounds of biopanning; W, wild- phage; Np, measurement without phage. 

Among the 30 clones, 25 clones showed high binding to IgY (Figure 3). 

Sequence analysis of 16 clones displaying peptides revealed three individual motifs (Y4-

4, Y5-14, and Y5-15), as shown in Table 2. These binding clones bound specifically to 

IgY but not to other immunoglobulins or proteins (Figure 4). 
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Figure 3 Identification of IgY-binding phage clones isolated from 4th and 5th phage pool 

by ELISA. 4-4 - 4-37, phage clones isolated after 4 rounds of biopanning. 5-5 – 5 55, 

Phage clones isolated after 5 rounds of biopanning. W, wild- phage; Np, measurement 

without phage. 

 

 

Table 2 Comparison of amino acid sequences of IgY binding peptides. Amino acid 

positions are numbered based on X3CX9CX3 sequence.  

____________________________________________________________________________ 
Clone       Sequence         Frequency         Library source 

1     5      10      15 
4-4   GVKCTWSSIVDWVCVDM    11/16    X3CX9CX3 
5-14   GTRCDWSAAYGWLCYDY    4/16         X3CX9CX3 

5-55   RSVCVWTAVTGWDCRND    1/16         X3CX9CX3 

____________________________________________________________________________________________________________________ 
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Figure 4 Identification of binding specificity of IgY binding specific phage clones by 

ELISA. Wild indicates the wild-type phages binding properties. 

 

 

 

3.3.2 Functional evaluation identification of IgY binding synthetic peptides 

The peptide sequences displayed on the 16 phage clones shared common peptide 

sequence pattern X3CXWX5WXCX3 (Table 2) on three types of peptide-displaying phage 

clones. We have synthesized most abundant peptide sequence derived from Y4-4 phage 

clone (Table 2) and Y5-55 phage clones displayed peptide sequences and analyzed for its 

functionality using ELISA, SPR (Surface Plasmon Resonance) and immunoprecipitation.  

The binding specificity of the synthetic peptide Y4-4 and Y5-55 were compared with 

various antibodies and control proteins by ELISA (Figure 5). Both peptides showed 

higher binding against IgY and IgY-Fc region indicating their specificity. 
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Figure 5 IgY binding synthetic peptides binding specificity identification by ELISA. No 

peptide indicates measurement without peptides.  

 

Synthetic peptides binding affinity for the IgY were analyzed by SPR. The 

equilibrium constant for the dissociation (Kd) between IgY immobilized on a CM5 sensor 

chip and Y4-4, Y5-55 peptides were estimated 6.9μM and 4.2μM respectively using pH 

7 running buffer, which is not sufficient for an affinity ligand. (Figure 6). The SPR 

analysis repeated again using acetate running buffers (pH 4 and pH 5) to verify the 

binding force between IgY and peptides under acidic conditions but the binding affinity 

was estimated is nearly equal to pH7. 
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Figure 6 Affinity measurement of IgY-binding synthetic peptide using the SPR. 

 

Finally, to confirm the peptides have the potential binding ability for recovering 

IgY from the solution in the case of immobilized peptide column carrier, IgY binding 

peptides (Y4-4, Y5-55) were evaluated by immunoprecipitation. In this experiment, IgY 

binding biotinylated peptides were immobilized to SA-agarose beads and IgY and human 

IgG (used as a control) were immune-precipitated, and analyzed by SDS-PAGE (Figure 

7).The result shows IgY is specifically collected by both the peptides. 
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Figure 7 Immunoprecipitation analysis of Y4-4 and Y 5-55 synthetic peptides. Lane M, 

molecular weight marker (Precision Plus Protein™ All Blue Standards, Bio-Rad). Lane 

1, Y4-4 peptide beads mixed with IgY. Lane 2, Y4-4 peptide beads mixed with IgG. 

Lane 3, Y5-55 peptide beads mixed with IgY. Lane 4, Y5-55 peptide beads mixed with 

IgG. Lane 5, beads only. Lane 6, standard IgY. 

 

 

 

3.4 Summary 

This chapter described the importance of combinational phage library and its application 

in research and diagnosis. This chapter also described the experiment for the isolation of 

IgY-binding peptide from a random peptide-displaying phage library. In this experiment, 

we have confined two IgY-binding peptides (Y4-4 & Y5-55) from T7 phage-displayed 

random peptide libraries. We have distinct logics to adopt disulfide-constrained T7 phage 

display tactics from two most prevalent (M13 and T7) phage display system, such as T7 

phage display library show less bias in displayed amino acids which acquiesce greater 

coverage of a mixture of peptide sequences in the library (48), disulfiide-constrained 

M 
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cyclic peptide has higher affinity compared to linear form because of the reduction of the 

conformational chain entropy(49). 

 

Binding properties of IgY-specific peptides were confirmed by ELISA but in the 

SPR analysis, they have shown an average binding affinity (Kd = 4-7 μM) with IgY. We 

again endorsed their binding specificity towards IgY by SA-beads immunoprecipitation. 

From the immunoprecipitation analysis, both of our peptides showed specific binding 

against IgY and IgY-Fc respectively.  
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Chapter 4 

 

Development of a simple, cost-effective and efficient method for 

isolating chicken egg yolk immunoglobulin using de-lipidation solution 

and ammonium sulfate 
 

4.1 Introduction 

In Chicken egg, the yolk is usually a shade of yellow color, which is separated from the 

surrounding egg white by the three-layered vitelline membrane. Chicken egg yolk 

provides the maternal antibodies for the first immune defence for the embryo. 

Furthermore, lipids, proteins, vitamins, and minerals are also provided by the egg-yolk in 

the developing embryo. Yolk consists of approximately 48% water, 33% lipid, and 17% 

protein (1). The component of the yolk is synthesized in the liver, transported with the 

blood to the ovary, and incorporated into the egg cell by receptor-mediated endocytosis 

(1–4). Apart from its function in avian reproduction, egg yolk is widely used in protein 

source as food. In industry, they are used as a binding agent, emulsifier, and natural 

antioxidant. Several research has established the therapeutic applications of egg yolk (5–

8) in life science. Some experiments suggested egg proteins as an important raw material 

for the production of bioactive peptides (7, 8). The major egg yolk proteins and 

lipoproteins are distributed among two yolk compartments as plasma portion and a 

granular fraction. The plasma contains the water-soluble fraction, which mainly consists 

of a-livetin (serum albumin), b-livetin (a2-glycoprotein), and g-livetin (IgY). The 

granular (or globular) fraction contains the lipovitellins as components of high-density 

lipoprotein (HDL), phosvitin, and low-density lipoprotein (LDL) apoproteins (apo). 

Lipovitellins, the highly phosphorylated phosvitins, and the yolk plasma glycoproteins 

YGP40 and YGP42 are synthesized in the liver and transported to the oocyte as 210–260 
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kDa precursors, the vitellogenins (VTGs), which are constituents of blood HDL particles 

(9, 10). These are cleaved in the yolk to yield the mature proteins. Yolk LDL apoproteins 

are also synthesized in the liver and transported in the blood to the ovary as constituents 

of very-low-density lipoprotein (VLDL) particles. Yolk LDL has been shown to yield 

nine major protein bands on PAGE in a recent study (11). Two of these bands were 

identified as monomer and dimer of the,9 kDa apovitellenin I, while all other bands 

contained fragments of apolipoprotein B, which was already suggested earlier to give rise 

to all yolk LDL apoproteins with the exception of apovitellenin I (1, 12). In addition to 

these major proteins, it was reported that the yolk contains many enzymes, which were 

often characterized by their activity only (1, 13). Cathepsin D is important exceptions 

among the enzymes, which was suggested to be a key enzyme in yolk protein and 

aminopeptidase Ey (14) maturation. 

 

Chicken egg yolk has been considered an ideal source of immunoglobulin and 

IgY is referring to be the predominant antibody in chicken egg yolk (15). It has many 

significant advantages of IgY over mammalian IgG have described in chapter 1. IgY has 

also drawn considerable attention as a means of preventing and controlling such diseases 

as bovine mastitis, diarrhoea in piglets, campylobacteriosis, shrimp white spot syndrome 

virus (16), immunological supplement in infant formula and other food (17). Due to the 

unnecessary complexity and time-consuming purification steps, the practical use of IgY 

in research and diagnostics becomes limited. IgY from egg yolk could be isolated to 

remove the water-insoluble components such as lipids and lipoproteins to get water-

soluble protein fraction (WSF). Several methods are used to isolate IgY, including water 

dilution (18), salt precipitation (19), high polymer precipitation (20), organic solvent 
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extraction (21), ultrafiltration (22), and chromatography (23). However, most of these 

methods have drawbacks, such as low IgY yield, the complexity of procedures, or 

compatibility with human uses. Chang et al. (24) suggested that anionic polysaccharides 

could interact with lipoproteins to isolate IgY, but they just focused on the interactions 

between polysaccharides and lipoproteins without considering the purification of IgY. 

Souza et al., again pointed out that polysaccharides and lipoproteins could form complex 

coacervates, and the changes of pH value in egg yolk solution influenced the extent of the 

precipitation of polysaccharide lipoprotein complexes. Tan et al. (25) reported a rapid 

way to isolate IgY using a combination solution followed by ammonium sulfate. Because 

of some factors (e.g., pH, types and concentrations of polysaccharides, and diluted rate), 

the yield and purity of IgY isolated in this way were not very satisfying (26). Sock Hwee 

Tan et al. (25) reported IgY extraction method with a de-lipid solution (mix of -

Carrageenan, pectin and CaCl2) followed by precipitation using various concentrations 

ammonium sulfate ((NH4)2SO4), but in that experiment, it was not possible to recover IgY 

using 20%-30% ammonium sulfate precipitation. In addition, after adding the de-lipid 

solution, a considerable viscosity was observed in the samples subjected to the 

ammonium sulfate precipitation which was considered to be due to the gelatin ability of 

-Carrageenan.  

 

To investigate the properties of IgY extraction by de-lipid solutions, in this study, 

we adopted a simple, safe, and effective extraction method using distilled water as 

delipidation solution to remove insoluble lipids and lipoproteins in the first step, followed 

by ammonium sulfate precipitation. Using distilled water as delipidation solution 

confirms no use of undesirable reagents which was considered as a better IgY extraction 
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method without affecting the future experiments. So the isolated IgY can be applied to 

large-scale production in the commercial industries and medical field. 

 

4.2 Experimental procedures 

4.2.1 IgY Extraction by de-lipid extraction solution 

Egg yolk was separated from egg white, and after washing the egg with distilled water, 5 

mL of egg yolk was mixed with five volumes of (25 mL) of delipidation solution 

containing 0.072% κ- Carrageenan (Sigma, St. Louis, USA), 0.12% low-methoxyl pectin 

(Cp Kelco APS, Atlanta, GA, USA), and 12 μM CaCl 2 (Sigma). The solution was then 

incubated at 4 °C for 2 h with shaking and then centrifuged for 20 min at 12 000 ×g at 

4 °C. After centrifugation, soluble IgY in the delipidated supernatant was collected and 

precipitated by (NH4)2 SO4, which accounted for up to 35–40% of the total solution, 

followed by 1 h incubation with shaking at 4 °C and centrifugation for 20 min at 12,000 

×g. Finally, the supernatant was removed, and the pellet was suspended in 10 or 50 mM 

phosphate buffer. 

 

4.2.2 IgY Extraction by distilled Water 

First, 5 mL of egg yolk separated from egg white was mixed with 10 volumes of distilled 

water and incubated at 4 °C with shaking overnight followed by centrifugation at 10,000 

×g for 25 min. After centrifugation, the supernatant was collected and precipitated using 

four different concentrations (30%, 35%, 40%, and 50% w/w) of (NH4)2 SO4. Finally, all 

the samples were incubated with shaking at 4 °C for 1 h, followed by centrifugation for 

20 min at 12 000 ×g, and the pellet was suspended in 10 mM phosphate buffer (pH 7.0) 

after removing the supernatant. 
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Figure 1 Schematic diagram of IgY extraction from egg-yolk by distilled water. (A) Egg 

yolk separated from the egg white portion. (B) By using micro-pipette 5ml of yolk 

separated. (C) Egg yolk diluted with 10 times distilled water. (D) Diluted egg yolk 

incubated with shaking for overnight at 4ºC. (E) Egg diluted solution centrifuged at high 

speed for 20 minutes, in the recovered supernatant 35% of total volume of the solution 

ammonium sulfate added and centrifuged again at high speed. (F) Supernatant removed 

and pellet suspended into 5ml of phosphate buffer. 

 

 

 

4.3 Results and Discussion 

Several IgY extraction methods have been reported before (24-29), here we examined 

IgY extraction by de-lipid solution (containing -Carrageenan) and distilled water 

respectively (31). We have prepared egg samples by adding de-lipid solution (diluted 2-

fold by PB and incubated with and without shaking) followed by 35% and 40% 

ammonium sulfate precipitation respectively. After the precipitations, to identify the 

influence of the PB concentration, samples were suspended in 10mM and 50mM 

respectively and IgY was measured by SDS-PAGE analysis (Figure 2). In figure 2, it was 
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observed that IgY could be recovered efficiently by 35% ammonium sulfate precipitation. 

Accordingly, we have also tried to extract IgY from the egg by adding 10 volumes of 

distilled waters with egg yolk with shaking followed by different concentrations of 

ammonium sulfate precipitation. In the SDS-PAGE analysis (Figure 3), it was confirmed 

that IgY could be efficiently recovered without contamination by distilled water 

extraction method with 35% ammonium precipitation (Figure 3, lane 3). Moreover, to 

identify the best IgY extraction condition, IgY recovered with the de-lipid extraction 

method (Figure 2, lane 9) was also used in SDS-PAGE (Figure 3, lane 6). As compared 

between the two IgY extraction methods, in IgY extraction by distilled water method there 

is no use of undesirable reagents which was considered as a better IgY extraction method 

without affecting the future experiments. 

 

 

Figure 2 SDS-PAGE analysis of IgY extraction with -Carrageenan. Lane 1, IgY 

(standard control). lanes 2 and 3; egg yolk suspended in 10 mM and 50 mM PB buffer 

with shaking, respectively and precipitated by 40 % (w/w) (NH4) 2SO4. lanes 4 and 5; egg 

yolk suspended in 10 mM and 50 mM PB buffer with shaking, respectively and 

precipitated by 35 % (w/w) (NH4) lanes 6 and 7; egg yolk suspended in 10 mM and 50 

mM PB buffer without shaking, respectively and precipitated by 40 % (w/w) (NH4)2 SO4. 

lanes 8 and 9; egg yolk suspended in 10 mM and 50 mM PB buffer without shaking, 

respectively and precipitated by 35 % (w/w) (NH4) 2SO4. 
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Figure 3 Optimization for extraction condition of IgY from delipidated egg yolk solution. 

Lane 1, IgY (standard control). Proteins (lanes 2–5) sample diluted in 10times distilled 

water and precipitated by 30, 35, 40, and 45% (w/w) (NH4) 2SO4, respectively. Lane 6, 

protein extracted by -Carrageenan, suspended in 50 mM PB buffer without shaking, and 

precipitated by 35 % (w/w) (NH4) 2SO4. 

 

 

 

4.4 Summary 

The high lipid content of egg yolk interferes with affinity-based IgY purification. To avoid 

this, a delipidation step is required to remove insoluble lipids and lipoproteins (22). We 

first investigated an IgY de-lipid extraction procedure using vegetable gum (κ-

Carrageenan) followed by ammonium sulfate precipitation, as reported by Tan et al. (25). 

However, the κ-Carrageenan de-lipid solution based IgY extraction procedure cause the 

extract solution to become very viscous, which interrupted column chromatography. 

Therefore, we employed a simple dilution of egg yolk with distilled water followed by 

ammonium sulfate precipitation. This water-based IgY extraction offers a clear and non-

viscous IgY extraction solution, removing lipids as a floating bubble layer. We confirmed 
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that IgY extraction by distilled water and 35% (w/w) ammonium sulfate precipitation to 

remove insoluble lipids from the egg yolk was effective for extracting IgY. 
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Chapter 5 

 

Applications of IgY binding peptides for IgY purification 

 

5.1 Introduction  

Chicken egg yolk immunoglobulin or IgY is the functional equivalent of mammalian IgG 

(1).It is found in the serum of the chicken and provides passive immunity to the embryo 

via the egg yolk, as a result the high concentration of IgY is available in the egg yolk (2). 

Comparing to the mammalian IgG, chicken IgY has many advantages (2) such as 1) no 

sacrificing or bleeding of the animal, 2) high protein yield comparing to another source 

(100–150 mg IgY/each yolk), and 3) less cross-reactivity with mammalian proteins. 

Traditional methods for IgY purification involve multi-step, complex, and time-

consuming procedures such as ammonium sulfate precipitation (3), polyethene glycol 

precipitation (4), water dilution (5), ultrafiltration (6), gel filtration (7), thiophilic gel 

chromatography (8), and ion exchange chromatography (9). But the recovery of IgY via 

these methods are very low and the abundant lipoprotein in egg yolk is usually denatured 

with chloroform and removed by centrifugation.  

 

Recently, Verdoliva et al. (10) reported a synthetic ligand consisting of a 

tetrameric tripeptide (ArgThr-(Tyr) 4-K2-K-G) for IgY affinity purification. However, 

this ligand detaches from the matrix and its binding capacity is reduced by 30% after 

exposure to 0.1 M NaOH for 1 h. For industrial use, the ligand column needs to be cleaned 

and used repeatedly in production, this deficiency greatly limits this ligand’s industrial-

scale application for IgY purification. Recently affinity chromatography is one of the 

most widely used methods for antibody purification (9) for the rapidity and high 
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selectivity. Immunoglobulin binding proteins (IBPs), such as protein A and protein G, 

have been broadly used for affinity purification of mammalian immunoglobulin (11). 

Protein A and G ligands bind to Fc region of most IgG and IgA subclasses, meanwhile, 

protein A also binds to the Fab region at the framework of VH (Kd ∼ 20 nM) while protein 

G binds to the Fab at the CH1 (Kd ∼ low M) (12). However, it is important to address 

that those commonly used IBPs have no affinity with IgY due to the different specific 

amino acid sequence of IgY-Fc to IgG-Fc. There is no suitable affinity chromatography 

for IgY purification except small-scale antigen-antibody affinity chromatography. 

Recently, protein M, a transmembrane protein from human mycoplasma, has been 

reported to bind to all types of mammalian IgG, IgA, IgD and IgM with high affinity (11). 

Protein M mainly blocks antibody-antigen union depends on ten conserved hydrogen 

bonds and one salt bridge made from Protein M to each Fab VL, almost all of the bonds 

are highly conserved among human antibodies with both and light chains (11). It could 

be rational to propose that protein M might also bind to IgY according to the variable 

region amino acid sequence alignment of human IgG and chicken IgY, which could lead 

to methodology innovation on IgY purification. W.Maciej et al., 2015 also presented the 

method for generation of peptide-specific IgY antibodies directed to Staphylococcus 

aureus extracellular fibrinogen binding protein epitope (12-13). However, bacterial 

protein based antibody purification always require extra attention to prevent bacterial 

endotoxin or bacterial protein contamination in the pharmaceutical industries (14). 

Human Mycoplasma and Staphylococcus aureus both have highly toxic and antigenic 

nature which may have led to high risk of contamination for large scale pharmaceutical 

use (15).    
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In this chapter, we have described the establishment of the IgY purification 

system using IgY binding peptides. The preparation of affinity column immobilized 

with IgY-binding peptide and the determination of IgY antibody purification condition 

was performed to establish the purification process of IgY antibody from egg yolk in a 

single step.  

 

 

 

5.2 Experimental procedure 

5.2.1 HPLC analysis 

Y4-4 and Y5-55 peptides were biotinylated via a PEG4 linker to the N-terminus, and then 

385 and 324 nmol/column were immobilized, respectively, on a HiTrap™ Streptavidin 

HP column (1 mL; GE Healthcare) according to the manufacturer’s instructions. IgY, IgY-

Fc, and human IgG were used as standard proteins to identify binding against peptides. 

After injecting the standard proteins, the column was washed with PBS and peptide-

absorbed proteins were eluted with elution buffer (0.1 M glycine-HCl, pH 2.5 and pH 3). 

 

5.2.2 Chicken immunization and egg collection 

Two Boris Brown Chickens were injected intramuscularly with JWH-KLH (JWH 

conjugated to Keyhole Limpet Hemocyanin) (ARC Resources, Calgary, Canada) and the 

first immunization was carried out in complete adjuvant. Four booster injections with 

incomplete adjuvant were given at 14, 28, 42, and 63 days after the first immunization. 

The eggs were collected each day starting on the second day after immunization and 

stored at 4 °C. 
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5.2.3 Purification of chicken egg yolk IgY by affinity peptide column 

Approximately 385 nmol of the Y4-4 peptide was immobilized on a HiTrap™ 

Streptavidin HP column (1 mL; GE Healthcare), according to the manufacturer’s 

instructions. Egg yolk IgY was extracted from a commercial egg by injecting distilled 

water directly into the peptide-immobilized affinity column (1 mL), which was connected 

to a Profinia purification system (Bio-Rad). Washing buffer (PBS) was used to remove 

unbound materials. Binding IgY was eluted with 0.1 M glycine-HCl/0.25 M NaCl (pH 

2.5 and pH 3) and the eluate was immediately neutralized with neutralization buffer (1 M 

Tris-HCl, pH 8.5) and stored at 4 °C until use. The obtained fractions were evaluated for 

immunoreactivity by enzyme-linked immunosorbent assay (ELISA) and purity by SDS-

PAGE analysis. From the SDS-PAGE data, the purity of the obtained fractions was 

estimated using GelAnalyzer2010a software. Protein concentrations were estimated from 

the absorbance at 280 nm using an absorbance coefficient of 1.55 mL/mg for IgY and 

other proteins.  

 

5.2.4 ELISA 

For anti-KLH antibody measurements, KLH (50 ng/50 μL/well) and 0.5% BSA were 

coated overnight at 4 °C, washed three times with PBST, blocked with 0.5% BSA for 2 h, 

and washed again with PBST. Egg samples (before and after peptide-conjugated column 

purification) were diluted by 1000-fold using distilled water. Next, 50 μL/well of the 

solution was added. Finally, the binding was detected with tetramethyl-benzidine (Wako 

Pure Chemical, Osaka, Japan) reagent after incubating anti-IgY-conjugated with HRP 

(diluted by 2000-fold) for 1hour with shaking. 1 M hydrochloric acid (40 μL/well) was 

added to stop the reaction, and binding was measured by the absorbance at 450 nm in a 
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microplate reader (680XR; Bio-Rad, Hercules, CA, USA). 

  

5.2.5 SDS-PAGE analysis 

For SDS-PAGE analysis of the obtained fractions after column purifications, the sample 

was mixed with SDS sample buffer and subjected to SDS-PAGE on a 4–20% gradient 

gel (Mini-PROTEIN TGX; Bio-Rad).After electrophoresis, the gel was stained with 

Coomassie Brilliant blue R-250 stain solution (Bio-Rad). 

 

 

 

5.3 Results and Discussion 

To investigate the absorption ability of Y4-4 and Y5-55 peptide-conjugated affinity 

columns, an N-terminal biotinylated peptide was immobilized on a HiTrap Streptavidin 

HP column. IgY, IgY-Fc, or human IgG were injected into the column connected to HPLC. 

To elute the adsorbed protein fraction from the Y4-4 and Y5-55 peptide columns, two 

acidic elution buffers (0.1 M glycine-HCl) were used with pH 2.5 and pH 3.0, respectively. 

Although human IgG passed through both peptide-immobilized columns, IgY and IgY-

Fc proteins were absorbed onto both columns (Figure 1). Furthermore, IgY and IgY-Fc 

proteins were eluted from the column at pH 2.5 and 3.0, although the elution peaks at pH 

2.5 were sharper than those at pH 3.0 for both peptides.  

 

A peptide-conjugated column prepared by immobilization of the biotinylated 

Y4-4 peptide (385 nmol) in a HiTrap Streptavidin HP column was used for one-step 

purification chromatography on Profinia (Bio-Rad) to purify IgY from egg yolk extract 
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precipitated with 35% (w/w) ammonium sulfate. After applying the egg yolk solution to 

the peptide affinity column, the column was washed with 10 column volumes of PBS and 

eluted with 0.1 M glycine-HCl with pH 2.5 and 3.0, respectively (Figure 2).  

 

Figure 1 IgY absorption/elution profiles on IgY binding peptide immobilized column by 

HPLC. Biotinylated Y4-4 and Y5-55 peptides were immobilized into SA-HiTrap columns. 

After equilibration with PBS, IgY, IgY-Fc or IgG were injected. Elution was performed 

by 0.1 M glycine-HCl buffers at pH 3.0 (A, C) or 2.5 (B, D) to monitor the 

absorption/elution properties. Arrows 1, 2 and 3 indicate the starting point for sample 

injection, elution and regeneration with PBS, respectively. 
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Figure 2 IgY purification from egg yolk (non-immunized) extract by peptide column at 

pH 2.5 (A) and 3.0 (B). 

 

 

We attempted to purify functional IgY from eggs collected from chickens 30–37 

days after immunization with KLH antigen four times every week after initial 

immunization. IgY was purified from these eggs as described in Figure 3. After applying 

the egg yolk solution to the peptide affinity column, the column was washed with 10 

column volumes of PBS and eluted with 0.1 M glycine-HCl with pH 2.5.  
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Figure 3 IgY purification from KLH-immunized egg yolk extract by peptide column at 

pH 2.5 (A) and 3.0 (B).  

 

 

After purification, the non-immunized and KLH-immunize chicken egg yolk, the 

excluded and eluted fractions by both elution condition (pH 2.5 and 3.0) were subjected 

to SDS-PAGE to evaluate the purity of IgY in each fraction (Figure 4). IgY (150 kDa) 

was not detected in the flow-through fractions but appeared as a single band in the 

immunized and non-immunized egg eluted fractions at pH 3.0 (Figure 4, lane 7 and 12), 

indicating the successful isolation of IgY from both egg yolk with high purity (93%). In 

contrast, proteins with higher molecular mass (>250 kDa) were observed by SDS-PAGE 
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following elution at pH 2.5 (lane 5 and 10), resulting in low purity (63%) of IgY. The 

recovery and purity of IgY after purification are summarized in Table 1.  

 

Figure 4 SDS-PAGE of purified KLH-immunized and non-immunized egg yolk fractions. 

Lane 1, molecular weight marker (Precision Plus Protein™ All Blue Standards, Bio-Rad). 

Lane 2, standard product IgY 5µg. Lane 3, KLH-Immunize egg delipidated solution 

before purification. Lane 4, exclusive fraction. Lane 5, elusion fraction at pH 2.5. Lane 5, 

exclusive fraction. Lane 6, elusion fraction at pH 3.0. Lane 7, Non-immunize egg 

delipidated solution before purification. Lane 8, exclusive fraction. Lane 9, elusion 

fraction at pH 2.5. Lane 10, exclusive fraction. Lane 11, elusion fraction at pH 3.0. Lane 

12, molecular weight marker. Arrow indicates the position of IgY.  
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Table 1 Recovery and purity of IgY (non-immunized egg) in peptide affinity column 

purification. The protein amount (starting from 1 mL delipidation solution corresponding 

to 1 mL egg yolk) was indicated at each step of purification. The purity of IgY in each 

fraction was estimated from CBB-gel image on SDS-PAGE using GelAnalyzer2010a 

software. 

 

pH of 
elution 
buffer 

Protein in egg yolk 
delipidation solution 

 
Flow-through fractions Elution fractions 

 
Amount 

(mg) 
Purity (%) 

Amount 
(mg) 

Purity (%) 
Amount 

(mg) 
Purity (%) 

2.5 1.47     70 
 

0.68 0 0.74 63 

3.0 0.65 0 0.43 93 

 

Finally, the antigen binding ability of the purified IgY was tested by ELISA. As 

shown in Figure 4, purified IgY from eggs of immunized chickens showed KLH-specific 

binding ability, which was also observed in the egg yolk extraction before column 

chromatography. This suggests that our method can be used for to purify functional IgY 

from the eggs of immunized chickens. 
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Figure 5 The function of purified IgY. The binding specificity of IgY from the KLH-

immunized chicken egg was analyzed by ELISA. Extract from KLH-immunized egg; 

delipidated solution from KLH-immunized chicken egg yolk. IgY from KLH-immunized 

egg; IgY purified by Y4-4 peptide conjugated column from the KLH-immunized chicken 

egg. Extract from the non-immunized egg: delipidated solution from non-immunized 

chicken egg yolk. IgY from the non-immunized egg; IgY purified by Y4-4 peptide 

conjugated column from the non-immunized chicken egg. No protein; measurement 

without protein. 

 

 

 

5.4 Summary 

Using the peptide-conjugated column, we purified IgY from egg yolks of non-immunized 

and KLH-immunized chickens and successfully isolated highly pure IgY (>90%) in both 

cases with a high recovery yield (approximately 70%). However, the purified IgY 

contained several bands with high molecular weights larger than IgY (Figure 4). Because 

these bands were not observed before chromatography, they were generated by the 
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chromatographic procedures, likely by the formation of oligomers of IgY induced by acid 

treatment (pH 2.5) during elution. To avoid this, a mildly acidic condition of pH 3.0 was 

used for elution (lane 7 and 12 of Fig. 4), although the recovery yield from the column 

decreased from 0.74 to 0.43 mg (Table 1). 

 

In summary, we successfully refined a highly specific and functional IgY 

binding peptide from the T7 phage library. This was achieved by identifying a specific 

IgY binding peptide-displaying phage by biopanning from a random peptide-displaying 

library. Our IgY-binding novel peptide is compact and highly functional as an affinity 

ligand and may be an excellent reagent for low-cost purification of IgY from chicken 

egg yolks with high yield and purity. 
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Chapter 6 

 

Summary 

 

6.1 Summary and conclusion 

In this thesis, we present a study about the identification of IgY binding peptides with 

unique properties and their application for the purification of IgY from egg yolk. Through 

biopanning from the random peptide-displaying phage libraries constructed by T7 phage 

display technology, IgY-specific binding phages were isolated and their synthetic peptides 

were characterized by several analytical techniques. The obtained data provided detail 

properties about the IgY-binding peptides and indicated the potentials in use for purifying 

IgY antibody from the egg. Therefore, the egg yolk dilapidation technique was validated 

by comparing the different types of lipid extraction followed by ammonium sulfate 

precipitation methods. Finally, IgY purification system was established by combining the 

dilapidation technique and the chromatographic technique using the column conjugated 

with the IgY-binding peptide. 

 

Chapter 1, described the general introduction of the IgY antibody's structure and 

functions as an attractive tool for biological research, diagnostic use and preparation of 

immunotherapy. Especially, this chapter also analysed the advanced features of IgY 

antibodies, such as its higher specificity, their low cross-reactivity to mammalian proteins 

due to the maximum phylogenetic distance between them, improved pH/temperature 

stability and cost-effective preparations over mammalian IgG. 
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Chapter 2, summarised the introduction and the preparation of random peptide-

displaying T7 phage library used here. To construct T7 phage library harbouring the 

disulfiide constrained random peptide library, the design of DNA template expressing 

random peptides, PCR amplification of template, the ligation of amplified DNA to T7 

phage vector and the phage propagation using E. coli were described. Finally, the quality 

of peptide-displaying T7 phages libraries constructed here was also validated.   

 

Chapter 3, described the isolation of IgY-binding peptide from random peptide 

displaying T7 phage libraries and the characterizations of the obtained peptides. The 

biopanning procedure was applied to identify IgY-binding phage and the specific phages 

were isolated. The synthetic peptides derived from the sequences of the phages were 

prepared and their binding properties including their specificity and affinity were 

analyzed. 

 

Chapter 4, reports the pretreatment of chicken egg including delipidation of egg 

yolk for the use of IgY purification. Two previously developed egg delipidation 

techniques were compared and validated for the pretreatment of egg yolk. Finally, a novel 

and potential egg delipidation technique which can serve lipid extraction solution for 

better IgY purification were identified. 

 

Chapter 5, described the establishment of the IgY purification system using IgY 

binding peptides. The preparation of affinity column immobilized with IgY-binding 

peptide and the determination of IgY antibody purification condition was performed to 

establish the purification process of IgY antibody from egg yolk in a single step. 
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In Chapter 6, the results of this study were summarized and the usefulness of our 

method was discussed from viewpoint of industrial applications, comparing with other 

methods. 
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