Original Article 1

Family Tree of Pythagorean Triplets :
A Statistical Approach

ISOKAWA Yukinao* and HAMADA Kazuya**
(Received 23 October, 2018)
Abstract

A parent-child relationship for Pytagorean triplets are studied. This relationship introduces a directed-
graph. First we present a characterization of root nodes of the graph. Next we show every offspring of a
root node is an innite subgraph. Then we give a useful program which computes vertices and edges of

the graph. Several simulations by using the program suggest that offspring is in fact a tree.
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1 Introduction

The Pythagorean triplet has various amusing, amazing, astonishing, and astounding properties. In
particular, it has a parent-child property.
Berggren (1934) showed that all primitive Pythagorean triples can be generated from the (3,4, 5) triangle

by using the three linear transformations

1 -2 2 1 2 2 -1 2 2
Ar=1 2 -1 2 |, A=21 2 |,A43= -2 1 2
2 -2 3 2 2 3 -2 2 3

If a primitive triplet Ty = (a, b, c) is regarded as a column vector, we can make three new primitive triplets
Ty = AyTy, T = AsTy, Ts = AsTy. Then we say that T3, T, T3 are children of Ty, and vice versa Ty is a
parent of Ty, T, T5. This parent-child relationship has been re-discovered and studied by several authors,
for example Hall (1970), Roberts (1977), and Alperin (2005).

In the present we consider a different parent-child relationship. Berggren’s relationship is of algebraic
nature, whereas our relationship is geometric. We will say that Ty is a parent and 77 a child when the
hypotenuse of Ty coincides with a non-hypotenuse of 77. Our aim is to construct a very long chain of

Pythagorean triangles that satisfy such a parent-child relationship.

Definition 1 Let us call a triplet of positive integers T' = (a, b, ¢) a Pythagorean triplet if it satisfies

a? 4+ b% = . T is a Pythagorean triplet when a, b, ¢ are three sides of a right-angled triangle. In this case
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we always suppose that c is its hypotenuse.

Definition 2 In particular we say that 7' is primitive if the greatest common divisor of a,b, ¢ equals

1). T is primitive when there exists no right-angled triangles which are similar to 7" and smaller than 7.

As is well-known, when 7' is primitive, its hypotenuse ¢ is odd, and one of its non-hypotenuses is even,

and the other is odd. In the below we always suppose that a is odd and b is even.

Definition 3 For two primitive Pythagorean triplets 7' = (a,b,c) and T" = (a’, 1, '), suppose that the
hypotenuse of T and a non-hypotenuse of 77 have the same length, i.e. ¢ = a’. Then we say that T is a
parent if 7" and 7" is a child of 7. The most simple example is T' = (3,4, 5),T" = (5,12,13).

Definition 4 Consider the set of all primitive Pythagorean triplets and denote it by P. We introduce a
directed-graph G with vertices P. For T, 7" € P, draw an egde from T to T" if and only if 7" is a child of
T. We call this directed-graph G the Pythagorean graph.

Definition 5 A sequence of vertices Ty, T}, - - - T}, is called a path from T to T, when for all 0 = i < n,
two vertices T;,T;11 are combined by edge.

Definition 6 If 7" € P has no parent, we say that 7" is a progenitor. Obviously, if 7" is not a progenitor,

there is at least one path from a certain progenitor to 7.

Definition 7 For any progenitor Ty, define the set 7(Ty) = {T € P : there is a path fromTytoT}. We
call the set the offspring of T and denote it by O(Tp).

2 Well-known results

The following famous theorem first appeared in Euclid’ element.

Theorem 1 Suppose that T = (a,b,c) is primitive. Then there exist positive integers u,v such that

a=u?—0v2 b=2uw, ¢c=u®+1%

where u,v are coprime and have different parity (i.e. one is odd and the other even)

In this article we say that a positive integer n has an expression as a sum of squares if there exist positive
integers u, v such that n = u? + v? with u, v being coprime and of different parity.

The next theorem is called Fermat’s christmas theorem *

Theorem 2 Let p be a prime such that p = 1 (mod 4). Then p has an expression as a sum of squares.

Furthermore, such expressions is unique.

From Theorem 2 we can derive the following theorem. Consider an odd number n with factorizaion

n=pipy - pial el ot

' Fermat wrote this theorem in a letter to Mersenne dated December 25, 1640
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where p1,p2, -+, pi are primes of form = 1 (mod 4), and ¢, qa, - - - , q; are primes of form = —1 (mod 4).

Theorem 3 An odd number n has an expression as a sum of squares if and only if all exponents

f1s fay -+, fi vanish.

(Proof) It is easy to prove 'if part’ by using Theorem 2 with the aid of a famous algebraic identity
(u% + U%)(Ug + 11%) = (11,171,2 F 1111)2)2 + (11,1'1)2 + v111,2)2.

To prove ’only if part’, suppose that some f; is positive. To simplify notation we write ¢, f instead
of q;, fj. We can write n = ¢/m where m is not divisible by ¢. By assumption there are u,v such that
¢/m = u? 4+ v%. Then we can see that q { u,q t v because if ¢ can divide either u or v then it can divide

2

both, which contradicts to that u,v are coprime. Hence, as f > 0, we have u?> = —v? (mod ¢).

Now, since ¢ = —1 (mod 4), we can write ¢ = 4n — 1, i.e. (¢ —1)/2 =2n — 1. Accordingly we have
uqfl — (u2)2n71 = (71]2)277,71 — 7(1}2)27171 — *’qul.
As g t u, Fermat’s little theorem shows that u?~! =1 (mod ¢). Similarly v9~! =1 (mod ¢). Thus 1 = —1

(mod ¢), which is a contradiction.

Therefore we conclude that every f; vanishes. (Q.E.D.)

Example 1
n the number of expressions | u? + v?
52 =25 1 42 4 32
13% = 169 1 122 + 52
172 = 289 1 152 4 82
53 =125 1 112 +22
13% = 2197 1 462 492
17% = 4913 1 522 +47?
5% 13 =65 2 72 442,82 412
5x17=285 2 72 462,92 + 22
13 x 17 = 221 2 112 + 102,142 + 52
5x 13 x 17 = 1105 4 242 4232 312 + 122,322 4 92,332 4 42

Consider an odd number n = pi'ps?---pi*, and try to express it as a sum of squares in many ways.

Then the following result is only a special case of a foonote that Gauss has stated in his famous book

Disquisitiones Arithmeticae.

Theorem 4 The number of ways of expresstions is equal to 2F.

3 Main results

3.1 Shapes of progenitors

The next theorem is only a simple consequence of Theorem 3 and Theorem 4.
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Theorem 5
(1) T = (a,b,c) is a progenitor if and only if a has a prime factor q of form = —1 (mod 4).
(2) If T = (a,b,c) is not a progenitor, the number of parents of T is equal to 2%, where k denotes the

number of primes of form =1 (mod 4) in the factorization of a.

Now we study shape of right-angled triangles. In a right-angled triangle (u? — v2, 2uv, u? 4+ v?), let us
denote by 23 the angle between sides u? — v? and 2uv. Obviously tan 8 = v/u. We studu distribution
of ratio 7 := v/u experimentally. The following table shows the number of all ”admissible” (u,v) and

progenitors for u < 1000 (?admissible” means that u, v are coprime and of different parity).

r all admisibles | progenitors

...<0.1 20275 19006
0.1=...<0.2 20294 18978
02=<...<03 20286 18949
03=<...<04 20292 18960
04=<...<05 20279 18960
05=...<06 20284 18925
06=...<0.7 20285 18939
0.75...<0.8 20286 18891
0.8<...<09 20285 18862
09=... 20295 18624

From these data we conjecture that
e the majority (approximately 93%) of primitive triplets are progenitors.

e distribution of ratios v/u are uniform for both all admisibles and progenitors. The p-values of

chi-squared test of uniformity for both cases are 1.0 and 0.7792 respectively.

3.2 Graph structure

Theorem 6 Every offspring is an infinite graph.

(Proof) To show that O(Tp) is infinite, it suffices to show that any 7" has a child. Let ¢ be a hyotenuse
of T. If we define u = (¢ +1)/2,v = (¢ — 1)/2 and T’ = (u? — v?, 2uv,u?® + v2, then T" is a child of T.
(QED.)

Several examples, one of which is Example 2, suggest that every offspring is really a tree. However the

authors can not prove this conjecture.

Conjecture 7 FEvery offspring is an infinite tree.
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Example 2 0((3,4,5))

id (u,v) id (u,v)

0 (2,1) 15 (1127,1086)

1 (3,2) 16 (45367, 45366)

2 (7,6) 17 (871,798)

3 (11,6) 18 (60919, 60918)

4 (43,42) 19 (131479,131478)

5 (79,78) 20 (37976407, 37976406)

6 (1807, 1806) 21 (31831, 342)

7 (227,198) 22 (506547799, 506547798)

8 (259, 234) 23 (32554343, 32553954)

9 (371, 354) 24 (12663563767, 12663563766)
10 (6163,6162) 25 (1860272071, 1860271842)
11 (22579, 22434) 26 (426002278039, 426002278038)
12 | (112547,112518) 27 (45708399047, 45708398814)
13 | (652691, 652686) 28 | (10650056950807, 10650056950806)
14 | (3263443,3263442)
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The vertices and edges of O((3,4,5)) are computed by using the following program.

type Tri = (Integer, Integer) -- (u, v)
type Edge = (Tri, Tri)

divisors_pair :: Integer -> [Tri]

divisors_pair n
= [(x, @ | x <= [m, (m-1)..1], let (g, r) = n ‘divMod‘ x, r == 0, q > x]
where

m = floor $ sqrt $ fromIntegral n

edge_forward :: Tri -> [Edge]
edge_forward (u0, v0) = [((u0, vO), (u, v)) | (d1, d2) <- ys,
let u = (d2 + d1) ‘div‘ 2, let v = (d2 - d1) ‘div‘ 2, gcd u v == 1]
where
cO = u0 * ud + v0 * vO

ys = divisors_pair cO
tree_forward :: Tri -> Int -> [Edge]
tree_forward progenitor niter = concat $ take niter $ iterate f [(progenitor, progenitor)]
where

f :: [Edge] -> [Edgel

f es = concat [edge_forward vi | (vO, vl1) <- es]
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