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Abstract

In our recent study we introduced the notion of gerはralized Randers metric L -

α+ β on a di鮎rentiable manifold 〟 where α and β are respectively a Riemannian

metric and a singular Riemannian metric on M. Given a covariant vector field b
●

and an almost Hermitian structure / on a Riemannian manifold (M, α) we have an

interesting e甲mple called an (a, ら f)-metric. In the present paper we show that a

normal (a, 6, /)-metric gives a non-trivial example of a Kaehlerian Finsler manifold.

The conformal theory of (a, 6, /)-metrics is also discussed.

Key words: Kaehlerian Finsler manifold, Rizza manifold, Generalized Randers

metric, Conformal change.

1　Introduction

Given a Riemannian metric α and a non-vanishing 1-form β on a differentiable man-

ifold M, we have a Finsler metric L - α+β on M called a Randers metric. In our

previous paper [9] we generalized the notion of Randers metric by replacing β by a singu-

lar Riemannian metric, and obtained a condition that such a metric L be locally flat, that

is, the Finsler manifold (M, L) be a locally Minkowski space, and further under some

assumption we obtained a condition that L be conformallytβat, that is, (M, L) be locally

conformal to a locally Minkowski space, as follows.

Definition 1.1 On an m-dimensional differentiable manifold M, let α be a Rieman-

nian metric and β a singular Riemannian metric. A Finsler metric L - α + β On M

is called a generalized Randers metric and then the Finsler manifold (M, L) is called a

generalized Banders space.
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Now, denoting a point of M and a tangent vector at the point by x - [xl) and

y - (yl) respectively, we put

(1.1)　　　α(I,訂) - (ai3(xW)l/2, p(x, y) - (bMyy)1/2,

where a^ and 6^ are symmetric tensor fields on M and it is assumed that the matrix

(aij) is positive-definite and the matrix (6^) has the rank r such that 0 < r < m. With

respect to the Levi-Civita connection F - ({j¥}) of the associated Riemannian manifold

(M, α) we denote the covariant differentiation and the curvature tensor field by ∇　and

Rhljk respectively. Then we have

Theorem 1.1 A generalized Randers space (M, α+ β) is a Berwald space if and

only if ∇kbij - 0, and (M, α+β) is a locally Minkowski space if and only ifRhl-k -

0, Vkbii -0.

Putting (oォ) - (aij)-¥　乞�"-atrbrj, W -tirb¥, and

1.2　　　　　　　　　　　　/i - aりbi7-, v - b乞yK,

we assume mv-〃2 ≠ 0. Then we can put

(1.3)　　　　Lj - (m/(mu - n2)){br ∇rbBj - (n/m)∇蝣b'jh

(1.4)　　　　　　　h乞* - {/*} +*i甘Lk + 5klLj - ajkL¥

i

where Ll - atrLr. P- (｣A) defines a conformally invariant symmetric linear connection
∫

on M. Denoting the curvature tensor field of F by Lhtjkf we have

Theorem 1.2 A generalized Banders metric L - α+β satisfying mv - fi　≠ 0 is

conformally βat if and only if

(1.5)　Wlk-0, ∇kLj -∇jLk, ∇kbij -bkjLi+bkiLj-aikbjrU-a,jkbiTLr.

～

In terms of the conformally invariant linear connection F the condition (1.5) is ex-

pressedas

1.6
∫∫～
Lh乞jk-0,∇kLj-∇Lk,∇kbij--2Lkb,
'17J

～                                                ～

where ∇k denotes the covariant differentiation with respect to f-

In the present paper we shall consider the case where Vkhj - 0. From Theorem 1.1

we have
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Theorem 1.3 A generalized Randers space (M, α + β　satisfying ∇kb{j - 0 is a

Berwald space. Then (M, α+β is a locally Minkowski space if and only if the associated

Riemannian manifold (M, α) is locally flat.

Since V^ - 0 implies Lj - 0, LA - {A} and Lhljk - Rhjk-, we have from
Theorem 1.2

Theorem 1.4 A generalized Randers metric L - α+β satisfying ∇ bij - 0, mv -

p2 ≠ 0 is conformallyflat if and only ifL itself is locally flat, that is. α盲s locally flat.

As an interesting example of a等eneralized Randers metric L - α + β satisfying

mv - a　≠ 0 we have an (a, fe, /)-meJnc, which was introduced in Ichijyo [4] as an

example of an almost Hermitian Finsler metric. A Finaler manifold (M, L) with an

almost Hermitian Finsler metric L is called a Rizza manifold, which is a Finsler manifold

corresponding to an almost Hermitian manifold in Riemannian geometry (cf. Ichijyo [6],

Rizza [14, 15])..

As an example of an (a, b, /)-metric L satisfying further Vkhi - 0, we shall define a

normal (a, 6, /)-metric and show that (M, L) is a Kaehlerian Finsler manifold (Theorem

3.3). A Kaehlerian Finsler manifold is a Finsler manifold corresponding to a Kaehler

mam玩)ld in Riemannian geometry, and there are known some studies (cf. Aikou [1],

Dragomir-Ianu弓　Fukui [3], Ichijyo [4, 5, 6, 7], Kobayashi [10], Royden [16], Rund [17],

etc.). Theorem 3.3 seems important in the sense that it gives a non-Riemannian example

of a Kaehlerian Finsler manifold.

We shall also discuss the conformal change of an (a, 6, /)-metric. Then a condition

that an (a, 6, /)-metric be locally conformal to a normal one is obtained in terms of a

new conk)rmally invariant tensor鮎ld瑞(Theorem 4.1).

2 (a, 6, /)-metrics

Let (M, α) be a Riemannian manifold of even dimension m - 2n. Given a non-

vanishing covariant vector field b{(x) and an almost Hermitian structure flAx) on (M, α):

(2.1)　　　　　　　　/v/ri - -*%>ォrS/ys, - ay;

where α(x, y) - {aij(x)yiyj)1'2, we put

(2.2)　　　　　P(x, y) - {(&,W)2 + (bi(x)fiW?}1'2.

Since β(re, y) has a form β(x, y) - (biAx)yyY/ where

(2-3)

we have

bij-kbi+brbsfjs
uii
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Proposition 2.1 For the matrix (6^) we have rank(6^) - 2.

Proof Putting fi - brf¥, we have 6^ - b{bj + fifj, so the minor determinants of

order 3 vanish. On the other hand, if
bubi
'v

bjihi
- tyifj-bjfi) - 07 ^enwehavebij - 0,

which contradicts bi ≠ 0. Thus we have rank(^j) - 2.　　　　　　　　　　　　□

Proposition 2.2 For the Finsler metric L - α+β we have mv- /i2 - 4(n- 1)64;

where ¥i and v are the scalar fields given by (1.2) and b - (a^bibj)1/2･

Proof Putting bl - airbr, fl - air fr, we have b%J - W +flfJ. Paying attention

that the ten苧or field a%rpr is skew-symmetric in i, j (cf. K.Yano [18]), we have alJfifj -

62, bifl - blfi - 0, fif - b2, sowehavefi- aijbij - 2b2, u - 6tJ6y - 2b4. since

m-2n,wehavemv-¥i -4(n-1)6.　　　　　　　　　　　　　　　　　　ロ

Hence, if we assumen ≧ 2,thenwehaveO <rank(6^) <mandmv-〃2 ≠ 0, soβis

a singular Riemannian metric on M, and L - α + β defines on M a generalized Randers

metric satisfying mv - fi ≠ 0.

Definition 2.1 0n a differentiable manifold M of even dimension m - 2n (n ≧ 2),

let α be a Riemannian metric and β a singular Riemannian metric gil′en by (2.2). A

generalized Randers metric L - α+ β on M is called an (a, b, f)-metric, and then the

Finsler manifold (M, L) is called an (a, 6, /)-manifold.

From Theorem 1.1 and Theorem 1.2 we have

Theorem 2.1 An (a, 6, f)-manifold (M, α+β) is a Berwald space if and only if

∇kbij - 0, and (M, α+β) 25 a locallyMinkowskispace if and only ifRhl,k ≡ 0, ∇khj - 0.

Theorem 2.2 An (a, 6, /)-metric L - α+β satisfies the condition mv - p2 ≠ o･

L is conformallyflat if and only ifL satis.荷es the condition (1.5) or (1.6).

Now, we shall remark that an (a, b, /)-metric on M defines a Rizza manifold. A

Rizza manifold (M, L, /) is by definition a Finsler manifold (M, L) endowed with an

almost complex structure flj(x) on M: flrfrj - -6乞v satisfying the condition

(2.4)　　　　　　　　L(x,¢oy)-L{x,y) 0≦0≦2tt ,

where ¢gi - (cos6)5*�"+ (sinO)./*.. The condition (2.4) is called the Rizza condition,

and is also expressed as

(2.5) 9rs{x,如)¢　¥<t>e'j -9ij(x, V)
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●     ●

with respect to the fundamental tensor field g^ - didj(L2/2), where d{ - ∂/dy¥

The Rizza condition is equivalent to each of the following '0-free conditions (cf.

9ijfWyJ - o,

(o'V - grsfifjW - 0,

girfj + grjfi + 2Cijrfsys - o,

where Cijk - dk{gij/2).

The condition (2.8) is also expressed as

2.9 9a - grsfj'j + 2Cirjy¥yk.

Thus in the Riemannian case, where djk - 0, the Rizza condition α(I, ㊥ey) - α(xフ封)

means that the almost complex structure /*�"is an almost Hermitian structure‥ a r fs -

dij. Since for the proof of the equivalence between (2.4) and (2.9) we need not assume

that (gij) is regular, we have also β(x, fay) - β(x, y) by showing WVj - bij from

2.3. Thus we have

Theorem 2.3 An (a, 6, /)-manifold is a Rizza manifold.

Remark 2.1 Theorem 2.3 is also proved by showing (2.4) straight. On the other

hand, since β is singular, an (a, 6, /)-metric L - α+β is not Riemarmian, so this metric

L gives a non-trivial example of a Rizza manifold.
●

3Normal(a,6,/)-metrics

ARizzamanifold-(M,L,/)iscalledaKaehlerianFinslermanifoldif

3.1∇*kfもj-0

issatisfied,whereV*fcdenotesthe/i-covariantdifferentiationwithrespecttotheCartan

connectionCF.SincetheNijenhuistensorfieldN甘'jkof/*�"isexpressedas

(3.2)N¥k-(∇rA)A-(∇rA)A+/V(∇*rr
jJk∇fc/r;)サ

if(M,L,/)isaKaehlerianFinslermanifold,then(M,/)isacomplexmanifold(cf.

Ichijyo

IfLisaRiemannianmetric,wehave∇*ft-
kJj-∇kfj,SO∇¥flj-0implies∇kjj-

0,andaKaehlerianFinslermanifoldisaKaehlermanifold.Weshallgiveanexampleof●

anon-RiemannianKaehlerianFinslermanifold.
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Definition 3.1 Let M be a differentiable manifold of even dimension m - 2n (n ≧

2). An (a, 6, /)-metric L - α+β on M is called normal if it satisfies

(3-3)　　　　　　　　　Vfc6, - 0, Vfcf,- - 0,

and then the (a, 6, /)-manifold (M, L) is called normal.

Since (3.3) implies Vkhj - 0, we have an example of a generalized Randers metric

satisfying ∇kbij - 0, mv - 〃2 ≠ 0. Thus from Theorem 1.3 and Theorem 1.4 we have

Theorem 3.1 A normal (a, 6, f)-manifold (M, α+β) is a Berwald space. Then

(M, α+β) is a locally Minkowski space if and only if the associated Riemannian manifold

(M, α) is locally flat.

Theorem 3-2 A normal (a, 6, f)-metric L - α+β is conformallyflat if and only

ifL itself is locally flat, that is, α is locally flat.

Now, we shall show that anormal (a, 6, /)-manifold (M, L) (L - α+β) is a Kaehle-

rian Finsler manifold. It is noted that a Finsler connection FT - (F乞k, JVV vh) given

by

(3.4)　　　　　　　F;甘* - {/*}, Ntk - yJ{/k}, v/k - o

is the Berwald connection BF of (M, V). In fact, FF satisfies the system of axioms,

which uniquely determines BI¥ due to Okada

●

(3.5)　　L,k-0, FA-Fk¥p N¥-y^FA, djN¥-F/k, V/k-0,

where.*. denotes the /i-covariant differentiation with respect to FT. In a Berwald space

the /?,-covariant differentiatons with respect to CF and BF coincide, and from (3.4) the /i-

covariant derivative of flAx) with respect to BT (- FT) becomes the covariant derivative

with respect to the Levi-Civita connection F - ({j¥}) of (M, α), so we have ∇ */i -

J i¥k-∇kpA-0. Thuswehave

Theorem 3.3 A normal (a, 6, /)-manifold is a Kaehlerian Finsler manifold.

Remark 3.1 Theorem 3.3 is also proved by showing that a Finsler connection FT* -
■

(FA, N¥, VA) given by

(3.6)　　　　　Fj k - (,-**}, N¥ -^{/J, V/k -^Cirti

where (glj) - (fc)"1, is the Cartan connection CF of (M, L). This is shown by checking

that FjT* satisfies the system of axioms, which uniquely determines CI¥ due to Mat-

sumoto (cf. [11]):

(3.7)　　9ij¥k-0, Fj乞*-Fkj, N¥-y>Fthi <tol*-O, V-¥-V{V
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where^anc‖kdenotetheh-and^-covariantdifferentiationswithrespecttoFT*,but

itisnotsotrivialthatsatisfiesthefirstaxiom.

●●Sinceg^isgivenbyg^-didj(L/2),inordertoshowg^^-0itissufficientto

●provethat棒commuteswiththepartialdifferentiation∂W.ThisfollowsfromtheRicci

identitiy,appliedtoaFinslertensorfield,e.g.,T2.,

(3.8)∂k(Tj]k)-(al;fc-Jirp
jrkhmiprlrrjkh-T^V^-idrTj)^

withrespecttoFTgivenby(3.4),whereP¥h-∂¥N¥-Fh¥,Pj¥h-∂'hFJ¥-v;h;k+

Vj¥Prkh.Infact,sincewithrespecttoFTthe/i-covariantdifferentiation.kcoincides

with¥kandwehavePj¥h-VA-P¥h-0,wehave∂KTl,-k)-(∂AT*,)¥k-

Remark3.2Anormal(a,b,/Vmanifoldgivesaconcreteexampleofanon-Rieman-

nianKaehlerianFinslermanifold.Thiswasamotive壬orstudyingageneralizedRanders

space.Anormal(a,6,/j-manifoldisaBerwaldspace,butitisshowninIchijyo[7]that

aKaehlerianFinslermanifoldisaLandsbergspace.Soitisanimportantopenproblem

tofindaconcreteexampleofanon-BerwaldKaehlerianFinslermanifold.

Ontheotherhand,H.S.Park[13]generalizedthenotionofKaehlerianFinslerman-

ifoldbyreplacingthecondition(3.1)byV*kflj+V^/^-0anddiscussedtheRizza

manifoldwhichwascalledanearlyKaehlerianFinslermanifold.ForthisFinslermani-

foldaninterestingexampleisalsoexpected.

4　Conformal changes of (a, 6, /)-metrics

On a differentiable manifold M of even dimension m - 2n (n ≧ 2) we shall consider

a conformal change of an (a, 6, /J-metric L - α+β:

(4.1)　　　　　　　L(x, y) JL(x, y) - e^L(x, y).

Since a and β are expressed as α(xフ封) - (oyOOyV)1/* and 0(x, y) - {{h{x)yif +

{bi(x)flj(x)yi)2}1'2 respectively, if we put

′■〉

(4.2)　　　　　　　　　諒u ｣>,20-dij, bi - e^foi,

we have a generalized Randers metric L - a+/3 given by a(x, y) - (aij(x)yly^)1^2^
I
S

- ((盲(x)yy+(石(x)fij{x)yj)2}1/2. Thenwehave諒/r./5. - dij, so L is also an (a,

metric.

)
　
　
　
】

財
力

｢
1
日/挿,4L

J
i
Z

We shall find a condition that an (a, ft, /)-metric L be locally conformal to a normal
-ー_一′

one L. Since the Levi-Civita connection F - ({/k}) of the Riemannian manifold (M, a)

isgivenby

(4.3)

一･一ー.-.′

{/ki - {/k)+SM+8kla3 -a3kal
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where Gj - ∂U/∂xJ al -alTar we have

一′■ヽ-′

(4.4)　　　　　　　∇kbj - e-{∇kbj - bkOj + brarajk),
一一′

where V& denotes the covariant differentiation with respect to F. Eliminating brar from

(4.4) and putting

(4.5)　　　　　Mi - (l/b2){br(∇rbjト(∇.br)bJ(m - 1)},

we have

′■■:こ一

(4.6)　　　　　　　　　　　(Jj - Mj - My

As is shown in Ichijyo-Hashiguchi [8], substituting (4.6) in (4.3) and putting

(4.7)　　　　　　Mi甘fc -{/*}+VM*+W-　ajkMl

=a

where Ml - airMr, we have M甘k - Mj乞　M,甘k defines on M a symmetric linear

connection r- {M- lk)^ which is invariant by the conformal change (4.2).

In the same way, we have

一一■ゝニーノ

(4.8)　　　∇kfj - ∇kfj + 6k甘Grfj - a'akrfj - <jjf¥ + arfrajk.

Substituting (4.6) in (4.8) and putting

(4.9)　　/ ik - ∇*/',+S^Mrfj - MW; - M3f¥+Mrf¥ajk,
′､■′

we have fl-k - fl-k. fl^k is a tensor field invariant by the conformal change (4.2). It is

noted that M- lk and /*.fc are invariant by the conformal change (4.1).
一一■-′   ′ー′

Since ∇kbj - 0 implies Mォ- 0, that is, M.- - a* is gradient, in the same way as

●

shown in [8], using these conformal invariants M-lk and fljkl we can obtain a condition

that an (a, 6, /)-metric L be locally conformal to a normal (a, 6, /)-metric L, that is,
～   ′､′                      ′■■)

a condition that there locally exists a such that ∇kbj and ∇kfl, vanish by a conformal
′ー′

change LぅL - eaL, as follows.

Theorem 4.1 By a conformal change (4.1) an (a, 6, f)-metric remains to be an

(a, 6, /)-metric. An (a, 6, /)-metric is locally conformal to a normal (a, 6, f)-metric if

a扉onlyif

(4.10)　　　　∇-Mj - ∇iM,k. ∇kbj - bkMj - brMrajk, fjk - 0.

Lastly, it is noted that we can express the condition (4.10) in terms of the linear
FWl

connection F as follows.

Theorem 4.2 An (a, 6, /)-metric is locally conformed to a normal (a, 6, /)-metric

if and only if

(4.ll)　　　　　vkMj-VjMk, Vkbj - -Mkbj, Vkfi-0,
Fii!                                                                      FjiZ

where ∇k denotes the h-covariant differentiation with respect to F.
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