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Abstract

In our recent study we introduced the notion of generalized Randers metric L =
a+ (3 on a differentiable manifold M, where o and ( are respectively a Riemannian
metric and a singular Riemannian metric on M. Given a covariant vector field b
and an almost Hermitian structure f on a Riemannian manifold (M, «) we have an
interesting example called an (a, b, f)-metric. In the present paper we show that a
normal (a, b; f)-metric gives a non-trivial example of a Kaehlerian Finsler manifold.
The conformal theory of (a, b, f)-metrics is also discussed.

Key words: Kaehlerian Finsler manifold, Rizza manifold, Generalized Randers
metric, Conformal change.

1 Introduction

Given a Riemannian metric a and a non-vanishing 1-form 3 on a differentiable man-
ifold M, we have a Finsler metric L = a + 8 on M called a Randers metric. In our
previous paper [9] we generalized the notion of Randers metric by replacing 3 by a singu-
lar Riemannian metric, and obtained a condition that such a metric L be locally flat, that
is, the Finsler manifold (M, L) be a locally Minkowski space, and further under some
assumption we obtained a condition that L be conformally flat, that is, (M, L) be locally
conformal to a locally Minkowski space, as follows.

Definition 1.1 On an m-dimensional differentiable manifold M, let o be a Rieman-
nian metric and 8 a singular Riemannian metric. A Finsler metric L = o + 8 on M
is called a generalized Randers metric and then the Finsler manifold (M, L) is called a
generalized Randers space.
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Now, denoting a point of M and a tangent vector at the point by z = (z*) and
y = (y') respectively, we put

(L.1) oz, y) = (ai5(@)y'y’) %, Bz, y) = (b (@)y'y?)) ",

where a;; and b;; are symmetric tensor fields on M and it is assumed that the matrix
(ai;) is positive-definite and the matrix (b;;) has the rank r such that 0 < r < m. With
respect to the Levi-Civita connection I = ({;%}) of the associated Riemannian manifold
(M, o) we denote the covariant differentiation and the curvature tensor field by V; and
R,';, respectively. Then we have

Theorem 1.1 A generalized Randers space (M, o+ () is a Berwald space if and
only if Vibi; =0, and (M, o+ B) is a locally Minkowski space if and only if Rhijk =
0, Vib;j =0.

Putting (a¥) = (ay)™", b'; = a"by;, b9 = a?"b',, and
(1.2) p=a’bi;, v=">b"by,
we assume mv — u? # 0. Then we can put
(13) L = (m/(mv — g2) (¥ V,by; — (1/m) 07},
(1.4) Lt ={;% + 5jiLk + 0Ly — ajeL’,

J

: . ! .
where L' = a”" L,. I'=(L,';) defines a conformally invariant symmetric linear connection

! ‘
on M. Denoting the curvature tensor field of I" by L' ;, we have

Theorem 1.2 A generalized Randers metric L = o + 8 satisfying mv — p? # 0 is
conformally flat if and only if

(15) Lhi]-k = 0, Vij = Vij, ka@'j = bkjLi + bkiLj — aikbj,_LT — ajkbiTL’.

!
In terms of the conformally invariant linear connection I" the condition (1.5) is ex-
pressed as

. ! ! !

(1.6) L'k =0, Vi Lj =V;Lg, Vibij = —2Lbij,
! !

where Vi denotes the covariant differentiation with respect to [

In the present paper we shall consider the case where V;b;; = 0. From Theorem 1.1
we have
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Theorem 1.3 A generalized Randers space (M, o + f) satisfying Vib; = 0 is a
Berwald space. Then (M, a+ () is a locally Minkowski space if and only if the associated
Riemannian manifold (M, &) is locally flat.

Since Vibj; = 0 implies L; = 0, L;% = {;%} and L;';, = R;';;, we have from
Theorem 1.2

Theorem 1.4 A generalized Randers metric L = a + 8 satisfying Vib;; =0, my —
u? # 0 is conformally flat if and only if L itself is locally flat, that is, « is locally flat.

As an interesting example of a generalized Randers metric L = « + 3 satisfying
mv — p? # 0 we have an (a, b, f)-metric, which was introduced in Ichijyo [4] as an
example of an almost Hermitian Finsler metric. A Finaler manifold (M, L) with an
almost Hermitian Finsler metric L is called a Rizza manifold, which is a Finsler manifold
corresponding to an almost Hermitian manifold in Riemannian geometry (cf. Ichijyo [6],
Rizza [14, 15])..

As an example of an (a, b, f)-metric L satisfying further V;b;; = 0, we shall define a
normal (a, b, f)-metric and show that (M, L) is a Kaehlerian Finsler manifold (Theorem
3.3). A Kaehlerian Finsler manifold is a Finsler manifold corresponding to a Kaehler
manifold in Riemannian geometry, and there are known some studies (cf. Aikou [1],
Dragomir-Ianug [2], Fukui [3], Ichijyo [4, 5, 6, 7], Kobayashi [10], Royden [16], Rund [17],
etc.). Theorem 3.3 seems important in the sense that it gives a non-Riemannian example
of a Kaehlerian Finsler manifold.

We shall also discuss the conformal change of an (a, b, f)-metric. Then a condition
that an (a, b, f)-metric be locally conformal to a normal one is obtained in terms of a
new conformally invariant tensor field f*;, (Theorem 4.1).

2 (a, b, f)-metrics

Let (M, a) be a Riemannian manifold of even dimension m = 2n. Given a non-
vanishing covariant vector field b;(z) and an almost Hermitian structure f*;(z) on (M, ):

(2.1) firfrj = _6ija a'rsfrifsj = Qij,

1/2

where a(z, y) = (a;j(z)y'y?)"/?, we put

(2.2) Bz, y) = {(bi(2)y")* + (bi(=) £ (2)y?) 12
Since B(z, y) has a form f(z, y) = (b (z)y'y?)"/?, where
(23) b1j = b’Lb_] + brbsfri sjv

we have
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Proposition 2.1 For the matriz (b;;) we have rank(b;;) = 2.

Proof Putting f; = b, f7;, we have b;; = b;b; + f;f;, so the minor determinants of

bii by

order 3 vanish. On the other hand, if 7| = (bif; —b; f;)? = 0, then we have b;; = 0,
ji by

which contradicts b; # 0. Thus we have rank(b;;) = 2.

Proposition 2.2 For the Finsler metric L = o + 8 we have mv — u? = 4(n — 1)b%,
where p and v are the scalar fields given by (1.2) and b= (a“b;b;)*/2.

Proof Putting b* = a'b,, f = a” f,, we have b = b'bJ + fifI. Paying attention
that the tensor field a' f7, is skew-symmetric in ¢, j (cf. K.Yano [18]), we have a¥ f;f; =
b2, bift = bif; =0, fift = b2 so we have p = ab;; = 2b%, v = bYb; = 2b*. Since
m = 2n, we have my — p? = 4(n — 1)b*. O

Hence, if we assume n > 2, then we have 0 <rank (b;;) < m and mv — p? # 0, so B is
a singular Riemannian metric on M, and L = a + (3 defines on M a generalized Randers
metric satisfying myv — p? # 0.

Definition 2.1 On a differentiable manifold M of even dimension m = 2n (n > 2),
let o be a Riemannian metric and 3 a singular Riemannian metric given by (2.2). A
generalized Randers metric L = o+ § on M is called an (a, b, f)-metric, and then the
Finsler manifold (M, L) is called an (a, b, f)-manifold.

From Theorem 1.1 and Theorem 1.2 we have

Theorem 2.1 An (a, b, f)-manifold (M, o+ () is a Berwald space if and only if
Vibij =0, and (M, a+f) is a locally Minkowski space if and only if R,*;;, = 0, Vibi; = 0.

Theorem 2.2 An (a, b, f)-metric L = o + 3 satisfies the condition myv — p? # 0.
L is conformally flat if and only if L satisfies the condition (1.5) or (1.6).

Now, we shall remark that an (a, b, f)-metric on M defines a Rizza manifold. A
Rizza manifold (M, L, f) is by definition a Finsler manifold (M, L) endowed with an
almost complex structure f*;(z) on M: f* f; = —d";, satisfying the condition

(24) L(z, ¢py) = L(z, y) (0 <6< 2m),

where ¢,*; = (cos#) &*; + (sinf) f*;. The condition (2.4) is called the Rizza condition,
and is also expressed as

(2.5) 9rs(T, oY) Bo"i 06" ; = 9i5(%, Y)
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with respect to the fundamental tensor field g;; = 8;0;(L?/2), where &; = 8/dy'.
The Rizza condition is equivalent to each of the following f-free conditions (cf. [6]):

(2.6) gi;f 'y =0,
(2.7) (955 — grs [ f5)Y =0,
(28) gi'rfrj + grjfri + 2Cijrfrsys = Oa

where Ciji, = Ok(gi;/2)-
The condition (2.8) is also expressed as

(2.9) 9ij = rs I %+ 2Cus [ skyk~

Thus in the Riemannian case, where C;;;, = 0, the Rizza condition a(z, ¢py) = a(z, y)
means that the almost complex structure f"j is an almost Hermitian structure: a,sf";f*; =
aij. Since for the proof of the equivalence between (2.4) and (2.9) we need not assume
that (gi;) is regular, we have also 8(z, ¢gy) = B(z, y) by showing b, f"; f%; = bi; from
(2.3). Thus we have

Theorem 2.3 An (a, b, f)-manifold is a Rizza manifold.

Remark 2.1 Theorem 2.3 is also proved by showing (2.4) straight. On the other
hand, since (3 is singular, an (a, b, f)-metric L = o+ § is not Riemannian, so this metric
L gives a non-trivial example of a Rizza manifold.

3 Normal (a, b, f)-metrics
A Rizza manifold (M, L, f) is called a Kaehlerian Finsler manifold if
(3.1) VS =0

is satisfied, where V*, denotes the h-covariant differentiation with respect to the Cartan
connection CT'. Since the Nijenhuis tensor field N*;, of f*; is expressed as

(32) Nijk = (V*'rflj)frk - (V*rfik')frj + fzr(V*]frk: - V*kf’,:j%
if (M, L, f) is a Kaehlerian Finsler manifold, then (M, f) is a complex manifold (cf.
Ichijy [6]).

If L is a Riemannian metric, we have V*, fi, = Vi f*;, so V*, f*, = 0 implies V. f*; =

0, and a Kaehlerian Finsler manifold is a Kaehler manifold. We shall give an example of
a non-Riemannian Kaehlerian Finsler manifold.
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Definition 3.1 Let M be a differentiable manifold of even dimension m = 2n (n >
2). An (a, b, f)-metric L = a+ § on M is called normal if it satisfies

(3.3) Vibi =0, Vif', =0,
and then the (a, b, f)-manifold (M, L) is called normal.

Since (3.3) implies Vib;; = 0, we have an example of a generalized Randers metric
satisfying Vib;; = 0, mv — p? # 0. Thus from Theorem 1.3 and Theorem 1.4 we have

Theorem 3.1 A normal (a, b, f)-manifold (M, o+ () is a Berwald space. Then
(M, a+p) is a locally Minkowski space if and only if the associated Riemannian manifold
(M, «) is locally flat.

Theorem 3.2 A normal (a, b, f)-metric L = o+ 8 is conformally flat if and only
iof L atself is locally flat, that is, « is locally flat.

Now, we shall show that a normal (a, b, f)-manifold (M, L) (L = a+ ) is a Kaehle-
rian Finsler manifold. It is noted that a Finsler connection FI" = (F}%, N, V}';) given
by
(3-4) Fjik = {jik}v Nik = yj{jik}v ijk =
is the Berwald connection BI" of (M, L). In fact, FI" satisfies the system of axioms,
which uniquely determines BI", due to Okada [12]:

(3:5) Lix=0, By = FY, Ny=y' Fy, Ny = Fy'y, Vi =0,

where ., denotes the h-covariant differentiation with respect to F'I'. In a Berwald space
the h-covariant differentiatons with respect to CI" and BI" coincide, and from (3.4) the h-
covariant derivative of f*;(z) with respect to BI' (= FI') becomes the covariant derivative
with respect to the Levi-Civita connection I' = ({;%;}) of (M, a), so we have V* f*; =
I'. = Vif'; = 0. Thus we have

Theorem 3.3 A normal (a, b, f)-manifold is a Kaehlerian Finsler manifold.

Remark 3.1 Theorem 3.3 is also proved by showing that a Finsler connection F'I™ =
(FJ ilc? Nik? V;‘ilc) given by

(3-6) Fjik = {jik}, Nik = yj{jik}a Vjik = gierm

where (¢“) = (g;;)7*, is the Cartan connection CI" of (M, L). This is shown by checking
that F'I'™* satisfies the system of axioms, which uniquely determines C'I', due to Mat-
sumoto (cf. [11]):

(3-7) Gij |k = 0, Fjik = Fkija Nik = ijjilw Gij | k=0, ‘/jik = Vlcij7
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where |, and |, denote the h- and v-covariant differentiations with respect to FI™, but
it is not so trivial that F'I™ satisfies the first axiom.

Since g;; is given by gi; = 8;0;(L?/2), in order to show gij|x = 0 it is sufficient to
prove that |, commutes with the partial differentiation Oy. This follows from the Ricci
identitiy, applied to a Finsler tensor field, e.g., Tij,

(3.8) ah(Tij;k) - (ahTij) ik = Trjprikh - TierTkh - Tij;rvkrh - (87Tij)PTkh

with respect to FT" given by (3.4), where P%, = 0,Niy — Fy%y, Py = OnF, — Vi o+
V. Ph,. In fact, since with respect to FI" the h-covariant differentiation  coincides
with |, and we have P,%, = V', = P%, = 0, we have 8'h(Tij|k) = (ahTij) | k-

Remark 3.2 A normal (a, b, f)-manifold gives a concrete example of a non-Rieman-
nian Kaehlerian Finsler manifold. This was a motive for studying a generalized Randers
space. A normal (a, b, f)-manifold is a Berwald space, but it is shown in Ichijyo [7] that
a Kaehlerian Finsler manifold is a Landsberg space. So it is an important open problem
to find a concrete example of a non-Berwald Kaehlerian Finsler manifold.

On the other hand, H. S. Park [13] generalized the notion of Kaehlerian Finsler man-
ifold by replacing the condition (3.1) by V*,f*; 4+ V*;f% = 0 and discussed the Rizza
manifold which was called a nearly Kaehlerian Finsler manifold. For this Finsler mani-
fold an interesting example is also expected.

4 Conformal changes of (a, b, f)-metrics

On a differentiable manifold M of even dimension m = 2n (n > 2) we shall consider
a conformal change of an (a, b, f)-metric L = a + 4

(4.1) L(z, y) — E(:c, y) = e”(’”)L(x, ).

Since a and B are expressed as a(z, y) = (a;;(z)y'y?)/? and B(z, y) = {(b:(x)y")? +
(bi(z) f; (2)y7)?}1/? respectively, if we put

(4.2) aij = ezaaij, b = e’b;,
we have a generalized Randers metric L = &+ given by a(z, y) = (@i;(x)y'y’)Y2, B(z, y)
= {(bi(z)y")>+ (bi(z) f;()y?)?}/2. Then we have d,, f"; f* = Gij, so L is also an (a, b, f)-
metric.

We shall find a condition that an (a, b, f)-metric L be locally conformal to a normal
one L. Since the Levi-Civita connection I' = ({ JT,C}) of the Riemannian manifold (M, &)
is given by

(4.3) {_]’Lk‘} = {]Zlc} + 51'1'01« + 51:0]' - aiji,
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where 0; = 80 /027, o' = a'"0,, we have
(44) "7]95] = e”(kaj — ka'j + b,,-O'Tajk),

where /Vvk denotes the covariant differentiation with respect to I. Eliminating b,0" from
(4.4) and putting

(4.5) M; = (1/8°){8" (Vi) = (Vb7)b;/(m — 1)},
we have
(46) O'j:Mj'—Mj.

As is shown in Ichijyo-Hashiguchi [8], substituting (4.6) in (4.3) and putting
(4.7) M;Y = {;'%} + 6, My + 6, M — ajp M?,
where M = a"M,, we have M;% = M;%. M, defines on M a symmetric linear

connection ['= (M%), which is invariant by the conformal change (4.2).

In the same way, we have

(4.8) ﬁkfij = kaij + 6ki0,frj — Uiak,frj — 0 f + o fa
Substituting (4.6) in (4.8) and putting
(4.9) Pk = Vel + 6 M f7; — Mlage f7; — My f* + M fLagy,

we have fijk = f% [f'; is a tensor field invariant by the conformal change (4.2). It is
noted that M* and f'; are invariant by the conformal change (4.1).

Since Vib; = 0 implies M; = 0, that is, M; = o; is gradient, in the same way as
shown in [8], using these conformal invariants M,*, and f*,;, we can obtain a condition
that an (a, b, f)-metric L be locally conformal to a normal (a, b, f)-metric L, that is,
a condition that there locally exists o such that ﬁk’l;j and Vj f"j vanish by a conformal

change L — L = e° L, as follows.

Theorem 4.1 By a conformal change (4.1) an (a, b, f)-metric remains to be an
(a, b, f)-metric. An (a, b, f)-metric is locally conformal to a normal (a, b, f)-metric if
and only if

(4.10) VieM; = VMg, Vibj =byM; — b M aj, f'y =0.

Lastly, it is noted that we can express the condition (4.10) in terms of the linear
connection ]72 as follows.

Theorem 4.2 An (a, b, f)-metric is locally conformal to a normal (a, b, f)-metric
iof and only if

(4.11) VieM; =V; My, Vibj = —Mybj, Vi f'; =0,
where %k denotes the h-covariant differentiation with respect to ]72
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