A note on existences of norm- and trace- compatible sequences

Tsuyoshi Atsumi

(Received Octobor 14, 2008)

Abstract

An extension of a theorem [5] is given and by using this result we give more transparent proofs to existences of norm- and trace- compatible sequences.

Keywords: finite fields, normal basis, norm- compatible sequence, trace- compatible sequences, Euclidean domain.

1 Introduction and Summary

In this paper an extension of a theorem [5] is given and by using this result we give more transparent proofs to existences of norm- and trace- compatible sequences. Let R be a principal ideal domain and M denote a finite, cyclic module over R. We follow notations of [2]. For an element α of M. let $<\alpha>:=\{r \alpha \mid r \in R\}$ be the R-submodule of M generated by $\alpha . A n n_{R}(\alpha):=\{r \in R \mid r \alpha=0\}$ denotes the annihilator ideal of α. The generator $\operatorname{Ord}_{R}(\alpha)$ of $\operatorname{Ann}_{R}(\alpha)$ is called the R-order of $\alpha . \operatorname{Ord}_{R}(\alpha)$ is uniquely determined modulo the group of units in R. The generator of $A n n_{R}(M)=\{r \in R \mid r \alpha=0 \forall \alpha \in M\}$ is denoted by $\operatorname{Ord}_{R}(M)$.

Throughout this note we may assume that $R /(r)$ is finite for all $r \in R-\{0\}$. (Here (r) denotes the ideal generated by r). Let $\Phi_{R}(r)$ denote the number of generators of the module $R /(r)$. In order to prove main proposition we need the following two propositions which we take from the paper of [2].

Proposition 1. (i) $\Phi_{R}(a)=1$ if and only if a is a unit in R.
(ii) Let $a, b \in R-\{0\}$ with $\operatorname{gcd}(a, b)=1$, then $\Phi_{R}(a b)=\Phi_{R}(a) P h i_{R}(b)$.
(iii) If $a=p^{k}$ where $k \geqslant 1$ and p is irreducible in R, the $\Phi_{R}(a)=\left|R /\left(p^{k}\right)\right|-\left|R /\left(p^{k-1}\right)\right|$.
(iv) Let $\Pi_{i=1}^{t} p_{i}^{k_{i}}$ be the prime decomposition of $a \in R-\{0\},\left(p_{i}, p_{j}\right)=1$ for $i \neq j$ and $k_{i} \geqslant 1$ for all i. Then $\Phi_{R}(a)=\Pi_{i=1}^{t}\left(\left|R /\left(p_{i}^{k_{i}}\right)\right|-\left|R /\left(p_{i}^{k_{i}-1}\right)\right|\right)$.

Proposition 2. Let $A:=\operatorname{Ord}_{R}(M)$, then
(i) Every R-submodule N of M is cyclic and $\operatorname{Ord}_{R}(N)$ is a divisor of A.
(ii) Modulo the group of units in R, for every divisor r of A there exists exactly one R-submodule U_{r} of M satisfying $\operatorname{Ord}_{R}\left(U_{r}\right)=r$.
(iii) For every divisor r of A there are exactly $\Phi_{R}(r)$ elements of R-oder r in M. Moreover, one has

$$
\sum_{r \mid A} \Phi_{R}(r)=|M|=|R /(A)|
$$

where r runs over a complete system of pairwise non-associate divisors of A.
We also need the following which is the generalized Chinese remainder theorem.
Proposition 3. Let R be a principal ideal domain and m_{1}, \ldots, m_{n} elements of $R-\{0\}$. Then for every n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ such that $a_{i} \equiv a_{j}\left(\bmod \operatorname{gcd}\left(m_{i}, m_{j}\right)\right)$ for all $i \neq j$ there exists an $x \in R$ such that $x \equiv a_{i}\left(\bmod m_{i}\right)$ for all $i=1, \ldots, n$. Moreover, x is uniquely determined modulo $l c m\left(m_{1}, \ldots, m_{n}\right)$.

Let R be a Euclidean domain and n an element in R. Then we have the following factorization of n

$$
\begin{equation*}
n=u p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} \tag{1}
\end{equation*}
$$

where u is a unit and p_{1}, \cdots, p_{k} are primes and e_{1}, \cdots, e_{k} are integers. We note that any divisor of n and $p_{1}^{\nu_{1}} \cdots p_{k}^{\nu_{k}}$ are associate, for some $0 \leqslant \nu_{i} \leqslant e_{i}, i=1, \cdots, k$. Let $D^{(n)}$ be the set $\left\{p_{1}^{\nu_{1}} \cdots p_{k}^{\nu_{k}} \mid 0 \leqslant \nu_{i} \leqslant e_{i}, i=\right.$ $1, \cdots, k\}$ and $D=\bigcup_{n \in R} D^{(n)}$.

We note that $D^{(n)}$ contains the element 1 and let i and j are elements in $D^{(n)}$ satisfying $i \mid j$, then $l=j / i \in D^{(n)}$.

2 Main proposition

From now on we may assume that R is a Euclidean domain so that $\operatorname{Ord}_{R}(\alpha)$ is the unique element of D for every α in R-module M and also any two elements $a, b \in R$ have the unique greatest common divisor $\operatorname{gcd}(a, b) \in D$.

Fix an element k in D. Let C_{k} be the cyclic R-module of $\operatorname{Ord}_{R}\left(C_{k}\right)=k$, written additively. A proof of the following proposition can be found in [8].

Proposition 4. Let $M=<\alpha>$ be a finite, cyclic module over R with R-order n. Let h be an element of R. Then

$$
\operatorname{Ord}(h \alpha)=\operatorname{Ord}(\alpha) / \operatorname{gcd}(h, \operatorname{Ord}(\alpha)) .
$$

Lemma 1. Let j and k be elements in D satisfying $j \mid k$. Let the function $f: C_{k} \longrightarrow C_{k / j}$ be given by $f(x)=j x$. Then f is a surjective homomorphism.

Definition 1. Let R be a Euclidean domain and k an element in R. A system of compatible generators for C_{k} is a partial function

$$
\alpha: D^{(k)} \longrightarrow C_{k}
$$

defined on $\operatorname{def}(\alpha) \subset D^{(k)}$, satisfying these properties:
1 The function is defined on 1 , that is, $1 \in \operatorname{def}(\alpha)$;
2 If $i \in \operatorname{def}(\alpha)$, then $\operatorname{Ord}_{R}(\alpha(i))=i$; and
3 If $i \in \operatorname{def}(\alpha)$ and $j \mid i$, then $j \in \operatorname{def}(\alpha)$ and $(i / j) \alpha(i)=\alpha(j)$.
A system of compatible generators α^{\prime} is an extension of α if $\operatorname{def}(\alpha) \subset \operatorname{def}\left(\alpha^{\prime}\right)$ and if $\alpha^{\prime}(i)=\alpha(i)$ whenever $i \in \operatorname{def}(\alpha)$. If $D^{(k)}=\operatorname{def}(\alpha)$ then α is a complete system of compatible generators.

Proposition 5. Assume that α is a system of compatible generators for C_{k}. Then there exists a complete system α^{\prime} of compatible generators for C_{k} that extends α.

Proof. Our proof of this proposition is similar to that in [5]. If $k \in \operatorname{def}(\alpha)$, then the theorem immediately follows. Hence, we may assume that $k \notin \operatorname{def}(\alpha)$. We first show how to extend $\operatorname{def}(\alpha)$ by one element. That is, we show that there exists a system of compatible generators α^{\prime} satisfying $\alpha^{\prime}(i)=\alpha(i)$ whenever $i \in \operatorname{def}(\alpha)$ and $\left|\operatorname{def}\left(\alpha^{\prime}\right)-\operatorname{def}(\alpha)\right|=1$. Let $s=\min T$ be the smallest integer in $T=\left\{d(a) \mid a \in D^{(k)}-\operatorname{def}(\alpha)\right\}$, where d is a Euclidean function from R to the non-negative integers.

Let $s=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{m}^{e_{m}}$ be the unique prime factorization of s. For $1 \leqslant i \leqslant m$, define $q_{i}=s / p_{i}$. By the observation above, each $q_{i} \in \operatorname{def}(\alpha)$. Also, each of the $\alpha\left(q_{i}\right)$ is in C_{s}, the unique cyclic submodule of C_{k} of R-order s.

First suppose that $m=1$ and $e_{1}=1$. Define α^{\prime} to be a system of compatible generators that extends by the element s, where $\alpha^{\prime}(s)$ is chosen to be any one of the $\Phi_{R}(s)$ generators of C_{s} that exists by Proposition 1 (iii).

Now suppose that $m=1$ and $e_{1}>1$. Since $C_{s} \supseteq C_{s / p_{1}}=<\alpha\left(p_{1}^{e_{1}-1}\right)>$, by Lemma 1 there exists an $x \in C_{s}$ such that $p x=\alpha\left(p_{1}^{e_{1}-1}\right)$. Then Proposition 4 tells us that $\operatorname{Ord}_{R}(x)=p_{1}^{e_{1}}$. So x generates C_{s}.

Finally suppose that $m>1$. Let $\gamma \in C_{k}$ of R-order s, that is, a generator of C_{s}. There exists r_{i} satisfying

$$
r_{i} \gamma=\alpha\left(q_{i}\right)
$$

Hence, $q_{i}\left(r_{i} \gamma\right)=0$. This shows that $\operatorname{Ord} d_{R}(\gamma) \mid q_{i} r_{i}$. So if we set $s_{i}^{\prime}=r_{i} / p_{i}$, then $s_{i}^{\prime} \in R$. Applying Proposition 3, we obtain an element $x \in R$ satisfying the system of congruences

$$
x \equiv r_{i} / p_{i} \quad\left(\bmod q_{i}\right),
$$

provided that

$$
\begin{equation*}
r_{i} / p_{i} \equiv r_{j} / p_{j} \quad\left(\bmod \operatorname{gcd}\left(q_{i}, q_{j}\right)\right) \tag{2}
\end{equation*}
$$

for every pair i, j, where $1 \leqslant i<j \leqslant m$.
To establish the congruences (2), fix i and j satisfying $1 \leqslant i<j \leqslant m$. Eliminating q_{i} and q_{j} from the congruences (2), we obtain

$$
r_{i} / p_{i} \equiv r_{j} / p_{j} \quad\left(\bmod s /\left(p_{i} p_{j}\right)\right)
$$

Now the element $s /\left(p_{i} p_{j}\right) \in \operatorname{def}(\alpha)$, by the definition of s. Furthermore,

$$
\alpha\left(s /\left(p_{i} p_{j}\right)\right)=r_{i} p_{j} \gamma=r_{j} p_{i} \gamma
$$

it follows that

$$
r_{i} p_{j} \equiv r_{j} p_{i} \quad(\bmod s)
$$

and that

$$
r_{i} / p_{i} \equiv r_{j} / p_{j} \quad\left(\bmod s /\left(p_{i} p_{j}\right)\right)
$$

as required. We obtain x satisfying the system of congruences (2). Equivalently, x satisfies this system of congruences:

$$
\begin{equation*}
x p_{i} \equiv r_{i} \quad(\bmod s) \tag{3}
\end{equation*}
$$

We now define α^{\prime} to be a system of compatible generators that extends α by the one element s, where $\alpha^{\prime}(s)=x \gamma$. Since x is unique modulo $s, x \gamma$ is uniquely defined. We must verify that α^{\prime} is also a system of compatible generators.

First note that

$$
\begin{aligned}
s / q_{i}\left(\alpha^{\prime}(s)\right) & =p_{i}(x \gamma) \\
& =\left(p_{i} x\right) \gamma \\
& =r_{i} \gamma \\
& =\alpha\left(q_{i}\right),
\end{aligned}
$$

by the system of congruences (3) and the fact that R-order of γ is s.
Second we must show that $\operatorname{Ord}_{R}\left(\alpha^{\prime}(s)\right)=s$. Observe that, for each $i, p_{i} \alpha^{\prime}(s)$ generates the cyclic module of R-order q_{i} and $\alpha^{\prime}(s) \in C_{s}$. So $\operatorname{Ord}_{R}\left(\alpha^{\prime}(s)\right)=\left(s / p_{i}\right) l_{i}$ for some $l_{i} \in R$ and $\operatorname{Ord}_{R}\left(\alpha^{\prime}(s)\right) \mid s$. Since $m>1$ and the uniqueness of factorization of the element $\operatorname{Ord} d_{R}\left(\alpha^{\prime}(s)\right)$ in R, we see that $s \mid \operatorname{Ord} d_{R}\left(\alpha^{\prime}(s)\right)$. We conclude that $\operatorname{Ord}_{R}\left(\alpha^{\prime}(s)\right)=s$.

3 Two cyclic module structures in finite fields

In order to prove Theorems 1 and 2 (see Theorems 1 and 2 in [9]) we need the following two elementary lemmas.

Lemma 2. If n, r, s are integers with $n \geqslant 2, r \geqslant 1, s \geqslant 1$, then

$$
n^{s}-1 \mid n^{r}-1 \quad \text { if and only if } s \mid r \text {. }
$$

Lemma 3. In any field

$$
x^{s}-1 \mid x^{r}-1 \quad \text { if and only if } s \mid r \text {. }
$$

Let F_{q} and $F_{q^{m}}$ be the finite fields of order q and q^{m}, respectively. For $n \in Z$ and $\alpha \in \bar{F}_{q}{ }^{*}$ the mapping $(n, \alpha) \longmapsto \alpha^{n}$ makes the multiplicative group of \bar{F}_{q} a module over Z, where \bar{F}_{q} denotes an algebraic closure of F_{q} and $\bar{F}_{q}{ }^{*}=\bar{F}_{q}-\{0\}$. It is well-known that $F_{q^{m}}^{*}=F_{q^{m}}-\{0\}$ is a cyclic group of order $q^{m}-1$. So the multiplicative group $\left(F_{q^{m}}^{*}, \cdot\right)$ is a cyclic Z-module and its generators are the primitive roots of $F_{q^{m}}$. We have the following(see [9]).

Fact 1. Let $\alpha \in \bar{F}_{q}{ }^{*}$. Then α is primitive in $F_{q^{m}}$ if and only if ord $(\alpha)=q^{m}-1$, if and only if the Z-submodule of $\bar{F}_{q}{ }^{*}$ generated by α equals $\bar{F}_{q}{ }^{*}$

Let $f:=\sum_{i=0}^{n} f_{i} x^{i}$ be a polynomial of $F_{q}[x]$ and let $\alpha \in F_{q^{m}}$, then the scalar multiplication \diamond : $F_{q}[x] \times F_{q^{m}} \longrightarrow F_{q^{m}}$

$$
(f, \alpha) \longmapsto f \diamond \alpha:=\sum_{i=0}^{n} f_{i} \alpha^{q^{i}}
$$

turns the additive group $\left(F_{q^{m}},+\right)$ into a finite, cyclic module over $F_{q}[x]$, its generators are generators of normal bases.

The following holds(see [9]).
Fact 2. Let $\alpha \in \bar{F}_{q}{ }^{*}$. Then α is normal in $F_{q^{m}}$ in over F_{q}, if and only if $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}\right\}$ constitutes a basis of $F_{q^{m}}$ over F_{q}, if and only if $\operatorname{Ord}(\alpha)=X^{m}-1$, if and only if the $F_{q}[X]$-submodule of \bar{F}_{q} generated by α equals $F_{q^{m}}$.

Let $I \subset N$ denote a devisor-closed set and, for $m \in N$ divisible by d, let $N_{m: d}$ and $T_{m: d}$ denote the norm and the trace function from $F_{q^{m}}$ onto $F_{q^{d}}$ respectively.

Definition 2. A sequence $\left(\alpha_{n}\right)_{n \in I}$ of elements $\alpha_{n} \in \bar{F}_{q}$ is called norm-compatible if for every $n \in I, \alpha_{n}$ is primitive in $F_{q^{n}}$ and $N_{n: d}\left(\alpha_{n}\right)=\alpha_{d}$ for all divisors d of n.

Definition 3. A sequence $\left(\alpha_{n}\right)_{n \in I}$ of elements $\alpha_{n} \in \bar{F}_{q}$ is called trace-compatible if for every $n \in I, \alpha_{n}$ is normal in $F_{q^{n}}$ and $T_{n: d}\left(\alpha_{n}\right)=\alpha_{d}$ for all divisors d of n.

Note that $N_{m: d}(\alpha)=\alpha^{\left(q^{m}-1\right) /\left(q^{d}-1\right)}$ and that $T_{m: d}(\alpha)=\left(X^{m}-1\right) /\left(X^{d}-1\right) \diamond \alpha$.
Theorem 1. Norm compatible sequences $\left(\alpha_{n}\right)_{n \in N}, \alpha_{n} \in F_{q^{n}}$, do exist.
Proof. We note that $F_{q^{n}}^{*}=F_{q^{n}}-\{0\}$ is a Z-module of order $q^{n}-1$ and Z is a Euclidean domain with a Euclidean function $d(n)=|n|$. And in this case D is the set of positive integers in Z. So by Proposition 5 there exists a complete system of compatible generators α^{\prime}. Then we let α be the restriction of α^{\prime} to $\left\{q^{d}-1|d| n\right\}$. And we set $\beta(d)=\alpha\left(q^{d}-1\right)$. By Lemma 2 and Fact 1 we see that $\{\beta(d)\}_{d}$ is a normcompatible sequences.

Theorem 2. Trace compatible sequences $\left(\alpha_{n}\right)_{n \in N}, \alpha_{n} \in F_{q^{n}}$, do exist.
Proof. (cf. the proof of Theorem 1 in [9].) From the above the additive group of $F_{q^{n}}$ becomes a cyclic module over $F_{q}[X]$ of $O r d_{R} X^{n}-1$ and $F_{q}[X]$ is an Euclidean domains with a Euclidean function $d(f)=d e g f$, the degree of the polynomial f. And in this case D is the set of the monic polynomials in $F_{q}[X]$. So by Proposition 5 there exists a complete system of compatible generators α^{\prime}. Then we let α be the restriction of α^{\prime} to $\left\{X^{d}-1|d| n\right\}$. And we set $\beta(d)=\alpha\left(X^{d}-1\right)$. By Lemma 3 and Fact 2 we see that $\{\beta(d)\}_{d}$ is a trace-compatible sequences.

References

[1] Y. Chang, T. K. Truong, I. S. Reed, and G. L. Mullen, Normal bases over $G F(q)$, Jounal of Algebra 241, 89-101(2001)
[2] Dirk Hachenberger, On primitive and free roots in a finite field, Appl. Algebra Eng. Commun. Comput. 3, 139-150(1992)
[3] Dirk Hachenberger, Characterizing normal bases via the trace map, Communications in Algebra 32 , 269-277(2004).
[4] Dirk Hachenberger, Generators for primary closures of Galois fields, Finite Fields and their Applications 9, 122-128 (2003).
[5] Lenwood S. Heath \& Nicholas A. Loehr, New algorithms for generating Conway polynomials over finite fields, Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 1999), 429-437, ACM, New York (1999)
[6] Dieter Jungnickel, Finite fields, Structure and Arithmetic, Bibliographisches Institut, Mannheim,(1993)
[7] H. W. Lenstra \& R. J. Schoof, Primitive normal bases for finite fields, Mathematics of Computation 48, 217-231(1987)
[8] Rudolf Lidl \& Harald Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, Vol. 20, Toronto, London, Amsterdam: Addison-Wesley, Reading, Mass. 1983
[9] Alfred Scheerhorn, Trace- and norm-compatible extensions of finite fields, Appl. Algebra Eng. Commun. Comput. 3, 199-209(1992)

