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Abstract

An extension of a theorem [5] is given and by using this result we give more transparent proofs to
existences of norm- and trace- compatible sequences.
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1 Introduction and Summary

In this paper an extension of a theorem [5] is given and by using this result we give more transparent proofs
to existences of norm- and trace- compatible sequences. Let R be a principal ideal domain and M denote a
finite, cyclic module over R. We follow notations of [2]. For an element o of M. let < a >:= {ra | r € R}
be the R-submodule of M generated by a. Anng(a) := {r € R | ra = 0} denotes the annihilator ideal of
a. The generator Ordgr(«) of Anng(a) is called the R-order of a. Ordg(«) is uniquely determined modulo
the group of units in R. The generator of Anng(M) = {r € R|ra =0Va € M} is denoted by Ordgr(M).

Throughout this note we may assume that R/(r) is finite for all » € R — {0}. (Here (r) denotes the ideal
generated by 7). Let ®r(r) denote the number of generators of the module R/(r). In order to prove main
proposition we need the following two propositions which we take from the paper of [2].

Proposition 1. (i) ®r(a) =1 if and only if a is a unit in R.
(i) Let a, b € R— {0} with gcd(a,b) =1, then ®r(ab) = Pr(a)Phigr(b).
(iii) If a = p* where k > 1 and p is irreducible in R, the ®g(a) = |R/(p*)| — |R/(P*~1)|.

(iv) Let Hﬁzlpfi be the prime decomposition of a € R — {0}, (pi,p;) =1 fori # j and k; > 1 for all i.
Then ®p(a) = Iy (|R/(pi™)] — [R/(pi*~))).

Proposition 2. Let A := Ordr(M), then

(i) Every R-submodule N of M is cyclic and Ordgr(N) is a divisor of A.

(i) Modulo the group of units in R, for every divisor r of A there exists exactly one R-submodule U, of M
satisfying Ordr(U,) = r.

(iii) For every divisor r of A there are exactly ®r(r) elements of R-oder r in M. Moreover, one has

> r(r) =|M|=|R/(4)]

r|A
where r Tuns over a complete system of pairwise non-associate divisors of A.
We also need the following which is the generalized Chinese remainder theorem.

Proposition 3. Let R be a principal ideal domain and myq,...,m, elements of R — {0}. Then for every
n-tuple (a1,...,a,) € R™ such that a; = a; (mod ged(m;, m;)) for all i # j there exists an © € R such that
x =a; (mod m;) for alli=1,...,n. Moreover, x is uniquely determined modulo lem(mq,...,my,).
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Let R be a Euclidean domain and n an element in R. Then we have the following factorization of n

n=upi' - py’, (1)
where w is a unit and p;,--- ,p; are primes and ey, --- ,ex are integers. We note that any divisor of n and
Pyt -+ py* are associate, for some 0 < v; < e;, i =1,--- k. Let D™ be the set {p}" - pi* |0 < v; < ey i =

1,--,k} and D =, cp D™.
We note that D™ contains the element 1 and let i and j are elements in D(™) satisfying i | j, then
l=j/ie D" .

2 Main proposition

From now on we may assume that R is a Euclidean domain so that Ordgr(«) is the unique element of D
for every a in R-module M and also any two elements a, b € R have the unique greatest common divisor
ged(a,b) € D.

Fix an element k in D. Let C} be the cyclic R-module of Ordgr(Cy) = k, written additively. A proof of
the following proposition can be found in [8].

Proposition 4. Let M =< «a > be a finite, cyclic module over R with R-order n. Let h be an element of
R. Then
Ord(ha) = Ord(a)/ged(h, Ord(c)).

Lemma 1. Let j and k be elements in D satisfying j | k. Let the function f : C, — Cy; be given by
f(x) =jx. Then f is a surjective homomorphism.

Definition 1. Let R be a Euclidean domain and k an element in R. A system of compatible generators for
Cy is a partial function
a:DF Chk,

defined on def(a) € D®) | satisfying these properties:
1 The function is defined on 1, that is, 1 € def(a);
2 Ifi € def(a), then Ordgr(a(i)) =i; and
3 Ifiedef(a) and j | i, then j € def(a) and (i/j)a(i) = a(j).

A system of compatible generators o/ is an extension of « if def(a) C def(a/) and if o/ (i) = (i) whenever
i €def(a). If D*) = def(a) then a is a complete system of compatible generators.

Proposition 5. Assume that a is a system of compatible generators for Cy. Then there exists a complete
system o of compatible generators for Cy that extends o.

Proof. Our proof of this proposition is similar to that in [5]. If k¥ € def(«a), then the theorem immediately
follows. Hence, we may assume that k ¢ def(«). We first show how to extend def(a) by one element. That
is, we show that there exists a system of compatible generators o' satisfying o/ (i) = «(i) whenever i € def(a)
and |def(o/) — def(a)| = 1. Let s = min T be the smallest integer in T = {d(a)|a € D*) — def(a)}, where
d is a Euclidean function from R to the non-negative integers.

Let s = pi'ps? - - - p&m be the unique prime factorization of s. For 1 < ¢ < m, define ¢; = s/p;. By the
observation above, each ¢; € def(a). Also, each of the a(g;) is in Cj, the unique cyclic submodule of Cj of
R-order s.

First suppose that m = 1 and e; = 1. Define o’ to be a system of compatible generators that extends by
the element s, where o/(s) is chosen to be any one of the ®r(s) generators of Cy that exists by Proposition
1 ().

Now suppose that m = 1 and e; > 1. Since Cs 2 Cy/p, =< a(pil_l) >, by Lemma 1 there exists an

e;—1

x € Cs such that pxr = a(p7* ™). Then Proposition 4 tells us that Ordg(z) = p{*. So x generates Cs.
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Finally suppose that m > 1. Let v € C of R-order s, that is, a generator of Cs. There exists r; satisfying
riy = a(g:)

Hence, ¢;(r;y) = 0. This shows that Ordr(y) | ¢r;. So if we set s, = r;/p;, then s, € R. Applying
Proposition 3, we obtain an element z € R satisfying the system of congruences

x=r;/p; (mod g¢),
provided that
ri/pi = 71;/p; (mod ged(qi, ;). (2)

for every pair ¢, j, where 1 < i < j < m.

To establish the congruences (2), fix ¢ and j satisfying 1 < ¢ < j < m. Eliminating ¢; and ¢; from the
congruences (2), we obtain
ri/pi = 7rj/p;  (mod s/(pip;)),

Now the element s/(p;p;) € def(a), by the definition of s. Furthermore,
a(s/(pipj)) = ripjy = ripiy
it follows that
rip; = r;p;  (mod s)
and that
ri/pi = ri/p;  (mod s/(pip;)),

as required. We obtain z satisfying the system of congruences (2). Equivalently, x satisfies this system of
congruences:
xp; =r; (mod s) (3)

We now define o/ to be a system of compatible generators that extends « by the one element s, where
a/(s) = . Since z is unique modulo s, 2y is uniquely defined. We must verify that o is also a system of
compatible generators.

First note that

s/q:(c/(s)) = pi(x7)
= (piz)y
=Ty
= a(Qi)a
by the system of congruences (3) and the fact that R-order of v is s.
Second we must show that Ordgr(a/(s)) = s. Observe that, for each i, p;a’(s) generates the cyclic module
of R-order ¢; and o/(s) € Cs. So Ordg(a/(s)) = (s/pi)l; for some I; € R and Ordg(c/(s)) | s. Since m > 1

and the uniqueness of factorization of the element Ordg(a/(s)) in R, we see that s | Ordg(a/(s)). We
conclude that Ordg(a/(s)) = s. O

3 Two cyclic module structures in finite fields

In order to prove Theorems 1 and 2 (see Theorems 1 and 2 in [9]) we need the following two elementary
lemmas.

Lemma 2. Ifn, r, s are integers withn > 2, r > 1, s > 1, then

n®—1|n" =1 ifandonlyif s|r.



4 Tsuyosur ATSUMI

Lemma 3. In any field
2®=1|2z" =1 ifand onlyif s|r.

Let F, and Fm be the finite fields of order ¢ and ¢™, respectively. For n € Z and « € Fq* the mapping
(n,a) — o™ makes the multiplicative group of F'q a module over Z, where Fq denotes an algebraic closure
of F, and F,” = F, — {0}. Tt is well-known that Fyn = Fym — {0} is a cyclic group of order ¢ — 1. So the
multiplicative group (F, o -) is a cyclic Z-module and its generators are the primitive roots of Fym. We have
the following(see [9]).

Fact 1. Let o € Fq*, Then « is primitive in Fym if and only if ord(a) = ¢™ — 1, if and only if the
Z-submodule of Fq* generated by o equals Fq*

Let f := Y.", fiz" be a polynomial of Fy[z] and let a € Fym, then the scalar multiplication ¢ :
Fyla] x Fym — Fym

n
(f, ) — fOa =" fia®
=0
turns the additive group (Fym,+) into a finite, cyclic module over Fj[x], its generators are generators of
normal bases.

The following holds(see [9]).

Fact 2. Let a € F'q*. Then o is normal in Fgm in over Fy, if and only if {a, 9, .. .,oﬂm_l} constitutes a
basis of Fgm over Fy, if and only if Ord(a) = X™ — 1, if and only if the F,[X]-submodule of F, generated
by o equals Fym.

Let I C N denote a devisor-closed set and, for m € N divisible by d, let N,,.q and T},.q denote the norm
and the trace function from Fym onto Fja respectively.

Definition 2. A sequence (o )ner of elements o, € F, is called norm-compatible if for every n € I, is
primitive in Fgn and Ny.q(on) = aq for all divisors d of n.

Definition 3. A sequence (an)ner of elements vy, € Fy is called trace-compatible if for every n € I, is
normal in Fygn and Ty.q(0m,) = aq for all divisors d of n.

Note thatN,,.q(a) = @™ =1/@*=1) and that Tn:a(@) = (X™ —1)/(X1—1)0a.
Theorem 1. Norm compatible sequences (cun)nen, n € Fyn, do ezist.

Proof. We note that Fy, = Fyn — {0} is a Z—module of order ¢" — 1 and Z is a Euclidean domain with a
Euclidean function d(n) = |n|. And in this case D is the set of positive integers in Z. So by Proposition
5 there exists a complete system of compatible generators o’. Then we let a be the restriction of o/ to
{¢? — 1 | dn}. And we set 5(d) = a(¢® —1). By Lemma 2 and Fact 1 we see that{3(d)}q is a norm-
compatible sequences. O

Theorem 2. Trace compatible sequences (ap)nen, On € Fyn, do exist.

Proof. (cf. the proof of Theorem 1 in [9].) From the above the additive group of Fy» becomes a cyclic module
over Fy[X] of Ordp X™ — 1 and F,[X] is an Euclidean domains with a Euclidean function d(f) = deg f,
the degree of the polynomial f. And in this case D is the set of the monic polynomials in F,[X]. So by
Proposition 5 there exists a complete system of compatible generators o/. Then we let o be the restriction
of @ to {X?—1|d|n}. And we set B(d) = a(X? —1). By Lemma 3 and Fact 2 we see that{3(d)}4 is a
trace-compatible sequences. O
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