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Abstract

An extension of a theorem [5] is given and by using this result we give more transparent proofs to
existences of norm- and trace- compatible sequences.
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1 Introduction and Summary

In this paper an extension of a theorem [5] is given and by using this result we give more transparent proofs
to existences of norm- and trace- compatible sequences. Let R be a principal ideal domain and M denote a
finite, cyclic module over R. We follow notations of [2]. For an element α of M . let < α >:= {rα | r ∈ R}
be the R-submodule of M generated by α. AnnR(α) := {r ∈ R | rα = 0} denotes the annihilator ideal of
α. The generator OrdR(α) of AnnR(α) is called the R-order of α. OrdR(α) is uniquely determined modulo
the group of units in R. The generator of AnnR(M) = {r ∈ R | rα = 0 ∀α ∈ M} is denoted by OrdR(M).

Throughout this note we may assume that R/(r) is finite for all r ∈ R−{0}. (Here (r) denotes the ideal
generated by r). Let ΦR(r) denote the number of generators of the module R/(r). In order to prove main
proposition we need the following two propositions which we take from the paper of [2].

Proposition 1. (i) ΦR(a) = 1 if and only if a is a unit in R.

(ii) Let a, b ∈ R − {0} with gcd(a, b) = 1, then ΦR(ab) = ΦR(a)PhiR(b).

(iii) If a = pk where k � 1 and p is irreducible in R, the ΦR(a) = |R/(pk)| − |R/(pk−1)|.
(iv) Let Πt

i=1p
ki
i be the prime decomposition of a ∈ R − {0}, (pi, pj) = 1 for i �= j and ki � 1 for all i.

Then ΦR(a) = Πt
i=1(|R/(pi

ki)| − |R/(pi
ki−1)|).

Proposition 2. Let A := OrdR(M), then

(i) Every R-submodule N of M is cyclic and OrdR(N) is a divisor of A.

(ii) Modulo the group of units in R, for every divisor r of A there exists exactly one R-submodule Ur of M
satisfying OrdR(Ur) = r.

(iii) For every divisor r of A there are exactly ΦR(r) elements of R-oder r in M. Moreover, one has
∑

r|A
ΦR(r) = |M | = |R/(A)|

where r runs over a complete system of pairwise non-associate divisors of A.

We also need the following which is the generalized Chinese remainder theorem.

Proposition 3. Let R be a principal ideal domain and m1, . . . ,mn elements of R − {0}. Then for every
n-tuple (a1, . . . , an) ∈ Rn such that ai ≡ aj (mod gcd(mi,mj)) for all i �= j there exists an x ∈ R such that
x ≡ ai (mod mi) for all i = 1, . . . , n. Moreover, x is uniquely determined modulo lcm(m1, . . . ,mn).
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Let R be a Euclidean domain and n an element in R. Then we have the following factorization of n

n = upe1
1 · · · pek

k , (1)

where u is a unit and p1, · · · , pk are primes and e1, · · · , ek are integers. We note that any divisor of n and
pν1
1 · · · pνk

k are associate, for some 0 � νi � ei, i = 1, · · · , k. Let D(n) be the set {pν1
1 · · · pνk

k | 0 � νi � ei, i =
1, · · · , k} and D =

⋃
n∈R D(n).

We note that D(n) contains the element 1 and let i and j are elements in D(n) satisfying i | j, then
l = j/i ∈ D(n) .

2 Main proposition

From now on we may assume that R is a Euclidean domain so that OrdR(α) is the unique element of D
for every α in R-module M and also any two elements a, b ∈ R have the unique greatest common divisor
gcd(a, b) ∈ D.

Fix an element k in D. Let Ck be the cyclic R-module of OrdR(Ck) = k, written additively. A proof of
the following proposition can be found in [8].

Proposition 4. Let M =< α > be a finite, cyclic module over R with R-order n. Let h be an element of
R. Then

Ord(hα) = Ord(α)/gcd(h,Ord(α)).

Lemma 1. Let j and k be elements in D satisfying j | k. Let the function f : Ck −→ Ck/j be given by
f(x) = jx. Then f is a surjective homomorphism.

Definition 1. Let R be a Euclidean domain and k an element in R. A system of compatible generators for
Ck is a partial function

α : D(k) −→ Ck,

defined on def(α) ⊂ D(k), satisfying these properties:

1 The function is defined on 1, that is, 1 ∈ def(α);

2 If i ∈ def(α), then OrdR(α(i)) = i; and

3 If i ∈ def(α) and j | i, then j ∈ def(α) and (i/j)α(i) = α(j).

A system of compatible generators α′ is an extension of α if def(α) ⊂ def(α′) and if α′(i) = α(i) whenever
i ∈ def(α). If D(k) = def(α) then α is a complete system of compatible generators.

Proposition 5. Assume that α is a system of compatible generators for Ck. Then there exists a complete
system α′ of compatible generators for Ck that extends α.

Proof. Our proof of this proposition is similar to that in [5]. If k ∈ def(α), then the theorem immediately
follows. Hence, we may assume that k /∈ def(α). We first show how to extend def(α) by one element. That
is, we show that there exists a system of compatible generators α′ satisfying α′(i) = α(i) whenever i ∈ def(α)
and |def(α′) − def(α)| = 1. Let s = min T be the smallest integer in T = {d(a)|a ∈ D(k) − def(α)}, where
d is a Euclidean function from R to the non-negative integers.

Let s = pe1
1 pe2

2 · · · pem
m be the unique prime factorization of s. For 1 � i � m, define qi = s/pi. By the

observation above, each qi ∈ def(α). Also, each of the α(qi) is in Cs, the unique cyclic submodule of Ck of
R-order s.

First suppose that m = 1 and e1 = 1. Define α′ to be a system of compatible generators that extends by
the element s, where α′(s) is chosen to be any one of the ΦR(s) generators of Cs that exists by Proposition
1 (iii).

Now suppose that m = 1 and e1 > 1. Since Cs ⊇ Cs/p1 =< α(pe1−1
1 ) >, by Lemma 1 there exists an

x ∈ Cs such that px = α(pe1−1
1 ). Then Proposition 4 tells us that OrdR(x) = pe1

1 . So x generates Cs.
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Finally suppose that m > 1. Let γ ∈ Ck of R-order s, that is, a generator of Cs. There exists ri satisfying

riγ = α(qi)

Hence, qi(riγ) = 0. This shows that OrdR(γ) | qiri. So if we set s′i = ri/pi, then s′i ∈ R. Applying
Proposition 3, we obtain an element x ∈ R satisfying the system of congruences

x ≡ ri/pi (mod qi),

provided that
ri/pi ≡ rj/pj (mod gcd(qi, qj)), (2)

for every pair i, j, where 1 � i < j � m.

To establish the congruences (2), fix i and j satisfying 1 � i < j � m. Eliminating qi and qj from the
congruences (2), we obtain

ri/pi ≡ rj/pj (mod s/(pipj)),

Now the element s/(pipj) ∈ def(α), by the definition of s. Furthermore,

α(s/(pipj)) = ripjγ = rjpiγ

it follows that
ripj ≡ rjpi (mod s)

and that
ri/pi ≡ rj/pj (mod s/(pipj)),

as required. We obtain x satisfying the system of congruences (2). Equivalently, x satisfies this system of
congruences:

xpi ≡ ri (mod s) (3)

We now define α′ to be a system of compatible generators that extends α by the one element s, where
α′(s) = xγ. Since x is unique modulo s, xγ is uniquely defined. We must verify that α′ is also a system of
compatible generators.

First note that

s/qi(α′(s)) = pi(xγ)
= (pix)γ
= riγ

= α(qi),

by the system of congruences (3) and the fact that R-order of γ is s.

Second we must show that OrdR(α′(s)) = s. Observe that, for each i, piα
′(s) generates the cyclic module

of R-order qi and α′(s) ∈ Cs. So OrdR(α′(s)) = (s/pi)li for some li ∈ R and OrdR(α′(s)) | s. Since m > 1
and the uniqueness of factorization of the element OrdR(α′(s)) in R, we see that s | OrdR(α′(s)). We
conclude that OrdR(α′(s)) = s.

3 Two cyclic module structures in finite fields

In order to prove Theorems 1 and 2 (see Theorems 1 and 2 in [9]) we need the following two elementary
lemmas.

Lemma 2. If n, r, s are integers with n � 2, r � 1, s � 1, then

ns − 1 | nr − 1 if and only if s | r.
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Lemma 3. In any field
xs − 1 | xr − 1 if and only if s | r.

Let Fq and Fqm be the finite fields of order q and qm, respectively. For n ∈ Z and α ∈ F̄q
∗ the mapping

(n, α) 	−→ αn makes the multiplicative group of F̄q a module over Z, where F̄q denotes an algebraic closure
of Fq and F̄q

∗ = F̄q − {0}. It is well-known that F ∗
qm = Fqm − {0} is a cyclic group of order qm − 1. So the

multiplicative group (F ∗
qm , ·) is a cyclic Z-module and its generators are the primitive roots of Fqm . We have

the following(see [9]).

Fact 1. Let α ∈ F̄q
∗. Then α is primitive in Fqm if and only if ord(α) = qm − 1, if and only if the

Z-submodule of F̄q
∗ generated by α equals F̄q

∗

Let f :=
∑n

i=0 fix
i be a polynomial of Fq[x] and let α ∈ Fqm , then the scalar multiplication ♦ :

Fq[x] × Fqm −→ Fqm

(f, α) 	−→ f♦α :=
n∑

i=0

fiα
qi

turns the additive group (Fqm , +) into a finite, cyclic module over Fq[x], its generators are generators of
normal bases.

The following holds(see [9]).

Fact 2. Let α ∈ F̄q
∗. Then α is normal in Fqm in over Fq, if and only if {α, αq, . . . , αqm−1} constitutes a

basis of Fqm over Fq, if and only if Ord(α) = Xm − 1, if and only if the Fq[X]-submodule of F̄q generated
by α equals Fqm .

Let I ⊂ N denote a devisor-closed set and, for m ∈ N divisible by d, let Nm:d and Tm:d denote the norm
and the trace function from Fqm onto Fqd respectively.

Definition 2. A sequence (αn)n∈I of elements αn ∈ F̄q is called norm-compatible if for every n ∈ I, αn is
primitive in Fqn and Nn:d(αn) = αd for all divisors d of n.

Definition 3. A sequence (αn)n∈I of elements αn ∈ F̄q is called trace-compatible if for every n ∈ I, αn is
normal in Fqn and Tn:d(αn) = αd for all divisors d of n.

Note thatNm:d(α) = α(qm−1)/(qd−1) and that Tm:d(α) = (Xm − 1)/(Xd − 1)♦α.

Theorem 1. Norm compatible sequences (αn)n∈N , αn ∈ Fqn , do exist.

Proof. We note that F ∗
qn = Fqn − {0} is a Z−module of order qn − 1 and Z is a Euclidean domain with a

Euclidean function d(n) = |n|. And in this case D is the set of positive integers in Z. So by Proposition
5 there exists a complete system of compatible generators α′. Then we let α be the restriction of α′ to
{qd − 1 | d|n}. And we set β(d) = α(qd − 1). By Lemma 2 and Fact 1 we see that{β(d)}d is a norm-
compatible sequences.

Theorem 2. Trace compatible sequences (αn)n∈N , αn ∈ Fqn , do exist.

Proof. (cf. the proof of Theorem 1 in [9].) From the above the additive group of Fqn becomes a cyclic module
over Fq[X] of OrdR Xn − 1 and Fq[X] is an Euclidean domains with a Euclidean function d(f) = deg f ,
the degree of the polynomial f . And in this case D is the set of the monic polynomials in Fq[X]. So by
Proposition 5 there exists a complete system of compatible generators α′. Then we let α be the restriction
of α′ to {Xd − 1 | d|n}. And we set β(d) = α(Xd − 1). By Lemma 3 and Fact 2 we see that{β(d)}d is a
trace-compatible sequences.
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