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Climate change threatens the sustainability of most rainfed sugarcane farming 

systems. Hence, rainfed sugarcane farming systems are gradually being replaced by 

irrigated farming systems wherever such transition is possible. Also, low-efficiency 

irrigation systems are being replaced by high-efficiency systems to make sugarcane farming 

more economically sustainable. However, irrigation is one of the most expensive practices 

of sugarcane farming systems. Therefore dimensions of sugarcane irrigation systems need 

to be adjusted for water conservation while simultaneously reducing operational costs. 

The optimized subsurface irrigation system (OPSIS) is a subsurface irrigation 

system for irrigating the root zone of upland crops by capillarity. In design, OPSIS can 

significantly reduce percolation losses, which are common problems in other subsurface 

irrigation systems. Because a small solar-powered pump is used to lift water and create a 

pressure head and because minimum operational activities are required, OPSIS offers the 

potential to lower the operational costs of irrigation for sugarcane farmers drastically.  

Agricultural Production Systems sIMulator (APSIM) is widely using crop model 

with numerous uses, including the evaluation of different irrigation management practices. 

Proper parameterization, calibration, and validation are essential in achieving the success 

of simulations using crop models. Hence developing simulation capabilities with 

developed technologies is vital to get the maximum benefit for the development of crops 

and new management strategies. 

This study aimed to develop OPSIS as a user-friendly, economically viable, and 

environmental sound irrigation method for upland farmers worldwide. Specifically, this 

study aimed to, 1) to introduce and scientifically validate the newly developed optimized 

subsurface irrigation system (OPSIS); 2) to enhance modeling capability of Agricultural 
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Production Systems sIMulator (APSIM) to use with OPSIS; 3) to study the applicability 

of OPSIS for tropical environments. 

We conducted field experiments representing all planting conditions (spring and 

summer planting, main and ratoon crops) to compare the performances of OPSIS over 

sprinkler irrigation. This study showed that OPSIS offers advantages over sprinkler 

irrigation for sugarcane cultivation in Okinawa in respect of both sugarcane yield and WUE. 

Compared with sprinkler irrigation, OPSIS produced significantly taller plants, and thus 

significantly longer millable stalks, and significantly more millable stalks. Therefore, 

OPSIS achieved significantly higher fresh cane weight using less irrigation water than did 

sprinkler irrigation. OPSIS is a water-conserving irrigation technique that can irrigate 

sugarcane crops with minimal operational cost, energy consumption, and human 

intervention. Therefore, it may be a sustainable alternative for sugarcane crop irrigation in 

Okinawa and similar subtropical environments.  

We parameterized and calibrated the APSIM-Sugar model to simulate growth and 

yield of sugarcane cultivar Ni21 under Okinawan conditions, then, validated the APSIM to 

use with OPSIS. We developed APSIM-OPSIS module to couple OPSIS with APSIM 

engine. Simulated plant height and fresh cane yield showed good agreement with the 

observations. However, APSIM showed overestimation for soil water content in upper soil 

layers and irrigation water use of OPSIS. Hence, it is concluded that the newly developed 

APSIM-OPSIS module can successfully be used to simulate the crop growth and yield of 

sugarcane with optimized subsurface irrigation system.  

We parameterized and calibrated the APSIM-Sugar model to simulate growth and 

yield of Sri Lankan local sugarcane cultivar SL96128. Then we simulated the growth and 

yield of sugarcane under rainfed, surface irrigated, and OPSIS irrigated conditions for two 

locations in Sri Lanka with distinct soils. Results revealed that in both soils OPSIS 

performed better than the rainfed and surface irrigation; however the performance of OPSIS 

is remarkable with clay loam soil. Hence, it is concluded that the OPSIS can significantly 

increase the crop growth and sugarcane under Sri Lankan conditions, especially in the places 

with clayey soils. With future climates, APSIM may perform better than the surface 

irrigation and rainfed conditions. The design modification may require achieving expected 

performances of OPSIS under sandy soil conditions.   

Keywords: APSIM, crop modeling, GEM-SA, Japan, OPSIS, pedotransfer functions, 

sensitivity analysis, Sri Lanka, subsurface irrigation, sugarcane, WEKA  
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要約 
 

OPSISは畑作において、根群域に灌漑するシステムである。OPSISは他の地下灌漑シ

ステムで問題となる下方浸透を少なくすることが可能である。OPSISは、太陽光パネルを

電源としてポンプ操作をするため、農家の操作コストを大幅に減らすことが可能である。

APSIMは、広く利用されている作物モデルであり、違った灌漑操作の評価ができる。作

物モデルを適切に使うには、パラメータの決定・同定および検証が重要である。従って、

開発された技術のシミュレーション手法の開発は、その技術の利用効果を最大限にする

ためには不可欠である。そこで、本研究では、OPSISを利用しやすく、経済的で環境に

優しい灌漑システムとして開発することを目的とした。具体的には、1) OPSISの紹介およ

び科学的検証 2)OPSISの APSIMを用いたモデル化 3)OPSISの熱帯環境での適用性

検討、である。 

 沖縄県でのすべての栽培条件での OPSISとスプリンクラー灌漑の比較実験を行なっ

た。その結果、OPSISはスプリンクラー灌漑に比べて、収量と水利用効率において有効

であった。OPSIS利用条件では、作物高さ、茎長および茎数に関して高い値となった。こ

れにより、OPSIS利用条件では、スプリンクラー灌漑より少ない水量で高い収量を得るこ

とができた。OPSISはサトウキビ栽培において少ない管理コストおよびエネルギーで灌漑

できる水保全型の灌漑方法である。従って、OPSISは沖縄や亜熱帯地域のサトウキビ栽

培において持続的な手法になりうると考える。 

我々は、沖縄県の条件で農林 21号のシミュレーションのために ASSIM-Sugarのキャリ

ブレーションを行い、APSIMを用いた OPSISのモデル化の検証を行なった。APSIMに

OPSISの機能を取り込み APSIM-OPSISモジュールを開発した。 適用では、作物高さと

生茎重の計算において実測値の再現ができた。しかし、APSIMでは土壌水分の計算に

関して過大評価する結果となった。 

 次に、スリランカの品種に対して APSIM-Sugarのパラメータ同定を行なった。そして、

無灌漑、地表灌漑および OPSIS条件で 2地点の土壌データを用いてシミュレーション

を行った。その結果、どちらの土壌条件でも OPSIS条件では天水および地表灌漑より収

量がよくなる計算結果となった。特に、粘土性の土壌ではその効果が顕著である計算結
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果となった。これらの計算結果から、OPSISはスリランカにおいても有用である可能性が

あることが示唆された。 
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1.0 General Introduction 

The sustainability of rainfed agriculture in some regions is in peril as it gravely 

threatened by climate change. Hence not only the food security but also the social structure 

in many countries is in danger as rainfed agriculture occupies 80% of the world’s 

agricultural lands and currently contributes 60% of the world’s food production. Therefore, 

urgent attention to developing water management strategies and irrigation facilities is 

required; however, still, it is one of the significant contributors to operational costs in 

agriculture. Hence, the adaptation could inhibit by the reluctance of farmers to adopt 

practices that elevate operational costs. Therefore, new technologies would be more likely 

to be taken if they were designed to save precious water resources and at the same time, 

keep associated labor and energy costs as low as possible. 

Climate change threatens the sustainability of most rainfed sugarcane farming 

systems (Knox et al., 2010). It may harm the sugarcane growth and yield if no appropriate 

irrigation facilities introduce (Zhao and Li, 2015). Rainfed sugarcane farming systems are 

gradually being replaced by irrigated farming systems wherever such transition is possible. 

Also, low-efficiency irrigation systems are being replaced by high-efficiency systems to 

make sugarcane farming more economically sustainable. However, irrigation is one of the 

most expensive practices of sugarcane farming systems; the dimensions of sugarcane 

irrigation systems need to be adjusted for water conservation while simultaneously reducing 

operational costs. 

The optimized subsurface irrigation system (OPSIS) is a subsurface irrigation 

system for irrigating the root zone of upland crops by capillarity. In design, OPSIS can 

significantly reduce percolation losses, which are common problems in other subsurface 

irrigation systems. Because a small solar-powered pump is used to lift water and create a 

pressure head and because minimum operational activities are required, OPSIS offers the 

potential to lower the operational costs of irrigation for sugarcane farmers drastically. 

OPSIS is still new and has had little uptake as there is not yet sufficient information on it, 

therefore needs to be compared with other irrigation methods regarding both yield 

performances and water conservation. OPSIS would be a new avenue of sugarcane 

irrigation for resource-limited environments. Therefore, OPSIS could be an economically 

sustainable irrigation option for sugarcane farmers in areas where the resources are limited. 

A crop simulation model is a vital tool with numerous uses, including the 

evaluation of different irrigation management practices. Further, it is an essential tool to 
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assess the effectiveness of new technologies as it can evaluate the latest technologies with 

minimum effort on field trials, hence fewer resources. Proper parameterization, calibration, 

and validation are essential in achieving the success of simulations using crop models. 

Agricultural Production Systems sIMulator (APSIM) is widely using crop model which 

focus on simulating crop resource supply rather than crop resource demand. It provides a 

good understanding of the long-term sustainability of cropping practices and management 

strategies (Gaydon et al., 2017). APSIM is diversely evaluated in Australia and Africa but 

not in Asia. The existing few attempts were also mainly focused on crops like rice, wheat, 

and maize (Gaydon et al., 2017).  Hence developing simulation capabilities with developed 

technologies is vital to get the maximum benefit for the development of crops and new 

management strategies. 

Crop and environmental modeling hinder by limited data availability. Hence it is 

essential to develop methodologies to generate required data for crop modeling using 

available data. Pedotransfer functions (PTFs) are predictive functions which are used 

estimate soil parameters (which are difficult to measure) using some easily measurable soil 

parameters (Bouma, 1989). Though it is not advisable to extrapolate PTFs, PTFs developed 

for temperate soils are extensively using in tropical regions due to limited availability of 

appropriate PTFs and/or most software are using PTFs developed for temperate soils as 

their default (Minasny and Hartemink, 2011; Patil and Singh, 2016; Tomasella and 

Hodnett, 2004). 

 

1.1 Objectives of the study 

This study aimed to develop OPSIS as a user-friendly, economically viable, and 

environmental sound irrigation method for upland farmers worldwide. Specifically, this 

study aimed to, 

1) To introduce and scientifically validate the newly developed, optimized subsurface 

irrigation system (OPSIS).  

2) To enhance modeling capability of Agricultural Production Systems sIMulator 

(APSIM) to use with OPSIS 

3) To study the applicability of OPSIS for tropical environments.  
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1.2 Outline of the work plan and dissertation  

 

Figure 1.1. Outline of research work and the dissertation  
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2.0 Optimized Subsurface Irrigation System (OPSIS) 

 

This chapter is based on Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Kazuro, M., 

Onodera, T., Kaneshiro, H., Uehara, H., Wakasugi, K., 2017. Optimized Subsurface 

Irrigation System (OPSIS): Beyond Traditional Subsurface Irrigation. Water 9, 599. 

https://doi.org/10.3390/w9080599 

 

2.1. Introduction 

Rainfed agriculture occupies 80% of the world’s agricultural lands and currently 

contributes 60% of the world’s food production (FAO, 2011). However, the sustainability 

of rainfed agriculture in some regions is in peril as it is gravely threatened by climate 

change (IPCC, 2014), as a result of which not only food security (Webber et al., 2014) but 

also the social structure (Roudier et al., 2011) in many countries is in danger. Since water 

availability directly influences the efficient use of all other inputs, better water availability, 

in turn, ensures optimum yields from a given combination of inputs (Sharma et al., 2015). 

Therefore, emerging irrigation technologies ideally should be developed to enhance crop 

water availability to make agricultural practices sustainable in the long run. Although 

shifting from rainfed to irrigated agriculture or from low-efficiency to high-efficiency 

irrigation methods offers necessary remedial measures against a changing climate, 

adaptation could be inhibited by the reluctance of farmers to adopt practices that elevate 

operational costs, such as high-efficiency irrigation methods. Therefore, new irrigation 

technologies would be more likely to be adopted if they were designed to save precious 

water resources and at the same time, keep associated labor and energy costs down to the 

lowest extent possible. 

Various irrigation methods, such as surface, subsurface, sprinkler, and drip 

irrigation, can be used to irrigate upland crops. The method selected would depend on 

physical, economic, and social factors, and in turn, determines the efficiency of resource 

use, economic viability, and sustainability of upland farming systems (Ali, 2011). Since 

earlier times, surface irrigation methods such as basins, borders, furrows were used to 

irrigate upland crops in many regions of the world, owing to its simplicity and low cost. In 

surface irrigation methods, water flows over the entire field or along furrows by gravity. 

When flowing, water infiltrates to the soil, and it provides irrigation water to the root zone 

of crops. The uniformity of distribution and application efficiency depends on the degree of 

land leveling; therefore it consumes high labor cost for land preparation (Strelkoff and 

Clemmens, 2007; van Lier et al., 1999). With increasing energy and labor costs, however, 
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and with increasing demand for diminishing water resources, surface irrigation has been 

replaced to some extent by subsurface, sprinkler, or drip irrigation methods. However, it 

still is the major irrigation method used to irrigate upland crops worldwide. Drip and 

sprinkler irrigation methods were developed for high-frequency irrigation of crops using a 

systematically installed pipe network and emitting devices (Ali, 2011; Martin and 

Heermann, 2007). In drip and sprinkler systems, water is supplied under pressure and water 

often passes through various types of filters depending on the type of irrigation system and 

water source (Martin and Heermann, 2007). Sprinkler irrigation including solid sets, 

periodic move or continuous move systems, traveling guns and boom sprinkler systems, has 

advantages over surface irrigation in terms of its high efficiency of water application, ease 

of fertilizer application, and high resultant crop yields (Mikkelsen et al., 2015). However, it 

also has some drawbacks such as high setup costs, high operational costs due to its high 

energy requirements and maintenance, and its tendency to be adversely affected by wind 

conditions (van Lier et al., 1999). Drip irrigation (irrigation systems are designed to slowly 

apply water to individual points) on the other hand, overcomes some of these drawbacks by 

way of low energy requirements and not being affected by the wind. It has distinctive water 

and energy-saving features while supporting the agronomy of crops to address the 

challenges facing irrigated agriculture (Evans et al., 2007). However, it may perform poorly 

with crops that have high water requirements. The major drawback in drip irrigation systems 

is the clogging of emitters, which leads to poor performance and calls for frequent 

maintenance. Further, damage by weathering and farm machinery partly explains why such 

an appealing technology remains unpopular among farmers (Ali, 2011; Mikkelsen et al., 

2015; van Lier et al., 1999). Although subsurface drip irrigation (application of water below 

the soil surface by drip emitters) systems have been developed to overcome the prevailing 

practical issues of drip irrigation, they have not performed as expected, since they further 

aggravate the problem of poor water distribution efficiency due to emitter clogging (F. R. 

Lamm et al., 2013; Jiusheng Li et al., 2008; Payero et al., 2005). 

 

2.1.1 Objectives of the study 

A new irrigation method is being developed to irrigate upland crops which aim to 

use water more efficiently and effectively while minimizing costs to improve profitability 

and sustainability. In this regard, it is essential to minimize significant water losses through 

evaporation, surface runoff, and percolation in order to economize on the limited availability 

of water, while also driving down the labor and energy requirements and keeping 
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operational costs to a minimum. Therefore, any new design should be able to ensure (i) high 

application efficiency with uniform distribution, (ii) low capital investment, (iii) low energy 

and labor requirements to minimize operational costs, (iv) automated operation with 

minimum supervision, (v) minimum influence from weather, topography, or soil type, 

(vi) minimum disturbance to other management practices, and (vii) environmentally 

friendly technology. 

 

2.1.1. Optimized subsurface irrigation system (OPSIS) 

The capillarity, upward water movement in a tube due to cohesion, adhesion, and 

surface tension forces can also happen in soil. In soils, water can move upwards through 

soil pore spaces between soil particles. The height of capillary rise is dependent on pore 

sizes as smaller the soil pores show higher the capillary rise. Our newly developed 

“optimized subsurface irrigation system” (OPSIS) is designed to irrigate upland crops using 

capillarity of soil. Water releases by perforated pipe just below the root zone and water move 

upward due to capillarity of soil to irrigate the crops. Subsurface irrigation methods perform 

better in soils that are vulnerable to drought damage (soils with low available water), and 

hence OPSIS shows better results than other irrigation methods in such environmental 

contexts. OPSIS shows super water-saving capability as it can minimize runoff, evaporation, 

and percolation. Since only a small solar-powered pump is used to make the elevation head, 

OPSIS does not incur any ongoing energy costs, and since it can operate with minimal labor 

as an automated system, it should drastically bring down the operational costs of irrigation. 

 

2.2. Technical details of OPSIS 

In OPSIS, water is elevated using a solar-powered submersible pump to create an 

elevation head to a higher level and, then it flows along with the gravity. Subsurface 

perforated pipe leak water while flowing by gravity, then soil capillarity provides the 

irrigation water to the crops. OPSIS consists of a main water control unit and a water 

distribution system (Figure 2.1). After a series of laboratory and field experiments on 

irrigation amount, water distribution and cost-effectiveness under local soil conditions in 

Okinawa dimensions and materials of construction of each part have determined.  
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Figure 2.1. Schematic diagram of OPSIS 

 

2.2.1. The main water control system 

The main water control system includes a water tank to store water temporarily, a 

solar pump to elevate the water, a water supply column to control the water flow, and a 

fertilizer tank to facilitate fertigation. It regulates both the quantity and the pressure of all 

water coming into the irrigation system and provides controlled water and fertilizer flow out 

to the water distribution system. 

 

2.2.1.1. Water tank 

The size of the water tank (Figure 2.2) varies according to the source of water and 

the requirements of the farmer. The supply of water, such as from an irrigation canal or 

groundwater, is regulated by a ball tap. Because of the head difference between the water 

tank and the field, excess water from the OPSIS lines and drainage water from the field 

flows back to the water tank. A solar-powered submersible pump is used to pump the water 

out from the tank and into the water supply column. 
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2.2.1.2. Water supply column 

The water supply column (Figure 2.3) provides a controlled and constant flow of 

water and fertilizer into the water distribution system. A constant water level is maintained 

in the column using a drainage tube attached to it. The pressure and volume of water 

discharged to the water distribution system are controlled by a micro tubing mechanism in 

the column. A thin tube wrapped around the center pipe sends the water smoothly and slowly 

into the outlet of the water column. The volume of the discharge depends on the water height 

in the column, and can, therefore, be controlled by adjusting the height of the drainage tube. 

The water column also connects to the fertilizer tank and provides a controlled flow of water 

to the water distribution column through an underground pipe. 

 

Figure 2.2. Schematic diagram of the water tank 
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Figure 2.3. Water supply column a) Schematic diagram of water supply column b) Use of 

micro tubing mechanism 

 

2.2.1.3. Fertilizer tank 

Fertilizer dissolved in water is added to a compressible bag inside the fertilizer tank. 

The water fed by the water column creates pressure inside the fertilizer tank, which 

compresses the bag and thus releases the fertilizer at very low rates into the irrigation system 

(Figure 2.4). 

 

 

Figure 2.4. Schematic diagram of fertilizer tank 
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2.2.2. Water distribution system 

The water distribution system is the part responsible for distributing the irrigation 

water equally over the field. It includes a water distribution column at the head end of the 

field that distributes the water equally among the OPSIS lines, polyvinyl chloride (PVC) or 

metal sheet to control percolation, and perforated pipes buried horizontally under the field 

surface to irrigate the field.  

 

2.2.2.1. Water distribution column 

The water distribution column (Figure 2.5) distributes water to 5-7 perforated pipes 

(OPSIS lines) buried below the soil surface. The mechanism in the water distribution 

column allows water to be distributed equally to all OPSIS lines despite any irregularities 

in the land. Equal distribution of water to all OPSIS lines is ensured by having the same 

height of water in the discharge tubes. When several water distribution columns are used on 

slopes, the equal distribution of water can be ensured by adjusting the discharge tubes in all 

water distribution columns to be at the same level (Figure 2.6). 

 

 

Figure 2.5. Schematic diagram of water distribution column of OPSIS 
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Figure 2.6. OPSIS can ensure equal discharge on sloping land 

 

2.2.2.2. Perforated OPSIS lines 

Perforated 50-mm pipes release the water. When OPSIS is operating, water flows 

under gravity along the pipes. As the water advances, it can move to the outside soil, 

depending on the water potential. As water moves outside, the soil becomes saturated. After 

that, the water potential of the outside soil and inside of the pipe reaches equilibrium. This 

equilibrium controls the amount and rate of irrigation. Further, the water starts to move 

upward from the saturated layer owing to the water potential created by matrix effects such 

as capillary action created via surface tension. As water moves upward, the moisture content 

of root zone soil increases and provides irrigation water to the crop. For crops planted in 

rows, the spacing of the OPSIS lines could be maintained to match the row spacing. In sandy 

soils, closer OPSIS lines would be preferred, whereas, in clayey soils, much wider spacing 

may be used. However, field and laboratory experiments on water distribution confirmed 

that it is advisable to maintain a distance of about 1–3 m between two OPSIS lines according 

to the soil type and crop spacing to ensure an even water supply for all crops while 

minimizing costs and water losses. Field and laboratory experiments on water distribution, 

workability condition and possible damages by tillage equipment confirmed that the depth 

of the lines could vary between 30 and 60 cm according to the soil type and the root zone 

depth.  

A waterproof PVC or metal sheet can be used to control percolation losses. The sheet 

is buried in an inverted trapezoidal shape (Figure 2.7). Ability to control percolation losses, 

the effect on crop yield and availability of materials were considered when determining the 

size and shape of the PVC or metal sheet to control percolation losses. After a series of field 

and laboratory experiments, the minimum optimum height to minimize the percolation was 

identified as 15 cm. Therefore, the optimum size of the shape has been determined to be 12 
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cm wide at the base, 30 cm wide at the top, and 15 cm high considering the prices of 

materials available in the market. The perforated pipe is positioned in the center of the shape.  

 

 

Figure 2.7. Use of PVC or metal sheet to control percolation losses 

 

2.2.3. OPSIS can act as a drainage system 

During the rainy season (when OPSIS might not operate, owing to low solar 

radiation) the water in the saturated soil can enter the perforated pipes following the water 

potential gradient. As water is circulating, the tail-end water collects in the drainage pipe 

and is diverted to the water tank. Thus, OPSIS could act as a subsurface drainage system 

during rainy periods. 

Figure 2.8 shows the daily rainfall, irrigation or drainage by OPSIS, and level of soil 

saturation (percent of water-filled volume to the total porosity of the soil) in the root zone 

area of experiment field, Itoman, Okinawa, Japan during July 2014. The irrigation or 

drainage axis shows the net amount of water that goes out of (positive values) or comes into 

(negative values) the water tank. Positive values represent the irrigation, while negative 

values show the amount of drainage. The level of soil saturation (%) in the root zone area 

of each day was calculated using daily soil moisture (volume basis) and soil porosity. It 

shows that OPSIS can manage soil moisture content at desirable levels even in very high 

rainfall seasons such as shown in Figure 2.8, where rainfall was 832 mm per month 

including a maximum daily rainfall of 350 mm. 
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Figure 2.8. Variation in rainfall, irrigation/drainage, and percentage of soil moisture 

saturation 

 

2.2.4. System Installation 

The significant component of OPSIS installation is the laying out of the perforated 

OPSIS lines. Initially, this was done by digging with a conventional excavator with a bucket. 

Since this is time-consuming and expensive, an attachment was developed to layout the 

system more efficiently and effectively. The attachment can layout both the pipe and the 

sheet simultaneously, thus drastically cutting down the cost and time of installation while 

significantly improving the workability and accuracy of the system layout. The attachment 

is being developed to further reduce the initial establishment cost and accuracy of the system 

layout (Figure 2.9). 
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Figure 2.9. Installation of OPSIS lines a) Manually laying out lines, b) Use of a machine 

to layout the lines 

 

2.2.5. Field Testing of OPSIS 

Field experiments were set to examine the optimum depth of installation, the 

optimum number of OPSIS lines per water distribution column, possible length of OPSIS 

lines. Further, growth and yield performances of Sugarcane, maize, and soybean with OPSIS 

were tested in different parts of Japan. Some key results showed that maize and soybean 

with OPSIS reported 40 and 50% higher yields respectively compared to the surface 

irrigation methods. Field experiments conducted during 2012 - 2014 to study the 

performances of OPSIS showed that OPSIS increased the fresh cane yield by 79-116% 

compared to the rainfed conditions as attributed by higher plant height, cane diameter and a 

higher number of millable stalks per unit area. Figure 2.10 and 2.11 shows the growth and 

yield performances of sugarcane with OPSIS compared to the rainfed conditions.   
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Figure 2.10. Growth of sugarcane with OPSIS and rainfed condition a) Plant height, b) 

Canopy cover 

 

 

Figure 2.11. Fresh cane yield of sugarcane with OPSIS and rainfed condition 

 

2.3. Results and Discussion 

 

2.3.1. Special Features of OPSIS 

Series of field and laboratory experiments were carried out to examine the 

performances of OPSIS. Based on the results, observations, and experiences, following 

unique features of OPSIS were identified. 

 

2.3.1.1. Water-saving irrigation method 

OPSIS shows improved water-saving capability compared with other irrigation 

methods as it can function with minimum percolation, evaporation, and surface runoff. 
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2.3.1.2. Ensures uniform water distribution 

OPSIS can be used on slopes where surface irrigation is not suitable. It requires less 

attention to land leveling than surface irrigation methods, and it is better than other irrigation 

methods in achieving equal distribution of irrigation water on slopes. 

 

2.3.1.3. Ensures good crop yields 

Field experiments conducted in different places in Japan using sugarcane, maize, 

and soybeans as test crops confirmed the high yields obtained with OPSIS compared with 

other irrigation methods. 

 

2.3.1.4. Ensures sanitary field conditions 

Since the surface layer remains dry, OPSIS it provides optimum workability 

conditions and allows the maintenance of sanitation in the field. The dry state of the topsoil 

helps to maintain excellent workability and creates low humidity, especially in protected 

greenhouses. No topsoil splattering or erosion hazards occur, as there are no surface water 

droplets or flowing water with OPSIS. 

 

2.3.1.5. Enables fertigation 

Water-soluble fertilizers can be effectively used with the irrigation water with 

OPSIS. The slow-release nature ensures higher fertilizer use efficiency than can be achieved 

under other fertigation or fertilizer application methods. 

 

2.3.1.6. Minimal operational costs 

OPSIS is powered by solar energy, and therefore, it has no real energy costs. As an 

automatic system, it also requires minimum human supervision for irrigation during the 

cropping season. As a subsurface system, it causes minimal disturbance to other field 

operations. Further, it does not require comprehensive land leveling. Therefore, OPSIS has 

the lowest operational costs of all irrigation methods. 

 

2.3.1.7. No clogging 

No large debris can enter to water distribution system as water has to pass the 

microtube in water supply column. As an open-ended system, OPSIS do not experience 

negative pressures inside the lines nor soil ingestion when stopping the system as which 

usually happen in subsurface drip irrigation systems.  
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2.3.1.8. Long durability 

Once OPSIS is installed, it can be used for years without any need for re-installation 

because there is no damage by sunlight, animals, or farm machinery. 

 

2.3.1.9. Drainage system 

OPSIS can act as a subsurface drainage system. Therefore, no separate drainage 

system is required for water management in fields in which OPSIS is installed. 

 

2.3.1.10. Environmentally friendly technology 

Being a solar-powered irrigation system, OPSIS does not consume any fossil fuels. 

As a subsurface fertigation system, it emits fewer greenhouse gases than with the surface 

application of fertilizers or fertigation. Further, owing to minimum percolation losses and 

the slow release of fertilizer, OPSIS helps to minimize the contamination of groundwater 

with fertilizer. 

 

2.3.2. Limitations of OPSIS 

Installation of OPSIS requires a considerable initial cost. However, factors such as 

no need for a separate drainage system, high crop yields, minimum operational costs, and 

long durability can help recover the high initial cost of installation within few years. As 

some percolation losses are inevitable, losses of fertilizer can happen with OPSIS. After the 

installation of the system, deep plowing will be impossible as it can damage the system. 

Therefore, to the extent possible, care should be taken to avoid the development of a 

hardpan, and suitable machinery that can break up the hardpan should be used only with 

utmost care. 

 

2.4. Recommendations 

Although OPSIS is commercially available for sugarcane farmers in Okinawa, 

Japan, it needs the validation of its performance and further improvement to make it a more 

highly efficient and low-cost irrigation method. Further, to help farmers operate OPSIS with 

minimal problems and to make irrigation more profitable and sustainable, guidelines for 

best management practices need to be developed and introduced. 

Installation of OPSIS requires a considerable initial investment; therefore, new 

strategies and technologies should be developed to minimize the initial cost. 
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OPSIS provides irrigation water to the field automatically whenever there is solar 

radiation available to operate the pump. This can lead to some percolation losses, especially 

during dry periods and in fields with low groundwater levels or sandy soil. Changing the 

automatic operational mechanism to one that adjusts the pump according to soil moisture 

by incorporating soil moisture sensors could be helpful to reduce percolation losses further 

and maximize the lifespan of the pump. 

The optimum depth at which to install the perforated OPSIS pipes may vary 

depending on the soil type, crop to be grown, and depth to the groundwater table. Since 

OPSIS has been tested with only a limited number of crops and soil types, further studies 

should be carried out under different soil and climate conditions with different crops. 

Patterns of root distribution that develop with subsurface irrigation systems might 

differ from those that develop with other irrigation systems. Therefore, studies focused on 

root distribution and soil moisture extraction patterns might be helpful for further 

development of OPSIS. 

It might be challenging to break the hardpan after installing the OPSIS. Therefore, 

new technologies or strategies might have to be developed to minimize the creation of 

hardpans and to break them without damaging the OPSIS lines. 

OPSIS is tested only for small and medium scale fields in Japan. The maximum 

length of the OPSIS lines tested is less than 100 m. Therefore, the applicability of large scale 

fields yet to be examined.  
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3.0 OPSIS for Sugarcane Irrigation 

 

This chapter is based on Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Momii, K., 

Onodera, T., Kaneshiro, H., Uehara, H., Wakasugi, K., 2018. Optimized subsurface 

irrigation system: The future of sugarcane irrigation. Water 10, 314. 

https://doi.org/10.3390/w10030314 

 

3.1. Introduction 

Sugarcane (Saccharum officinarum L.) is one of the most important crops in the 

world. It plays a vital economic role in sugar and bioenergy production and has an essential 

social role in the rural communities of sugar-producing nations worldwide. 

Climate change threatens the sustainability of most rainfed sugarcane farming 

systems (Knox et al., 2010). Some authors have reported that the climate change may harm 

sugarcane growth and yield without the introduction of appropriate irrigation facilities 

(Carvalho et al., 2015; Knox et al., 2010; Varella et al., 2012; Zhao and Li, 2015). Rainfed 

sugarcane farming systems are being gradually replaced by irrigated farming systems 

wherever such transition is possible. Also, low-efficiency irrigation systems are being 

replaced by high-efficiency systems to make sugarcane farming more economically 

sustainable. However, irrigation is one of the most expensive practices of sugarcane farming 

systems and can account for more than 25% of the production cost (Mazibuko et al., 2002; 

Narayanamoorthy, 2005). Therefore, the dimensions of sugarcane irrigation systems need 

to be adjusted toward water conservation while simultaneously reducing operational costs. 

Although sugarcane can tolerate some moisture stress, it still has a high-water 

requirement, in the range of 1500 to 2500 mm per season (Brouwer and Heibloem, 1986) 

required to achieve yields close to the potential maximum (Inman-Bamber and Smith, 2005; 

Shukla and Lal, 2003). Most importantly, sugarcane requires an evenly distributed water 

supply throughout its growing season to produce high yields. Even though sugarcane 

requires a high-water supply, it is also susceptible to waterlogging, which reduces plant 

growth and yield (Skocaj et al., 2013). Therefore, to maintain optimum soil moisture 

throughout the growing period and achieve close to maximum yields, both appropriate 

irrigation and drainage facilities are vital in sugarcane fields. 

Freshwater is often a scarce resource, and sugarcane faces competition from other 

water uses; therefore, irrigation systems should be able to use water efficiently. However, if 

the water is free or priced too low, farmers have no incentive to adopt capital-intensive 
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technologies unless they confer other benefits (e.g., lower energy and labor costs, higher 

nutrient use efficiency). 

Surface, overhead, and drip irrigation methods are most commonly used to irrigate 

sugarcane crops (Carr and Knox, 2011), depending on physical characteristics, economic 

considerations, and social and other considerations. The performance of irrigation systems 

directly affects crop performance, water use efficiency (WUE), cost of production, and 

profit and is, therefore, of keen interest to farmers (Mudima, 2000) 

  The same irrigation method and the same amount of water can produce significant 

differences in yield with different patterns of water application. Therefore, more uniform 

irrigation application needs to be targeted through design, continuous evaluation, and 

maintenance practices (Lecler and Jumman, 2009). However, continuous evaluation and 

maintenance require farmers to invest time and money that they may not have. 

Traditionally, most sugarcane farming systems used surface (specifical furrow) 

irrigation because of its simplicity and low cost. However, the increasing cost of energy and 

labor and increasing demand for scarce water resources has led to greater adoption of 

overhead or drip irrigation methods. However, furrow irrigation is still the dominant method 

used worldwide (McGuire et al., 2010). The significant drawbacks of furrow irrigation and 

the main reasons for its unpopularity among sugarcane farmers are the high labor 

requirement and low WUE stemming from percolation and tail-water losses (McGuire et 

al., 2010; Narayanamoorthy, 2005). Furrow irrigation is remarkably less efficient in light-

textured soils than overhead and drip irrigation systems. Although measures such as the use 

of low flow rates (Torres et al., 2010), surge irrigation (McGuire et al., 2010; Young et al., 

2006), and local modifications (El-Berry et al., 2006) can increase the efficiency of furrow 

irrigation to a degree, such refinements have not been able to achieve satisfactory levels of 

efficiency and do not obviate the high labor requirement. 

Sprinkler and drip irrigation methods utilize water pressure to irrigate sugarcane 

crops. A comparative study of surface drip irrigation, subsurface drip irrigation, and surface 

irrigation of sugarcane reported that both surface and subsurface drip irrigation systems 

performed as well as surface irrigation systems in a few key areas such as plant growth and 

development and water savings (Hanafy et al., 2008). Pires et al. (2012) reported a higher 

fresh cane yield under subsurface drip irrigation than under rainfed farming. Shinde and 

Deshmukh (2007) reported similar sugarcane yields from drip and rain gun sprinkler 

methods that exceeded those of surface irrigation, but rain gun sprinkler irrigation consumed 

33% more water than drip irrigation, which also gave a more uniform water distribution. In 



24 

 

a comparison of different hydrant pressures (4.0, 4.5 and 5.0 bars) and nozzle sizes (2.4 mm 

× 4.4 mm and 2.4 mm × 4.8 mm), Dinka (2016) reported large deep percolation losses (about 

40%) in sprinkler irrigation in Ethiopia. It is a waste of water resources, energy, and soluble 

nutrients, which results in increased production costs and environmental impacts. 

Subsurface drip irrigation enhances growth and yield not only through the precise 

application of the right amount of water but also by maintaining adequate aeration of the 

root zone. Further, it promotes the effectiveness of applied fertilizers by minimizing losses 

through processes such as denitrification, deep percolation, and runoff, which can occur 

with other irrigation methods. The optimum depth of subsurface drip lines varies between 

10 and 80 cm depending on the soil type, soil depth, and crop type, as capillary action 

ensures water uptake by upward water movement. With the same amount of water, 

subsurface drip irrigation wets an area about 50% larger than surface drip irrigation does. 

Mahesh et al. (2016) reported that subsurface and surface drip irrigation could save 31% 

and 23% of water relative to surface irrigation. They further reported significantly higher 

sugarcane yield and WUE with subsurface fertigation than with surface irrigation with 

conventional fertilizer application. However, subsurface drip irrigation entails some 

drawbacks, such as low germination if there is poor capillary movement, salinity, nozzle 

clogging, and uneven water distribution (Kaushal et al., 2012). Moreover, it does not always 

assure high efficiency and good yield because it requires a perfect design and a skilled 

operator (Dlamini, 2005). Therefore, new methods or strategies must be introduced to 

subsurface irrigation systems to achieve better precision while overcoming the inherent 

disadvantages of available subsurface irrigation methods. 

Okinawa prefecture, Japan, comprises many small islands with little or no surface 

water resources; therefore, sugarcane farming there requires water-efficient irrigation 

methods. However, drip irrigation, the most water-efficient method available, is not 

widespread among sugarcane farmers in the prefecture because it is labor-intensive and 

requires frequent monitoring, and many farmers are aged and favor low-maintenance 

farming systems. Therefore, water-saving irrigation methods that can be operated with 

minimum attention is required to make sugarcane farming systems in Okinawa more 

sustainable and economically viable. 

The optimized subsurface irrigation system (OPSIS) is a new subsurface irrigation 

system for irrigating upland crops. It irrigates the root zone of the crop by capillarity 

(Gunarathna et al., 2017). OPSIS has two major components: a main water control system 

(including a solar-powered submersible pump, a water tank, a water supply column, and a 
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fertilizer tank) and a water distribution system (including a water distribution column at the 

head end of the field, perforated pipes buried parallel to the field surface to irrigate the field 

and PVC or metal sheet to control seepage losses). Similar to the other subsurface irrigation 

systems, OPSIS is remarkable for its ability to eliminate surface runoff and evaporation 

(Gunarathna et al., 2017). Further, it significantly reduces percolation losses, which are 

common problems in other subsurface irrigation systems (Gunarathna et al., 2017). Because 

a small solar-powered pump is used to lift water and create a pressure head, and minimum 

operational activities are required (Gunarathna et al., 2017), OPSIS offers the potential to 

drastically lower the operational costs of irrigation for sugarcane farmers in Okinawa. 

In OPSIS, water flow is automatically triggered by solar radiation (as it uses a solar-

powered pump), without any manual operation. However, it irrigates (emits water through 

perforated pipes) based on the soil moisture potential difference between the inside of the 

pipe and outside soil. Further, it can remain in place during other field operations, including 

mechanical harvesting (Gunarathna et al., 2017). In that respect, OPSIS is compatible with 

the low-intervention requirements of Okinawan sugarcane farmers. Further, as the farmers 

irrigate their fields prescriptively (set timing and amounts), rainfall that occurs shortly after 

scheduled irrigation application leads to water wastage, whereas OPSIS irrigates only when 

required. However, OPSIS is still new and has had little uptake in Okinawa as no sufficient 

information yet. 

 

3.1.1. Objectives of this study 

To compare OPSIS with sprinkler irrigation in terms of both yield performances and 

water conservation.  

 

3.2. Materials and Methods  

 

3.2.1. Field experiment 

Field experiments were conducted in Itoman, Okinawa, Japan (26° 7' 59.07'' N, 127° 

40' 52.32'' E) during 2013–2016 to compare the performances of OPSIS and sprinkler 

irrigation in sugarcane cultivation under subtropical conditions. The climate of the Itoman 

area is classified as Cfa by the Köppen classification system (Rubel and Kottek, 2010) and 

generally refer to as subtropical, with dry summers and mild cold winters. Climatic data of 

Naha, Okinawa (26° 12' 26'' N, 127° 41' 11'' E) were gathered from Japan meteorological 

agency to assess the climatic conditions in Itoman during the study periods (Table 3.1). 
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However, daily rainfall of the experimental field was also measured to the precise 

calculation of water use efficiency of irrigation treatments. Soil present in the experimental 

site is generally known as dark red soils, called Shimajiri-Maji, which correspond to Udalfs, 

Udepts, and Udolls in the USDA Soil Taxonomy (Kubotera, 2006).  

The sugarcane cultivar Ni21 used for this experiment is a Japanese cultivar that was 

developed to withstand strong winds from typhoons. The single-row planting method with 

1.3 m spacing between rows was used in all treatments. 

Experiments were conducted to observe growth and yield under two planting 

conditions, namely spring planting and summer planting as a local practice in Okinawa. 

Spring-planted sugarcane crop was extended to observe the growth and yield of two 

consecutive ratoon crops. In Okinawa, summer planting usually starts in September and 

spring planting in March. Both crops are harvested from January to March according to the 

requirement of sugarcane millers. Table 3.1 shows the planting and harvesting times of the 

crops studied. Figure 3.1 shows the field layout of the experiment. 

 

 

Figure 3.1. Field layout of experimental field (Teruya, Itoman) used to compare 

the performance of optimized subsurface irrigation system (OPSIS) and 

conventional sprinkler irrigation in sugarcane cultivation  
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Table 3.1. Planting seasons and harvesting periods of sugarcane crops used to compare the performance of two irrigation methods and climatic 

conditions during the periods 

Planting 

season 
Crop type Planting date Harvesting date 

Rainfall 

(mm) 

Max. T. 

(0C) 

Min. T 

(0C) 

Cumulative SR 

(MJ/m2) 

Spring Main crop Apr. 2013 Mar. 2014 2234 15.5 – 34.8 10.3 – 28.9 5460 

 1st  ratoon crop  Jan. 2015 3599 14.9 – 33.9 9.8 – 28.8 4595 

 2nd ratoon crop  Jan. 2016 2303 12.5 – 33.8 6.1 – 28.8 5499 

Summer Main crop Oct. 2013 Jan. 2015 4529 14.9 – 33.9 9.8 – 28.8 6604 

Rainfall – Total rainfall during the cropping period; Max.T – Range of maximum temperature during the cropping period; Min.T – Range of minimum 

temperature during cropping period; Cumulative SR – Cumulative solar radiation during the cropping period 
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In the OPSIS treatments, ten split application of urea fertilizer was used at the rate 

of 350 kg/ha during the first three months of the crop. In the sprinkler irrigation treatment, 

the same amount of fertilizer was added as two splits after one and two months after 

planting, following the regular fertilizer application practice in Okinawa. 

 

3.2.2. Irrigation system installation 

For the OPSIS treatments, two plots of 6.5 m × 50 m were prepared by installing 

five OPSIS lines at 1.3 m spacing. Before planting, the main water control system was 

established (Gunarathna et al., 2017). A concrete water tank stored water, and 100 mm PVC 

pipes were used to make a water supply column, water distribution column, and fertilizer 

tank. The water control mechanism of the water supply column used a 50mm PVC pipe 

(inner pipe) and a 6.5 mm flexible pipe (Gunarathna et al., 2017). An automatic fertilizer 

tank (Gunarathna et al., 2017) supplied fertilizer to the irrigation system (Gunarathna et al., 

2017). The water distribution column, which feeds five irrigation supply lines (Gunarathna 

et al., 2017)  was set vertically at the head end of the field. The irrigation supply lines were 

made of 50-mm flexible perforated pipe, which was simultaneously laid together with 45-

cm-wide PVC sheets (seepage barrier) using the newly developed OPSIS system laying 

attachment (Gunarathna et al., 2017). The irrigation lines were laid 45 cm below the soil 

surface. The seepage barrier was laid below the supply line forming an open trapezoidal 

cross-section (Gunarathna et al., 2017). The height, top width, and bottom width of the 

trapezoid were 15, 30, and 12 cm, respectively. In OPSIS treatments, automatic irrigation 

was practiced during the crop growing period and stopped in October until harvesting the 

crop.  

For the sprinkler irrigation treatments, two plots of 16.9 m × 50 m were prepared by 

installing commercially available impact-type sprinklers. Irrigation was practiced on a 

fixed-interval irrigation schedule similar to the common practice in Okinawa.  

 

3.2.3. Plant growth and yield sampling 

Plant height and cane diameter of the summer-planted main crop and the first ratoon 

crop of the spring-plant were measured at monthly intervals from April 2014 to January 

2015 by non-destructive sampling. The distance from the soil surface to the +1 dewlap (plant 

height; (de Sousa et al., 2015)) and the diameter of the middle internode of randomly 

selected primary shoots of five plants in the central three rows of each plot were measured. 
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Linear mixed-effects analysis was performed using the lme4 package (Bates et al., 2015) of 

R statistical software (R Core Team, 2016) to compare the effect of irrigation method on 

height and diameter. In the linear mixed-effect analysis, irrigation method was used as the 

fixed effect, and crop type (main crop or ratoon) was used as the random effect. The 

interaction was ignored. Residual plots were visually inspected to check the normality of 

errors. Likelihood ratio tests of full models (with the effect of irrigation) and null models 

(without the effect of irrigation) were used to test for significant differences between means. 

During the harvesting of the spring- and summer-planted main crops and two ratoon 

crops, a 5.2 m2 area was randomly selected in each plot to measure yield. Fresh cane weight 

was measured on a top-loading balance, average cane diameter of the harvest with a vernier 

caliper, and average millable cane length of the harvest with a measuring tape. The Brix 

value of the cane juice extracted from the middle internode (estimate of sugar content) was 

measured with a hand-held refractometer, and the values were corrected to 20 °C. The 

number of millable stalks was also counted as part of the yield survey. The linear model 

analysis was performed using R statistical software to compare the effect of irrigation 

method and planting season/crop type on measured yield parameters except for the number 

of millable stalks. Linear models for each measured parameter were set as a function of 

irrigation method and planting season/crop type. The interaction between irrigation method 

and crop type/planting season was ignored. Poisson regression analysis using the MASS 

package (Venables and Ripley, 2002) of R statistical software was used to compare the 

effect of irrigation method and planting season/crop type on the number of millable stalks. 

Mean separation was performed using the least significant difference (LSD) comparison of 

the agricolae package (Mendiburu, 2016) of R. 

 

3.2.4. Measurement of irrigation water use 

Irrigation water use in the first and second ratoon crops under sprinkler irrigation 

and OPSIS were surveyed during the growing periods. Irrigation of the first ratoon crop was 

started in April 2014 and continued until October 2014. Irrigation of the second ratoon crop 

was started on February 2015 and continued until October 2015. The amount of irrigation 

consumed in the OPSIS treatment was measured using water level recorders attached to the 

main water tank. The water level was recorded at 1-h intervals and converted into daily 
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irrigation amount. The amount of irrigation water used in the sprinkler irrigation treatment 

was measured during each irrigation event and recorded. 

 

3.2.5. Water use efficiency 

Daily rainfall was measured with a recording rain gauge installed at the site. 

Effective rainfall (a portion of rainfall which can be effectively used by the plants) was 

calculated using the procedure explained by Brouwer and Heibloem (Brouwer and 

Heibloem, 1986). Total and irrigation water use efficiencies were calculated using Eqs. 1 

and 2: 
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3.3. Results and Discussion  

 

3.3.1. Plant height during crop growth 

Figure 3.2 shows how irrigation method affected the average plant height of the main 

summer-planted crop and the first ratoon crop of the spring-planted crop. In both crops, 

plant height shows the usual sigmoidal growth pattern under both irrigation methods. Linear 

mixed-effects analysis revealed that irrigation method significantly affected plant height (χ2 

= 44.36, P < 0.001), with OPSIS increasing the plant height by 34.0 ± 3.4 cm which was 

about 12% increase compared to sprinkler irrigation. 

 

3.3.2. Cane diameter during crop growth 

Figure 3.3 shows how irrigation method affected the average cane diameter of the 

main summer-planted crop and the first ratoon crop of the spring-planted crop throughout 

crop development. Linear mixed-effects analysis revealed that irrigation method did not 

have a significant effect on cane diameter (χ2 = 0.10, P = 0.75). 

 

3.3.3. Fresh cane yield 

The OPSIS-irrigated crops all had higher fresh cane yield than the sprinkler-irrigated 

crops (Figure 3.4): by 9% in the spring-planted main crop, 27% in the summer-planted main 

crop, 44% in the first ratoon crop, and 20% in the second ratoon crop. The linear model 
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analysis revealed that irrigation method and crop type significantly affected the fresh cane 

yield (F(2, 5) = 20.3, P = 0.004). OPSIS produced a significantly higher yield than sprinkler 

irrigation (by 23.0 ± 4.7 t/ha, P = 0.005). Both main crops recorded higher yields (by 8.6 ± 

2.1 t/ha, P = 0.009) than the ratoon crops. 

 

3.3.4. Millable cane length 

Figure 3.5 shows how irrigation method affected average millable cane length in the 

spring-planted crop, summer-planted crop, and the first and second ratoon crops of the 

spring-planted sugarcane. The OPSIS-irrigated crops all had higher average millable cane 

length than the sprinkler-irrigated crops (Fig. 12): by 13% in the spring crop, 14% in the 

summer crop, 23% in the first ratoon crop, and 2% in the second ratoon crop. The linear 

model analysis revealed that OPSIS significantly increased the average cane length of the 

harvest (by 29.8 ± 11.1 cm, P = 0.04) relative to sprinkler irrigation. 

 

3.3.5. Cane diameter at maturity 

The cane diameter of the middle internode (Figure 3.6) was not significantly affected 

by irrigation type (F(2, 5) = 2.2, P = 0.21). 

 

 
Figure 3.2. Average plant height of sugarcane cultivar Ni21 as affected by irrigation method 

in (a) the summer-planted main crop and (b) the first ratoon crop of spring-planted sugarcane 
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Figure 3.3. Average cane diameter of sugarcane cultivar Ni21 as affected by irrigation 

method in (a) the summer-planted main crop and (b) the first ratoon crop of spring-planted 

sugarcane 

 

3.3.7. Brix value 

Figure 3.8 shows how irrigation method affected the Brix value of juice extracted 

from the middle internode in the four crops. The linear model analysis revealed that 

irrigation method and crop type did not affect the Brix value of cane juice (F(2, 5) = 0.62, 

P = 0.57). 

 

Figure 3.4. Fresh cane yield of sugarcane cultivar Ni21 as affected by irrigation method 
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Figure 3.5. Average millable cane length of sugarcane cultivar Ni21 as affected by 

irrigation method 

 
Figure 3.6. Average cane diameter of sugarcane cultivar Ni21 as affected by irrigation 

method 

 
Figure 3.7. Number of millable stalks of sugarcane cultivar Ni21 as affected by irrigation 

method 
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Figure 3.8. Average Brix value of cane juice of sugarcane cultivar Ni21 as affected by 

irrigation method 

 

Our results confirm that the sugarcane yield was higher with OPSIS than with 

conventional sprinkler irrigation, and the higher yield was achieved by increased millable 

cane length and number of millable canes. 

In previous studies, optimum soil moisture (Ramesh and Mahadevaswamy, 2000) 

and nutrient supply (Chen et al., 2012) have been found to increase the number of millable 

stalks, a significant contributor to the economic yield, because water and nutrient stresses 

reduce tiller production and increase tiller mortality. Because water availability directly 

influences cell turgor (Levitt, 1980) and thus cell growth and development, increased plant 

height and canopy development of sugarcane have been reported when moisture and nutrient 

stresses are removed (Ramesh and Mahadevaswamy, 2000). Optimum soil moisture (Juan 

et al., 2016) and nutrient availability (McCormick et al., 2006) have also been shown to 

increase the photosynthetic rate in sugarcane. 

Juan et al. (2016)  examined mean net photosynthetic rate in the sugarcane cultivar 

Liucheng 05-136 under six irrigation methods and found that photosynthetic rate was 

highest in the subsurface drip irrigation treatment, which was 58% higher than with no 

irrigation, 24% higher than with pipe irrigation, 13% higher than with sprinkler irrigation, 

10% higher than with micro-sprinkler irrigation, and 3% higher than with surface drip 

irrigation. They concluded that the irrigation method significantly affects the photosynthetic 

rate of sugarcane plants. Further, using Path analysis, they reported soil water content, air 

temperature, and soil fertility as the main environmental factors influencing sugarcane net 

photosynthetic rate, with some differences in these among irrigation methods. Fertigation 

improves the utilization of fertilizer and therefore can boost plant growth, increase the 
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number of effective tillers, promote stalk elongation and diameter enlargement, and 

ultimately increase the millable cane yield (Chen et al., 2012). Similarly, Sivanappan (2014) 

reported that soil fertility limitations, poor water management, and unbalanced nutrient 

management are the significant barriers to achieving maximum potential sugarcane yields. 

Proper irrigation and nutrient management are, therefore, essential to achieving sugarcane 

yields close to the potential. The higher yields in furrow irrigation than in rainfed conditions 

(Basnayake et al., 2012; Silva and Costa, 2004), in surface and subsurface drip irrigation 

than in surface irrigation (Hanafy et al., 2008; Surendran et al., 2016), and in subsurface 

drip irrigation than in sprinkler irrigation (Shrivastava et al., 2011) are on par with the 

importance of water and nutrient management in achieving higher yields near close to the 

potential yield. 

Fertigation is an effective method of increasing sugarcane yield as it manages both 

water and nutrients more effectively than conventional fertilizer application. A study 

reported a 32% higher sugarcane yield with drip fertigation than with conventional fertilizer 

application (without drip irrigation), and a 23% higher yield than with drip irrigation plus 

conventional fertilizer application (Chen et al., 2012). Abdel Wahab (2014) reported higher 

growth and yield performances of sugarcane with fertigation than with conventional 

fertilizer application, in both cases using a gated pipe surface irrigation system. Similarly, 

in the current study, OPSIS have higher growth and yield of sugarcane than sprinkler 

irrigation. Since all physiological processes depend on water and nutrient availability, and 

the adverse effects of water and nutrient stress on physiological processes (Inman-Bamber, 

2004) and canopy development (Smit et al., 2004) are well understood, it is clear that the 

higher growth and yield of sugarcane from OPSIS derives from the better water and nutrient 

management afforded by it. 

 

3.3.8 Irrigation water use 

During April 2014 to January 2015, the research field received 3342 mm of rainfall 

(higher than the average of 2200 mm for the area), of which an estimated 2474 mm was 

effective rainfall. Therefore, both irrigation methods consumed low amounts of irrigation 

water during the growing period of the first ratoon crop. However, the results showed that 

OPSIS (82 mm) consumed only 46% of the water consumed by sprinkler irrigation (178 

mm). During the second ratoon crop, the field received 2239 mm of rainfall, of which an 

estimated 1545 mm was effective. During this period, OPSIS (323 mm) used 79% of the 



  

36 

 

water used by sprinkler irrigation (409 mm). In the sprinkler irrigation, although antecedent 

rainfall was taken into consideration, irrigation timing followed the irrigation schedule 

decided in the region. Therefore, more irrigation water was used than needed. On the other 

hand, OPSIS does not use much water when soil moisture is near saturation. Therefore, 

OPSIS used less water than sprinkler irrigation, and the difference was significant when 

rainfall was above average. The difference is attributed to OPSIS having a more precise 

application, an absence of runoff, and minimal evaporation compared with sprinkler 

irrigation. 

 

3.9. Water use efficiency 

In the first ratoon crop, OPSIS recorded IWUE of 14.8 t/ha/cm, which was 3.1 times 

that of sprinkler irrigation (4.8 t/ha/cm). Because of the high rainfall received during this 

season, the total WUE was low in both methods: 0.47 t/ha/cm in OPSIS and 0.32 t/ha/cm in 

sprinkler irrigation. During the second ratoon crop, OPSIS recorded an IWUE of 3.2 

t/ha/cm, which was 1.5 times that of sprinkler irrigation (2.1 t/ha/cm). The total WUEs of 

OPSIS and sprinkler irrigation were 0.55 and 0.44 t/ha/cm, respectively. 

Our results confirm that OPSIS achieves higher total WUE and IWUE than sprinkler 

irrigation. Kumawat et al. (2016) reported 56% higher WUE with drip irrigation (5.96 

t/ha/cm) than with surface irrigation (3.32 t/ha/cm), as well as minimal water losses and 

higher yields. Even with a yield penalty due to increased residues, the use of residue as cover 

significantly increased IWUE relative to bare soil by cutting evaporation losses (Olivier and 

Singels, 2015). Gupta and Singh (2015) reported that the ability of drip irrigation to 

significantly increase IWUE relative to furrow irrigation was due to both lower water use 

and higher yields (attributed to more millable stems and increases in both stem length and 

diameter). Similarly, in our study, OPSIS resulted in higher IWUE (fewer losses) and higher 

yields than sprinkler irrigation. It also returned a higher total WUE and higher IWUE than 

sprinkler irrigation, which derives from both higher crop yield and lower irrigation water 

consumption than in sprinkler irrigation. 

Under rainfall conditions close to the average (during ratoon 2), the water savings 

were less than when rainfall was above average (during ratoon 1). This result suggests that 

there were water losses, probably due to percolation, when water was close to average. 

Therefore, measures should be taken to control the percolation losses. Gunarathna et al. 
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(2017) suggested changing the solar-radiation–triggered automatic operation mechanism to 

a soil-moisture–based automatic operation mechanism to minimize percolation losses.  

 

3.4. Conclusions 

This study showed that OPSIS offers advantages over sprinkler irrigation for 

sugarcane cultivation in Okinawa in respect of both sugarcane yield and WUE. Compared 

with sprinkler irrigation, OPSIS produced significantly taller plants, and thus significantly 

longer millable stalks, and significantly more millable stalks. Therefore, OPSIS achieved 

significantly higher fresh cane weight using less irrigation water than did sprinkler 

irrigation. OPSIS is a water-conserving irrigation technique that can irrigate sugarcane crops 

with minimal operational cost, energy consumption, and human intervention. Therefore, it 

may be a sustainable alternative for sugarcane crop irrigation in Okinawa and similar 

subtropical environments.  

 

3.5. Recommendations 

Further studies are needed to validate the long-term viability of OPSIS as a 

sustainable alternative to current irrigation methods used in sugarcane farming systems. We 

need to confirm that the benefits revealed in the current study hold under different climatic, 

soil, and management conditions and, wherever possible, identify improvements to the 

system. 
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4.0 Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar 

Model  

 

This chapter is based on Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Momii, K., 

Kumari, M.K.N., 2019. Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of 

APSIM-Sugar Model: Variation between Climates and Management Conditions. Agronomy 

9, 242. https://doi.org/https://doi.org/10.3390/agronomy9050242 

 

4.1 Introduction 

The production of sugarcane is increasing in importance as both food and a source 

of energy. Thus, productivity needs to improve continuously. The frequent introduction of 

new cultivars (Lisson et al., 2005; Sexton et al., 2017) and management strategies 

(Gunarathna et al., 2018b, 2017; Surendran et al., 2016) around the world necessitates new 

studies to validate them.  

Several process-based crop models have been developed to simulate sugarcane 

growth and yield. The widely cited Agricultural Production Systems Simulator (APSIM)-

Sugar model (Holzworth et al., 2014; Keating et al., 1999) and the Decision Support System 

for Agrotechnology Transfer (DSSAT)-Canegro model (Jones et al., 2003) can simulate 

growth and yield of sugarcane under different environmental (climatic and soil) and 

management (irrigation, fertilization, etc.) conditions with different cultivars (Sexton et al., 

2017). Crop models have been used for decision support in sugarcane farming, including 

irrigation scheduling (Everingham et al., 2008; Inman-Bamber and McGlinchey, 2003), 

harvest scheduling (Bocca et al., 2015; Lisson et al., 2005), and fertilizer management 

(Gaydon et al., 2017). They are also used in projecting the influence of climate change 

(Singels et al., 2014; Thorburn et al., 2014; Zubair et al., 2015) and guiding varietal 

improvement (Basnayake et al., 2012). However, most crop models are limited to old 

cultivars, so studies of varietal differences are limited (Inman-Bamber et al., 2016). Further, 

model-based assessments of currently grown popular cultivars are still rare; for instance, no 

currently grown commercial cultivars are listed in APSIM-Sugar 7.10 (Sexton et al., 2017). 

Process-based crop models should be well parameterized and calibrated to achieve high 
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accuracy. However, the measurement of a wide range of parameters is practically difficult, 

and not enough data are available from field experiments (including breeding trials) to 

parameterize all the required varietal information in APSIM-Sugar. Therefore, it is 

important to identify the most influential parameters in the simulation of outputs through 

sensitivity analysis (SA). Some parameters are easily measurable and available, whereas 

some are not, but they can be estimated through varietal calibration. SA can guide crop 

modelers in parameterizing their cultivars using available data and identify critical 

parameters that need to be estimated by varietal calibration. 

SA techniques can be broadly categorized as local or global (Saltelli et al., 2008); 

local SA considers a single parameter at a time, and global SA considers the combined effect 

of multiple parameters. Saltelli et al. (2010) reported the advantages of global SA over local 

SA; several global SA methods are available to estimate the sensitivity of process-based 

crop models to parameters, but they are computationally expensive. To minimize the 

computational cost, Sexton et al. (2017) used an emulator-based approach to study the 

sensitivity of APSIM-Sugar to cultivar parameters. An emulator is a simplified statistical 

approximation of a more complex model (O’Hagan, 2006) used in place of computationally 

expensive models. An emulator with a high enough accuracy can replace an actual simulator 

to perform SA (Uusitalo et al., 2015). In this approach, initially the simulator runs for 

relatively few simulations to build the emulator, then the emulator is used for the SA. 

 

4.1.1 Objectives of the Study 

Objectives of the study are, 

1. To assess the sensitivity of four yield outputs—total aboveground biomass, fresh 

cane weight, the weight of plant sucrose, and commercial cane sugar—to variations in 13 

parameters used in APSIM-Sugar model under different environment and management 

conditions using emulator-based global sensitivity analysis.  

2.  To identify the important candidates for the parameterization and calibration of 

APSIM-Sugar in different environments and management conditions.  
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3. To assess the effect of radiation use efficiency (RUE) and transpiration efficiency 

(TE) on the parameterization and calibration of APSIM-Sugar.  

4. To assess the relationship between the variations in influence and climate. 

 

4.2 Materials and Methods  

 

4.2.1. Study area 

Two locations with different climates were selected for this study: Itoman city (26° 

7' 58'' N 127° 40' 52''E), Okinawa prefecture, Japan, and Sevanagala town (6° 22' 13'' N 80° 

54' 47'' E), Monaragala District, Sri Lanka. In Japan, Okinawa is the foremost cane sugar 

producer, accounting for about 59% of the country’s production. In the Köppen climate 

classification, Okinawa is classified as Cfa (humid subtropical) (Gima and Yoshitake, 

2016). In Sri Lanka, sugar is an essential subsector in the economy, with great potential for 

employment and income generation and the development of the dry zone. Sugarcane is 

grown mainly in the southern dry zone, where most processing plants are located. This zone 

of Sri Lanka is classified as As (tropical with dry summer) (Buysse, 2002). In Okinawa, the 

30-year average monthly maximum and minimum temperatures both differ by about 15 °C 

between summer and winter (Figure 4.1a). In Sri Lanka, they differ by only 2 to 3 °C (Figure 

4.1b). Solar radiation shows high seasonal variation in Okinawa (15 MJ/m2/day), but less (6 

MJ/m2/day) in Sri Lanka. Average monthly rainfall shows a contrasting unimodal rainfall 

pattern in Okinawa but a bimodal pattern in Sri Lanka. The average monthly rainfall is 212 

mm (±72 mm SD) in Itoman and 169 mm (±67) in Sri Lanka. APSIM uses the Priestley–

Taylor method to estimate potential evapotranspiration (ET). The monthly potential ET 

varies slightly in Sri Lanka (2 mm/day) and moderately in Okinawa (4 mm/day; Figure 4.1).  
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Figure 4.1. Average monthly climate data of (a) Itoman, Okinawa, Japan (1980-2010) and 

(b) Sevanagala, Monaragala, Sri Lanka (1980-2010); rain, mean monthly rainfall (mm); 

radn, mean daily solar radiation (MJ/m2); maxt, mean daily maximum temperature (0C); 

mint, mean daily minimum temperature (0C); eo, Potential evapotranspiration (mm/day) 

 

4.2.2. APSIM Simulation 

APSIM is a process-based dynamic crop model that combines biophysical and 

management modules within a central engine to simulate diverse cropping systems 

(Holzworth et al., 2014; Keating et al., 2003). The model is driven by daily climate data and 

can simulate the growth, development, and yield of crops and their interactions with soil. 

APSIM-Sugar model simulates sugarcane growth via dry weight accumulation due 

to intercepted radiation in a daily time step. Dry weight accumulation in APSIM-Sugar is 

determined by RUE (Keating et al., 1999). The model partitions the daily accumulated 

biomass into leaf, immature stem top, structural stem, roots, and sucrose. Then it simulates 

the key outputs (fresh cane yield, sugar yield, and sucrose contents) (Keating et al., 1999; 

Sexton et al., 2017). This process is controlled by environmental (soil and climate), plant or 

ratoon, and cultivar-specific parameters (Dias et al., 2019; Keating et al., 2000, 1999).  

Sugarcane growth was simulated from 1 January 2000 to 31 December 2010, using 

rainfed conditions and irrigated conditions (assuming 50% management-allowed deficit). 

Soil data for Sri Lanka were derived using pedotransfer functions developed by  

(Gunarathna et al. (2019b), and other data were gathered from a report by the Soil Science 
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Society of Sri Lanka (Dassanayake et al., 2010). Soil data for Okinawa were collected 

through comprehensive soil analysis. Meteorological data for Sri Lanka were extracted from 

the AgMERRA global gridded climate dataset (Ruane et al., 2015) by the NetCDF-Extractor 

v. 2.0 tool of AgriMetSoft (https://www.agrimetsoft.com). Those for Okinawa were 

obtained from the Japan Meteorological Agency website 

(http://www.data.jma.go.jp/gmd/risk/obsdl/index.php). In both locations, the data on daily 

rainfall, maximum temperature, minimum temperature, and solar radiation covered 1980 to 

2010. Figure 4.1 shows the variation of climatic variables used for these simulations. Table 

4.1 summarizes the soil and management conditions of the two locations. 

 

Table 4.1. Soil and management conditions of selected locations used for the simulations 

Location Itoman, Okinawa, Japan Sevanagala, Monaragala, Sri Lanka 

 26° 7' 58''N 127° 40' 52''E 6° 22' 13''N 80° 54' 47''E 

Soil Shimajiri Mahji 

Depth: 110 cm 

PAWC: 68.4 mm 

Average bulk density 1.11g/cm3 

Solodized Solonetz 

Depth: 100 cm 

PAWC: 91.6 mm 

Average bulk density 1.37g/cm3 

Planting April 01 (Spring planting) April 01 (Yala season planting) 

Crop duration 315 days 360 days 

Stalk density 7 stalks/m2 8 stalks/m2 

Fertilizer 190 kg/ha as NH4-N 200 kg/ha as Urea  

Fertilizer application time 31 and 62 days after planting 45 and 90 days after planting 

Irrigation Automatic irrigation 

The fraction of ASW below which irrigation is applied = 0.5 

The efficiency of the irrigation = 0.5 

PAWC, Plant available water content; ASW, Available soil water 

 

4.2.3. Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) 

GEM-SA is open-source software used to build software emulators from a set of 

inputs and outputs to perform predictions, uncertainty analysis, and SA using far fewer code 

runs than Monte Carlo–based methods (Kennedy and Petropoulos, 2017). It uses Bayesian 

analysis of computer code outputs (Kennedy and O’Hagan, 2001). The underlying 
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mathematical procedures used in GEM-SA and analytical procedures used to conduct SA 

with GEM-SA are described in full by Kennedy and O’Hagan (2001), Kennedy et al. (2006) 

and Kennedy and Petropoulos (2017). GEM-SA estimates two variance-based sensitivity 

indices—the main effect and the total effect—by partitioning the total output variance 

induced by variations in all input parameters  (Oakley and O’Hagan, 2004). Gunarathna et 

al. (2019a) reported the accuracy of emulators developed by GEM-SA for subtropical 

environments. Sexton et al. (2017) used GEM-SA to assess the sensitivity of sugarcane 

biomass and yield to ten parameters in two regions in Australia; despite little variation in 

climate between the regions, sensitivities differed between the regions, as one region grows 

rainfed sugarcane and the other grows irrigated sugarcane. Gunarathna et al. (2018a) used 

GEM-SA to assess the sensitivity of outputs of APSIM-Oryza to soil parameters in different 

climatic conditions and reported different sensitivities among regions. 

We used GEM-SA to assess the sensitivity of total (green + trash) aboveground 

biomass, fresh cane weight (canefw), the weight of plant sucrose (sucrose_wt), and 

commercial cane sugar (% ccs) to 13 selected parameters (Table 4.2). We assessed emulator 

accuracy, parameters that influence outputs, the variability of those parameters between 

years and between rainfed and irrigated conditions, and the effect of climate. Figure 4.2 

shows an overview of the procedure we used for this study.  
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Table 4.2. Selected parameters used to assess the parameter sensitivity on total crop above-ground biomass, fresh cane weight, the weight of plant 

sucrose and commercial cane sugar 

Parameter as listed in APSIM-Sugar model (Description) Level Code Unit Lower and Upper Bound 

leaf_size (Leaf area of the respective leaf) Leaf_size_no = 1 LS1 mm2 500 – 2000 

Leaf_size_no = 14 LS2 mm2 25000 – 70000 

Leaf_size_no = 20 LS3 mm2 25000 – 70000 

cane_fraction (Fraction of accumulated biomass partitioned to 

cane) 

 CF gg-1 0.65 - 0.80 

sucrose_fraction_stalk (Fraction of accumulated biomass 

partitioned to sucrose) 

Stress factor = 1 SF gg-1 0.50 – 0.70 

sucrose_delay (Sucrose accumulation delay)  SD gm-2 0 – 600 

min_sstem_sucrose (Minimum stem biomass before partitioning 

to sucrose commences) 

 MSS gm-2 450 – 1500 

min_sstem_sucrose_redn (reduction to minimum stem sucrose 

under stress) 

 MSSR gm-2 0 – 20 

tt_emerg_to_begcane (Accumulated thermal time from 

emergence to beginning of cane) 

 EB ◦C day 1200-1900 

tt_begcane_to_flowering (Accumulated thermal time from 

beginning of cane to flowering)  

 BF ◦C day 5500 – 6500 



  

49 

 

tt_flowering_to_crop_end (Accumulated thermal time from 

flowering to end of the crop) 

 FC ◦C day 1750 – 2250 

green_leaf_no (Maximum number of fully expanded green 

leaves) 

 

 GLN No. 9 – 14 

tillerf_leaf_size (Tillering factors according to the leaf numbers) Tiller_leaf_size_no = 1 TLS1 mm2 mm−2 1 – 6 

Tiller_leaf_size_no = 4 TLS2 mm2 mm−2 1 – 6 

Tiller_leaf_size_no = 10 TLS3 mm2 mm−2 1 – 6 

Tiller_leaf_size_no = 16 TLS4 mm2 mm−2 1 – 6 

Tiller_leaf_size_no = 26 TLS5 mm2 mm−2 1 – 6 

transp_eff (Transpiration efficiency) Stage_code = 1 TE1 kg kPa/kg 0.008 – 0.014 

Stage_code = 2 TE2 kg kPa/kg 0.008 – 0.014 

Stage_code = 3 TE3 kg kPa/kg 0.008 – 0.014 

Stage_code = 4 TE4 kg kPa/kg 0.008 – 0.014 

Stage_code = 5 TE5 kg kPa/kg 0.008 – 0.014 

Stage_code = 6 TE6 kg kPa/kg 0.008 – 0.014 

rue (Radiation use efficiency) Stage_code = 3 RUE3  g/MJ 1.2 – 2.5 

 Stage_code = 4 RUE4  g/MJ 1.2 – 2.5 

 Stage_code = 5 RUE5  g/MJ 1.2 – 2.5 



  

50 

 

 

Figure 4.2. Flowchart of the analysis procedure used for the study 

 

4.2.4. Global Sensitivity analysis 

SA indicates which input parameters have the most influence on model outputs. We 

conducted SA using daily climate data from 2000 to 2010 to assess the sensitivity of the 

four yield outputs to 13 parameters (11 cultivar-specific parameters, RUE, and TE; Table 

4.2) under rainfed and irrigated conditions in two distinct environments (Figure 4.2). 

Initially, 300 test points (of every parameter and outputs) evenly distributed between lower 

and upper bounds (Table 4.2) and related outputs of APSIM were generated by the apsimr 
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package (Stanfill, 2015) of R software (R Core Team, 2018). We chose the upper and lower 

bounds in consideration of the range of parameter values of cultivars in APSIM 7.10 Sugar 

model. We used the Gaussian Process emulator in GEM-SA (Kennedy et al., 2006) to 

develop 160 emulators (10 years × 4 outputs × 2 environments × 2 management conditions). 

Variance based sensitivity indices (Main, Si, and total effects, STi) were estimated by 

partitioning the total output variance induced by variations in all input parameters with the 

assumption that all input uncertainties are unknown but uniform. The main effect index (Si) 

is defined as: 

𝑆𝑖 =
𝑉𝑎𝑟{𝐸(𝑓(𝑋|𝑥𝑖)}

𝑉𝑎𝑟{𝑓(𝑋)}
        (4.1) 

Where, Var{f(X)} is the total variance in the output given variations in all parameters; 

Var{E(f((𝑋|𝑥𝑖)} is the variance in the expected output f(X) given xi is known. Hence, Si 

represents the expected reduction in output variance if parameter xi were known (Sexton et 

al., 2017). The relative importance of each parameter in terms of its effect on output 

uncertainty can be ranked using this Si values of selected parameters (Oakley and Hagan, 

2004). The total sensitivity index (STi) is defined as: 

𝑆𝑇𝑖 = 1 −
𝑉𝑎𝑟{𝐸(𝑓(𝑋|𝑥−𝑖)}

𝑉𝑎𝑟{𝑓(𝑋)}
       (4.2) 

Where, Var{E(f((𝑋|𝑥−𝑖)} is the variance in the expected output f(X) if all parameters 

except xi are known. Saltelli and Annoni (2010) suggested using STi when sensitivity 

analysis aims to set non-influential parameters to default values and to remove them from 

potential calibrations. 

The prior mean option for each input was set as linear. Models were assessed by 

using the leave-one-out cross-validation procedure of GEM-SA. In cross-validation 

procedure, a series of left-out points were estimated as output from the code which we know 

the exact values. Therefore, the error values are readily available (Petropoulos et al., 2015). 

GEM-SA calculates the cross-validation root-mean-squared error (RMSE, Equation 3) and 

root-mean-squared standardized error (RMSSE, Equation 4) from the results of the cross-

validation (Kennedy and Petropoulos, 2017), and the sigma squared (σ2) value. We used 

these inbuilt diagnostics to assess the accuracy of the emulator approximations. We 

evaluated the variation in sensitivity of model outputs to changes in parameter values under 

two management conditions and two environments using the variances (as a percentage) of 

the main effect index (Si) and total effect index (STi) provided by GEM-SA. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�)

2𝑛
𝑖=1

𝑛
        (4.3) 
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𝑅𝑀𝑆𝑆𝐸 = √
∑ ((𝑦𝑖−�̂�)/𝑠𝑖)

2𝑛
𝑖=1

𝑛
        (4.4) 

Where, yi is the true output for the ith training run, �̂� is the corresponding emulator 

approximation, si is the standard deviation calculated with the ith training point removed, 

and n is the number of runs (Kennedy and Petropoulos, 2017). 

 

4.3. Results and Discussion 

 

4.3.1. Emulator accuracy 

A series of internally calculated statistical measures (σ2, RMSE, and RMSSE) of GEM-

SA were used to quantify the uncertainty of the sensitivity analysis due to emulation of 

model simulation (Kennedy and Petropoulos, 2017).  We used σ2 (variance of the emulator 

after standardization of output) to evaluate the linearity of the GEM-SA emulators, as σ2 

ranges near to 0 when a model shows linearity and show higher values when a model shows 

moderate to high nonlinearity, albeit with no defined cutoff values. Petropoulos et al. (2009) 

reported that their emulators showed linearity or moderate nonlinearity at σ2 values between 

0.13 and 1.6. We got σ2 values of 0.15 to 1.43 for Okinawa and 0.10 to 0.59 for Sri Lanka 

(Figure 4.3), so the models showed good to moderate linearity in both environments and 

higher linearity in Sri Lankan conditions. Hence emulators can successfully replace the 

simulators.  

RMSSE values are near 1 when emulator results are close to simulator results; lower 

and higher values respectively indicate over- and underestimation. Our RMSSE values of 

cross-validation results were close to 1: 0.89 to 1.09 in Okinawa and 0.85 to 1.12 in Sri 

Lanka (Figure 4.3). These values are lower than previously reported values of emulators 

assessed as satisfactory (Kennedy and Petropoulos, 2017; Lee et al., 2011; Petropoulos et 

al., 2009).  
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Figure 4.3. (a) Sigma squared value, (b) Cross validated Cross-validation root mean squared 

standardized error of results of selected outputs under two climatic conditions (Okinawa and 

Sri Lanka). IR, Irrigated; RF, rainfed.  

 

4.3.2. The sensitivity of crop growth and yield to changes in plant and cultivar specific 

parameters 

Both main effect and total effect sensitivity indices of parameters varied 

significantly across environments and management conditions (Figures 4.4–4.7) and among 

years. There were no significant differences between the main and total effect indices, and 

the main effect index was able to explain a significant portion of the variability, so we 

neglected combined effects. Under rainfed conditions, soil moisture deficit is possible and 

may affect other processes. Thus, parameters showed less interannual variation under 

rainfed conditions than under irrigated conditions. Interannual variability was higher in 

Okinawa than in Sri Lanka as a result of the wide variation in temperature and solar radiation 

during the growing season. We ranked the influence of parameters according to the median 

value of main effects over the 10 study years (Table 4.3). Significant contributions (over 

1%) is highlighted (bold) in Table 4.3.  

RUE of growth stage 4 (from the beginning of cane growth to flowering; RUE4) was 

the most influential on all the four tested model outputs despite locations and management 

(Table 4.3 and Figures 4.4 to 4.7). In both environments, biomass and cane fresh weight 
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showed a different pattern of parameter influence from sucrose weight and ccs for all other 

parameters. RUE of growth stage 3 (from emergence to the beginning of cane growth; 

RUE3) was the second most influential parameter for biomass and cane fresh weight. It was 

ranked two to three for CCS and sucrose weight in Okinawa and two to six for CCS and 

sucrose weight in Sri Lanka. For CCS and sucrose weight, MSS has a higher effect than 

RUE3. Green leaf number (GLN) was the third most influential parameter for biomass, and 

cane fresh weight, however, it was ranked four to five in Okinawa and three to five in Sri 

Lanka for CCS and sucrose weight. Cane fraction (CF) and thermal time between emergence 

and beginning of cane (EB) also influenced biomass in both environments in both water 

regimes. 

Transpiration efficiency of growth stage 4 (TE4) has a greater influence in biomass 

under rainfed conditions than under irrigation conditions (Sexton and Everingham, 2014). 

This was more pronounced under Sri Lanka growing conditions, probably because of the 

higher water-holding capacity of the Sri Lankan soil (Table 4.1). In both environments, 

minimum structural stem sucrose content (MSS) and sucrose fraction under stress (SF) 

influenced CCS and sucrose weight under both water regimes. CF also influenced CCS in 

both climates and sucrose weight in Sri Lanka under rainfed conditions. MSS reduction 

(MSSR) influenced ccs under rainfed conditions in Okinawa but not in Sri Lanka. Sexton et 

al. (2017) reported higher sensitivity of biomass production to RUE and GLN and of sucrose 

yield to RUE and SF under Australian conditions. 

In almost all cases, RUE4, RUE3, TE4 (plant-specific parameters), GLN, CF, MSS, 

and SF (cultivar-specific parameters) explained >90% of variability (Table 4.3). RUE4 had 

the greatest influence and was more influential in Sri Lanka than in Okinawa in both water 

regimes. In both climates, growth stage 4 fell between July and the following February or 

March, when solar radiation, potential ET, and maximum and minimum temperatures varied 

much more in Okinawa than in Sri Lanka. 
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Figure 4.4. Sensitivity of APSIM-Sugar biomass (g/m2) to parameters in (a) Okinawa and 

(b) Sri Lanka; Si, main effect; STi, total effect; IR, irrigated; RF, rainfed; TLS1-5, tiller leaf 

size; TE1-6, transpiration efficiency; SF2, sucrose fraction under stress; SD, sucrose delay; 

RUE3-5, radiation use efficiency; MSS, minimum structural stem sucrose; MSSR, MSS 

reduction; LS1-3, leaf size; GLN, green leaf number; FC, thermal time from flowering to 

crop end; EB, thermal time from emergence to beginning of cane; CF, cane fraction; BF, 

thermal time from beginning of cane to flowering.  
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Figure 4.5. The sensitivity of APSIM-Sugar fresh cane yield (t/ha) to parameters in (a) 

Okinawa and (b) Sri Lanka. Si, main effect; STi, total effect; IR, irrigated; RF, rainfed; 

TLS1-5, tiller leaf size; TE1-6, transpiration efficiency; SF2, sucrose fraction under stress; 

SD, sucrose delay; RUE3-5, radiation use efficiency; MSS, minimum structural stem sucrose; 

MSSR, MSS reduction; LS1-3, leaf size; GLN, green leaf number; FC, thermal time from 

flowering to crop end; EB, thermal time from emergence to beginning of cane; CF, cane 

fraction; BF, thermal time from beginning of cane to flowering.  

.  
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Figure 4.6. The sensitivity of APSIM-Sugar commercial cane sugar (%) to parameters in 

(a) Okinawa and (b) Sri Lanka. Si, main effect; STi, total effect; IR, irrigated; RF, rainfed; 

TLS1-5, tiller leaf size; TE1-6, transpiration efficiency; SF2, sucrose fraction under stress; 

SD, sucrose delay; RUE3-5, radiation use efficiency; MSS, minimum structural stem sucrose; 

MSSR, MSS reduction; LS1-3, leaf size; GLN, green leaf number; FC, thermal time from 

flowering to crop end; EB, thermal time from emergence to beginning of cane; CF, cane 

fraction; BF, thermal time from beginning of cane to flowering.  
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Figure 4.7. The sensitivity of APSIM-Sugar sucrose yield (g/m2) to parameters in (a) 

Okinawa and (b) Sri Lanka. Si, main effect; STi, total effect; IR, irrigated; RF, rainfed; 

TLS1-5, tiller leaf size; TE1-6, transpiration efficiency; SF2, sucrose fraction under stress; 

SD, sucrose delay; RUE3-5, radiation use efficiency; MSS, minimum structural stem sucrose; 

MSSR, MSS reduction; LS1-3, leaf size; GLN, green leaf number; FC, thermal time from 

flowering to crop end; EB, thermal time from emergence to beginning of cane; CF, cane 

fraction; BF, thermal time from beginning of cane to flowering.  
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Table 4.3. Most influential Parameters in the simulation of biomass, canefw, ccs, and 

sucrose_wt in APSIM-Sugar under different environments (bold indicates parameters that 

contributed >1% of variation). 

Parameter 

Biomass Cane fresh weight CCS Sucrose weight 

RF IR RF IR RF IR RF IR 

Si Rank Si Rank Si Rank Si Rank Si Rank Si Rank Si Rank Si Rank 

Okinawa, Japan 

RUE4 49.0 1 57.7 1 58.3 1 66.3 1 41.2 1 42.3 1 58.5 1 64.6 1 

RUE3 18.0 2 23.6 2 12.6 2 17.2 2 5.4 3 7.0 3 9.2 3 11.2 2 

GLN 7.7 3 6.7 3 6.2 3 5.3 3 3.4 5 2.7 5 4.9 4 4.3 4 

CF 3.1 4 2.5 4 0.6 6 0.5 6 2.3 6 1.7 6 0.7 6 0.6 6 

TE4 1.7 5 0.5 6 2.0 4 0.5 5 0.1 10 0.0 11 0.7 7 0.1 9 

EB 1.4 6 1.8 5 1.0 5 0.5 4 0.2 8 0.2 8 0.2 9 0.2 8 

MSS 0.0 22 0.0 18 0.0 22 0.0 16 28.5 2 27.3 2 10.1 2 8.8 3 

MSSR 0.0 17 0.0 25 0.0 21 0.0 25 1.2 7 0.5 7 0.3 8 0.3 7 

SF 0.0 14 0.0 16 0.0 16 0.0 19 5.0 4 4.8 4 2.2 5 1.6 5 

Monaragala, Sri Lanka 

RUE4 60.5 1 71.1 1 67.5 1 76.4 1 44.8 1 54.2 1 70.1 1 79.3 1 

RUE3 14.5 2 13.0 2 13.1 2 11.7 2 5.1 4 2.5 6 9.4 2 7.4 2 

GLN 6.7 3 6.2 3 5.7 4 5.0 3 3.2 5 2.9 5 5.2 3 4.5 3 

CF 5.3 5 3.7 4 0.7 5 0.3 6 1.9 6 3.0 4 1.0 7 0.7 6 

TE4 6.0 4 1.4 6 6.7 3 1.4 4 0.6 8 0.5 7 2.0 6 0.1 8 

EB 1.5 6 1.6 5 0.5 6 0.7 5 0.8 7 0.3 8 0.4 8 0.4 7 

MSS 0.0 18 0.0 11 0.0 23 0.0 13 19.5 2 14.8 2 3.8 4 2.5 4 

MSSR 0.0 16 0.0 12 0.0 21 0.0 20 0.3 9 0.1 9 0.1 9 0.0 9 

SF 0.0 23 0.0 8 0.0 26 0.0 18 10.4 3 10.5 3 2.6 5 2.3 5 

 Biomass, total aboveground biomass (g/m2); Cane fresh weight (t/ha); CCS, commercial 

cane sugar (%); sucrose weight (g/m2); RF, rainfed; IR, irrigated; Si, main effect; RUE, 

radiation use efficiency; GLN, green leaf number; CF, cane fraction; TE, transpiration 

efficiency; EB, thermal time from emergence to beginning of cane; MSS, minimum 

structural stem sucrose; MSSR, MSS reduction; SF, sucrose fraction under stress. 

 

4.3.3. Role of RUE4 on APSIM-Sugar simulations 

Daily dry matter production (DDMP; g/m2) of sugarcane under irrigated conditions 

was simulated using the default values for RUE (1.8 g/MJ) and TE (8.7 g/kPa/kg) in APSIM-

Sugar. Maximum possible daily dry matter production (MDMP; g/m2) was calculated as the 

product of daily intercepted solar radiation and RUE. APSIM estimates intercepted solar 

radiation as a function of leaf area index and radiation extinction coefficient of 0.38 

(Equation 4.5). 
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𝐼 = 𝐼0 × 𝐸𝑋𝑃(−𝑘 × 𝐿𝐴𝐼)      (4.5) 

Where,  

I is Intercepted solar radiation, I0 is the total solar radiation at the top of the canopy, 

k is extinction coefficient, and LAI is leaf area index.  

During growth stage 4, DDMP had a close relationship with solar radiation in both 

environments (Figure 4.8), confirming the high dependency of DDMP on solar radiation. 

However, it had greater uncertainty throughout the range of intercepted solar radiation in 

Okinawa than in Sri Lanka, indicating limitation by other factors. This explains the higher 

sensitivity of DDMP to RUE4 in Sri Lanka. RUE is highly sensitive to nitrogen stress and 

high and low temperatures (Zhao et al., 2014). No nitrogen stress was reported during this 

period in either environment (see next paragraph). Therefore, temperature and solar 

radiation contributed most to the variation in the sensitivity of DDMP to RUE4 in both 

environments. 

Lower DDMP values than MDMP values confirm that APSIM-Sugar did not use the 

maximum RUE values to simulate DDMP during growth stage 4, especially in days with 

higher intercepted solar radiation (Figure 4.9c). During the study period, the minimum and 

maximum temperatures were within the optimum range (15–45 °C, Figure 4.9a) (Martiné 

et al., 1999), and no nitrogen deficit and only slight water stress were recorded (Figure 4.9b). 

There was no water stress on days with radiation of <15 MJ/m2 (Figure 4.9d), and APSIM-

Sugar operates with maximum RUE. RUE can be maximized with favorable water, nitrogen, 

and temperature conditions (Zhao et al., 2014), and some authors reported higher RUE 

values than 2 g/MJ (De Silva and De Costa, 2012; Ferreira (Jr) et al., 2015; Martin and 

Acreche, 2017) while APSIM-Sugar remains at 1.8 g/MJ. This might cause APSIM to 

underestimate yield, especially in simulation studies based on modern commercial 

sugarcane cultivars. 

Since RUE is a standard parameter in plant and ratoon crops, it is usually unchanged 

in varietal parameterization. However, cultivars show a range of RUE values (De Silva and 

De Costa, 2012), so it needs to be parameterized to achieve useful simulations. Sexton et al. 

(2017, 2014) suggested to add RUE and TE as varietal parameters in upcoming APSIM 

versions; our results prompt us to agree. Our results under Okinawan conditions are similar 

to those reported by Sexton et al. (2017), but there are no published results to compare with 

the Sri Lankan environment. Therefore, we suggest the need for studies to determine the 

influence of sugarcane cultivar parameters in different tropical environments to confirm our 

findings. Sexton et al. (2014) reported the inability of APSIM-Sugar to differentiate the 
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yields of four commercial cultivars. The lack of enough cultivar parameters that influence 

the growth and yield of sugarcane means that APSIM-Sugar may not be able to distinguish 

varietal differences if those parameters are not parameterized and appropriately calibrated. 

 

Figure 4.8. Relationship of intercepted solar radiation (MJ/m2) during growth stage 4 with 

simulated daily dry matter production (g/m2) of irrigated sugarcane and calculated 

maximum possible daily dry matter production (g/m2) of sugarcane in (a) Okinawa and (b) 

Sri Lanka.  
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Figure 4.9. (a) Maximum and minimum temperature variation during crop stage 4 in Sri 

Lanka. (b) Soil water deficit (swdef_photo) and nitrogen deficit (nfact_photo) for 

photosynthesis of irrigated sugarcane (1 = no stress, 0 = full stress). (c) Relationship of 

intercepted solar radiation (MJ/m2) with simulated daily dry matter production (DDMP; 

g/m2) of irrigated sugarcane and calculated maximum possible daily dry matter production 

(MDMP; g/m2) of sugarcane. (d) Relationship between solar radiation (MJ/m2) and soil 

water deficit for photosynthesis of irrigated sugarcane. 

 

4.3.4. Investigation of Interannual Variation in Parameter Influence 

 Sexton et al. (2017) found a high interannual variation of parameter influence and 

suggested the contribution of climatic variation. Several plant- and cultivar-specific 

parameters showed considerable interannual variation in influence (Figure 4.4–4.7). To 

study the influence of climatic parameters on interannual variation in sensitivity in Sri 

Lanka, we investigated the sensitivity of canefw to highly influential parameters (Table 4.3). 

Considering climatic factors, we selected three growing seasons (Y2 2001–02, Y7 2006–

07, Y10 2009–10) for comparison (Figure 4.10). We calculated cumulative growing degree-

days assuming a base temperature of 9 °C. Y10 had the highest cumulative growing degree-

days (6663), and Y7 had the lowest (6425). Y7 had the highest cumulative rainfall (2232 

mm), and Y2 had the lowest (1504 mm). Y2 had the highest cumulative solar radiation 
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(6703 MJ/m2) and cumulative potential ET (1688 mm). Y10 had the lowest cumulative solar 

radiation (6179 MJ/m2) and cumulative potential ET (1566 mm). 

As a tropical country, Sri Lanka receives high solar radiation even in high-rainfall years. 

Therefore, under irrigated conditions, canefw had high sensitivity to RUE4 in all three years. 

Since irrigation supplies all crop water requirements, RUE4 had greater influence in Y2, a 

low-rainfall year with high solar radiation, than in the other years. Under rainfed conditions, 

RUE4 had a stronger relationship to canefw in Y7 (highest rainfall) than in the other years. 

This result confirms the higher sensitivity of canefw to RUE4, but the sensitivity is directly 

linked to moisture availability for plants. Solar radiation was similar among years in the first 

three months of the growing season but then differed among years. Under irrigated 

conditions, the sensitivity of canefw to RUE3 was similar among years. Under rainfed 

conditions, however, it was less in Y2 than in the other years. In Y2, RUE3 became 

insensitive to increasing RUE as controlled by soil moisture deficit due to less rainfall and 

high potential ET. Under irrigated conditions, GLN, TE4, CF, and EB showed little or no 

variation in influence among years. Under rainfed conditions, however, GLN, TE4, and CF 

showed more significant variation in influence, more so in Y2, owing to both higher solar 

radiation and moisture stress. 

To study the influence of climatic parameters on interannual variation in sensitivity in 

Okinawa, we selected three growing seasons (Y2 2001–02, Y4 2003–04, and Y9 2008–09) 

for comparison (Figure 4.11). Y4 had the highest cumulative growing degree-days (4847), 

and Y2 had the lowest (4833). Since Okinawa receives high rainfall due to typhoons, the 

cumulative rainfall does not reflect cropping conditions, so we calculated the effective 

rainfall by using a water balance approach. Y2 had the highest cumulative rainfall (2478 

mm), and Y9 had the lowest (1215 mm), but Y4 had the highest cumulative effective 

rainfall, and Y2 had the lowest. Y9 had the highest cumulative solar radiation (4999 MJ/m2) 

and cumulative potential ET (1247 mm). Y2 had the lowest cumulative solar radiation (4690 

MJ/m2) and cumulative potential ET (1170 mm). 
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Figure 4.10. Depiction of interannual sensitivity variation of sugarcane in Sri Lanka: cumulative rainfall (mm), cumulative solar radiation (MJ/m2), 

cumulative growing degree-days, cumulative potential evapotranspiration (mm), and parameter sensitivity variation among 2001–02, 2006–07, 

and 2009–10.  
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Figure 4.11. Depiction of interannual sensitivity variation of sugarcane in Okinawa: cumulative rainfall (mm), cumulative solar radiation (MJ/m2), 

cumulative growing degree-days, cumulative potential evapotranspiration (mm), and parameter sensitivity variation among 2001–02, 2003–04, 

and 2008–09.  
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With lower solar radiation than in Sri Lanka, the sensitivity of canefw to RUE4 was 

lower, but still significant, in Okinawa in all three years. The sensitivity of canefw to RUE4 

was lowest in Y2 owing to the lower solar radiation and effective rainfall than in the other 

two years. Under the lower solar radiation, the influence of RUE4 differed little between 

irrigated and rainfed conditions. This result confirms the higher sensitivity of canefw to 

RUE4, but the sensitivity is directly linked to solar radiation and moisture availability for 

plants. RUE3 also showed less influence on canefw in Y2 than in the other two years, on 

account of lower effective rainfall and solar radiation. Although the climatic conditions were 

similar, under rainfed conditions canefw was less sensitive to RUE3 in Y4 than in Y9. 

Canefw was more sensitive to GLN in Y4 and Y9 than in Y2 owing to higher effective 

rainfall and solar radiation. TE4, CF, and EB had little or no variation in influence among 

years under either irrigated or rainfed conditions. 

 

4.3.5. Relationship between statistical dispersion and climatological parameters 

We examined the statistical dispersion of emulator canefw outputs in response to 

climatic parameters (Figure 4.12). In Sri Lanka, under irrigated conditions, cumulative solar 

radiation (CSR) had the closest relationship with the average output, and cumulative 

growing degree-days had the closest relationship with SD. Under rainfed conditions, 

cumulative rainfall had the closest relationship with average, and CSR had the closest 

relationship with SD. In Okinawa, under both water regimes, CSR had the closest 

relationship with average and SD. 
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Figure 4.12. Relationships between average and SD of emulator canefw predictions with 

most closely related climatic conditions during the study period. 

 

Solar radiation is a crucial factor governing the sensitivity of canefw to parameters 

irrespective of climatic conditions. Under high solar radiation with abundant soil moisture, 

canefw depended mainly on solar radiation, and its variability in sensitivity depended on 

temperature. Under high solar radiation with water stress, canefw depended mainly on 

rainfall, and its variability in sensitivity was governed mainly by solar radiation. Under low 

solar radiation, irrespective of water availability, canefw, and its sensitivity were governed 

mainly by solar radiation. Similarly, Grossi et al. (2015) reported the higher sensitivity of 

sorghum yield to rainfall, solar radiation, and CO2 in DSSAT simulations. Hence, solar 

radiation, rainfall, and temperature have the greatest influence on canefw in crop models. 

 

4.4. Conclusions 

We used GEM-SA to assess the influence of 13 parameters (11 cultivar-specific 

parameters, RUE, and TE) of APSIM-Sugar on predicted biomass, fresh cane yield, sucrose 

weight, and commercial cane sugar yield (ccs) under rainfed and irrigated conditions in two 

distinctive environments. In both environments, all four outputs were highly sensitive to the 

RUE of crop growth stage 4 (from the beginning of cane growth to flowering) and growth 

stage 3 (from emergence to the beginning of cane growth) and green leaf number, 

irrespective of water regime. Biomass was sensitive to cane fraction and thermal time from 

emergence to the beginning of cane (EB) in both environments. In Okinawa, biomass and 

fresh cane yield were sensitive to TE of growth stage 4 under rainfed conditions but less 
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sensitive under irrigated conditions. In Sri Lanka, they were sensitive under both water 

regimes. In both environments, ccs and sucrose weight were sensitive to minimum structural 

stem sucrose content (MSS) and sucrose fraction under stress condition (SF) under both 

water regimes. In Okinawa, ccs and sucrose weight were slightly sensitive to MSS reduction 

(MSSR) and cane fraction under rainfed but less sensitive under irrigated conditions. In Sri 

Lanka, biomass, fresh cane yield, and sucrose yield were sensitive to TE of growth stage 4 

under rainfed but less sensitive under irrigated conditions. These results confirm distinct 

variations in parameter influence across climates, management conditions, and outputs. This 

shows why SA conducted in similar environments is vital to identifying parameters 

important for parameterization and calibration of sugarcane cultivars. In both environments, 

green leaf number and cane fraction were important candidates for parameterization of 

cultivars. We suggest that attention to the calibration of EB, MSS, MSSR, and SF will 

improve the accuracy of simulations of sugarcane growth and yield in both environments. 

Although they are not listed as cultivar parameters in APSIM-Sugar model, if reliable and 

ample data available, it is advisable to calibrate TE of growth stage 4 and RUE of growth 

stages 3 and four also. Interannual variations in solar radiation, rainfall, and temperature 

explained the variation of parameter influence. Therefore, variations in climatic parameters 

must be accounted for in modeling of sugarcane growth and yield using APSIM. 
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5.0 Simulation of growth and yield of sugarcane under OPSIS 

 

5.1 Introduction 

Optimized subsurface irrigation system (OPSIS) is a newly developed subsurface 

irrigation system to irrigate upland crops, such as sugarcane. In soils with low water holding 

capacity, OPSIS can show comparatively better performances than other irrigation methods. 

Solar-powered pump and minimum operational activities of OPSIS help to cut down 

operational costs of irrigation drastically, compared to the sprinkler irrigation, which is the 

common irrigation method of sugarcane in Okinawa, Japan  (Gunarathna et al., 2017). When 

OPSIS is operating, water flows along the perforated OPSIS lines through the gravity. With 

the advancing water along the perforated OPSIS line, water can be moved to the outside 

soil, based on the water potential. As water moves outside, the soil becomes saturated. After 

that, outside soil and inside of the pipe come to an equilibrium. This equilibrium controls 

the amount and rate of irrigation. Further, the saturated layer starts to move the water upward 

due to the water potential created by matrix effects such as capillary action created via 

surface tension. As water moves upward, the moisture content of root zone soil increases 

and provide irrigation water to the crop (Gunarathna et al., 2017). 

Using field experiments conducted in Itoman, Okinawa during 2013 to 2016, 

(Gunarathna et al., 2018) reported the advantages of OPSIS over sprinkler irrigation for 

sugarcane cultivation in Okinawa in respect of both sugarcane yield and WUE. However, 

they suggested conducting further validation of results using different assessment methods.  

Crop simulation model is a vital tool with numerous uses, including the evaluation 

of different irrigation management practices.  Well calibrated and validated crop model is a 

fast-alternative option for developing and evaluating agronomic practices (Saseendran et al., 

2008). Hence crop models can act as a time and resource-saving option for researches on 

technological advances in agriculture. Different authors recorded the application of different 

crop models to evaluate irrigation methods and strategies. Saseendran et al., (2008) used 

CERES- maize model to determine the optimum allocation of limited irrigation between 

vegetative and reproductive growth stages and optimum soil water depletion level for 

initiating limited irrigation. Abd-El-Baki et al. (2017) used numerical crop model to 

determine the optimum irrigation depth for tomato crop. Kundu et al. (1982) used 

CORNGRO crop model to find out the optimum soil moisture depletion and replenishment 

levels and timing and amount of irrigation during different crop growth stages of corn. 

Mubeen et al. (2016) used CSM-CERES-Maize model to optimize the irrigation conditions. 
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Balwinder-Singh et al. (2016) used APSIM to evaluate the effect of mulch on the sowing 

date and irrigation management of wheat in Central Punjab, India. Sena et al. (2014) used 

APSIM to find out the optimum transplanting dates for achieving higher yield and water 

productivity of rice-wheat cropping systems in Middle IGP of India. Subash et al. (2014) 

evaluated the different irrigation regimes on rice-wheat cropping systems in IGP using 

APSIM model.  

 

5.1.1 APSIM 

APSIM (Agricultural Production Systems Simulator) is an open-source (for non-

commercial users) crop modeling software, which can use to model growth and yield of 

many crops including sugarcane (Holzworth et al., 2014; Keating et al., 2003). Further, it 

has modeling functions, which allows simulating soil water, nutrients and many more 

(Holzworth et al., 2014; Inman-Bamber et al., 2016; Inman-Bamber and McGlinchey, 2003; 

Keating et al., 2003). Plant models in APSIM simulate major physiological processes such 

as phenology, water, and nutrient uptake, development of organs and responses for abiotic 

stresses, etc. Soil models in APSIM simulate water movements such as infiltration, capillary 

rise, evaporation, surface runoff, and drainage. Simple tipping bucket approach (SOILWAT 

module, (Probert et al., 1998)) and comprehensive numerical solution using Richard’s 

equation (SWIM module, (Huth et al., 2012)) use to simulate water and solute movements. 

Further, it simulates soil organic matter decomposition and temperature changes (Holzworth 

et al., 2014). APSIM allows users to incorporate management interventions by own scripts 

written in scripting languages. Hence, it is a significant advantage in APSIM compared to 

other crop modeling software (Archontoulis et al., 2014; Holzworth et al., 2014). The 

uncertainties of predictions from this model are generally characterized by the error statistics 

determined from the prediction of experimental data. Therefore, firm parameterization, 

calibration, and validation are needed to reduce the uncertainties of predictions. 

Therefore, this study aimed to develop the modeling capabilities of APSIM to 

evaluate the OPSIS. We conducted field experiments and modeling work to parameterize 

and calibrate the APSIM to simulate growth and yield of sugarcane. Further, we conducted 

field experiments and modeling work to validate the APSIM simulations of yield and growth 

of sugarcane under our newly developed irrigation method, optimized subsurface irrigation 

system (OPSIS). We evaluated the simulation accuracy of APSIM using different model 

evaluation criteria during both calibration and validation steps.  
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5.2 Materials and Methods 

We conducted a series of field experiments to collect necessary data for 

parameterization and calibration of APSIM-sugar model for locally grown cultivar Ni21, 

which was developed to withstand against typhoons.  Further, we conducted field 

experiments with the same cultivar to validate the APSIM to use with OPSIS. All the 

planting was done following the single-row planting method with 1.3 m spacing between 

the rows. We conducted all field experiments in farmer operated sugarcane fields located at 

Itoman, Okinawa, Japan (260 7’ 59.07’’ N, 1270 40’ 52.32’’ E).  The local climate is 

classified as Cfa by Köppen climate classification (Gima and Yoshitake, 2016; Rubel and 

Kottek, 2010).  

 

5.2.1 Plant Data  

We maintained two experimental plots as sprinkler irrigated, and OPSIS irrigated 

sugarcane fields grown with local cultivar Ni21. More information about the field 

experiments is presented by Gunarathna et al. (2018). We used the data obtained from 

sprinkler irrigated fields to parametrize and calibrate the APSIM-Sugar model while OPSIS 

irrigated fields to validate the APSIM to use with OPSIS. We conducted field experiments 

to observe growth and yield under two planting conditions—namely Spring and Summer 

planting following the local practice of Okinawa, Japan. We started the Spring planting in 

April 2013 and harvested in March 2014. The crop extended to observe the growth and yield 

of two consecutive ratoon crops which were harvested in January 2015 and January 2016. 

We started summer planting in October 2013 and harvested in January 2015. We extended 

only the OPSIS irrigated the crop to observe the growth and yield of first ratoon crop, and 

it was harvested in January 2016. Following the regular fertilizer application practice in 

Okinawa, we used 350 kg/ha of urea fertilizer for the main crop and ratoon crops for both 

irrigation methods. For sprinkler irrigation, we added fertilizer in 31 and 62 days after 

planting or harvesting. We applied the same amount of fertilizer for the OPSIS, however, 

as a ten-split application during the first 3 months through the OPSIS.  

We randomly selected a 5.2 m2 area to estimate the fresh cane yield of the spring- 

and summer-planted main crops and the two ratoon crops. At the harvesting, further, we 

counted stalks per unit area to calculate stalk densities of different crops. Although, the plant 

height not used in many studies to calibrate or validate the APSIM sugar model, we used 

plant height due to the unavailability of other parameters for the evaluation. We measured 

the plant height of the summer-planted main crop and the first ratoon crop of the spring-
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plant at monthly intervals from May 2014 to January 2015 as the distance from the soil 

surface to the +1 dewlap (de Sousa et al., 2015). We used first and second ratoons of Spring 

planting to evaluate the soil moisture dynamics and irrigation water use of crops under 

OPSIS. 

 

5.2.2 Soil Data  

We used soil samples from six layers as 0-10, 10-20, 20-30, 30-40, 40-50 and 50-60 

cm to estimate the lower limit (LL15, mm/mm), drained upper limit (DUL, mm/mm), soil 

saturation (SAT, mm/mm), bulk density (BD, g/cm3), particle density (TD, g/cm3) and 

saturated hydraulic conductivity (KS, mm/day). LL15 and DUL were considered as the 

volumetric water content equilibrium to the -1500 kPa and -33 kPa respectively and was 

measured using the centrifuge method.  Measured BD and TD values were used to estimate 

soil saturation.  Saturated hydraulic conductivity was estimated in the laboratory using the 

constant head method. Further, soil samples were analyzed to estimate soil pH, NO3-N, 

NH4-N levels, and soil carbon. We created a new soil profile for Itoman, Okinawa, and 

parameterized using the measured data (Table 5.1). 

 

Table 5.1. Soil data used to parameterize Itoman soil profile 

Depth 

(cm) 

Bulk Density 

(g/cc) 

Air Dry 

(mm/mm) 

LL15 

(mm/mm) 

DUL 

(mm/mm) 

SAT 

(mm/mm) 

KS 

(mm/day) 

Sugar LL 

(mm/mm) 

  0-10 1.107 0.100 0.277 0.422 0.481 7827 0.277 

10-20 1.154 0.100 0.295 0.415 0.48 19712 0.295 

20-30 1.310 0.100 0.298 0.453 0.484 10834 0.298 

30-40 1.197 0.100 0.300 0.447 0.496 4432 0.300 

40-50 1.237 0.100 0.310 0.436 0.511 814 0.310 

50-60 1.264 0.100 0.290 0.428 0.522 800 0.290 

 

Soil moisture levels were measured in 5, 15, 25, 35, 45, and 55 cm depths using soil 

moisture sensors (5TE, Decagon Devices, Pullman, WA, USA) in OPSIS field to evaluate 

the soil moisture dynamics of OPSIS.  

 

5.2.3 Irrigation water use 

We measured the irrigation water use of the 1st and 2nd ratoon crops of spring-plant 

which were irrigated using OPSIS. Flow meters attached to the outlet and inlet of the water 

column of the OPSIS were used to estimate the daily irrigation amount through the OPSIS. 
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5.2.4 Climatological data 

Daily maximum and minimum temperature, precipitation, radiation, wind speed, 

pressure and relative humidity values of Naha, Okinawa, Japan were obtained from Japan 

metrological agency website (www.jma.go.jp/jma/menu/report.html) for the period of 

1/1/1980 to 31/08/2016. Annual average ambient temperature and annual amplitude in mean 

monthly temperature were calculated using tav_amp utility software of APSIM 

(https://www.apsim.info/Products/Utilities). A new met was parameterized using the data 

above. 

 

5.2.5 APSIM-OPSIS module 

We scripted a new module named “OPSIS” to couple optimized subsurface 

irrigation system to the APSIM engine. The fifth layer was selected as the base layer, where 

the OPSIS is located. The difference between the SAT and the soil water content (SW) of 

the layer is identified as the input to the layer. It is the estimated amount of irrigation through 

the optimized subsurface irrigation and named as “opsis (mm/day)”.   

 

5.2.6 APSIM Simulation 

APSIM, the Agricultural Production Systems sIMulator is a process-based dynamic 

crop model that combines biophysical and management modules within a central engine to 

simulate diverse cropping systems (Holzworth et al., 2014; Keating et al., 2003). The model 

is driven by daily climate data and can simulate growth, development, and yield of crops 

and their interactions with soil.  

First, we modified the sugar model of APSIM 7.10 by adding new cultivar Ni21. 

Then we parameterize the cultivar parameters using the data obtained from field 

measurements, published reports on Ni21 cultivar, and experts’ views (Table 5.2).  
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Table 5.2. Cultivar and plant specific parameters used to parametrization and calibration of 

APSIM-Sugar model 

Parameter Initial values  

(parameterization) 

Values used for simulations  

(after calibration) 

 Crop Ratoon Crop Ratoon 

Leaf_size 1, 14, 20 2000, 48000, 

48000 

2000, 48000, 

48000 

2000, 48000, 

48000 
2000, 48000, 

48000 

cane_fraction 0.7 0.65 0.7 0.7 

Sucrose_fraction_stalk 0.2, 1 1.0, 0.5 1.0, 0.5 1.0, 0.5 1.0, 0.5 

sucrose_delay 0 0 0 0 

min_sstem_sucrose 800 800 800 800 

min_sstem_sucrose_redn 10 10 10 10 

tt_emerg_to_begcane 1800 1800 1900 1900 

tt_begcane_to_flowering 6000 6000 6000 6000 

tt_flowering_to_crop_end 2000 2000 2000 2000 

green_leaf_no 13 13 13 13 

tillerf_leaf_size 1, 4, 10, 16 1.5, 1.5, 1.5, 1 1.5, 1.5, 1.5, 1 1.5, 1.5, 1.5, 1 1.5, 1.5, 1.5, 1 

rue 0, 0, 1.80, 

1.80, 1.80, 0 

0, 0, 1.65, 

1.65, 1.65, 0 

0, 0, 2.00, 

2.00, 2.00, 0 

0, 0, 1.85, 1.85, 

1.85, 0 

Crop_height_max 6000 6000 4000 4000 

 

Then, we simulated the spring planted and summer planted sugarcane growth and 

yield under sprinkler irrigation from March 2013 to January 2016 and September 2013 to 

January 2015, respectively. As APSIM underestimated the growth and yield, we modified 

the RUE like-minded Gunarathna et al. (2019) and Sexton et al. (2017). Dias et al. (2019) 

also suggested substantial changes to enable APSIM-Sugar to simulate canopy and yield for 

Brazilian genotypes. We increased the maximum RUE values up to 2.0 confining the 

findings of De Silva and De Costa (2012) and Muchow et al. (1997).  Similarly, we increased 

the maximum RUE values of ratoon crop up to 1.85 conforming the gap maintained by 

APSIM.  As Ni21 is developed to withstanding against typhoon conditions, plants usually 

do not show higher plant heights. Hence, we limited the maximum plant height up to 4000 
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mm from the default of 6000 mm.  Further, we calibrated cane fraction (CF) and thermal 

time from emergence to beginning of cane (EB) by trial and error method to find the 

optimum values for those parameters (Table 5.2).  

Then, we simulated the spring planted (from March 2013 to January 2016) and 

summer planted (from September 2013 to January 2016) sugarcane growth and yield under 

OPSIS. We used fresh cane weight at harvesting, plant heights of first ratoon crop of spring-

plant and main crop of summer-plant, soil moisture levels of top five layers and irrigation 

water use through the OPSIS to validate the application of APSIM with OPSIS. During the 

summer of the year 2015, there were several typhoons were occurred, and substantial crop 

damages were observed. Therefore, after considering the field observations, historical yield 

records, and experts’ views, the observed yield of second ratoon of spring plants (both 

sprinkler and OPSIS irrigated crops) and first ratoon of summer plant were adjusted by 

adding 20% of observed yield to the observed yield.  

 

5.2.7 Model Evaluation 

We used different model evaluation criteria such as root mean square error (RMSE; 

Equation 5.1), mean absolute error (MAE; Equation 5.2), coefficient of determination (R2; 

Equation 5.3) and Wilmott’s agreement index (d; Equation 5.4) (Willmott, 1981) to evaluate 

the simulation accuracy (Dias and Sentelhas, 2017; Krause et al., 2005). Low RMSE and 

MAE values indicate good agreement between model outputs and observed values, while 

high R2 and d also assure the same. The Lin’s concordance correlation coefficient (CCC) 

integrates precision through Pearson’s correlation coefficient, which represents the 

proportion of the total variance in the observed data that can be explained by the model, and 

accuracy by bias which indicates how far the regression line deviates from the concordance 

line (Ojeda et al., 2017). CCC ranges from -1 to 1, with the perfect agreement at 1. It can 

legitimately calculate accuracy with few observations for agreement on a continuous 

measure obtained by two methods (Stevenson et al., 2018). We calculated the CCC using 

epiR package (Stevenson et al., 2018) of R software (R Core Team, 2018). 

RMSE = √
1

𝑛
∑ (Si − Oi)2
n
i=1         (5.1) 

𝑀𝐴𝐸 =
1

𝑛
∑ |Si − Oi|
n
i=1         (5.2) 

𝑅2 = [
∑ (𝑂𝑖−�̅�)(𝑆𝑖−�̅�)
𝑛
𝑖=1

√∑ (𝑂𝑖−�̅�)
2𝑛

𝑖=1 √∑ (𝑆𝑖−�̅�)
2𝑛

𝑖=1

]

2

       (5.3) 
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𝑑 = 1 −
∑ (𝑆𝑖−𝑂𝑖)

2𝑛
𝑖=1

∑ (|𝑆𝑖−�̄�|+|𝑂𝑖−�̄�|)
2𝑛

𝑖=1

         (5.4) 

 

Where, Si and Oi are the simulated and observed value of the parameter (in fresh cane yield 

(t/ha),  plant height (mm), soil moisture (mm/mm) irrigation water (mm/month) 

respectively; �̅� and 𝑆̅ are the average of simulated and observed values respectively; and n 

is the number of observations.  

 

5.3 Results and Discussion 

 

5.3.1 Parameterization and calibration of APSIM-Sugar to simulate growth and yield 

of cultivar Ni21 

Initially, we added cultivar Ni21 to the APSIM-Sugar model (XML file) and 

parameterized using field measured data (leaf size and green leaf number), available data in 

published reports, and views of experts (Table 5.2). After the parameterization, we 

simulated fresh cane weight and plant height. We observed quite healthy relationships 

between observed and simulated values. However, APSIM underestimated the fresh cane 

weight. After the modification of plant parameters (maximum RUE and maximum plant 

height of main and ratoon crops) and calibration of cultivar parameters (CF and EB), the 

relationships were further improved (Figure 5.1).  Despite of the high variability of cane 

yield and sucrose affected by weather conditions, nutrient levels, planting time and some 

undefined factors, APSIM sugarcane able to simulate good results to fit with the 

observations in agreement with the results of Keating et al. (1999), Cheeroo-Nayamuth et 

al. (2000) and Inman-Bamber and McGlinchey (2003). Using data sets of different cultivars 

grown in different locations, Keating et al. (1999) showed that APSIM could simulate the 

millable stalk weight (R2= 0.72, RMSD = 1.94 t/ha) with fairly good accuracy. Inman-

Bamber et al. (2016) showed the better predictive ability of APSIM-sugar model after 

modifying the transpiration efficiency and root water supply. Our study also proves the 

virtuous ability of APSIM to simulate fresh cane weight as all model evaluation criteria 

shows a good fit between simulations and observations (RMSE = 3.195 t/ha, R2 = 0.93, 

MAE = 2.74 t/ha).  Further, plant height simulations, also showed good agreement with the 

observations (RMSE = 493 mm, R2 = 0.87, MAE = 397 mm). 
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Figure 5.1. Observed versus simulated a) fresh cane weight; b) plant height of sugarcane 

cultivar Ni21 

 

In this study, we used higher maximum RUE values than the APSIM usually used. 

Although it is not a usual practice in APSIM crop modeling studies, we change the 

maximum RUE values to minimize the gap between simulate and observed values with 

higher input conditions with novel genotypes. However, we believed that the APSIM may 

not use the maximum RUE values always as it is controlled by soil moisture status, nutrient 

availability and reduced growth phenomenon (RGP) (Park et al., 2005).  RGP reduces RUE, 

with highly favorable environment conditions as highly favorable conditions may lead 

lodging (Park et al., 2005; van Heerden et al., 2015).  

 

5.3.2 Validation of APSIM to simulate growth and yield of cultivar Ni21 under OPSIS 

We simulated the fresh cane weight and plant height of sugarcane cultivar Ni21 

under OPSIS using newly parameterized and calibrated APSIM-sugar model and APSIM-

OPSIS module. Results revealed that APSIM simulations show good agreement with 

observed fresh cane yield and plant height.  Further, observed soil moisture dynamics and 

irrigation water use also showed acceptable agreement between simulated values.  

 

5.3.2.1 Plant height 

In summer-planted sugarcane, APSIM with OPSIS showed a good simulation of 

plant height (Figure 5.2). Although it was slightly underestimated during the latter part, 

model evaluation criteria confirmed that simulation is almost similar to the observations 

(Table 5.3). In the first ratoon of spring-planting observed and simulated plant heights 
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diverged each other as APSIM sugarcane under simulated the plant height in early stages of 

the crop (Figure 5.3). However, in late stages, the first ratoon of spring plant showed higher 

growth rate in simulation compared to the observed, therefore, during the harvesting, 

simulated plant height became slightly higher (4%) than the observed value. Although the 

simulation accuracy is not good as summer plant, model evaluation criteria confirmed that 

simulation is comparable with observations (Table 5.3). Further, Table 5.3 confirmed that 

plant height simulation of summer-planted main crop is better than the results of the 

calibration study, while first ratoon crop of spring-plant showed slightly poor performances 

compared to the calibration results.   

  

Figure 5.2. Observed versus simulated plant height of summer-planted sugarcane crop 

 

 

 

Figure 5.3. Observed versus simulated plant height of spring-planted first ratoon crop 
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Table 5.3. Evaluation of simulation accuracy of APSIM with OPSIS  

Variable (unit) 
Planting season 

(Crop/ratoon) 

Model evaluation criterion 

R2 *MAE *RMSE d CCC 

Fresh cane yield (t/ha) All 0.82 4.67 6.08 0.64 0.56 

Plant height (mm) 
Summer planting (Crop) 0.99 286 306 0.98 0.97 

Spring planting (1st ratoon) 0.96 582 769 0.91 0.85 

Average soil moisture of root zone 

(mm/mm) 

Spring planting (1st ratoon) 0.32 0.047 0.052 0.49 0.28 

Spring planting (2nd ratoon) 0.50 0.053 0.056 0.45 0.21 

Monthly irrigation water use (mm/month) 
Spring planting (1st ratoon) 0.01 11.19 13.18 0.47 0.91 

Spring planting (2nd ratoon) 0.22 15.51 17.45 0.27 0.84 

*Unit is equal to the unit of the variable 
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5.3.2.2 Fresh cane weight 

Confirming the virtuous ability of APSIM to simulate fresh cane weight, APSIM 

under OPSIS simulated fresh cane yield with good agreement to the observations (Figure 

5.4) as all model evaluation criteria shows a good fit between simulations and observations 

(Table 5.3). The RMSE value reported (6.08 t/ha) is far enough for a simulation study as it 

is about 5% of the average observed fresh cane yield. R2 (0.82) and d (0.64) also confirmed 

the goodness of fit between observed and simulated fresh cane yield. Further, these 

validation results are equally good as the results of the calibration study. Similarly, Mao et 

al. (2018) showed the ability of locally calibrated APSIM-sugar to simulate cane yield with 

a high level of accuracy.  

 

 

Figure 5.4. Comparison of the observed and simulated yield of sugarcane under OPSIS 

 

5.3.2.3 Soil moisture dynamics 

Figure 5.5 shows the variation of predicted and observed soil moisture levels in 

different layers of the soil during the first and second ratoons of spring planting. The results 

showed that APSIM had overpredicted the soil moisture levels, especially the upper part of 

the root zone. Since the soil water movements are much complicated; it is difficult to acquire 

precise simulations from simple model predictions. In this study, we used a cascading layer 

approach to estimate the soil water movements. However, this is a simple approach; hence, 

it may not be able to simulate the soil water movements accurately. Similarly, 

overestimation of APSIM simulated soil moisture in upper levels and quite good simulations 
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in lower layers has been reported by Balwinder-Singh et al. (2011).  In a crop simulation 

study, Marin et al. (2011) reported that calibrated DSSAT/Canegro simulated soil water 

content with reasonably good accuracy as they observed mean RMSE as 0.214 mm.  

Archontoulis et al. (2014) reported the ability of APSIM to simulate the soil water dynamics 

with reasonable accuracy as they reported the RMSE of prediction is 0.032 mm/mm. Sena 

et al. (2014) also observed higher error between observed and simulated soil moisture, then 

they calibrated the soil parameters to minimize the error of soil moisture simulations.  
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Figure 5.5. Observed and simulated soil moisture variation different layers of the soil during the first and second ratoon crop of spring-plant 



  

88 

 

The SOILWAT module able to make a fair prediction of soil water dynamics in 

OPSIS operated sugarcane fields. The overestimation of soil moisture content in the top 

layers, maybe due to differences in simulated and actual daily soil evaporation rates and 

over the capillary rise and lower downward movements controlled by saturated flow 

parameter (SWCON). The origin of these differences requires further investigation. 

Therefore, a study focused on comprehensive measurements is required to acquire accurate 

modeling of soil water dynamics. Brown et al. (2018) proposed a comprehensive model 

(WEIRDO, Water Evapotranspiration Infiltration Redistribution Drainage runOff) to 

simulate soil water dynamics. However, this model only works with APSIM next 

generation. In this study, we used the classical version of APSIM (APSIM 7.10); therefore, 

we unable to use this model. This model may able to comprehend the soil moisture 

dynamics of OPSIS irrigated fields. Therefore, we are suggesting to study the applicability 

of this model in future studies.  

 

5.3.2.4 Irrigation water use  

The relationship between the observed and simulated amount of water irrigated as 

OPSIS during the first ratoon crop of spring-planting are shown in figure 5.6. Similar to 

the moisture levels in the soil, APSIM overpredicted the irrigation water use by OPSIS.  

No studies to compare the irrigation water use (IWU) as typically APSIM do not 

simulate the irrigation amount. In this study, we simulated the IWU applied through our 

newly designed irrigation system named as OPSIS. Model evaluation criteria (Table 5.3) 

show that the simulations are not comparable with observed irrigation amount. However, 

the MAE values show that the estimated errors are 11.2 and 15.5 mm/month for first and 

second ratoon crops, respectively. Application of the comprehensive model to simulate 

soil moisture dynamics may rectify the error of irrigation water predictions as IWU 

depends on the crop water uses as well as soil evaporation and percolation losses.  

 

 

Figure 5.6. Observed versus simulated irrigation water use through OPSIS of spring-

planted first ratoon crop  
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5.4 Conclusions and Recommendations 

We modified the APSIM-Sugar model to simulate growth and yield of sugarcane 

cultivar Ni21, which was developed to withstand against the strong winds of typhoons. 

Then we parameterize the cultivar Ni21 using measured values, information published in 

reports, and expert’s views. However, APSIM underestimated the growth and yield of 

sugarcane cultivar Ni21 under Okinawan conditions. Therefore, the APSIM-Sugar model 

was modified and calibrated using radiation use efficiency, thermal time from emergence 

to the beginning of cane and cane fraction. After the calibration, APSIM simulations 

showed a close relationship with the observations. Then, we validated the APSIM to use 

with OPSIS. We developed APSIM-OPSIS module to couple OPSIS with APSIM engine. 

The simulation results were comparable with the observations. Simulated plant height and 

fresh cane yield showed good agreement with the observations. However, APSIM showed 

overestimation for soil water content in upper soil layers and irrigation water use of OPSIS.  

Hence, newly developed APSIM-OPSIS module can successfully be used to 

simulate the crop growth and yield of sugarcane with optimized subsurface irrigation 

system. Although it gives quite reasonable results, further studies are suggested to develop 

the simulation accuracy of soil water dynamics and irrigation water use through the OPSIS. 
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6.0 Pedotransfer Functions to Estimate Hydraulic Properties of Tropical Sri Lankan 

Soils 

 

This chapter is based on Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Momii, K., 

Kumari, M.K.N., Amarasekara, M.G.T.S., 2019. Pedotransfer functions to estimate 

hydraulic properties of tropical Sri Lankan soils. Soil Tillage Res. 190, 109–119. 

https://doi.org/10.1016/j.still.2019.02.009 

 

6.1. Introduction 

Estimates of soil hydraulic properties are essential in environmental management 

and agriculture. Data on soil hydraulic properties are rising in importance with the rapid 

increase of agricultural automation and the increasingly sophisticated models that support 

modern agriculture (Patil and Singh, 2016). However, direct measurements of these 

properties by field and laboratory methods are laborious, expensive, and time-consuming 

(Minasny and Hartemink, 2011; Rustanto et al., 2017). Thus the development of 

inexpensive, rapid indirect methods to estimate soil hydraulic properties is an area of active 

research (Pachepsky and Rawls, 2003; Patil and Singh, 2016; Tomasella and Hodnett, 

2004).  

Pedotransfer functions (PTFs) are predictive functions used to estimate difficult-

to-measure soil parameters based on more easily measurable soil parameters (Bouma, 

1989). Point-based PTFs are used to estimate soil parameters at specific, conventional 

values of matric potential (Patil and Singh, 2016). The moisture content at –10 and –33 

kPa, representing field capacity, and moisture content at –1500 kPa, representing a 

permanent wilting point, are the most common reference values used for point-based PTFs 

(Botula et al., 2014; Patil and Singh, 2016). Methods of developing point-based PTFs have 

mainly taken regression approaches (Nguyen et al., 2015), which have been successfully 

used to develop PTFs to estimate specific points on the moisture retention curve (Adhikary 

et al., 2008; Botula, 2013; Liao et al., 2011; Mdemu, 2015; Minasny and Hartemink, 2011). 

More recently, machine-learning approaches have gained popularity in PTF development, 

including artificial neural networks (Jana and Mohanty, 2011; Minasny et al., 2004; Nemes 

et al., 2003), k-nearest neighbor (Botula et al., 2013; Mihalikova et al., 2014; Nemes et al., 

2006), and random forest approaches (Rodríguez-Lado et al., 2015; Souza et al., 2016). 

However, linear models offer superior ease of use, parsimony, interpretability, and 

computational efficiency (Hastie et al., 2009). Therefore, we used a method based on linear 

regression to develop PTFs in this study. 

https://doi.org/10.1016/j.still.2019.02.009
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As populations continue to proliferate in tropical regions, food insecurity, soil 

degradation, climate change, and water scarcity pose increasing threats to agriculture, the 

environment, and human livelihoods. Although the crop, irrigation, and environmental 

modeling are active fields of research worldwide, modeling efforts in the tropics have been 

limited by the availability of soil data (Gaydon et al., 2017; Kang et al., 2009). Irrigation 

modeling tools, for instance, require soil hydraulic data to determine schedules (timing 

and quantity) for irrigation applications. Although various techniques and tools have been 

developed to prepare irrigation schedules, most lands, especially in tropical regions, are 

irrigated on fixed schedules for lack of relevant data. Typically, farmers apply set amounts 

of irrigation water without first making a site-specific assessment of irrigation timing and 

depth, which penalizes yield and causes losses in water, energy, nutrients, and soil (Liang 

et al., 2016).  

In the absence of usable data, farmers in tropical regions often use PTFs developed 

for temperate soils, even though extrapolating PTFs to different regions is problematic 

(Minasny and Hartemink, 2011; Patil and Singh, 2016; Tomasella and Hodnett, 2004). 

Such is the case in Sri Lanka. Other than one attempt to evaluate the applicability of point-

based PTFs developed in other tropical environments to dry-zone soils in Sri Lanka 

(Gunarathna and Sakai, 2018), no PTFs have been developed for Sri Lankan soils (Botula 

et al., 2014).  

 

6.1.1. Objectives of the study 

In this study, we aimed to develop PTFs to estimate volumetric water content 

(VWC) in tropical Sri Lankan soils at –10, –33, and –1500 kPa by using linear regression 

methods similar to most previous efforts elsewhere. In light of the limited laboratory 

facilities and research budgets in most tropical countries, we investigated PTFs developed 

using different sets of input parameters to evaluate the minimum input data needed for 

acceptable performance.  

Although extensive research exists on using PTFs to estimate soil hydraulic 

properties from readily available soil properties, very few studies have gone further to 

evaluate the functionality of these PTFs in field-level applications, where they can assist 

soil-plant-atmospheric modeling by generating input data at low cost and with low risk of 

gross model error (Nemes et al., 2010). Therefore, this study further aimed to test the 

functionality of these PTFs in field-level applications by comparing the output of the PTFs 

to measured values relevant to water content estimates and irrigation scheduling. 
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6.2. Materials and methods 

This study was based on a dataset of soil samples collected during the 

comprehensive soil survey of Sri Lanka conducted under the SRICANSOL project 

(Dassanayake et al., 2010, 2005; Senarath et al., 1999). This survey contains information 

on land use, taxonomic, physical, and chemical properties of 110 soil profiles (including 

soil horizon level information) covering almost all soil series and land uses in Sri Lanka 

(lowland and upland agricultural fields, plantations, forests, bare lands, residential areas, 

and so on) except those in the northern part of the country (Figure 6.1) (Dassanayake et 

al., 2010, 2005; Senarath et al., 1999). For this study we used sand percentages measured 

by sieve analysis, silt and clay percentages measured by the pipette method, bulk densities 

measured from undisturbed core samples 5.4 cm in diameter and 6 cm high, organic carbon 

percentages measured using the Walkley-Black method, and VWC measured at –10, –33, 

and –1500 kPa by the pressure plate method using undisturbed soil samples 5.4 cm in 

diameter and 3 cm high. Samples with missing VWC data were removed from 

consideration, leaving 323 samples for the study. Descriptive statistics of selected 

parameters are listed in Table 6.1, and Figure 6.2 shows a ternary plot of the sand, silt, and 

clay percentages of selected soils. These data were used to develop PTFs for tropical Sri 

Lankan soils under five different sets of input data: sand only (Set 1), sand, silt, and clay 

(Set 2), Set 2 plus bulk density (Set 3), Set 3 plus organic carbon (Set 4), and Set 4 plus 

soil structural class (Set 5) (Table 6.2). Because soil structure did not emerge as an 

essential attribute when estimating the three VWC values, we ignored Set 5 in the 

following analysis. 
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Figure 6.1. Distribution of 110 soil sampling locations selected for the study  
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Table 6.1. Summary statistics of selected soils of Tropical Sri Lanka  

 VCS (%) CS (%) MCS (%) FS (%) VFS (%) SA (%) SI (%) CL (%) BD (g/cm3) OC (%) VWC10 VWC33 VWC1500 

Minimum 0.0 0.4 1.6 6.1 0 5.2 0.0 1.0 1.0 0.0 0.06 0.04 0.02 

Maximum 57.9 47.6 52.9 56 62.9 99.0 38.6 61.4 2.0 4.5 0.54 0.47 0.45 

Mean 12.1 22.3 24.3 24.7 16.6 65.1 13.1 21.9 1.49 0.6 0.24 0.21 0.15 

SD 10.8 9.5 9.7 8.7 12.3 17.4 7.7 13.2 0.17 0.6 0.09 0.08 0.07 

VCS – Very coarse sand; CS – Coarse sand; MCS – Medium coarse sand; FS – Fine sand; VFS – Very fine sand; SA – Sand; SI – Silt; CL – 

Clay; BD – Bulk density; OC – Organic carbon; VWC-x kPa
 - Volumetric water content at -10, -33 and -1500 kPa; SD – Standard deviation 
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Table 6.2. Selected basic attributes, added attributes and selected attributes after the 

evaluation of different input levels  

Input 

level 

Basic 

attributes used 

Added attributes Selected attributes after 

evaluation 

Output 

Set 1 SA  SA2 

SA VWC10 

SA VWC33 

SA VWC1500 

Set 2 SA, SI, CL 

 (SA*SI), (SA*CL), 

(SI*CL), SA2, SI2, 

CL2  

SA, SI VWC10 

SA, SI VWC33 

SA VWC1500 

Set 3 
SA, SI, CL, 

BD 

 (SA*SI), (SA*CL), 

(SI*CL), SA2, SI2, 

CL2, BD2 

SA, SI, BD, BD2 VWC10 

SA, SI, BD, BD2 VWC33 

SA, BD, BD2 VWC1500 

Set 4 
SA, SI, CL, 

BD, OC 

 (SA*SI), (SA*CL), 

(SI*CL), SA2, SI2, 

CL2, BD2, OC2 

SA, SI, BD, OC, BD2, OC2 VWC10 

SA, SI, BD, BD2, OC2 VWC33 

SA, BD, BD2, OC2 VWC1500 

Set 5 
SA, SI, CL, 

BD, OC, ST 

 (SA*SI), (SA*CL), 

(SI*CL), SA2, SI2, 

CL2, BD2, OC2 

SA, SI, BD, OC, BD2, OC2 VWC10 

SA, SI, BD, BD2, OC2 VWC33 

SA, BD, BD2, OC2 VWC1500 

SA – Sand; SI – Silt; CL – Clay; BD – Bulk density; OC – Organic carbon; ST – Soil 

texture; VWC10, VWC33, and VWC1500 - Volumetric water content at -10, -33 and -

1500 kPa 
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Figure 6.2. Ternary plot of the sand, silt, and clay percentages of 323 soil horizons selected 

for the study 

 

6.2.1. WEKA software 

The Waikato Environment for Knowledge Analysis (WEKA) is a Java-based open-

source data mining tool developed by the University of Waikato, New Zealand that 

provides an interface to run different learning algorithms with different preprocessing and 

postprocessing options (Frank et al., 2016; Hall et al., 2009). WEKA includes cross-

validation as a technique to evaluate predictive models by partitioning the input data into 

a training set to train the model and a test set to evaluate it. We chose tenfold cross-

validation as the test option for this study, in which the sample data were randomly divided 

into ten equal subsamples. Nine of these are used to train the model, and the remaining 

one is used to test the model. This process is repeated ten times, with each subsample used 

once as the testing data. The results are then averaged to produce a single estimation 

(Pachepsky and Schaap, 2004). 

 

6.2.1.1 Attribute selection 

Attribute selection is a procedure that searches all possible combinations of 

attributes in a dataset to find the combination that yields the best prediction. The selection 

process is based on an attribute evaluator and a search method. The CfsSubsetEval 

function in WEKA was used as the attribute evaluator. This function is a correlation-based 
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feature selector that evaluates the worth of a subset of attributes by considering the 

individual predictive ability of each feature along with the degree of redundancy between 

them (Hall, 1999). The search method chosen was GreedyStepwise (forward), which 

performs a greedy forward search through the space of attribute subsets, starting from a 

single attribute and ending when the addition of another attribute reduces the model fit. 

The attributes selected at each level of this analysis are listed in Table 6.2. 

 

6.2.1.2 Multiple linear regression  

Multiple linear regression (MLR) is commonly used for the prediction of a 

response variable (y) from a set of predictor variables (Vereecken and Herbst, 2004): 

ε
1

++= 
=

i

n

i

i xbay ,          (6.1) 

where a is an intercept, xi is a predictor variable, bi is a regression coefficient, and ε 

represents the error. MLR methods are widely used, owing to their ease of application, to 

develop PTFs (Botula et al., 2014). In WEKA, stepwise MLR with the backward 

elimination function was used for this study 

(weka.classifiers.functions.LinearRegression). Collinear attributes were eliminated by 

enabling the Remove collinear attribute function (as the default), and all other attributes 

remained at their defaults in WEKA 3.8. WEKA uses the Akaike information criterion 

(AIC) to select the best model fit (Frank et al., 2016).  

 

6.2.2 Model evaluation 

We assessed the predictive capabilities of the PTFs developed by different methods 

in terms of the following statistical functions (Patil and Singh, 2016) in WEKA:  
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where r is the correlation coefficient, MAE is the mean absolute error, RMSE is the root 

mean squared error, RAE is the relative absolute error, RRSE is the root relative squared 

error, n is the number of data instances used for modeling, Mi is the measured target value, 

Ei is the estimated target value, M̄ is the mean of measured target values, Ē is the mean of 

estimated target values, SM is the sum of measured target values, and SE is the sum of 

estimated target values. Each criterion was considered separately, and the success of the 

PTFs was evaluated by their performance relative to that of MLR. 

A two-sample t-test was used to check the statistical significance of measured and 

estimated values, using R software (R Core Team, 2016). The F test was used to compare 

the variances of the two samples, and a t-test assuming equal or unequal variances was 

used accordingly. The AIC (Akaike, 1974) was used to evaluate the performance of the 

PTFs developed using MLR with different inputs:  

K
n

n 2)
RSS

log(AIC += ,         (6.7) 

where K is the number of independently adjusted parameters within the model, n is the 

sample size, and RSS is the residual sum of squares (Burnham and Anderson, 2002). We 

also used the Diebold-Mariano test (Diebold and Mariano, 1995) to compare the accuracies 

of PTFs developed from sand percentage alone, and PTFs developed from different sets 

of input attributes, using the forecast package of R (Hyndman, 2017; Hyndman and 

Khandakar, 2008). PTFs developed using different input combinations were compared 

based on regression error curves and residual density plots using the auditor package of R 

(Gosiewska and Biecek, 2018). 

 

6.2.3 Model application 

Applications of PTF models in earth system sciences include estimating soil water 

contents and flows, root zone hydraulic processes, hydraulic parameters of land surface 

models, solute transport processes, soil carbon and nutrient cycling processes, and process-
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based crop models (Van Looy et al., 2017). The applications we tested for this study were 

the estimation of total plant-available moisture content of the root zone, readily available 

moisture content of the root zone, and irrigation scheduling, using CROPWAT 8.0. 

CROPWAT 8.0 for Windows decision support software is developed by the Food 

and Agriculture Organization (FAO) to estimate crop and irrigation water demands based 

on climatological data (monthly mean maximum and minimum temperature, relative 

humidity, sunshine duration, wind speed, and rainfall), crop data (crop coefficients, rooting 

depth, and percentage plant cover), and soil data (maximum infiltration rate, rooting depth, 

initial moisture, and available soil moisture). CROPWAT is also used to develop irrigation 

schedules under different management conditions and crop patterns. Our calculations 

followed two FAO publications in the Irrigation and Drainage Series, No. 33 on the yield 

response to water (Doorenbos and Kassam, 1979) and No. 56 on crop evapotranspiration 

(Allen et al., 1998). CLIMWAT, an associated FAO database, provides long-term monthly 

average climatic data from 3262 meteorological stations in 144 countries (Wahaj et al., 

2007). The outputs of CROPWAT include reference evapotranspiration, crop water 

requirement, irrigation water requirement (gross and net), actual evapotranspiration, soil 

moisture deficit, estimated yield reduction due to stress, and irrigation schedule.  

 

6.2.3.1 Estimation of available water content 

Most irrigation models and software used in precision agriculture are dependent on 

real-time soil moisture measurements and estimates of total or readily available water that 

are based on measured or estimated field capacity and permanent wilting point values. We 

estimated the total available water (the difference between moisture content at –33 kPa 

and –1500 kPa) of selected soil horizons using measured and PTF-derived data. We also 

estimated the readily available water in the root zone at 75 cm depth in selected soil profiles 

using both measured and PTF-derived data and assuming 70% as the depletion level. We 

conducted a functional evaluation of the PTFs that was based on comparing measured and 

PTF-derived values of total available water in selected soil horizons and readily available 

water in selected soil profiles.    

 

6.2.3.2 Estimation of irrigation water requirement 

Maize is the second-largest crop in Sri Lanka in terms of cultivated area, cultivated 

in upland areas mainly during the Maha season (October to February, during the northeast 

monsoon) with or without supplementary irrigation and in the Yala season (April to 
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August, during the southwest monsoon) with supplementary irrigation. We used 

CROPWAT to estimate the irrigation water requirement of the maize crop for both 

cultivation seasons in Sri Lanka. Considering the climatic data available in the CLIMWAT 

2.0 database and the availability of nearby soil profiles, we selected soil profiles from six 

localities (Badulla, Batticaloa, Hambantota, Puttalam, Trincomalee, and Vavuniya) to 

calculate the irrigation water requirement of maize. Climate/evapotranspiration and 

rainfall files for these locations were downloaded from CLIMWAT 2.0. Maize was 

selected as the crop, and planting dates were set at 1 April for the Yala season and 1 

October for the Maha season. All other values (crop growth stages and crop coefficients) 

were set at their defaults. Soil files were prepared using measured and PTF-derived values 

of total available soil moisture. We used these inputs to estimate the net irrigation 

requirement and irrigation dates for both growing seasons at these locations, and then 

studied the functionality of the PTFs for field applications using those irrigation schedules. 

 

6.3. Results and discussion 

 

6.3.1 Development of PTFs  

When we used MLR to develop a set of PTFs to estimate VWC at –10, –33, and –

1500 kPa with different sets of input attributes (Table 6.3), our evaluation showed that 

adding bulk density and organic carbon percentage to the models only slightly improved 

their performances, and the Diebold-Mariano test showed that this increment was not 

significant at the p = 0.05 level. Furthermore, the AIC values showed that these two 

parameters added appreciably to the computational cost while not notably improving the 

model fit. Residual density plots (Figure 6.3) and regression error curves (Figure 6.4) also 

confirmed these results. Previous studies have confirmed the ability of PTFs developed 

from soil textural data to predict VWC of tropical soils (Adhikary et al., 2008; Botula, 

2013; Dijkerman, 1988; Lal, 1979). However, some studies have found that bulk density 

and organic carbon percentage were useful additions to the same analysis with fine-

textured soils (Gaiser et al., 2000; Minasny and Hartemink, 2011; van den Berg et al., 

1997).  

Botula (2013) and Dijkerman (1988) developed PTFs that used the sand percentage 

as the sole input variable to estimate the field capacity, but not the permanent wilting point. 

Table 6.3 shows that our PTFs based on sand percentage alone (Set 1) predicted VWC of 

Sri Lankan soils well. Typical Sri Lankan soils have relatively large proportions of sand 
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(Table 6.1 and Figure 6.2), most of which are categorized as fine or very fine sand (Table 

6.2). This may explain the relationship of the sand percentage to the water holding capacity 

of Sri Lankan soils because the sand percentage is very strongly correlated with VWC 

(Table 6.4). Furthermore, Sri Lankan soils show a robust linear relationship over the range 

of VWCs considered (Figure 6.5), such that sand percentage alone is enough to 

satisfactorily estimate field capacity and permanent wilting point. It appears that even with 

the minimal equipment needed to measure sand percentage (2 mm and 0.05 mm sieves, 

H2O2, Calgon solution, and an electric mixer) (Dharmakeerthi et al., 2007), field capacity 

and permanent wilting point can be estimated using these PTFs with acceptable accuracy. 

In developing regions, poor data availability is a major barrier to using crop models 

(Gaydon et al., 2017; Gunda et al., 2017; Kang et al., 2009; Zubair et al., 2015). Therefore, 

sand-only PTFs appear to offer acceptable solutions for crop and environment modelers in 

Sri Lanka. All statistical indicators confirmed that the PTFs developed using sand alone 

estimate VWC roughly as well as PTFs that incorporate multiple input variables. However, 

it is advisable to use multiple inputs, if available, to estimate VWC to minimize the 

possible risk of 100% erroneous due to the sand percentage as a sole input.    
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Table 6.3. Pedotransfer functions (and performances) developed using multiple linear regression method for different input levels  

Set R MAE RMSE RAE RRSE T DM  AIC Equation 

VWC at -10 kPa  

1 0.7016 0.0469 0.0637 67.673 70.951 NS - -770.60 VWC10 = 0.4802 - 0.0037*SA  

2 0.7198 0.0464 0.062 66.866 69.041 NS 0.407 -773.70 VWC10 = 0.3967 - 0.0029*SA + 0.0025*SI  

3 0.7186 0.0467 0.0621 67.277 69.215 NS 0.848 -770.04 VWC10 = 0.4436 - 0.0028*SA + 0.0024*SI - 0.034*BD  

4 0.7238 0.046 0.0617 66.275 68.699 NS 0.510 -772.34 VWC10 = 0.3951 - 0.0029*SA + 0.0023*SI + 0.0052*OC2  

VWC at -33 kPa  

1 0.7219 0.0436 0.0577 65.102 68.843 NS - -797.34 VWC33 = 0.4357 - 0.0035*SA  

2 0.7286 0.0434 0.0571 64.777 68.149 NS 0.188 -798.78 VWC33 = 0.3701 - 0.0029*SA + 0.0020*SI  

3 0.7294 0.0439 0.057 65.511 68.06 NS 0.370 -795.70 VWC33 = 0.4236 - 0.0028*SA + 0.0018*SI - 0.0388*BD  

4 0.7318 0.0434 0.0568 64.678 67.82 NS 0.563 -796.93 VWC33 = 0.3686 - 0.0029*SA + 0.0018*SI + 0.0046*OC2  

VWC at -1500 kPa  

1 
0.7415 0.0336 0.0464 62.213 66.784 NS - -857.42 VWC1500=0.3426 - 0.003*SA 

2 

3 0.746 0.034 0.046 62.51 66.29 NS 0.664 -857.50 VWC1500 = 0.6397 - 0.0028*SA - 0.385*BD + 0.1169*BD2  

4 0.7624 0.0327 0.0448 60.605 64.413 NS 1.574 -863.56 VWC1500= 0.3278 - 0.0028*SA + 0.0082*OC2  

r - Correlation coefficient; MAE - mean absolute error; RMSE - root mean squared error; RAE - relative absolute error; RRSE - root relative squared error; T 

(t-test within the set) - NS – Measured and estimated values are not significantly difference at p=0.05 level; DM - Diebold-Mariano Test For Predictive 

Accuracy (* denoted significantly different predictions compared to the PTF developed using sand as only predictor variable) ;SA – Sand; SI – Silt; CL – 

Clay; BD – Bulk density; OC – Organic carbon; VWC10, VWC33 and VWC1500 - Volumetric water content at -10, -33 and -1500 kPa  
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Table 6.4. Pearson’s correlation matrix between soil properties of Sri Lankan soils 

 
Sand 

(%) 

Silt 

(%) 
Clay (%) BD OC VWC10 VWC33 VWC1500 

Sand (%) - *** *** *** *** *** *** *** 

Silt (%) -0.70 - *** *** *** *** *** *** 

Clay (%) -0.91 0.34 - *** * *** *** *** 

BD 0.43 -0.41 -0.33 - *** *** *** *** 

OC -0.18 0.25 0.09 -0.33 - *** *** *** 

VWC10 -0.71 0.61 0.58 -0.38 0.21 - *** *** 

VWC33 -0.73 0.60 0.61 -0.40 0.21 0.97 - *** 

VWC1500 -0.75 0.58 0.65 -0.40 0.29 0.91 0.93 - 

BD – Bulk density; OC – Organic carbon; VWC10, VWC33 and VWC1500 - Volumetric 

water content at -10, -33 and -1500 kPa; *, ** and ***: correlation is significant at p<0.1, 

p<0.05 and p<0.01 

 

 

Figure 6.3. Residual density plots of PTFs developed using different input levels 
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Figure 6.4. Regression error curves of PTFs developed using different input levels 

 

 

Figure 6.5. The relationship between the selected volumetric water contents 

 

The dataset used for this study consisted of tropical soils from dry, wet, and 

intermediate climatic zones as well as sandy, loamy, and clay soils. We considered the three 

classes of sandy, loamy, and clay (Minasny et al., 1999) because some textural classes were 

inadequately represented in our sample. Therefore, we examined the possible effect of the 

climatic zone and soil type on the prediction ability of our PTFs. Figure 6.6 shows that the 

PTFs produced fairly good predictions in all climatic regions and soil types, a finding also 

reported by Minasny et al. (1999). Our PTFs, therefore, appear to be applicable across the 

whole range of Sri Lankan tropical soils and climatic regions.  

However, irrespective of the climatic zone or soil type, our PTFs slightly 

overpredicted VWCs with higher sand percentages. Figure 6.7 confirms that PTFs slightly 
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overestimated VWC at –10, –33, and –1500 kPa when the sand percentage exceeded 64%, 

66%, and 66%, respectively.  

 

 

Figure 6.6. Observed and predicted volumetric water contents 

 

 

 

Figure 6.7. Relationship of error with sand percentage variation in PTFs developed using 

sand percentages  
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6.3.2. Model applications 

The output of a PTF can serve as input to other functions when no measured data 

are available. It may increase or decrease the uncertainty of predictions depending on the 

level of error propagation and the sensitivity of inputs to the PTF outputs. Therefore, it is 

vital to study the functionality of PTFs for field-level applications. The primary application 

of soil hydrological parameters in agricultural soil is irrigation scheduling, which is an area 

of active research as water scarcity and irrigation costs increase.  

Figure 6.8(a) shows that estimates of total available water in our Sri Lankan soil 

horizons made from measured and PTF-generated soil hydraulic properties were similar. 

Figure 6.8(b) shows the same close relationship for estimates of readily available water in 

the root zone above 75 cm depth, assuming a depletion level of 70%. Figure 6.9(a) shows a 

strong relationship between measurement-based and PTF-based estimates of the net 

irrigation requirement of maize at the six locations, and Figure 6.9(b) shows a strong 

relationship between measurement-based and PTF-based estimations for irrigation dates. 

Figure 6.10 shows that irrigation scheduling graphs based on measured and PTF-simulated 

soil hydraulic data for a maize crop in the Yala season at Hambantota were very similar. 

Irrigations in the PTF-based simulations were scheduled one day later during the middle of 

the crop growing season, and three days later near harvest time, but these differences may 

not affect the crop seriously as most crops are less sensitive to water stress during their late 

seasons. These results demonstrate that our newly developed PTFs function well in 

estimating irrigation water demand and scheduling irrigations of tropical Sri Lankan soils.  

Very few studies have investigated the functionality of locally derived PTFs in field 

applications. Nemes et al. (2010) reported that well-tested PTFs could provide reasonable 

and reliable soil hydraulic data for scheduling irrigation. Functional evaluation of PTFs 

developed for Hungarian soils confirmed that estimated soil water contents agreed well with 

measurements (Nemes et al., 2003). In a study with temperate region soils (three locations) 

Soet and Stricker (2003) reported poor functional behavior of PTFs, but they used PTFs 

which had been developed elsewhere.   

This study only considered the functionality of limited field-level applications. We 

suggest that further experiments be conducted to check the functionality of developed PTFs 

for more field-level applications, including process-based models, as such modeling efforts 

are severely hindered in Sri Lanka by the limited availability of soil hydraulic properties.    
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Figure 6.8. (a) Relationship between measurement-based and PTF estimation based total 

available water in separate soil horizons; (b) Relationship between measurement-based and 

PTF estimation based readily available water in the root zone (0-75 mm) 

 

 

Figure 6.9. (a) Relationship between measurement-based and PTF estimation based net 

irrigation requirement of maize in selected locations in Sri Lanka; (b) Relationship between 

measurement-based and PTF estimation based maize irrigation dates (Julian dates) in 

selected locations in Sri Lanka  
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Figure 6.10. (a) Irrigation scheduling graph of maize crop in Yala season of Hambantota 

area estimated based on measured soil hydraulic data; (b) Irrigation scheduling graph of 

maize crop in Yala season of Hambantota area estimated based on PTF derived soil 

hydraulic data; Depletion – Level of soil moisture depletion of the root zone; RAM – 

Readily available moisture of the root zone; TAM – Total available moisture of the root 

zone 

 

6.4. Conclusions 

We were able to develop PTFs to estimate VWC of Sri Lankan soils at –10, –33, and 

–1500 kPa with reasonably good accuracy using sand content as the only input attribute 

(Table 6.3). Regardless of the climatic zone and soil type, these PTFs can be used anywhere 

in Sri Lanka without any modification. The addition of input values for silt and clay, bulk 

density, and organic carbon did not significantly improve the ability of PTFs to estimate 

VWC for Sri Lankan soils. It appears that PTFs developed from sand percentages are an 

easy and low-cost application that requires minimal equipment. However, it is advisable to 

use multiple inputs to minimize the possible risk of relying on the sand percentage as the 

sole input.   
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Our newly developed PTFs appear to be suitable for practical use in estimating 

irrigation water demand and scheduling irrigation for tropical Sri Lankan soils. 
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7.0 Assessing the Applicability of OPSIS for Tropical Sri Lankan Conditions 

 

7.1 Introduction 

Sugarcane requires an evenly distributed water supply throughout its growing season 

to obtain the optimum yields. Thus, sugarcane under irrigation practices performs better, 

compared to the rain-fed conditions. Further, irrigation can ensure sustainability in crop 

production while in the meantime, increasing the flexibility of planting time and other field 

operations. Some authors reported that possible changes in climate might negatively 

influence on sugarcane growth and yield if no proper irrigation facilities are introduced 

(Carr and Knox, 2011; Carvalho et al., 2015; Santos and Sentelhas, 2012; Zhao and Li, 

2015). Though sugarcane requires an abundant water supply; waterlogging conditions may 

create adverse effects on plant growth and yield (Skocaj et al., 2013). Therefore, appropriate 

drainage facilities also have to be provided as an essential part of water management in 

sugarcane fields. Due to the scarcity of freshwater and the competition from other water 

uses, dimensions of sugarcane irrigation have to be changed aiming to use water more 

efficiently and effectively. In this regard, it is essential to minimize significant losses such 

as evaporation, surface runoff, etc., to economize the limited available water. 

Optimized subsurface irrigation system (OPSIS) is a newly developed subsurface 

irrigation system to irrigate upland crops. It is now commercially available in Okinawa, 

Japan and used to irrigate sugarcane crops. It can act as a drainage system too. Since water 

flows through gravity and only a small solar-powered pump uses to lift water to a higher 

elevation, OPSIS could be considered as a solution for the energy crisis in the world 

(Gunarathna et al., 2017). Solar-powered pump and minimum operational activities help to 

cut down operational costs of irrigation drastically, therefore, high potential to popular the 

OPSIS among the farmers where the operational costs are high. Using field experiments 

conducted in Itoman, Okinawa during 2013 to 2016, Gunarathna et al. (2018) reported the 

advantages of OPSIS over sprinkler irrigation for sugarcane cultivation in Okinawa in 

respect of both sugarcane yield and WUE. However, they suggested conducting further 

validation of results for different climatic conditions. Though the OPSIS is commercially 

available for sugarcane farmers in Okinawa, Japan, it may require further assessment 

/development before introducing to the other farming systems and environments. 

Well calibrated and validated agricultural systems models is a fast-alternative option 

for developing and evaluating agronomic practices (Saseendran et al., 2008). It can 
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extrapolate the results of site-specific conditions conducted for a limited number of seasons 

to other management and environmental conditions and a longer period (Balwinder-Singh 

et al., 2016). Hence crop models can act as a time and resource-saving option for researches 

on technological advances in agriculture. The results of such a study can be used to identify 

the possible management options for respective environmental conditions.  Various crop 

models have been used for a range of applications including quantitative evaluation of 

climatic variability on yield (Pathak and Wassmann, 2009); analyzing productivity 

responses to climatic, irrigation fertilizer regimes (Arora et al., 2007);  transplanting dates 

and irrigation schedules on yield and water productivity (Sena et al., 2014); determine the 

optimum allocation of limited irrigation between vegetative and reproductive growth stages 

and optimum soil water depletion level for initiating limited irrigation (Saseendran et al., 

2008); determine the optimum irrigation depth (Abd-El-Baki et al., 2017); optimum soil 

moisture depletion and replenishment levels and timing and amount of irrigation during 

different crop growth stages (Kundu et al., 1982); optimize the irrigation conditions 

(Mubeen et al., 2016). However, no such evidence about the assessment of irrigation 

methods using a crop model.  

APSIM (Agricultural Production Systems Simulator) is an open-source (for non-

commercial users) crop modeling software, which can use to model growth and yield of 

many crops including sugarcane (Holzworth et al., 2014; Keating et al., 2003). Further, it 

has modeling functions, which allows simulating soil water, nutrients and many more 

(Holzworth et al., 2014; Inman-Bamber et al., 2016; Inman-Bamber and McGlinchey, 2003; 

Keating et al., 2003). APSIM allows users to incorporate management interventions by own 

scripts written in scripting languages. Hence, it is a significant advantage in APSIM 

compared to other crop modeling software (Archontoulis et al., 2014; Holzworth et al., 

2014). The uncertainties of predictions from this model are generally characterized by the 

error statistics determined from the prediction of experimental data. Therefore, firm 

parameterization, calibration, and validation are needed to reduce the uncertainties of 

predictions. 

Agriculture is one of the most sensitive sectors to the climatic change in terms of 

economy and social structure (Godfray et al., 2010). Process-based crop models driven by 

simulated future weather conditions are commonly used to study and quantify the impacts 

of climate change on agriculture. (Corbeels et al., 2018; Teixeira et al., 2018; Xiao et al., 

2018). Global climate models (GCMs) provide possible future climates at regional and 

continental levels. However, it requires at a local scale for better decision making (Fowler 
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et al., 2007). Coupled Model Intercomparison Project Phase 5 (CMIP5) listed numerous 

climate change scenarios developed by various modeling centers (Corbeels et al., 2018; 

McDermid et al., 2016; Xiao et al., 2018; Zubair et al., 2015). Different downscaling 

techniques use to generate future climatic conditions at local levels (Fowler et al., 2007). 

AgMIP Climate Scenario Generation Tools with R Version 2.3 is a tool developed by 

Agricultural model intercomparison project (AgMIP) to generate site-specific climates 

using 20 GCMs with four representative concentration pathways (RCPs) using CMIP5 

GCM delta scenario approach (AgMIP, 2013; McDermid et al., 2016). The technique 

produces future climate scenarios by adjusting the historical observations of a given site 

according to the changes in precipitation, minimum and maximum temperatures based on 

predicted absolute changes in temperatures and relative changes in precipitation (Ruane et 

al., 2013). It uses bias-corrected statistical downscaling (BCSD) as a default method of 

downscaling (AgMIP, 2013).   

This study aimed to assess the suitability of OPSIS for sugarcane farming in tropical 

Sri Lanka. We parameterized and calibrated the APSIM-Sugar model to simulate growth 

and yield of sugarcane local cultivar SL96128 using data obtained from field trials. Then, 

we simulated the growth and yield of sugarcane under rainfed, surface irrigated conditions 

and OPSIS irrigated conditions to compare the performances of those water regimes to 

assess the suitability of OPSIS to Sri Lankan conditions under present and future climatic 

conditions.  

 

7.2 Materials and Methods 

 

7.2.1 Parameterization and Calibration of APSIM-Sugar model 

We collected necessary data from ongoing field trials of Gal-Oya Plantations (Pvt.) 

Ltd. We selected two farmer fields (farmer 1: 7° 13' 49'' N, 81° 45' 52'' E; farmer 2: 7° 15' 

21'' N, 81° 41' 38'' E) located in Hingurana, Ampara, Sri Lanka for parameterization and 

calibration of APSIM-sugar model for locally grown cultivar SL96128. According to the 

Köppen climate classification, the southern dry zone of Sri Lanka is classified as As 

(tropical climate with a dry summer period) (Buysse, 2002).  

 

 

 

7.2.1.1 Plant Data  
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We collected the growth and yield data of two farmer fields in Hingurana, Sri Lanka 

for parameterization and calibration of APSIM-Sugar model. The farmer field one was 

established in June 2013 and continued up to three ratoon crops. Crop duration was 375 

days for the main crop and 365 days for ratoon crops. The farmer field two was established 

in June 2014 and continued up to two ratoons. Crop duration of the main crop and ratoon 

crops were maintained as 375 days and 300 days, respectively. Following the fertilizer 

recommendation for rainfed sugarcane, 225 kg/ha, and 250 kg/ha of urea were used in both 

fields.  Randomly selected a 10 m2 area was used to estimate the fresh cane yield of the 

crops.   

 

7.2.1.2 Soil Data  

Required soil data for the APSIM simulation were derived using PTFs developed by 

Gunarathna et al. (2019b) and other required data were gathered from SRICANSOL report 

(Dassanayake et al., 2010). The original soil profile was modified to make six layers to work 

with OPSIS module (Table 7.1). 

 

Table 7.1. Soil data used to parameterize Hingurana soil profile 

Depth 

(cm) 

Bulk Density 

(g/cc) 

Air Dry 

(mm/mm) 

LL15 

(mm/mm) 

DUL 

(mm/mm) 

SAT 

(mm/mm) 

KS 

(mm/day) 

Sugar LL 

(mm/mm) 

0-10 1.450 0.062 0.124 0.183 0.440 1032 0.124 

10-20 1.475 0.066 0.131 0.185 0.435 912 0.131 

20-30 1.500 0.069 0.138 0.187 0.430 792 0.138 

30-40 1.500 0.069 0.138 0.187 0.430 792 0.138 

40-50 1.500 0.069 0.138 0.187 0.430 600 0.138 

50-60 1.500 0.069 0.138 0.187 0.430 60 0.138 

 

7.2.1.3 Climatological data 

Daily meteorological data of Maduraketiya meteorological station (6° 50' 9'' N, 81° 

21' 36'' E) were obtained from the meteorological department of Sri Lanka. Daily rainfall, 

maximum temperature, minimum temperature, and sunshine hours were obtained from 1997 

to 2017. Sunshine hours were converted to solar radiation using the WeatherMan tool of 

DSSAT 4.6. Annual average ambient temperature and annual amplitude in mean monthly 
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temperature were calculated using tav_amp utility software of APSIM 

(https://www.apsim.info/Products/Utilities.aspx).  

 

7.2.1.4 APSIM Simulation 

APSIM, the Agricultural Production Systems sIMulator is a process-based dynamic 

crop model that combines biophysical and management modules within a central engine to 

simulate diverse cropping systems (Holzworth et al., 2014; Keating et al., 2003). The model 

is driven by daily climate data and can simulate growth, development, and yield of crops 

and their interactions with soil.  

First, we modified the sugar model of APSIM 7.10 by adding new cultivar SL96128. 

Then we parameterize the cultivar parameters using the data obtained from field 

measurements, published reports on SL96128 cultivar, and experts’ views (Table 7.2). As 

APSIM underestimated the growth and yield, we modified the radiation use efficiency 

(RUE) like-minded Gunarathna et al. (2019a) and Sexton et al. (2017). We increased the 

maximum RUE values up to 2.0 confining the findings of De Silva and De Costa (2012) 

and Muchow et al. (1997).  Similarly, we increased the maximum RUE values of ratoon 

crop up to 1.85 conforming the gap maintained by APSIM.  As Sri Lankan sugarcane 

cultivars not tall like the listed cultivars in APSIM, we limited the maximum plant height 

up to 4000 mm from the default of 6000 mm.  Further, we calibrated cane fraction (CF) and 

thermal time to emergence to the beginning of cane (EB) by trial and error method to find 

the optimum values for those parameters (Table 7.2). 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.apsim.info/Products/Utilities.aspx
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Table 7.2. Cultivar and plant-specific parameters used to parametrization and calibration of 

APSIM-Sugar model 

Parameter Initial values 

(parameterization) 

Values used for simulations 

(after calibration) 

 Crop Ratoon Crop Ratoon 

Leaf_size 1, 9, 20 3000, 50000, 

50000 

3000, 50000, 

50000 

3000, 50000, 

50000 

3000, 50000, 

50000 

cane_fraction 0.7 0.7 0.65 0.65 

Sucrose_fraction_stalk   

0.2, 1 

1.0, 0.55 1.0, 0.55 1.0, 0.55 1.0, 0.55 

sucrose_delay 0 0 0 0 

min_sstem_sucrose 900 900 900 900 

min_sstem_sucrose_redn 10 10 10 10 

tt_emerg_to_begcane 1800 1800 1900 1900 

tt_begcane_to_flowering 6000 6000 6000 6000 

tt_flowering_to_crop_end 2000 2000 2000 2000 

green_leaf_no 10 10 10 10 

tillerf_leaf_size 1, 4, 10, 16 1, 1.5, 1.5, 1 1, 1.5, 1.5, 1 1, 1.5, 1.5, 1 1, 1.5, 1.5, 1 

rue 0, 0, 1.80, 

1.80, 1.80, 0 

0, 0, 1.65, 

1.65, 1.65, 0 

0, 0, 2.05, 

2.05, 2.05, 0 

0, 0, 1.90, 1.90, 

1.90, 0 

Crop_height_max 6000 6000 4000 4000 

 

As this study compares three water regimes, the same modified soil profile was used 

for all simulations. 

 

7.2.2 Comparison of irrigation methods 

We simulated the growth and yield of sugarcane under three water regimes as, 

rainfed, surface irrigated, and OPSIS irrigated conditions to assess the suitability of OPSIS 

for tropical Sri Lankan conditions. We selected two locations (Sevanagala in Monaragala 

district; 6° 22' 13'' N, 80° 54' 47'' E, and Hingurana in Ampara district; 7° 13' 49'' N, 81° 45' 

52'' E) with two distinct soils (Table 7.3) to compare the growth and yield performances of 
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sugarcane under rainfed, surface irrigated and OPSIS irrigated conditions. We simulated 

fresh cane yield, total above-ground biomass, and sucrose yield of local sugarcane cultivar 

SL96128 under three different water regimes. 

 

Table 7.3. Basic Characteristics of soils in selected locations 

Location Hingurana Sevanagala 

Soil classification  Alluvial soils Solodized Solonetz 

Soil type Loamy sand Clay loam 

Drainage class Moderate well drained Poorly drained 

Average sand: silt: clay ratio of topsoil 85: 9: 5 41: 37: 22 

Average sand: silt: clay ratio of subsoil 82: 9: 9 63: 15: 22 

(Dassanayake et al., 2010) 

7.2.2.1 Soil data 

Required soil data for the comparison of three water regimes were derived using 

PTFs developed by Gunarathna et al. (2019b) and other required data were gathered from 

SRICANSOL report (Dassanayake et al., 2010). Two soil files for Hingurana and 

Sevanagala were prepared using those data. Original soil profiles were modified to make 

six layers to work with OPSIS (Table 7.1 and 7.4). As this study compares three water 

regimes, the same modified soil profiles were used for all simulations in the respective 

location.  

 

Table 7.4. Soil data used to parameterize Sevanagala soil profile 

Depth 

(cm) 

Bulk Density 

(g/cc) 

Air Dry 

(mm/mm) 

LL15 

(mm/mm) 

DUL 

(mm/mm) 

SAT 

(mm/mm) 

KS 

(mm/day) 

Sugar LL 

(mm/mm) 

0-10 1.190 0.136 0.271 0.377 0.551 65.040 0.271 

10-20 1.190 0.136 0.271 0.377 0.551 65.040 0.271 

20-30 1.410 0.144 0.287 0.375 0.468 68.880 0.287 

30-40 1.410 0.144 0.287 0.375 0.468 68.880 0.287 

40-50 1.410 0.144 0.287 0.375 0.468 68.880 0.287 

50-60 1.410 0.144 0.287 0.375 0.468 68.880 0.287 
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7.2.2.2 Meteorological data 

Daily meteorological data of two selected locations were extracted from AgMERRA 

global gridded climate dataset using NetCDF-Extractor V2.0 tool of AgriMetSoft 

(https://www.agrimetsoft.com). Daily rainfall, maximum temperature, minimum 

temperature, and solar radiation obtained from 1980 to 2010. Annual average ambient 

temperature and annual amplitude in mean monthly temperature were calculated using 

tav_amp utility software of APSIM (https://www.apsim.info/Products/Utilities.aspx).  

 

7.2.2.3 APSIM simulation 

We simulated the growth and yield of sugarcane from 1980 - 2010 for two locations. 

In all simulations, we maintained 375 days and 365 days respectively for main and ratoon 

crops. We simulated the growth and yield of sugarcane of six cropping cycles as one cycle 

includes the main crop and four ratoon crops. In surface irrigation simulations, irrigation 

was scheduled in 14 days interval if the rainfall did not exceed 25 mm within last three days, 

else postponed for ten days. The amount per irrigation was set as 60 mm of irrigation with 

a maximum of 600 mm per season. We used the APSIM-OPSIS module to couple optimized 

subsurface irrigation system to the APSIM engine in APSIM simulations under OPSIS 

irrigated conditions. The fifth layer was selected as the base layer, where the layer we 

propose to locate OPSIS. The difference between the SAT and the soil water content (SW) 

of the layer is identified as the input to the layer. It is the estimated amount of irrigation 

through the optimized subsurface irrigation and named as “opsis (mm/day)”.  We used 350 

kg/ha and 375 kg/ha of urea fertilizer for main and ratoon crops, respectively in all 

simulations.  

 

7.2.3 Performance of OPSIS in changing Climate 

We simulated the growth and yield of sugarcane under rainfed, surface irrigated, and 

OPSIS irrigated conditions with simulated future climates to assess the suitability of OPSIS 

for tropical Sri Lankan conditions in possible future climates. We selected Sevanagala in 

Monaragala district; 6° 22' 13'' N, 80° 54' 47'' E for this simulation. We simulated fresh cane 

yield, total above-ground biomass, and sucrose yield of local sugarcane cultivar SL96128. 

 

7.2.3.1 Meteorological data 

We simulated future climate scenarios considering the baseline period of 1980 – 

2010.  We generated site-specific future climates of near-future period (2020 - 2039) using 
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AgMIP Climate Scenario Generation Tools with R Version 2.3 for 20 GCMs and two 

representative pathways (RCPs) 4.5 and 8.5. Then AgMIP files of future climate scenarios 

were converted to APSIM format using QUADUI tool of AgMIP.  

  

7.2.3.2 APSIM simulation for future climates 

We simulated the growth and yield of sugarcane for the near future (2020 – 2039) 

using the simulated climate files. All simulation conditions were kept similar to section 

7.2.2.3. We neglected the crop response CO2  as CO2 fertilization has limited effect on 

photosynthesis of C4 plants (Corbeels et al., 2018) and APSIM’s poor ability to capture the 

secondary effect of reducing crop transpiration (Durand et al., 2018). 

 

7.2.4 Statistical analysis 

We assessed the simulation accuracy of the calibrated model using root mean square 

error (RMSE; Equation 7.1), mean absolute error (MAE; Equation 7.2), coefficient of 

determination (R2; Equation 7.3) and Wilmott’s agreement index (d; Equation 7.4) (Dias 

and Sentelhas, 2017; Krause et al., 2005; Willmott, 1981). Low RMSE, MAE values, and 

high R2, d values indicate good agreement between model outputs and observed values. 

 

RMSE = √
1

𝑛
∑ (Si − Oi)2
n
i=1         (7.1) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |Si − Oi|
n
i=1         (7.2) 

 

𝑅2 = [
∑ (𝑂𝑖−�̅�)(𝑆𝑖−�̅�)
𝑛
𝑖=1

√∑ (𝑂𝑖−�̅�)
2𝑛

𝑖=1 √∑ (𝑆𝑖−�̅�)
2𝑛

𝑖=1

]

2

       (7.3) 

 

𝑑 = 1 −
∑ (𝑆𝑖−𝑂𝑖)

2𝑛
𝑖=1

∑ (|𝑆𝑖−�̄�|+|𝑂𝑖−�̄�|)
2𝑛

𝑖=1

         (7.4) 

 

Where, Si and Oi are the simulated and observed value of the parameter (in fresh cane yield 

(t/ha),  plant height (mm), soil moisture (mm/mm) irrigation water (mm/month) 

respectively; �̅� and 𝑆̅ are the average of simulated and observed values respectively; and n 

is the number of observations.  
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We compared the effect of irrigation method over 40 different climatic conditions 

(derived using 20 GCMs and two RCPs) using analysis of variance (ANOVA) procedures 

in R software (R Core Team, 2018). We did pairwise comparisons using Turkey’s HSD test 

at P<0.05.  

 

7.3 Results and Discussion 

 

7.3.1 Parameterization and calibration of APSIM-Sugar to simulate growth and yield 

of cultivar SL96128 

Initially, we added cultivar SL96128 to the APSIM-Sugar model (XML file) and 

parameterized using field measured data (leaf size and green leaf number), available data in 

published reports, and views of experts (Table 7.2). After parameterization, we simulated 

fresh cane weight and observed quite healthy relationships between observed and simulated 

values. However, APSIM underestimated the fresh cane weight. After the modification of 

plant parameters (maximum RUE and maximum plant height of main and ratoon crops) and 

calibration of cultivar parameters (CF and EB), the relationships were further improved 

(Figure 7.1).  Despite of the high variability of cane yield and sucrose affected by weather 

conditions, nutrient levels, planting time and some undefined factors, APSIM sugarcane 

able to simulate good results to fit with the observations in agreement with the results of 

Keating et al. (1999), Cheeroo-Nayamuth et al. (2000) and Inman-Bamber and McGlinchey 

(2003). Using data sets of different cultivars grown in different locations, Keating et al. 

(1999) showed that APSIM could simulate the millable stalk weight (R2= 0.72, RMSD = 

1.94 t/ha) with fairly good accuracy. Our study also proves the virtuous ability of APSIM 

to simulate fresh cane weight as all model evaluation criteria shows good fit between 

simulations and observations (RMSE = 7.82 t/ha, MAE = 6.47 t/ha, R2 = 0.85, d = 0.95).   
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Figure 7.1. Observed versus simulated fresh cane weight of sugarcane cultivar SL96128 

 

7.3.2 Performance of OPSIS compared to rainfed and surface irrigation method 

We simulated the fresh cane weight, total above-ground biomass and sucrose weight 

of sugarcane cultivar SL96128 under rainfed, surface irrigated and OPSIS irrigated 

conditions for two sugar-growing locations of Sri Lanka. Results revealed that OPSIS 

performed well compared to both rainfed and surface irrigated conditions.   

 

7.3.2.1 Above-ground biomass 

Results revealed that there are significant differences in aboveground biomass 

between irrigation methods and locations. OPSIS showed significantly higher above-ground 

biomass (5792 g/m2) compared to the surface irrigation (5371 g/m2) and rainfed conditions 

(4748 g/m2). Surface irrigation also reported significantly higher above-ground biomass 

than the rainfed conditions. Sevenagala (clay loam soil) reported higher above-ground 

biomass (5707 g/m2) compared to the Hingurana (loamy sand soil) (4900 g/m2).  Figure 7.2 

shows the box plot diagram of simulated biomass of three different water regimes for two 

locations. In Sevanagala, all three water regimes showed distinct variation among them as 

OPSIS showed significantly higher above-ground biomass (6191 g/m2) compared to rainfed 

conditions (5275 g/m2) and surface irrigated conditions (5655 g/m2). Surface irrigation also 

showed notable performances over rainfed conditions. Under the loamy sand soil conditions 

(Hingurana) also, OPSIS showed significantly higher above-ground biomass (5394 g/m2) 

compared to rainfed (4221 g/m2) and surface irrigation (5086 g/m2). Similar to the 

Sevanagala, surface irrigation also showed notable performances over rainfed conditions. 
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With clay loam soil (Hingurana), all three methods showed poor performances compared to 

clay loam soil (Sevanagala).  

 

Figure 7.2. Simulated total above-ground crop biomass under rainfed, surface irrigated 

and OPSIS irrigated conditions 

 

7.3.2.2 Fresh cane weight 

There are significant differences of fresh cane yield between irrigation methods and 

locations. OPSIS showed significantly higher cane fresh weight (137.42 t/ha) compared to 

the surface irrigation (128.32 t/ha) and rainfed conditions (112.62 t/ha). Surface irrigation 

also reported significantly higher cane fresh weight than the rainfed conditions. Sevenagala 

(clay loam soil) reported higher cane fresh weight (135.15 t/ha) compared to the Hingurana 

(loamy sand soil) (117.09 t/ha).  Figure 7.3 shows the box plot diagram of simulated fresh 

cane yield of three different water regimes for two locations. In Sevanagala, all three water 

regimes showed distinct variation among them as OPSIS showed significantly higher fresh 

cane yield (145.94 t/ha) compared to rainfed conditions (124.85 t/ha) and surface irrigated 

conditions (134.66 t/ha). Surface irrigation also showed significant performances over 

rainfed conditions. Under the loamy sand soil conditions (Hingurana) also, OPSIS showed 

significantly higher cane fresh weight (128.90 t/ha) compared to rainfed (100.38 t/ha) and 

surface irrigation (121.97 t/ha). With clay loam soil, all three methods showed poor 

performances compared to clay loam soil.  
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Figure 7.3. Simulated fresh cane yield under rainfed, surface irrigated and OPSIS irrigated 

conditions 

7.3.2.3 Sucrose yield 

OPSIS showed significantly higher sucrose yield (2361 g/m2) compared to the 

surface irrigation (2192 g/m2) and rainfed conditions (1861 g/m2). Surface irrigation also 

reported significantly higher sucrose yield than the rainfed conditions. Sevenagala (clay 

loam soil) reported significantly higher sucrose yield (2237 g/m2) compared to the 

Hingurana (loamy sand soil) (2039 g/m2).  Figure 7.4 shows the box plot diagram of 

simulated sucrose yield of three different water regimes for two locations. In Sevanagala, 

all three water regimes showed distinct variation among them as OPSIS showed 

significantly higher sucrose yield (2443 g/m2) compared to rainfed conditions (2005 g/m2) 

and surface irrigated conditions (2263 g/m2). Surface irrigation also showed significant 

performances over rainfed conditions. Under the loamy sand soil conditions (Hingurana) 

also, OPSIS showed significantly higher sucrose yield (2279 g/m2) compared to rainfed 

(1718 g/m2) and surface irrigation (2120 g/m2). With clay loam soil, all three methods 

showed poor performances compared to clay loam soil.  
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Figure 7.4. Simulated sucrose weight under rainfed, surface irrigated and OPSIS irrigated 

conditions 

 

Clay loam soil in Sevanagala shows relatively higher water holding capacity 

compared the Hingurana soil. Hence, Sevanagala gives higher yield under the rainfed 

conditions due to less moisture stress. The yield of sugarcane in the Sevanagala area has 

further increased with the addition of surface irrigation. The allocated limit of 600 mm is 

enough to irrigate the entire growing season; hence, no moisture stress during the growing 

season. Application of OPSIS further enhanced the yield of sugarcane in the Sevanagala 

area as OPSIS provides minimum water stress to crop as well as the better nutrient 

availability due to the split application of fertilizer. Poor water holding capacity of 

Hingurana soil compared to the Sevanagala soil leads to poor performances of rainfed 

conditions and both irrigation methods. Under the rainfed conditions, utilization of rainfall 

is limited in Hingurana soil compared to the high water-holding Sevanagala clay loam soils. 

Under the surface irrigation, Hingurana soil uses frequent irrigation, hence quickly finish 

the allocated amount compared to the Sevanagala soils, then crop faces moisture stress 

during the mid-season of the crop. In OPSIS, the upper layers of the root zone receive water 

through the capillarity. Since capillary rise is poor in coarse-textured soils, top layers of 

Hingurana soil profile remained dry in most of the times, hence poor growth and yield 

performances with OPSIS. Similar kind of yield variation in Sevanagala and Hingurana was 

observed and reported by Keerthipala and Dharmawardene, (2000). They observed 142 t/ha 
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and 102 t/ha of fresh cane yield in Sevanagala and Hingurana, respectively under irrigated 

conditions. In a study conducted in Udawalawa, Sri Lanka (Near to Sevanagala), Silva and 

Costa, (2004) reported average fresh cane yield of 140 (±23.5) t/ha and 91(±19.8) t/ha for 

irrigated and rainfed conditions respectively.  In our simulations, we simulated higher fresh 

cane yield (125 t/ha) under rainfed conditions in Sevanagala than they reported. The 

difference may attribute to the difference of fertilizer levels, as we used higher fertilizer 

levels considering the updated fertilizer recommendations for irrigated sugarcane with 

higher yields.   

OPSIS gives optimum soil moisture conditions and available nutrient conditions for 

crop growth. However, as the moisture condition in top layers is critical than lower layers 

of sugarcane crop, OPSIS may not perform well in sandy soils compared to the clay soils. 

Therefore, the usual establishment configuration may have to change when introducing 

OPSIS to the other soil/climate conditions. In Okinawa, Japan, where the OPSIS introduced, 

OPSIS usually laid out 45 cm below the ground level to irrigate sugarcane. Installation of 

OPSIS under 45 cm below the ground level performed well with Sevanagala soils but not 

with Hingurana soils. However, it can be varied between 30 - 60 cm based on the soil type 

and crop grown (Gunarathna et al., 2017). Therefore, a comprehensive assessment of OPSIS 

design should be required when introducing to other environments.  

 

7.3.3 Performance of OPSIS in future climates 

We used APSIM 7.10 crop model with the calibrated APSIM-Sugar model for local cultivar 

SL96128 to assess the performances of different water regimes (rainfed, surface irrigation 

and OPSIS) in possible future climates of Sevanagala, Sri Lanka. We simulated the fresh 

cane yield, crop above-ground biomass and sucrose yield of sugarcane using projected 

future climates (2020 – 2039) under 20 GCMs and two RCPs.  

 

7.3.3.1 Crop growth and yield of sugarcane under future climates 

Figure 7.5 shows the box plot diagram of the simulated crop above-ground biomass, fresh 

cane weight, and sucrose yield for the period of (2020 – 2039) using different GCMs and 

emission scenarios. It shows that all the selected growth and yield parameters of sugarcane 

varied widely based on GCMs and emission scenarios. Therefore, we used an ensemble of 

simulations with different GCMs to compare the performances of different water regimes 

on selected outputs. Figure 7.6 shows the performances of water regimes on selected outputs 

under two emission scenarios considered. Results revealed that OPSIS might show 
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significantly higher above-ground biomass, fresh cane yield and sucrose yield compared to 

the surface irrigation and rainfed conditions in future climates (2020 – 2039) under both 

emission scenarios (Table 7.5). Surface irrigation also may show significantly higher above-

ground biomass, fresh cane yield, and sucrose yield compared to the rainfed conditions in 

future climates under both emission scenarios. However, for all selected outputs, no 

significant difference was observed between two emission scenarios.  
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Figure 7.5. Boxplot diagrams of simulated future (2020- 2039) sucrose weight, fresh cane weight and above-ground biomass of sugarcane  
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Table 7.5. Performances of different water regimes under different emission scenarios: 

Ensemble results of simulated crop above-ground biomass, fresh cane weight, and sucrose 

weight for the near-future period (2020-2039)  

 

Water regime 

RCP4.5 RCP8.5 

RF SI OPSIS RF SI OPSIS 

Biomass 5174a 5704b 6299c 5238a 5760b 6338c 

Cane fresh weight 123.62p 136.83q 149.39r 125.26p 138.26q 150.43r 

Sucrose weight 1954x 2235y 2468z 1992x 2271y 2486z 

Row means followed by the same letter are not significantly different at 5% level of 

significance using Tukey’s HSD 

 

 

Figure 7.6. Performance of different water regimes in possible future climates: Ensemble of 

simulated growth and yield of sugarcane with different GCMs 

 

 Compared to the baseline period (1980-2010), according to both emission scenarios, 

surface irrigation, and OPSIS might slightly increase the crop above-ground biomass, fresh 

cane yield, and sucrose yield of sugarcane. Hence, we can convert the climate change 

impacts to a positive direction (in terms of crop yield) by assuring a proper irrigation method 

for sugarcane cultivation.  We estimated that, the OPSIS will increase the fresh cane yield 

by 2.4% (-11.4% to 8.7%) under the RCP4.5 emission scenario and 3.1% (-2.5% to 9.0%) 

under the RCP8.5 emission scenario compared to the baseline period while surface irrigation 

remains 1.6% (-14.5% to 23.7%) and 2.7% (-4.2% to 10.5%) respectively for the same. 
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Rainfed conditions will decrease the fresh cane yield by 1% (-21% to 10.4%) and increase 

0.3% (-10.5% to 12.2%) for RCP4.5 and RCP8.5 emission scenarios respectively. Further, 

results showed a higher uncertainty of rainfed conditions followed by surface irrigation, 

while the OPSIS showed the least.  

 

7.4 Conclusions and Recommendations 

We modified the APSIM-Sugar model to simulate growth and yield of Sri Lankan 

local sugarcane cultivar SL96128. Then we parameterize the cultivar SL96128 using 

measured values, information in published reports, and expert’s views. However, APSIM 

underestimated the growth and yield of sugarcane cultivar SL96128. Therefore, the APSIM-

Sugar model was modified and calibrated using radiation use efficiency, thermal time from 

emergence to the beginning of cane and cane fraction. After the calibration, APSIM 

simulations showed a close relationship with the observations.  

Then we simulated the growth and yield of sugarcane under rainfed, surface irrigated 

and OPSIS irrigated conditions for two locations in Sri Lanka with a distinct variation of 

soil as clay loam and loamy sand soils. Results revealed that in both soils, OPSIS performed 

better than the rainfed and surface irrigation. However, the performance of OPSIS is 

remarkable with clay loam soil. Hence, we can conclude that OPSIS can significantly 

increase the crop growth and sugarcane under Sri Lankan conditions, especially in the places 

with clayey soils. The design modification may require to achieve expected performances 

of OPSIS under sandy soil conditions.  

 OPSIS can assure the higher yields compared to the surface irrigation and rainfed 

conditions even with the possible climate changes predicted using different GCMs and 

emission scenarios.   
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8.0 General Conclusions 

This study aimed to introduce the OPSIS and develop the capabilities of APSIM to 

simulate the growth and yield of sugarcane with OPSIS aiming future development of 

OPSIS in Japan and other parts of the world. A series of field experiments and simulations 

were conducted to achieve this goal, and we made the following conclusions. 

The optimized subsurface irrigation system (OPSIS) is a subsurface irrigation 

system for irrigating the root zone of upland crops by capillarity. OPSIS shows improved 

water-saving capability compared with other irrigation methods as it can function with 

minimum percolation, evaporation, and surface runoff. Because a small solar-powered 

pump is used to lift water and create a pressure head and because minimum operational 

activities are required while ensuring a good yield. OPSIS can use on slopes where surface 

irrigation is not suitable. Hence, it requires less attention to land leveling than surface 

irrigation methods, and it is better than other irrigation methods in achieving equal 

distribution of irrigation water on slopes. Water-soluble fertilizers can effectively use with 

OPSIS. OPSIS can act as a subsurface drainage system. Therefore, crop fields may not 

require a separate drainage system for water management in fields which OPSIS installed. 

Field experiments confirmed that OPSIS offers advantages over sprinkler irrigation 

for sugarcane cultivation in Okinawa in respect of both sugarcane yield and WUE. 

Compared with sprinkler irrigation, OPSIS produced significantly taller plants, and thus 

significantly longer millable stalks, and significantly more millable stalks. Therefore, 

OPSIS achieved significantly higher fresh cane weight using less irrigation water than the 

sprinkler irrigation. OPSIS is a water-conserving irrigation technique that can irrigate 

sugarcane crops with minimal operational cost, energy consumption, and human 

intervention. Therefore, it may be a sustainable alternative for sugarcane irrigation in 

Okinawa and similar subtropical environments.  

The global sensitivity analysis conducted using Gaussian Emulator Machine for 

Sensitivity Analysis (GEM-SA) showed that green leaf number and cane fraction were ideal 

candidates for parameterization of cultivars in both Okinawan and Sri Lankan environments. 

The study found that thermal time from emergence to the beginning of cane, to minimum 

structural stem sucrose content (MSS), MSS reduction and sucrose fraction are the ideal 

parameters to calibrate assuring good growth and yield simulations of sugarcane using 

APSIM model.  Further, the study concluded that, although they are not listed as cultivar 

parameters in APSIM-Sugar model, if reliable and ample data available, calibrate 
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transpiration efficiency of growth stage four and radiation use efficiency of growth stages 

three and four also.  

APSIM-Sugar model was parameterized and calibrated to simulate growth and yield 

of sugarcane cultivar Ni21 in Okinawan conditions. APSIM-OPSIS module was developed 

to couple OPSIS with APSIM engine. Then, the APSIM model was validated to use with 

OPSIS. Simulated plant height and fresh cane yield showed good agreement with the 

observations. However, APSIM showed overestimation for soil water content in upper soil 

layers and irrigation water use of OPSIS. Hence, newly developed APSIM-OPSIS module 

can successfully be used to simulate the crop growth and yield of sugarcane with optimized 

subsurface irrigation system.  

Pedotransfer functions (PTFs) were developed to estimate the volumetric water 

content of Sri Lankan soils at –10, –33, and –1500 kPa with reasonably good accuracy using 

sand content as the only input attribute. Regardless of the climatic zone and soil type, these 

PTFs can be used anywhere in Sri Lanka without any modification. Newly developed PTFs 

are appeared to be suitable for practical use in estimating irrigation water demand, 

scheduling irrigation and crop modeling in tropical Sri Lankan conditions. 

APSIM-Sugar model was parameterized and calibrated to simulate growth and yield 

of Sri Lankan local sugarcane cultivar SL96128. Then the growth and yield of sugarcane 

were simulated under rainfed, surface irrigated and OPSIS irrigated conditions for two 

locations in Sri Lanka with a distinct variation of soil as clay loam and loamy sand soils. 

Results revealed that in both soils, OPSIS performed better than the rainfed and surface 

irrigation; however, the performance of OPSIS is remarkable with clay loam soil. Hence, 

the study concluded that the OPSIS could significantly increase the crop growth and 

sugarcane under Sri Lankan conditions, especially in the places with clayey soils. The 

design modification may require to achieve expected performances of OPSIS under sandy 

soil conditions.  OPSIS can assure the higher yields compared to the surface irrigation and 

rainfed conditions even with the possible climate changes predicted using different GCMs 

and emission scenarios.   

 

 

 

 

 

 


