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Chapter 1

General introduction and review of literature

1.1: Introduction

The nanotechnology is defined as a science, which deals with
materials within a size range of 1-100 nm, including synthetic
nanoparticles from their precious metal precursors and naturally occurring
particles like ash and spray. Examples of biological components, which
present in nanoscale size, include cell wall, Golgi apparatus, cell membrane,
DNA (about 2.7 nm) and haemoglobin (about 5 nm).! Knowledge of metal
nanoparticles have a very long history. The colloidal gold nanoparticles
(Au NPs) were used historically for decoration purposes and staining of
glasses and windows due to its optical properties.? Understanding the
synthesis, characterisation and application of the precious metal
nanoparticles has been the driving force for the development of
nanotechnology research. The unique advantages of nano-sized metals over
their bulk materials arise from their large surface area to volume ratio

compared to its bulk materials. It was reported that Michael Faraday was
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the first to synthesis Au NPs over 150 years ago and he noticed that the
nanoscale Au NPs have different properties in addition to its metal
precursors.® The large surface area leads to higher activity when it is used

in particular applications.

1.2: Previous attempts for preparation of metal nanoparticles

1.2.1: Gold nanoparticles (Au NP)

During the last decade, the field of nanotechnology has been rapidly
growing, in particular Au NPs, owing to its precious biological and medical
applications such as drug delivery system,*’ biological imaging,
diagnostics,®*? and sensors.>'® Nanoparticles are generally smaller than
100 nm and contain several metal atoms. Au NPs possess unique physical
and chemical properties that make it a superior target for biological and
medical applications and this is attributed primarily to their chemical
stability, the ability of its modification by many functional molecules and

their biocompatibility.

Many methods to synthesize gold nanoparticles have been applied,

however the preparation of stable, modifiable with size controlled gold




nanoparticles that are suitable for biological or medicinal applications, is
still challenging. The stability of Au NPs are rarely investigated or reported
and this remains a challenge (particularly in complex media such as those
used for cell bioassay). Frens’s method®® is a well-known method for the
synthesis of gold nanoparticles with a simple operation and inexpensive
chemicals. It involves the reaction of boiling chloroauric acid solution with
warm sodium citrate solution. Citrate ions act as both a reducing agent and
capping agent leading to the formation of nearly monodispersed gold
nanoparticles with sizes ranging from 10-20 nm. Frens's method uses a
weak capping agent, lacking functional branched groups. Therefore, the
particles are less stable. The shape of the particles is limited to spherical
and they are not stable enough for the biological or medicinal applications.
This is attributed to instability of the particles in solutions with high salts
concentrations such as phosphate-buffered saline (PBS) or acidic pH that

are frequently used in biomedical applications.

Brust’s method? involves the reaction of a chloroauric acid solution
in toluene with tetraoctylammonium bromide (TOAB) solution and sodium

borohydride as a stabilising and a reducing agent, respectively. The Brust
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method uses a weak stabilizing agent and binds weakly to the surface of
gold nanoparticles. Therefore, the particles tend to aggregate and

precipitate gradually within a maximum of two weeks.

The sodium borohydride reduction method (NaBH4),*?? is a
“one-pot” method that involves the reduction of gold precursors (HAuCls)
by sodium borohydride in the presence of various stabilising agents such as
large organic molecules,?® and peptides.?* NaBHys is a strong reducing agent
able to produce small Au NPs at room temperature. The particle size is
controlled by the amount of stabilising agent used in the reaction. NaBHa
may have some toxic effect to the cells during biological application of the
prepared particles. Thus, a modified polyol synthesis of Au NPs was
established. This method depends on the use of small amount of NaBH3 as
a reducing agent that is added to polyethylene glycol (PEGsoo) solution of
PVP under stirring for 1-2 minutes. Then aqueous solution of hot
chloroauric acid was added followed by heating of the solution to 125 °C

leading to obtaining octahedral Au NPs of varying size from 30-60 nm.%»

The use of weak organic acid for the synthesis of Au NPs such as




ascorbic acid has been also investigated.?®?” The main interest for this
weak acid compared with other reducing agent depends on the fact that the
particles can be synthesised at room temperature and at neutral pH, but the
particles suffer from lacking of stability. Ma et al.?® synthesised Au NPs
with trisoctahedral shape and diameter ranged from 100-200 nm. The
process included the reaction of an aqueous solution of chloroauric acid
with ascorbic acid as a reducing agent at room temperature and

cetyltrimethylammonium chloride (CTAC) was used as a capping agent.

Liao et al.?® stated the synthesis of star-shaped Au NPs by the
reduction of chloroauric acid with ascorbic acid in deep eutectic solvents
(DESs) at room temperature. Au NPs with different shapes can be
synthesised by controlling the content of water in DESs; if no water is in
the DES, snow flake-like Au NPs with a size about 300 nm were obtained.
Au NPs have been synthesised by using poly (o-phenylenediamine) as a
reducing agent and stabiliser for the particles as well as ammonium per
sulfate (APS) as an initiator to the reaction system. The size of the prepared
Au NPs varied from 3-15 nm by changing the concentration of the Au

precursor.®® Au NPs with polygonal shape were synthesised using a




modified citrate reduction, whereas the ferric ammonium citrate (FAC) was
used for the reduction of chloroauric solution instead of sodium citrate. The
sizes and morphologies of Au NPs can be varied by variation of the mole
ratio of FAC to Au salts. The particles were stable for about 6 h and

precipitation of the particles completed within 24 h.3!

1.2.2: Platinum nanoparticles (Pt NP)

Chen et al synthesised Pt NPs by the reaction of H,PtCls with PEG in the
presence of poly vinyl pyrolidone (PVP) at 110 °C.32 Faceted Pt NPs were
prepared by the reduction of H2PtClgin an aqueous solution of PVP with a
little amount of FeCls.2® Wang et al®* stated the preparation of dendritic Pt
NPs by sonication whereas K>PtCls and formic acid were sonicated in an
aqueous medium in the presence of non-ionic organic compound. Ascorbic
acid was used as a reducing agent for a Pt precursor in aqueous medium,
assisted by block copolymer to produce Pt nanodendrites.® Bigall et al®®
have produced Pt NPs with an average diameter of 10-100 nm by adding
aqueous solutions of H2PtCls, NaBH4, and sodium citrate under reflux

condition.




1.3: Nanoparticles stabilisation in the colloidal solution

The nanoparticles are in persistent movement in the colloidal
solution (Brownian motion). Therefore, there is a need to stabilise the
nanoparticles in the solution to prevent them from coming together in close
contact and consequently precipitation under gravity.®” The chemical forces
used to stabilise the nanoparticles in the colloidal solutions include
electrostatic repulsion, steric and electrosteric forces. The first force is the
electrostatic repulsion derived from the double electric layer around the
particles, which leads to repulsion of the particles from each other and
keeps them in a separate state in the aqueous medium.® The main
peculiarity of electrostatic repulsion force is the high sensitivity to high salt
concentration where the force is markedly decreased. This is attributed to
the suppression of the double electric layer at high salt concentration. This
indicates the instability of Frens's particles (citrate-stabilised gold

nanoparticles) at high salt concentration.*

The second force of the nanoparticles is steric stabilisation, which
originated from the bulky organic materials (stabilising agent or capping

agent). This force inhibits the close contact of the nanoparticles in the
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colloidal solution provided by the functional branched chains of the organic
materials and provides a barrier between the individual particles. The
capping agents include polymers such as PVP*4 PEG,*46 polyvinyl
alcohol (PVA),* chitosan,*® and polymethyl methacrylate (PMMA).4%->0
Surfactants were also used as capping agents.®® Unlike electrostatic
stabilisation, steric stabilisation is less sensitive to high salt concentration
and efficient steric power will be achieved by thick and high density
polymers with functional branched groups.®> This coating reduces the
sensitivity of the particles to the salting process. The third force is
electro-steric which combines the electrostatic and steric stabilisation as in

case of polyoxoanion-coated metal nanoclusters.>->*

1.4: General characterising methods for metal nanoparticles

Characterisation of the nanoparticles is very important to know the
details of the particles such as its formation, morphology, size, stability,
charges and surface chemical composition as well as the aggregation state.
The commonly used characterisation techniques include UV-visible

spectroscopy, transmission electron microscope (TEM), nuclear magnetic
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resonance spectroscopy (*H NMR), and Fourier transform infrared (FTIR).
Other techniques are utilised to a lower extent such as atomic force
microscopy (AFM), high performance liquid chromatography (HPLC),

TEnergy dispersive spectroscopy (EDS) and ion exchange chromatography.

1.4.1: UV-visible spectroscopy

UV-visible spectroscopy is a very useful technique for monitoring
nanoparticles formation during the time coarse of the reaction of metal
precursors with the reductive stabilisers. The nanoparticles formation is
monitored by the formation of absorbance peaks in the visible wavelength
as in case of Au, Ag, Cd, Hg and Cu nanoparticles.>® These absorbance
peaks originated from the surface plasmon resonance (SPR) due to the
oscillation of free excited electrons around the surface of nanoparticles
caused by the light from the UV-visible spectroscopy.®® In the case of other
metals like platinum nanoparticles, the formation of the particles is
monitored by the disappearance of the absorbance peak coming from the Pt
ions, with an increase in the absorbance towards shorter wavelengths.®’

SPR gives an indication about the size; as the nanoparticle's size decreases,




blue shift occurs owing to increasing the gap distance of the smaller
nanoparticles.® Wilcoxon et al.>® indicated SPR was also affected by the
shape of the nanoclusters, relative distance of the particles to each other

(aggregation state), as well as surface chemistry.

1.4.2: Transmission electron microscope (TEM)

TEM is the most useful technique for giving information about
morphology, size, and dispersion state of the nanoparticles.®® The histogram
of the particles could be given by measuring the diameter of each particle
in the obtained TEM images. The sample is prepared by sitting a drop of
nanoparticles onto a carbon-coated copper grid then the sample is
well-dried in desiccators and then exposed to the TEM machine to see the
particles. To a limited range Surface Enhanced Raman Spectroscopy
(SERS) is used to notify the small particles surfaces by monitoring pyridine
absorption on Ag and Au solutions,%! where pyridine is used to start the
agglomeration of nanoclusters.®> The limitation of SERS is that it is only
utilised for metals with a highly defined plasmon band, which is required to

give the desired signal enhancement.%3
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1.4.3: Nuclear magnetic resonance (NMR)

NMR is another useful technique for probing the interactions
between the organic ligands and the nanoparticle surface. The connection
of the organic molecules on the nanoparticle surface has an influence on
the chemical shifts of the signals originated from theses organic molecules
in NMR spectroscopy. This connection was confirmed by shifting of the
signals to lower chemical shift and its broading.54®> The samples are
prepared by good evaporation and dryness of the colloidal solution in order
to get a higher resolution of the NMR spectra. Then a small amount of
dried samples (20-50 mg) was dissolved in dimethyl sulfoxide (DMSQOds)
or D20 according to the solubility of the used organic ligand.%*

1.5: Biofunctionalisation of gold nanoparticles

The nano bio-conjugate can be conducted using different methods
including thiol-modified biomolecules and electrostatic interaction.

1.5.1: Biofunctionalisation by thiol-modified biomolecules (covalent
approach)

The thiol-modified biomolecules such as DNA, peptides, proteins

and organic molecules have strong binding ability to the nanoparticle
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surface through its terminal SH group.®*® It can substitute the weakly
attached molecules on the surface of nanoparticles.®®%° For example, the
modification of DNA with steroid disulfide derivatives leads to higher
stability of the nanoparticles due to a strong attachment process.’®"
1.5.2: Biofunctionalisation by electrostatic interaction (ionic approach)
This approach depends on the electrostatic interaction between the
oppositely charged nanoparticles and biomolecules. For example, in the
case of gold nanoparticles prepared by citrate, when the pH is adjusted
slightly higher than the isoelectric point of citrate, this leads to effective
binding between negatively charged carboxylic group on the surface of the
nanoparticles and positively charged proteins or peptides.’"
1.6: Application of metal-based nanoparticles
1.6.1: Anti-cancer drug delivery
Cancer is one of the most dangerous diseases facing the world and
it is causing many drawbacks on the health and economic status of
countries. Chemotherapeutics and surgical interference are the most
common current treatment against cancer. These treatments have

drawbacks for the patients in terms of the killing of the healthy cells and
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causing acute toxicity. Au NPs modified with thiol-PEG effectively
delivers doxorubicin (DOX),’4"® anthracycline,® and paclitaxel®'®? into the
tumour cells. Many efforts are given to improve the peculiarities of the free
drugs by using metal nanoparticles, especially Au NPs, for drug delivery
systems. These peculiarities include solubility, stability and the efficacy of
the anti-cancer drugs as well as protection of the drugs from degradation.®?
For efficient drug delivery, Au NPs form a complex with the biomolecules,
then crosses the cell wall of the tumour cells and unloads the anti-cancer
drugs. The use of DNA-Au NPs for drug delivery leads to improvement of
cellular uptake of the anticancer drugs in different cell line. This is
explained by the loading of oligonucleotides on Au NPs surfaces, which
adsorbs a high amount of extracellular proteins on the particle surface and
consequently greater uptake by the cells®®2% and gets rid of toxicity to the
normal cells as well as protects the drugs against enzymatic

decomposition 8485

Multiple drug resistance (MDR) can be diminished by using Au
NPs as a drug delivery strategy. MDR is a condition where the transporter

proteins that release the drugs outside the cells are over-expressed on the
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cell membrane of the tumour cells such as P-glycoprotein, leading to
lowering the efficacy of the drugs. Overcoming MDR refers to the fact that
Pgp may identify the drug only on the cell membrane but not when it is
taken up intracellularly after endocytosis.8” After DOX was conjugated to
Au NPs, Au NPs increased intracellular DOX concentrations through
endocytic uptake of the Au NPs. Once inside the cell and acidic organelles
(i.e., lysosomes), DOX would be released and interfere with the normal
cellular processes after its release in acidic environments.® There are two
strategies for crossing the cell membrane; passive and active methods. The
passive method depends on an enhanced permeability and retention effect
and it occurs commonly in diseased tissues via extravasation due to its
disrupted permeability and leakage of blood vessels endothelium. The
active method relies on specific identification of the bio-ligand by receptors
on the cell membrane (cell surface receptor-mediated endocytosis).
Additionally, the Au NPs can be used for the transport of highly sensitive
biomolecules as RNA, DNA 8 peptides, and proteins protecting them

from decomposition.
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1.6.2: Application of nanoparticles as a hanocatalytic system
Nanotechnology is a very important research field that has attracted
interest in the last few years due to its various applications in
nanocatalysis.®*1® The use of nanoparticles as catalysts has been
intensively studied; however, the synthesis of nanocatalytic systems
possessing high activity and durability remains challenging. Stabiliser-free
nanoparticles have been used for catalytic processes,??> which focus only
on the initial catalytic effect and do not consider the durability of the
particles. A first issue associated with stabiliser-free nanoparticles is that
they can easily agglomerate due to their high surface energy and lack of
stabilising agent.® A second drawback is that the recovery of active
particles from the reaction medium after catalysis is difficult, thus the
particles cannot be recycled, causing limitations to their practical use as
well as toxicity to the environment.%41% The main challenge of using metal
nanoparticles in catalysts is that such particles should be reusable
(recyclability), while remaining active, stable, and dispersed. Therefore,
there is a need to design and fabricate highly efficient, stable, and durable

metal-based nanocatalysts. The catalytic efficiency of metal nanoparticles
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is of great importance for useful using of toxic and less useful compounds
such as nitrobenzene or p-nitrophenol, which results in contaminants
entering the wastewater of industrial factories producing pharmaceutical
compounds.19-197 Different routes of infection can affect the human by
p-nitrophenol: ingestion, skin contact, and inhalation. Many factors
determine the health hazard after the exposure to p-nitrophenol like the
route of infection, health conditions, dose, and genetics. These hazards
include irritation, nausea, vomiting, and headaches. By contrast,
p-aminophenol, which is produced by the reduction of p-nitrophenol, is a
very important material in analgesic preparations.’®®° Nanoparticles were
found to catalyse a wide range of reactions such as hydrogenations,>
selective  hydrogenation,™  hydrosilyation,'*? hydrogenolysis and

hydropyrolysis, oxidative acetoxylation,*** and oxidation of CO.!4
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Chapter 2

Spontaneous Preparation, characterisation, and stability
evaluation of highly stable gold nanoparticle stabilized with

w-sulfonylated alkylsulfanylaniline

2.1: Introduction

Au NP have been recognised as one of the most common and
popular nanomaterials, because they are easily modified by using various
functionalised molecules such as DNAs, proteins, or fluorescent molecules.
Functionalised Au NP have found many applications in various fields; their
biological and medicinal applications in particular have been studied most
intensively.®*2 Functio