Affinity peptide mediated site-specific functionalization of native antibodies

September 2019
Kei Yamada

Abstract

Antibody-drug conjugates (ADCs), which consist of three components- antibody, linker, and payload, can function as "magic bullets". These conjugates offer the ability to target drug delivery to specific cells, based on cell-specific recognition and the binding of an antigen by a monoclonal antibody (mAb). In particular, by delivering a cytotoxic payload to cancer cells, ADCs are expected to provide a breakthrough in oncology treatments by providing a way to increase efficacy and decrease toxicity in comparison with traditional chemotherapeutic treatments. The development of ADC therapeutics has dramatically progressed in the past decade and two ADCs have been approved and used as anticancer drugs in the clinic. However, several critical issues regarding the performance of ADCs are still being discussed and investigated. Indeed, in the past few years, several groups have reported that changing the number and position of the drug payloads in the ADCs affects the pharmacokinetics, drug release rates, and biological activity. Using conventional heterogeneous conjugation methods for ADC preparation results in the drug/antibody ratio and connecting position of the payload having stochastic distributions. Therefore, it is important to investigate how these potential problems can be circumvented through site-specific conjugation.

Here, we report a new method of affinity peptide mediated regiodivergent functionalization that enables the synthesis of ADCs from native IgG antibodies, the technology termed AJICAP ${ }^{\text {TM }}$. We succeeded in introducing thiol functional groups onto three lysine residues in IgGs using Fc affinity peptide reagents without antibody engineering. A cytotoxic molecule was then connected to the newly introduced thiol group, and both a surface plasmon resonance binding assay and in vivo xenograft mouse model results showed that the resulting ADC could selectively target and kill HER2-positive cells. This tuneable,

optimized and powerful strategy of regiodivergent functionalization using affinity peptides provides a new approach to construct complex antibody-derived biomolecules.

Table of Contents

1. Introduction

1.1. Antibody-drug conjugates and site-specific conjugation 1
1.2. Recent residue selective labeling for generating homogeneous ADCs 5
1.3. Disulfide re-bridging strategies 7
1.4. Affinity peptide labeling for site-specific conjugation of antibodies 9
2. Affinity peptide meditated site-specific conjugation
2.1. Design and synthesis of peptide reagents 16
2.2. Conjugation study to trastuzumab 22
2.3. Experimental Section 29
3. Conjugation to several subtypes of antibodies and reaction mechanism
3.1. Conjugation to several subtypes of antibodies 63
3.2. Reaction mechanism 71
3.3. Experimental Section 74
4. Synthesis of ADC and biological evaluations
4.1. Synthesis of ADC 83
4.2. Biological evaluations 87
4.3. Experimental Section 90
5. Conclusion 96
References 97
Acknowledgement 105

1. Introduction

1.1. Antibody-drug conjugates and site-specific conjugation

Preparation of homogeneous biomolecules is one of the important issues in the fields of biopharmaceutical and chemical biology. In particular, in protein conjugates, there are usually several reaction sites derived from the presence of several of the same residues, so that homogeneous protein conjugation technologies have long been of interest to chemists and biologists ${ }^{1-5}$. Antibody-drug conjugates are a rapidly growing class in the field of biopharmaceuticals and the synthesis of these compounds requires the use of site-specific conjugation technologies ${ }^{6-8}$. In general, for ADC production, the chemical modification of antibodies (mAbs) has been performed by random reactions with the activated carboxyl groups of N-hydroxysuccinimide (NHS) esters with lysine residues, or by the reactions of thiol-specific reagents, such as maleimide, with cysteines ${ }^{9}$. Lysine conjugation results in $0-8$ conjugated molecules per antibody, and peptide mapping has determined that conjugation occurs on both the heavy and light chains at ~ 20 different lysine residues (40 lysine residues per mAb). Therefore, greater than one million different ADC species can be generated ${ }^{10}$. For cysteine conjugation, the drug/antibody ratio (DAR) can range from $0-8$, generating more than one hundred different ADC species ${ }^{11}$. Examples of representative ADCs prepared by these conventional modifications include Genentech and Immunogen's trastuzumab emtansine (Kadcyla) ${ }^{12,13}$ produced by nonspecific conjugation to lysine residues, and Seattle Genetics's brentuximab vedotin (Adcetris) ${ }^{14,15}$ constructed by alkylation of cysteine thiols that are exposed by prior reduction of the conserved hinge region disulfide bonds; these ADCs were approved in 2013 and 2011, respectively.

In recent years, various groups have reported site-specific modifications of antibodies designed to produce homogeneous ADCs, and these modifications have had effects on
the antigen binding, stability of the antibodies, and the pharmacokinetics ${ }^{16-19}$. Substantial efforts are currently focused on determining how to direct the sites of conjugation to create more homogenous products with a narrow DAR range (Table 1). THIOMAB ${ }^{\text {TM }}$ was the first approved technology that embodied this particular strategy, using strategic cysteine residues developed by Genentech ${ }^{9}$. In THIOMAB ${ }^{\text {TM }}$ technology, two engineered cysteines were introduced to antibody. These two cysteines were capped with cysteines or glutathione in the culture media through disulfide bond, and this disulfide bond must be cleaved to obtain the desired intermediate for ADC synthesis. Remarkably, Junutula et al. solved this problem by cleaving the inter-chain disulfide bonds (and those of engineered cysteine caps) with a reducing agent followed by a spontaneous re-oxidation step to re-connect the intermolecular disulfide bond between a heavy chain and a light chain (HC-LC) and/or between two heavy chains (HC-HC). Additionally, the insertion and/or replacement of unnatural amino acids using antibody engineering has also been tested ${ }^{20,21}$. Other groups have added sequence tags, such as FGE (formylglycine generating enzyme) in a method called SMARTag ${ }^{\text {TM }}$ developed by Redwood Bioscience. ${ }^{22,23,24}$ and Q-tag for using TG (transglu-taminase) ${ }^{25}$, using enzymatic drug conjugation. Whilst technically feasible, this approach adds an additional layer of complexity to the production process for ADCs , requiring detailed optimization to determine suitable insertion sites, and introducing potential challenges for the scale-up and reproducibility. Therefore, site-specific conjugation to native antibodies is desirable to overcome the difficulties in the optimization of cell culture conditions, which potentially had a straight forward CMC (Chemistry, Manufacturing and Control) of an ADC development.

Recently, several groups have reported enzyme-directed, site-specific conjugation to native mAbs. All mAbs are glycosylated at Asn297. Variability in the glycan structure of an
antibody exists within a single batch of a mAb, and the exact ratio of isoforms differs per IgG isotype and is moreover highly dependent on the mammalian expression system used. Several groups have reported use of the glycan for the site of site-specific conjugation. Initially, periodate oxidation of terminal galactose residues, followed by oxime ligation of the payload was investigated ${ }^{26}$. Then, Boeggeman et al. ${ }^{27,28}$, Zeglis et al. ${ }^{29}$, and Li et al. ${ }^{30}$ reported the use of chemoenzymatic conjugation technologies using glycans. In 2015, Geel et al. reported practical glycan remodeling using endoglycosidase and glycosyl transferase to incorporate an azido moiety, and this technology achieved the synthesis of a DAR 2 ADC combination using copper-free click conjugation with bicyclononyne $(\mathrm{BCN})^{31}$. This technology was developed by Synaffix and is called GlycoConnect ${ }^{\text {TM }}$. Antibodies against a variety of subtly different glycans have been found in humans: for example, N -glycolylneuraminic acid, which differs from sialic acid by the addition of a single hydroxyl group, acts as an antigen in humans ${ }^{32}$, and a variety of sialic acid glycoengineering studies have found that other unnatural sialic acids are immunogenic as well ${ }^{33}$. In another methodology, transglutaminase (TG) was applied for modification of non-mutated mAbs. TG recognizes exclusively Gln295 located in the Fc region of deglycosylated IgGs as a site for modification with a suitable substrate ${ }^{25}$. Recently, many groups have reported chemistry-based, site-specific conjugation methodologies for native (non-engineered) antibodies. Chemistry-based methods can be said to be competitive in terms of cost and convenience with the established enzyme-based methods. Precise control over the chemo-, site-, and modification-number selectivity in antibody chemical conjugates, while maintaining structural integrity and homogeneity is highly important, and still represents a major challenge.
Table 1. Site-specific conjugation technologies.

	Engineering required Engineering	Site-specific conjugation to native antibody (non-engineering)				
		Enzymatic	Chemical ${ }^{\text {a }}$			
	A) Cysteine engineering (THIOMAB ${ }^{\text {™ }}$) B) Unnatural amino acid incorporation C) Selenocysteine D) FGE method (SMARTag ${ }^{\text {TM }}$) E) Q-tag using TG F) Glycoengineering and using TG	G) Gly can remodeling H) TG	Recent residue selective labeling for generating homogeneous ADCs I) Sulfonyl acrylate reagents J) Linchpin directed modification	Disulfide re-bridging	Affinity peptide mediated labeling	
					Peptide traced labeling K) Photo affinity labeling L) Activated ester	Peptide traceless labeling M) Metallopeptide N) Activated ester and cleavable linker
Antibody engineering required	A) Cysteine substitution B) Amber stop codon substitution C) Addition of Sec insertion sequence D) Addition of aldehyde tag E) Addition of glutamine tag F) None for glycoengineering or for pre-existing glutamine tag (GIn295)	None	None	None	None	None
Enzymes required for conjugation	Required for FGE (D) or TG (E,F)	Required	None	None	None	None
Conjugation site location	Any location in A-D and F; limited in E	$\begin{aligned} & \text { Glycan (G), } \\ & \text { GIn297 (H) } \end{aligned}$	1	Hinge disulfide	Depends on peptide	Depends on peptide
Conjugation residues	Cysteine (A), Unnatural amino acid (B, D), Selenocysteine (C), Glutamine (E, F)	Glycan (G) or glutamine (H)	Lysine (I) or histidine (J)	Interchain disulfide	Methionine (K) or lysine (L)	Asparagine (M) or lysine (N)
Drug/antibody ratio	2, 4, or more	2	$2(\mathrm{l})$ or 4 (J)	4 or 8	Methionine: $2(\mathrm{~K})$ Lysine: between 1-2 (L)	Asparagine: 1 (M) Lysine: 2 (N)
Antibody variation	Any IgG isotype	Any $\lg \mathrm{G}$ isotype	Only demonstrated with trastuzumab	Any IgG isotype	Any IgG isotype (Only demonstrated with lgG1)	Any IgG isotype
Risk of immunogenicity	Low (high for adding tag sequence)	Low	Low	Low	High	Low
Institutions exploring methods ${ }^{b}$	Genentech (A); Medlmmune; Seattle Genetics (A); Allozyne; Ambrx (B); Sutro (B); National Cancer Institute (C); Glycos (F); Pfizer (E); Catalent (D)	Univ. of Georgia (G); SynAffix (G) (GlycoConnect ${ }^{\text {TM }}$); ETH Zürich (H)	Univ. of Cambridge (I); IISER ${ }^{\text {c }}$ Bhopal (J)	PolyTherics (ThioBridge ${ }^{\mathrm{TM}}$); Univ. College London	$\mathrm{KST}^{\mathrm{d})}(\mathrm{K})$; Univ. of P ennsyivania (K); KTHe) (K); Ajou Univ. (K); Rice Univ. (L); Genentech (K); Kagoshima Univ. (L) (CCAP)	Rice Univ. (M); Ajinomoto (N) (AJICAP ${ }^{\text {™ }}$)

a) Recent chemical approaches are focused on in this review. b) Based on pu
University of Science and Technology. e) KTH. Kungliga Tekniska Högskolan.

1.2. Recent residue selective labeling for generating homogeneous ADCs

Site- and residue-specific modification of proteins by simple chemical reagents is a challenging area in the fields of chemistry and chemical biology. Recently, two groups have reported site-selective lysine and histidine conjugation using simple commercially available chemical reagents.

Matos et al. have reported sulfonyl acrylate reagents for the modification of a single lysine residue on native protein sequences, using computer-assisted design (Figure 1a) ${ }^{34}$. The site selectivity was predicted computationally, where the lysine with the lowest pKa was the kinetically favored residue at slightly basic pH . Chemoselectivity was also observed as the reagent reacted preferentially at lysine, even in those cases when other nucleophilic residues, such as cysteine, were present. This technology was demonstrated by the quantitative and irreversible modification of five different proteins, including the clinically used therapeutic antibody trastuzumab, without prior sequence engineering. Constant pH molecular simulations (CpHMD) for the antibody trastuzumab showed the lowest pKa value was obtained for lysine at position 207 in the light chain, indicating that this residue is likely the one where the sulfonyl acrylate reagent preferentially reacted.

In 2018, Rai et al. reported an alternative method that could modify native antibodies in a site-specific manner using a simple reagent ${ }^{35}$. Initially, a reversible intermolecular reaction places "chemical linchpins" globally to form imine moieties on all the accessible lysine residues. Then, the epoxide which was in-stalled in the "chemical linchpins" reacts with a proximal histidine moiety. If there is no histidine moiety present, the "chemical linchpins" reverse and re-form an aldehyde for covalent labeling with an oxime moiety. Interestingly, this reaction works in native mAbs, and this group have succeeded in obtaining a DAR 4 ADC using trastuzumab.

These new functionalization/conjugation reactions mark an important step forward in achieving directed and site-selective (rather than stochastic) conjugation of native mAbs using a non-genetic approach. However, these two methods have only been used for sitespecific conjugation in trastuzumab, and if alternative antibodies were used, the variable domain sequences of the mAbs may be different and expose other reactive lysine or histidine residues in the antigen recognition region resulting in undesired modifications. A variety of different antibodies need to be tested using these two methods before these methods can be accepted as general site-specific ADC platform technologies.

1.3. Disulfide re-bridging strategies

Generally, there are four interchain disulfide bonds in an antibody. The reduction of these disulfide bonds to obtain eight free sulfhydryl groups in an antibody has been used to obtain high DAR ADCs (approximately DAR 8). Doronina et al. reported the adaption of this DAR 8 system to the chimeric anti-CD30 mAb and conjugated monomethyl auristatin $\mathrm{E}(\mathrm{MMAE})^{36}$. However, further investigation revealed that the high drug loading resulted in a poor tolerability, high plasma clearance rate, and decreased efficacy in vivo owing to aggregation, and that a lower drug-to-antibody ratio resulted in a larger therapeutic window ${ }^{37,38}$. Ob-served differences in the physical state were correlated with a dramatic increase in the hydrophobicity and a reduction in the surface tension of the DAR 8 conjugate compared with lower DAR species.

In 2014, Badescu et al. reported the first disulfide re-bridging strategies using bis-alkylating reagents ${ }^{39}$. This technology was developed by the PolyTherics and called ThioBridge ${ }^{\mathrm{TM}}$. The resulting MMAE conjugates, which had an average DAR of 2.8 , retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Around the same time, Schumacher et al. reported an alternative bis-alkylating reagent, which used dithiomalei-mides40. This group showed that this bis-alkylating reagent could be used to control the DAR and to synthesize site-specific ADCs. Chudasama et al. have also developed dibromopyridazinedione reagents that allow for the efficient functional re-bridging of interchain disulfides ${ }^{41}$. Because this type of site-specific conjugation reagent is easy to prepare, many researchers have demonstrated site-specific ADCs with in vivo efficacy, and applied these reagents to other site-specific modified antibody therapeutic formats ${ }^{42,43}$. Disulfide re-bridging strategies can successfully tackle an important shortcoming in current

ADC preparation methods.

a. Sulfonyl acrylate reagents

b. Linchpin directed modification

c. Disulfide re-bridging strategies

Figure 1. ${ }^{\text {a,b }}$ Recent residue selective labeling for generating ADCs. ${ }^{\text {c }}$ Disulfide re-bridging strategies.

1.4. Affinity peptide labeling for site-specific conjugation of native antibodies

1.4.1. Peptide traced labeling

Benzoylphenylalanine (BPA) is a synthetic amino acid that can be incorporated in a peptide during synthesis. Benzophenone (BP), which is part of BPA, is a photoreactive group that forms covalent bonds to other amino acids upon UV-exposure. BPA is considered to be efficient, stable, and also easy to handle ${ }^{44}$, and it is primarily used to map protein-ligand interactions. When mapping interactions, the strategy is to produce variants of a protein with BPA incorporated at different positions, and then allow the protein to bind its interaction partner ${ }^{45}$. When the complex is subjected to UV light, BPA forms a diradical, which renders the generation of a covalent bond between the protein and its interaction partner possible.

In the past decade, photo affinity labeling using BPA incorporated in mAb affinity proteins or peptides has been developed by several groups (Figure 2a). Initially, in 2009, Jung et al. developed photoactivatable antibody binding proteins, which enabled irreversible and site-selective (Fc-region specific) antibody conjugation on solid surfaces as well as in solution ${ }^{46}$. Specific residues of the Fc -binding domain of protein $\mathrm{G}^{47,48,49}$ were mutated to cysteine, and the resulting sulfhydryl groups were modified by maleimide-functionalized benzophenone molecules via a flexible chemical linker. These engineered small proteins could specifically capture intact antibodies and form covalent conjugates upon UV irradiation, therefore, allowing not only covalent antibody immobilization on solid surfaces, but also site-selective tagging of antibodies in solution by genetically adding various tags to photoactivatable proteins. These proteins ensure heavy chain selectivity as determined by SDS-PAGE, but the specific sites which are modified by this reaction have not been determined. Two years after this report, in 2011, Konrad et al. reported a similar
method using the photoactivatable Z domain of protein $A^{50,51,52,53}$. This group showed that a detection-handle, biotin, could be incorporated in a specific position into the mAb by combining the inherent affinity of the Z domain and the Fc fragment with the ability of BPA to create a covalent bond. Specifically labeled antibodies using this method were successfully synthesized, characterized, and tested in different platforms. In 2013, Yu et al. reported using a Z domain photoactivatable protein applied to mouse IgGs^{54} and in 2014, Hui et al. reported a similar method using BPA incorporated Z-domain ${ }^{51,52,53}$ based, site-specific labeling to immobilize mAbs on nanoparticles ${ }^{55}$. The field of photo affinity labeling of native antibodies is now widespread ${ }^{56-60}$ and very recently, Park et al. ${ }^{61}$ and Vance et al. ${ }^{62}$ have reported BPA incorporation in the Fc-III peptide ${ }^{63}$ to modify Met 252 (EU numbering) in a site-specific manner. BPA was incorporated in the same position in the Fc-III peptide. In Vance`s work, BPA was substituted for each amino acid from the Nterminus to the C-terminus. Ac-DCAWHLGEL(BPA)WCT-NH2 was the only sequence that completed the photo affinity labeling reaction. Furthermore, this group evaluated the equilibrium binding dissociation constants $\left(\mathrm{K}_{\mathrm{D}}\right)$ to human IgG for each substitution sequence by the surface plasmon resonance (SPR) system. The results indicated that the photoconjugation reaction between the Fc-III BPA variants and the mAb was not driven by the non-covalent affinity of the peptide-antibody complex but rather by the precise positioning of the BPA moiety, suggesting a highly specific reaction with an appropriately positioned residue in the antibody. After site-specific peptide conjugation, MMAE was attached covalently, followed by hydroxylamine driven acetyl deprotection to expose the thiol moiety on the peptide tag and a DAR 1.9 ADC was obtained.

Upon UV irradiation, a photo-cross-linker can cross-link affinity peptides such as protein A (especially the Z domain ${ }^{51,52,53}$), pro-tein $\mathrm{G}^{47,48,49}$, and $\mathrm{Fc}-\mathrm{III}{ }^{63}$ to an antibody in a
site-specific manner. However, the lack of chemical selectivity of this method can result in nonspecific cross-linking, and a $30-60 \mathrm{~min}$ exposure to UV irradiation has been shown to cause protein damage ${ }^{64}$. To avoid the use of UV irradiation, Yu et al. ${ }^{65}$ and Kishimoto et al. ${ }^{66}$ have reported using a combination of an affinity peptide with the activated ester method to modify a lysine residue in a mAb (Figure 2 b). Yu et al. used the Z domain of protein $\mathrm{A}^{51,52,53}$ for site-specific conjugation. Several amino acid residues in the sequence were substituted with 4-fluorophenyl carbamate lysine (FPheK) and modification of the proximal Lys317 (EU numbering) was attempted. This group also synthesized and incorporated N -acryloyl-lysine (AcrK) and 2-amino-6-(6-bromohexanamido)hexanoic acid (BrC6K) into the appropriate amino acid positions. Substitution with AcrK or BrC6K showed $20-40 \%$ conjugation efficiency, which was significantly lower than that of FPheK (95%). Site-specific conjugation with the Alexa Fluor 488 covalently attached peptide reagent was also demonstrated, which had a 95% conjugation efficiency. Kishimoto et al. have also reported a similar lysine modification using a Fc-III -like peptide63, which was independently isolated from a random peptide phage library and optimized, named CCAP (Chemical Conjugation by Affinity Peptide). Conjugation efficiency was very high (close to 100%) and might be similar to that demonstrated by Yu et al., but the conjugation speed was dramatically faster than demonstrated by Yu, the reaction terminated within 15 min . Furthermore, the conjugation site was different from previous work, as the Kishimoto group site-specifically modified Lys248 (EU numbering). Several applications of this method have also been reported: emtansine was covalently attached to a peptide to synthesize a site-specific ADC and VHH was covalently attached to a peptide reagent to create a new bi-specific therapeutic plat-form. For site-specific

ADC synthesis, prepared NHS-Peptide-DM1 reagent was mixed with trastuzumab to obtain the mixture of DAR $0,1,2$ species (Average DAR is unknown). Both, ADC and VHH conjugate, these newly created therapeutic antibody formats worked efficiently in in vitro assays. The affinity to FcRn was maintained in the monovalent peptide conjugate but was completely lost in the divalent peptides conjugate. It was assumed that this was because the binding site of the Fc-III de-rived peptide overlapped with that of FcRn. In agreement with a previous report63, the Fc-III peptide-binding region is similar to the protein A binding area, and therefore site-specific conjugation through a protein A derivative would give the same results as found by Kishimoto et al. Furthermore, binding to FcyRI was not affected by the Fc -III derived peptide modification, whereas binding to FcyRIIIa was unexpectedly enhanced by the modification by as much as 3.5 -fold in the divalent conjugate.
a. Photo affinity labeling strategy

b. Affinity peptide in combination with activated ester method to modify lysine residues

Figure 2. Affinity peptide traced labeling for site-specific conjugation. ${ }^{\text {a Photo affinity }}$ labeling strategy. ${ }^{\text {b }}$ Affinity peptide in combination with activated ester method to modify lysine residues.

1.4.2. Peptide traceless labeling

Important factors toward the success of ADCs in clinical use, are that these conjugates involve the use of either chimeric or murine antibodies, which can elicit an immunogenic response, and the use of lower potency drugs. One potential downside to using site-specific peptide traced labeling is that the inserted peptide sequence may be immunogenic in humans. Thus, developing peptide traceless labeling that eliminates the possibility of immunogenicity is highly desirable. Additionally, Kishimoto et al. demonstrated that the preparation of ADCs with DAR 2 by traceless labeling resulted in a loss of FcRn (neonatal Fc receptor) binding affinity, which would result in problematic pharmacokinetics: a lack of a recycling system and a decrease in the half-life of the ADCs.

Further investigation was needed for the affinity peptide mediated labeling system and Ohata et al. ${ }^{67}$ have reported a practical method for peptide traceless labeling for ADC development and for immunoconjugate therapies. Ohata et al. used a hexarhodium metallopeptide catalyst to introduce an alkyne moiety to an asparagine residue in the CH 2 domain of the mAbFc region (Figure 3). 33 residues minimized Z domain was used in this reaction and several amino acid residues were substituted with glutamic acid to incorporate hexarhodium moieties. The specific residue modified in these reactions was confirmed by proteomics analysis. Trypsin digestion and tandem MS/MS identified Asn 312 in the Fc fragment as the modified residue. Asparagine has been previously identified as a reactive residue in rhodium-catalyzed modifications of this type ${ }^{68}$, and, consistent with a proximity-driven mechanism, Asn312 flanks the binding interface between the protein and the Fc binding domain. Finally, a doxorubicin conjugated ADC was synthesized and the average DAR was calculated to be 1.0. This was the first report that used an affinity peptide for the catalyst to introduce a small functional attachment into a non-
mutated mAb.

Figure 3. Affinity peptide traceless labeling for site-specific conjugation using the metallo-peptide method.

2. Affinity peptide meditated site-specific conjugation

2.1. Design and synthesis of peptide reagents

An abundance of sequences of mAb-affinity peptides are known ${ }^{69,70}$. Protein A is a versatile protein framework that binds to the Fc region. It is used in the construction of affinity columns, which are essential pieces of equipment for purifying mAbs for the manufacture of mAb-containing pharmaceuticals ${ }^{70}$. Starovasnik et al. selected the core protein framework of protein A and downsized it by Z-domain motif library ${ }^{71,72}$, indicating the affinity only in the Fc region of mAbs, at a protein A sequence known as Z 34 C (FNMQCQRRFYEALHDPNLNEEQRNAKIKSIRDDC). Meanwhile, DeLano et al. ${ }^{63}$ selected a tridecapeptide called Fc-III (DCAWHLGELVWCT) by M13 bacterio-phage display, as this phage binds at a common site between the CH 2 and CH 3 domains of the Fc region, and the binding area is the same as that of Z 34 C . The $K \mathrm{~d}$ values of Z 34 C and Fc-III are estimated to be approximately 20 nM at pH 7.4 and 16 nM at pH 6.0. Previously, we identified a peptide consisting of 17 amino acids (RGNCAYHRGQLVWCTYH) through biopanning against human IgG1 from random peptide library constructed on T 7 phage display system ${ }^{66}$. This peptide sequence is similar to Fc -III, but it has a high affinity on human IgG Fc compared to Fc -III, which K d value of peptide (RGNCAYHRGQLVWCTYH) was 9 nM . Hence, the affinity of these peptides were sufficient to use these sequences to place a reactive electrophilic moiety in the vicinity of a target lysine residue.

To design our peptide reagents, we initially measured the distance between affinity peptides and the antibody lysine residues from the co-crystal structure of each of the two peptides and the Fc region of IgG (Figs. 4-7). According to the co-crystal structure of the Fc-III peptide and IgG1 Fc, the distance between L6 and Fc K248 was approximately 5.9

Å. From the Z34C and Fc crystal structures, the distances of M3, R31, E20 and Fc K248, K288, and K317 were approximately $12.5,13.7$, and $4.0 \AA$, respectively. This information provided us with reasonable confidence in designing linkers of an appropriate length. Generally, dithiobis(succinimidyl propionate) (DSP, Lomant's reagent) is a useful tool for labelling proteins with high frequency, and the length of the spacer arm is approximately $12 \AA^{73}$. In terms of chemical properties, the side chains of lysine and arginine are similar among proteinogenic amino acids ${ }^{74,75}$. Therefore, we also carefully designed a peptide sequence to replace the lysine residue with arginine and an appropriate amino acid with lysine so that we could connect the linker only to the lysine residue in the peptides.

The designed peptide sequences were synthesized by the established Fmoc-based solidphase method, and we conducted disulfide cyclization by treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ and methanolic NH_{3} for Fc -III and glutathione oxidation for ${\mathrm{Z} 34 \mathrm{C}^{76,77}}^{7}$. After the purification of cyclized peptides by reversed-phase chromatography, the DSP linker was attached to obtain the target peptide reagents (see the 2.3. Experimental Section). Owing to partial spontaneous hydrolysis to the corresponding carboxylic acid, the peptide reagent was partially contaminated, but more than 80% nonetheless consisted of the desired N -hydroxysuccinimide (NHS)-activated product.

Figure 4. Distance between Fc-III L6 and IgG1 Fc K248 from PDB ID: 1DN2.

Figure 5. Distance between Z34C M3 and IgG1 Fc K248 from PDB ID: 1L6X.

Figure 6. Distance between Z34C E20 and IgG1 Fc K317 from PDB ID: 1L6X.

Figure 7. Distance between Z34C R31 and IgG1 Fc K288 from PDB ID: 1L6X.

2.2. Conjugation study to trastuzumab

Notably, the NHS ester group readily reacts with lysine residues in the antibody and/or is hydrolytically decomposed to yield the inactivated peptide reagent at neutral $\mathrm{pH}^{78,79}$. From accumulated evidence ${ }^{80,81}$, we assumed that a lower pH buffer might decrease the decomposition rate of the NHS ester, and thereby improve the yield of our desired affinity labelling reaction. Determine the applicability of the reaction between the affinity reagent and a mAb , we conducted optimization studies using the commercially avaliable antiHER2 antibody trastuzumab. The optimal peptide conjugation conditions were determined to be $18 \mu \mathrm{M}$ trastuzumab in 50 mM sodium acetate buffer (pH 5.5), with the addition of 10 equivalents of peptide reagent $\left(5 \mathrm{mM}\right.$ in DMF) incubated at $20^{\circ} \mathrm{C}$ for 1 h (Fig. 8a). In the conjugation of affinity peptide reagent 1 a to trastuzumab, a product with a peptide/antibody ratio (PAR) of 1 was a minor contaminant, but the desired compound with a PAR of 2 was the major product (Fig. 8b,c). To evaluate the initial selectivity of this reaction, we added a 10 mM solution of tris(2-carboxyethyl)phosphine (TCEP) to the reaction tube and analysed the reduced MS spectrum (Fig. 8d). This indicated that only the 3-mercaptopropionate group was introduced at the heavy chain as we expected. Interestingly, even if the amount of peptide reagent was increased to 30 equivalents, the number of PAR was not increased by non-specific conjugation. And also, an acidic pH is important for not only to prevent unspecific conjugation but also for decreasing the decomposition rate of NHS ester during the conjugation reaction. Moreover, the purity of peptide reagent is proportional to the excess peptide reagent required for reaction completion.

The location of the specific residue that was modified by 3-mercaptopropionate in this reaction was confirmed through peptide mapping analysis. Trypsin digestion and tandem

MS/MS analysis identified residues Lys246 and Lys248 (EU numbering) in the Fc fragment as the residues modified (see the 2.3. Experimental Section) ${ }^{82,83,84}$. Although trypsin digestion resulted in a long peptide fragment with 33 amino acid residues, including residues Lys246 and Lys248, due to its vicinal location it was difficult to determine the precise posi-tion with MS data alone - some of the spectra showed the Lys248 modification, but we cannot ignore the possibility that Lys246 was modified. It is also notable that according to the co-crystal structure information, the distance between Fc-III Leu6 and Fc Lys248 (5.9 Å) was shorter than that between Fc-III Leu6 and Lys246 (17.3 Å). From this information, the majority of the modification seems to be located at Lys248 in our affinity labelling of 1 a .

Having achieved conjugation to obtain the antibody affinity peptide conjugate (AAPC) 1 from peptide reagent 1a, we next investigated the conjugation of Z 34 C peptide reagents 2a, 3a and 4a to trastuzumab (Figs. 9-11). In the case of the synthesis of AAPC 2, the site selectivity was almost the same as for AAPC 1, and the results of peptide mapping (see the 2.3. Experimental Section) indicate that selective modification occurred at residues K246 and K248. Presumably, the modification is predominant at K248, as with the conjugation of 1a. When the peptide reagent 3a was used in an attempt to obtain AAPC 3, the starting material trastuzumab and PAR 3 species appeared as minor contaminants, but the major products were PAR 1 and PAR 2 species (Fig. 10). The reaction to produce AAPC 3 did not proceed even when we added 3a in vast excess. We determined that this result occurred because the spontaneous decomposition of the peptide reagents to their inactivated forms was faster than the desired mAb conjugation reaction, even under acidic conditions. The peptide mapping results indicated that residues K288 and K290 were modified (see the 2.3. Experimental Section). The distances between peptide and antibody
residues were nearly the same as in 1a and/or 2a conjugation, and the distances between R31 and Fc Lys288 and Lys290 were approximately 13.7 and $16.4 \AA$, respectively. We concluded that 3a labelled both lysine residues. Furthermore, we succeeded in obtaining AAPC 4 from peptide reagent 4a and, according to our peptide mapping evaluation (Fig. 11 and see the 2.3. Experimental Section), concluded that Lys317 was selectively modified. Collectively, we built to the creation of a panel of peptide reagents to label different and specific mAb lysine residues.

Figure 8. Conjugation of peptide reagent 1a to trastuzumab. ${ }^{\text {a }}$ Scheme of conjugation 1a
 indicated. ${ }^{\text {d ESI-TOFMS (Reduced condition, LC is light chain and HC is heavy chain; }}$ observed MS and calculated m / z is indicated.)

Figure 9. Conjugation of peptide reagent 2a to trastuzumab. ${ }^{\text {a }}$ Scheme of conjugation 2a to trastuzumab. ${ }^{\mathrm{b}} \mathrm{HIC}$-HPLC. ${ }^{\mathrm{C}}$ ESI-TOFMS (Intact); observed m / z and calculated MS is indicated. ${ }^{\text {d ESI-TOFMS (Reduced condition, LC is light chain and HC is heavy chain); }}$ observed m / z and calculated m / z is indicated.)

Figure 10. Conjugation of peptide reagent 3a to trastuzumab. ${ }^{\text {a }}$ Scheme of conjugation 3a
 indicated. ${ }^{\text {d ESI-TOFMS (Reduced condition, LC is light chain and HC is heavy chain; }}$ observed m / z and calculated m / z is indicated.)

Figure 11. Conjugation of peptide reagent 4a to trastuzumab. ${ }^{\text {a Scheme of conjugation } 4 a}$ to trastuzumab. ${ }^{\mathrm{b}} \mathrm{HIC}$-HPLC. ${ }^{\text {e }}$ ESI-TOFMS (Intact); observed MS and calculated m / z is indicated. ${ }^{\text {d }}$ ESI-TOFMS (Reduced condition, LC is light chain and HC is heavy chain; observed m / z and calculated m / z is indicated.)

2. 3. Experimental Section

2.3.1. Chemicals

Unless otherwise noted, the chemicals and solvents used were of analytical grade and were used as received from commercial sources. SMCC-DM-1 was purchased from Abzena (USA). Fmoc-NH-SAL-PEG Resin,HL, 1-Hydroxy-1H-benzotriazole, anhydrous (HOBt), 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5b]pyridinium 3-oxid hexafluorophosphate (HATU), Fmoc-Rink amide linker, Fmoc-L-Gly-OH, Fmoc-L-Leu-OH, Fmoc-L-Ile-OH, Fmoc-L-Val-OH, Fmoc-L-Lys(Boc)-OH, Fmoc-L-Ala-OH, Fmoc-L-Cys(Trt)-OH, Fmoc-L-Gln(Trt)-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-PheOH, \quad Fmoc-L-Trp(Boc)-OH, Fmoc-His(Boc)-OH, Fmoc-L-Ser(tBu)-OH, Fmoc-L-$\operatorname{Thr}(\mathrm{tBu})-\mathrm{OH}, \mathrm{Fmoc}-\mathrm{L}-\mathrm{Tyr}(\mathrm{tBu})-\mathrm{OH}$, Fmoc-L-Pro-OH and triisopropylsilane (TIPS) were purchased from Watanabe Chemical (Japan). Trifluoroacetic acid (TFA), 1,2ethanedithiol (EDT), Glutathione oxidized form (GSSG) N-ethyldiisopropylamine (DIPEA) dithiobis(succinimidyl propionate) (DSP), L-Ascorbic Acid (DHAA) and Tris(2- carboxyethyl)phosphine hydrochloride (TCEP HCl) were purchased from Tokyo Chemical Industry (Japan). Chromatography solᄀvents were used without distillation. 2M NH3-MeOH, Peptide synthesis-grade N, N-dimethylformamide (DMF), dichloromethane (DCM), HPLC-grade acetonitrile and diethyl ether were obtained from Fujifilm-Wako (Japan). Hydrogen peroxide ultrapure ($30 \% \sim 32 \%$) was purchased from KANTO Chemical (JAPAN).
2.3.2. Monoclonal antibodies, enzyme and antigen

Human, IgG1 trastuzumab (Herceptin®) 150 mg purchased from Chugai Pharmaceutical Company. Human, IgG1 adalimumab (Humira®) 80 mg purchased from Eisai Pharmaceutical Company. Human, IgG2 denosumab (Pralia®) 60 mg was purchased from Daiichisankyo. Human, IgG4 dupilumab (Dupixent®) 300 mg was purchased from SANOFI, Regeneron. Before use, monoclonal antibodies were dialysis by Spectra/Por® Float-A-Lyzer® G2, MWCO:20kDa, Volume: 10 mL . PNGase F 15,000 units from Flavobacterium meningosepticum, New England Biolabs. HER2-Fc recombinant was purchased from R\&D system, which was used for measuring binding affinity of ADC and antibody.

2.3.3. Instruments

Centrifugations were performed with a CT15E (Hitachi, Japan). Peptide were synthesized by the automated microwave peptide synthesizer (CEM, Liberty Blue $\mathrm{HT}^{\mathrm{TM}}$). HIC analysis was performed by ACQUITY UPLC H-Class PLUS system and ProteinPak Hi Res HIC, $2.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$ (waters). Protein purification was conducted by Amicon Ultra Centrifugal Filters- 0.5 mL (Merck). For ADC synthesis, we used illustra NAP-10 or NAP-25 for removing excess unreacted payload. Concentration of proteins were determined a NanoDrop ${ }^{\text {TM }}$ Lite (Thermo Fischer) instrument or Slope Spectroscopy® method with a Solo VPE system. LC-MS chromatograms and associated mass spectra were acquired using Agilent 6545XT Advance Bio LC/Q-TOF System. Xray structure analysis were confirmed by Discovery Studio Visualizar. Peptide purity were determined by an L-2200 system (HITACHI) equipped with an Inertsil ODS-3 3 $\mu \mathrm{m}, \mathrm{C} 18,4.6 \times 1250 \mathrm{~mm}$ (GL science). Each peptide reagent mass spectrum was detected by an LCMS-2020 system equipped with a ODS-3, $2.1 \times 50 \mathrm{~mm}, 5 \mu \mathrm{~m}$ (GL science).

Peptide map analysis was performed using Easy-nLC (Thermo Fischer Scientific) coupled to Orbitrap Fusion instrument (Thermo Fischer Scientific). SPR study was conducted by Biacore T-200 and CM5 sensor chip (GE Healthcare).
2.3.4. LC-MS for peptide and peptide reagent synthesis

Each samples ($1 \mathrm{mg} \mathrm{mL}-1,10 \mu \mathrm{~L}$ in 0.5% TFA water) were analyzed using an LCMS2020 system equipped with a ODS-3, $2.1 \times 50 \mathrm{~mm}, 5 \mu \mathrm{~m}$ (GL science). Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \%$ formic acid water, mobile phase $\mathrm{B}=0.1 \%$ formic acid acetonitrile; gradient 0-5 min, $5 \%-90 \%$ phase B; 5-8 $\mathrm{min}, 90 \%$ phase B; flow rate $=$ 0.2 mL min -1 . Detecting absorbance is 190 nm .

2.3.5. Measuring purity for peptide reagents

Each samples ($1 \mathrm{mg} \mathrm{mL}-1,10 \mu \mathrm{~L}$ in 0.1% TFA water) were analyzed using an L-2200 system (HITACHI) equipped with a Inertsil ODS-3 $3 \mu \mathrm{~m}$, C18, $4.6 \times 1250 \mathrm{~mm}$ (GL science). Elution conditions were as follows: mobile phase A $=0.1 \%$ TFA water; mobile phase $\mathrm{B}=0.1 \%$ TFA acetonitrile; gradient over 30 min from $\mathrm{A}: \mathrm{B}=90: 10$ to $50: 50$; flow rate $=1.0 \mathrm{~mL}$ min -1 . Detecting absorbance is 210 nm .

2.3.6. ACQUITY UPLC H-Class PLUS system and Protein-Pak Hi Res HIC

Each sample ($1 \mathrm{mg} \mathrm{mL}-1,5 \mu \mathrm{~L}$ in PBS) was analyzed using an ACQUITY UPLC H Class PLUS system equipped with a Protein-Pak Hi Res HIC, $2.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$ (Waters). Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \mathrm{M}$ sodium phosphate containing ammonium sulfate (2.3 M) (pH 7.0); mobile phase $\mathrm{B}=0.1 \mathrm{M}$ sodium
phosphate (pH 7.0); gradient over 30 min from $\mathrm{A}: \mathrm{B}=60: 40$ to $0: 100$; flow rate $=0.6 \mathrm{~mL}$ $\min -1$. Detecting absorbance was 280 nm .

2.3.7. 6545XT Advance Bio LC/Q-TOF System

Each samples after conjugation ($1 \mathrm{mg} \mathrm{mL}-1,0.5 \mu \mathrm{~L}$ in ammonium acetate) was analysed using an Agilent 6545XT AdvanceBio LC/Q-TOF system equipped with a PLRP-S column $(2.1 \times 50 \mathrm{~mm}, 1000 \AA, 5 \mu \mathrm{~m})$. The elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \%$ formic acid water; mobile phase $\mathrm{B}=0.1 \%$ formic acid in acetonitrile; gradient $0-1 \mathrm{~min}, 0-20 \% \mathrm{~B} ; 1-3 \mathrm{~min}, 20-50 \% \mathrm{~B} ; 3-4 \mathrm{~min}, 50-70 \% \mathrm{~B}$; flow rate $=0.5$ mL min-1. The absorbance was measured at 280 nm . Automatic data processing was performed with MassHunter BioConfirm software (Agilent) to analyse the intact and reduced MS spectra. For intact deconvolution, we used a mass range of 100,000-180,000 and a limited m / z range of $1000-4000$. For reduction deconvolution, we used a mass range of $20,000-60,000$ and a limited m / z range of $1000-3000$. Moreover, we used DAR Calculator software (Agilent) to determine the PAR and DAR.

2.3.8. Synthesis of peptide reagents

2.3.8.1. Synthesis of peptide reagent 1a (Fig. 12)

Synthesis of S1
Peptide synthesis was conducted by CEM Liberty Blue $\mathrm{HT}^{\mathrm{TM}}$ standard method. To remove a Fmoc-protecting group after each coupling, resin ($100 \mu \mathrm{~mol}$) was treated with piperidine (5 mL of 20% in DMF) and washed with DMF. For the coupling Fmoc protected amino acid (4 eq) was mixed with 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 4 eq), 1-Hydroxy-1H-
benzotriazole, Anhydrous (HOBt, 4 eq) and N, N-diisopropylethylamine (DIPEA, 6 eq) in DMF.

Synthesis of S2
After completion of peptide elongation, the resin was treated with 30% acetic anhydride in DMF for 30 min and then washed with DMF $(2 \times 5 \mathrm{~mL})$ and $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$. The acetyl-capped resin containing protected peptides was treated with 3 mL of TFA/EDT/TIPS/ $\mathrm{H}_{2} \mathrm{O}=95: 2: 2: 1$ solution at room temperature for 3 h . The solution was concentrated by evaporator and the crude peptides were precipitated with cold diethyl ether ($5-6 \mathrm{~mL}$) followed by collecting white crystals by filtration. The peptide pellet was dissolved in 0.05% TFA containing water to purify by reverse phase chromatography. After purification the acetonitrile was removed under reduced pressure and water was removed by sublimation to obtain $\mathbf{S 1}(50.8 \mathrm{mg}, 24.4 \mu \mathrm{~mol})$ in 24.5% yield as an amorphous colorless solid. To the crude S1 was added DMSO 5 mL , followed by 20 eq of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq ($49.8 \mu \mathrm{~L}, 488 \mu \mathrm{~mol}$), and 2 eq of $2 \mathrm{M} \mathrm{NH}_{3}-\mathrm{MeOH}(24.4 \mu \mathrm{~L}, 48.8 \mu \mathrm{~mol})$ and the reaction mixture was stirred for 12 h at room temperature. To this solution was added 2 mL of 0.05% TFA in water and the product was purified by preparatory reverse phase chromatography. Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \% \mathrm{TFA}$ water; mobile phase $B=0.1 \%$ TFA acetonitrile; gradient over 50 min from $A: B=100: 0$ to $50: 50$; flow rate $=1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance. The fractions containing the desired $\mathbf{S} 2$ product were collected and combined. Acetonitrile and volatile organics were removed under reduced pressure and water was removed by sublimation to obtain target molecule $\mathbf{S} \mathbf{2}(44.9 \mathrm{mg}, 20.7 \boldsymbol{\mu m o l})$ in 84.8% yield as an amorphous colorless solid.

Synthesis of 1a
 propionate)) ($167 \mathrm{mg}, 414 \mu \mathrm{~mol}, 20 \mathrm{eq}$) and the reaction mixture was stirred for 12 h . To this solution was added 5 mL of 0.05% TFA in water and the product was purified by preparatory reverse phase chromatography. Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \%$ TFA water; mobile phase $\mathrm{B}=0.1 \%$ TFA acetonitrile; gradient over 50 \min from $\mathrm{A}: \mathrm{B}=100: 0$ to $50: 50$; flow rate $=1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance. The fractions containing the desired 1a product were collected and combined. Acetonitrile and volatile organics were removed under reduced pressure and water was removed by sublimation to obtain target molecule 1a ($41.0 \mathrm{mg}, 17.3 \mu \mathrm{~mol}$) in 83.5% yield as an amorphous colorless white solid.

MS (ESI) $m / z: ~ z=21183.20[M+2 H]^{2+}, \mathrm{z}=3789.10[\mathrm{M}+3 \mathrm{H}]^{3+}$ (calculated: $\mathrm{z}=1$ 2364.68, $\mathrm{z}=2$ 1182.34, $\mathrm{z}=3$ 788.23) (Fig. 13)

Purity: 84.4% (15.6% was identified as the hydrolysis decomposition byproduct) (Fig.
14)

Figure 12. Synthesis of peptide reagent 1a. Conditions of FmocSPPS Coupling: Fmocamino acid (4 eq), HATU (4 eq), HOBt (4 eq), DIPEA (6 eq). Fmoc deprotection: 20\% piperidine in DMF. Reagents and conditions: (a) $30 \% \mathrm{Ac}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 30 min . (b) TFA/EDT/TIPS/ $\mathrm{H}_{2} \mathrm{O}=95: 2: 2: 1$ solution, room temperature, 3 h. (c) $\mathrm{H}_{2} \mathrm{O}_{2}$ (2 eq), $2 \mathrm{M} \mathrm{NH}_{3}-\mathrm{MeOH}(20 \mathrm{eq})$, DMSO, room temperature, 12 h . (d) DSP (dithiobis(succinimidyl propionate)) (20 eq), DMF, room temperature, 12 h .
a.

b. ESI-MS at 3.779 min.

Figure 13. LC-MS results of 1a. ${ }^{\text {a }} \mathrm{HPLC}$ trace (absorbance 190 nm) and ${ }^{\mathrm{b}}$ low-resolution ESI-MS spectrum.

Figure 14. HPLC results of pure product 1a.
2.3.8.2. Synthesis of peptide reagent 2 a (Fig. 15)

Synthesis of S3
Peptide synthesis was conducted by CEM Liberty Blue HT $^{\text {TM }}$ standard method. To remove a Fmoc-protecting group after each coupling, resin ($100 \mu \mathrm{~mol}$) was treated with piperidine (5 mL of 20% in DMF) and washed with DMF. For the coupling Fmoc protected amino acid (4 eq) was mixed with 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 4 eq), 1-Hydroxy-1Hbenzotriazole, anhydrous (HOBt, 4 eq) and N, N-diisopropylethylamine (DIPEA, 6 eq) in DMF.

Synthesis of S4

After completion of peptide elongation, the resin was treated with 30% acetic anhydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min and then washed with DMF $(2 \times 5 \mathrm{~mL})$ and $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$. The acetyl-capped resin containing protected peptides was treated with 3 mL of TFA/EDT/TIPS/ $\mathrm{H}_{2} \mathrm{O}=95: 2: 2: 1$ solution at room temperature for 3 h . The solution was concentrated by evaporator and the crude peptides were precipitated with cold diethyl ether ($5-6 \mathrm{~mL}$) followed by collecting white crystals by filtration. The peptide pellet was dissolved in 0.05% TFA containing water to purify by reverse phase chromatography. After purification the acetonitrile was removed under reduced pressure and water was removed by sublimation to obtain $\mathrm{S} 3(48.3 \mathrm{mg}, 10.6 \mu \mathrm{~mol})$ in 10.6% yield as an amorphous colorless solid. To the crude $\mathbf{S 3}$ was added 0.1 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.0) 5 \mathrm{~mL}$ followed by 10 eq of GSSG ($64.8 \mathrm{mg}, 105.8 \mu \mathrm{~mol})$ and the reaction mixture was stirred for 12 h at room temperature. To this solution was added 2 mL of 0.05% TFA and the product was purified by preparatory reverse phase chromatography. Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \%$ TFA water; mobile phase $\mathrm{B}=0.1 \%$ TFA acetonitrile; gradient over 50 min from $\mathrm{A}: \mathrm{B}=100: 0$ to $50: 50$; flow rate $=1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance. Acetonitrile and volatile organics were removed under reduced pressure and water was removed by sublimation to obtain target molecule S 4 ($36.4 \mathrm{mg}, 8.5 \mu \mathrm{~mol}$) in 75.4% yield as an amorphous colorless solid.

Synthesis of 2a
To S4 ($36.4 \mathrm{mg}, 8.5 \mu \mathrm{~mol}$) was added DMF 2 mL and DSP (dithiobis(succinimidyl propionate)) ($68.7 \mathrm{mg}, 170 \mathrm{~mol}, 20 \mathrm{eq}$) and the reaction mixture was stirred for 12 h . To this solution was added 5 mL of 0.05% TFA in water and the product was purified by preparatory reverse phase chromatography. Elution conditions were as follows: mobile
phase $\mathrm{A}=0.1 \%$ TFA water; mobile phase $\mathrm{B}=0.1 \%$ TFA acetonitrile; gradient over 50 \min from $A: B=100: 0$ to $50: 50$; flow rate $=1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance. The fractions containing the desired 2 a product were collected and combined. Acetonitrile and volatile organics were under reduced pressure and water was removed by sublimation to obtain $2 \mathrm{a}(20.9 \mathrm{mg}, 4.6 \mu \mathrm{~mol})$ in 54.1% yield as an amorphous colorless white solid.

MS (ESI) $m / z: ~ z=5913.80[\mathrm{M}+2 \mathrm{H}]^{2+}, \mathrm{z}=6761.70[\mathrm{M}+3 \mathrm{H}]^{3+}$ (calculated: $\mathrm{z}=14565.04$, $\mathrm{z}=5$ 913.01, $\mathrm{z}=6$ 760.84) (Fig. 16)

Purity: 88.4% (11.6\% was identified as the hydrolysis decomposition byproduct) (Fig. 17)

Figure 15. Synthesis of peptide reagent 2a. Conditions of FmocSPPS Coupling: Fmocamino acid (4 eq), HATU (4 eq), HOBt (4 eq), DIPEA (6 eq). Fmoc deprotection: 20\% piperidine in DMF. Reagents and conditions: (a) $30 \% \mathrm{Ac}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 30 min . (b) TFA/EDT/TIPS/ $\mathrm{H}_{2} \mathrm{O}=95: 2: 2: 1$ solution, room temperature, 3 h . (c) GSSG (10 eq), DMSO, room temperature, 12 h . (d) DSP (dithiobis(succinimidyl propionate)) (20 eq), DMF, room temperature, 12 h .
a.

b. ESI-MS at 3.719 min .

Figure 16. LC-MS results of 2a. ${ }^{\text {a }}$ HPLC trace (absorbance 190 nm) and ${ }^{\mathrm{b}}$ low-resolution ESI-MS spectrum.

Figure 17. HPLC results of pure product 2a.

2.3.8.3. Synthesis of peptide reagent 3a (Fig. 18)

Synthesis of S5
Peptide synthesis was conducted by CEM Liberty Blue $\mathrm{HT}^{\mathrm{TM}}$ standard method. To remove a Fmoc-protecting group after each coupling, resin ($100 \mu \mathrm{~mol}$) was treated with piperidine (5 mL of 20% in DMF) and washed with DMF. For the coupling Fmoc protected amino acid (4 eq) was mixed with 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 4 eq), 1-Hydroxy-1Hbenzotriazole, Anhydrous (HOBt, 4 eq) and N, N-diisopropylethylamine (DIPEA, 6 eq) in DMF.

Synthesis of S6
After completion of peptide elongation, the resin was treated with 30% acetic anhydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min and then washed with DMF $(2 \times 5 \mathrm{~mL})$ and $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$. The acetyl-capped resin containing protected peptides was treated with 3 mL of

TFA/EDT/TIPS $/ \mathrm{H}_{2} \mathrm{O}=95: 2: 2: 1$ solution at room temperature for 3 h . The solution was concentrated by evaporator and the crude peptides were precipitated with cold diethyl ether ($5-6 \mathrm{~mL}$) followed by collecting white crystals by filtration. The peptide pellet was dissolved in 0.05% TFA containing water to purify by reverse phase chromatography. After purification the acetonitrile was removed under reduced pressure and water was removed by sublimation to obtain $\mathbf{S 5}(48.3 \mathrm{mg}, 10.6 \mu \mathrm{~mol})$ in 10.6% yield as an amorphous colorless solid. To the crude $\mathbf{S 5}$ was added 0.1 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.0) 5 \mathrm{~mL}$, followed by 10 eq of GSSG ($64.8 \mathrm{mg}, 105.8 \mu \mathrm{~mol}$) was added and the reaction mixture was stirred for 12 h at room temperature. To this solution was added 2 mL of $0.05 \% \mathrm{TFA}$ in water and the product was purified by preparatory reverse phase chromatography. Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \%$ TFA water, mobile phase B $=0.1 \%$ TFA acetonitrile; gradient over 50 min from $\mathrm{A}: \mathrm{B}=100: 0$ to $50: 50$; flow rate $=$ $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance. Acetonitrile and volatile organics were removed under reduced pressure and water was removed by sublimation to obtain target molecule $\mathrm{S} 6(40.2 \mathrm{mg}, 9.5 \mu \mathrm{~mol})$ in 89.6% yield as an amorphous colorless solid.

Synthesis of 3a

To S6 ($40.2 \mathrm{mg}, 9.5 \mu \mathrm{~mol}$) was added DMF 2 mL and DSP (dithiobis(succinimidyl propionate)) ($76.8 \mathrm{mg}, 190 \mu \mathrm{~mol}, 20 \mathrm{eq}$) and the reaction mixture was stirred for 12 h . To this solution was added 5 mL of 0.05% TFA in water and the product was purified by preparatory reverse phase chromatography. Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \%$ TFA water; mobile phase $\mathrm{B}=0.1 \%$ TFA acetonitrile; gradient over 50 \min from $A: B=100: 0$ to $50: 50$; flow rate $=1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance. The fractions containing the desired 3a product were collected and combined.

Acetonitrile and volatile organics were removed under reduced pressure and water was removed by sublimation to obtain target molecule $3 \mathrm{a}(29.8 \mathrm{mg}, 6.6 \mu \mathrm{~mol}$) in 69.5% yield as an amorphous colorless white solid.

MS (ESI) $m / z: \mathrm{z}=41136.10[\mathrm{M}+2 \mathrm{H}]^{2+}, \mathrm{z}=5909.05[\mathrm{M}+2 \mathrm{H}]^{2+}, \mathrm{z}=6757.70[\mathrm{M}+3 \mathrm{H}]^{3+}$ (calculated: $\mathrm{z}=14540.05, \mathrm{z}=41135.01, \mathrm{z}=5$ 908.01, $\mathrm{z}=6756.68$) (Fig. 19)

Purity: 83.3% (16.7\% was identified as the hydrolysis decomposition byproduct) (Fig. 20)

Figure 18. Synthesis of peptide reagent S3. Conditions of FmocSPPS Coupling: Fmocamino acid (4 eq), HATU (4 eq), HOBt (4 eq), DIPEA (6 eq). Fmoc deprotection: 20\% piperidine in DMF. Reagents and conditions: (a) $30 \% \mathrm{Ac}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 30 min . (b) TFA/EDT/TIPS/ $\mathrm{H}_{2} \mathrm{O}=95: 2: 2: 1$ solution, room temperature, 3 h . (c) GSSG (10 eq), DMSO, room temperature, 12 h . (d) DSP (dithiobis(succinimidyl propionate)) (20 eq), DMF, room temperature, 12 h .
a.

b. ESI-MS at 3.784 min.

Figure 19. LC-MS results of 3a. ${ }^{\text {a }} \mathrm{HPLC}$ trace (absorbance 190 nm) and ${ }^{\text {b }}$ low-resolution ESI-MS spectrum.

Figure 20. HPLC results of pure product 3a.
2.3.8.4. Synthesis of and peptide reagent 4a (Fig. 21)

Synthesis of S7
Peptide synthesis was conducted by CEM Liberty Blue HT ${ }^{\text {TM }}$ standard method. To remove a Fmoc-protecting group after each coupling, resin ($100 \mu \mathrm{~mol}$) was treated with piperidine (5 mL of 20% in DMF) and washed with DMF. For the coupling Fmoc protected amino acid (4 eq) was mixed with 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 4 eq), 1-Hydroxy-1Hbenzotriazole, Anhydrous (HOBt, 4 eq) and N, N-diisopropylethylamine (DIPEA, 6 eq) in DMF.

Synthesis of S8
After completion of peptide elongation, the resin was treated with 30% acetic anhydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min and then washed with DMF $(2 \times 5 \mathrm{~mL})$ and $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$. The acetyl-capped resin containing protected peptides was treated with 3 mL of

TFA/EDT/TIPS/H2O=95:2:2:1 solution at room temperature for 3 h . The solution was concentrated by evaporator and the crude peptides were precipitated with cold diethyl ether ($5-6 \mathrm{~mL}$) followed by collecting white crystals by filtration. The peptide pellet was dissolved in 0.05% TFA containing water to purify by reverse phase chromatography. After purification the acetonitrile was removed under reduced pressure and water was removed by sublimation to obtain $\mathbf{S 7}(42.1 \mathrm{mg}, 9.8 \mu \mathrm{~mol})$ in 9.8% yield as an amorphous colorless solid. To the crude S 7 was added 0.1 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.0) 5 \mathrm{~mL}$, followed by GSSG ($60.3 \mathrm{mg}, 98.4 \mu \mathrm{~mol}$) and the reaction mixture was stirred 12 h at room temperature. To this solution was added 2 mL of $0.05 \% \mathrm{TFA}$ in water and product was purified by reverse phase chromatography. Elution conditions were as follows: mobile phase $\mathrm{A}=$ 0.1% TFA water; mobile phase $\mathrm{B}=0.1 \%$ TFA acetonitrile; gradient over 50 min from $\mathrm{A}: \mathrm{B}=100: 0$ to $50: 50$; flow rate $=1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance. The fraction containing the desired S7 product were collected and combined. Acetonitrile and volatile organics were removed under reduced pressure and water was removed by sublimation to obtain target molecule $\mathbf{S 8}(29.3 \mathrm{mg}, 6.8 \mu \mathrm{~mol})$ as white solid in 69.4% yield as an amorphous colorless solid.

Synthesis of 4a

To S8 (29.3 mg, $6.8 \mu \mathrm{~mol}$) was added DMF 2 mL and DSP (dithiobis(succinimidyl propionate)) ($55.0 \mathrm{mg}, 136 \mu \mathrm{~mol}, 20 \mathrm{eq}$) and the reaction mixture was stirred for 12 h . To this solution was added 5 mL of 0.05% TFA in water and the product was purified by preparatory reverse phase chromatography. Elution conditions were as follows: mobile phase $\mathrm{A}=0.1 \%$ TFA water; mobile phase $\mathrm{B}=0.1 \%$ TFA acetonitrile; gradient over 50 \min from $\mathrm{A}: \mathrm{B}=100: 0$ to $50: 50$; flow rate $=1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detected by 210 nm absorbance.

The fractions containing the desired $4 \mathbf{a}$ product were collected and combined. Acetonitrile and volatile organics were removed under reduced pressure and water was removed by sublimation to obtain $4 \mathrm{a}(22.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ as an amorphous colorless white solid in 73.5% yield. MS (ESI) $m / z: \mathrm{z}=41142.85[\mathrm{M}+2 \mathrm{H}]^{2+}, \mathrm{z}=5914.45[\mathrm{M}+2 \mathrm{H}]^{2+}, \mathrm{z}=6762.15[\mathrm{M}+3 \mathrm{H}]^{3+}$ (calculated: $\mathrm{z}=14567.12, \mathrm{z}=41141.78, \mathrm{z}=5$ 913.42, $\mathrm{z}=6$ 761.19) (Fig. 22)

Purity: 82.9% (17.1% was identified as the hydrolysis decomposition byproduct) (Fig. 23)

Figure 21. Synthesis of peptide reagent S3. Conditions of FmocSPPS Coupling: Fmocamino acid (4 eq), HATU (4 eq), HOBt (4 eq), DIPEA (6 eq). Fmoc deprotection: 20\% piperidine in DMF. Reagents and conditions: (a) $30 \% \mathrm{Ac}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 30 min . (b) TFA/EDT/TIPS/ $\mathrm{H}_{2} \mathrm{O}=95: 2: 2: 1$ solution, room temperature, 3 h . (c) GSSG (10 eq), DMSO, room temperature, 12 h . (d) DSP (dithiobis(succinimidyl propionate)) (20 eq), DMF, room temperature, 12 h .
a.
uAU
190 nm

b. ESI-MS at 5.334 min.

Figure 22. LC-MS results of 4a. ${ }^{\text {a }}$ HPLC trace (absorbance 190 nm) and ${ }^{\mathrm{b}}$ low-resolution ESI-MS spectrum.

Figure23. HPLC results of pure product 4a.

2.3.9. Peptide reagent conjugation to mAbs

Before use, each mAb was dialysed in a Spectra/Por Float-A-Lyzer G2 (20 kDa MWCO, 10 mL volume) to exchange the buffer for phosphate-buffered saline (PBS, $50 \mathrm{mM}, \mathrm{pH}$ 7.4), and the concentration was measured using a NanoDrop Lite (Thermo Fischer). Before the conjugation study, the mAb was exchanged into the appropriate buffer in an Amicon centrifuge filter (10 kDa MWCO, 0.5 mL volume). 10 equivalent of the peptide reagent (10 mM in DMF) was added to each $\mathrm{mAb}\left(2.66 \mathrm{mg} \mathrm{mL}^{-1}, 60 \mathrm{mM} \mathrm{AcONa}, \mathrm{pH}\right.$ 5.5), and the mixture was incubated for 1 h at $20^{\circ} \mathrm{C}$. After 1 h , sodium citrate (50 mM , pH 2.5) was added at the same volume as the reaction buffer and centrifuge-filtered once in an Amicon Ultra centrifuge filter ($10 \mathrm{kDa} \mathrm{MWCO}, 0.5 \mathrm{~mL}$ volume). Due to peptide reagent binding, this process requires the removal of peptide reagents. The buffer was exchanged for 20 mM PBS buffer (pH 7.0) in an Amicon Ultra centrifuge filter (10 kDa MWCO, 0.5 mL volume) to adjust the concentration to $1 \mathrm{mg} \mathrm{mL}^{-1}$ for HIC analysis. For ESI-TOFMS, the buffer was exchanged for 50 mM ammonium acetate by an Amicon Ultra centrifuge filter (10 kDa MWCO, 0.5 mL volume).

2.3.10. Deglycosylation

To a solution of $200 \mu \mathrm{~L}$ of samples ($1 \mathrm{mg} \mathrm{mL}^{-1}, \mathrm{pH} 7.450 \mathrm{mM}$ PBS buffer), $20 \mu \mathrm{~L}$ of GlycoBuffer and 200 units of PNGase F were added and incubated at $37^{\circ} \mathrm{C}$ for 24 h . The buffer exchange by Amicon Ultra 10K-0.5 mL to 50 mM ammonium acetate for ESITOFMS analysis.

2.3.11. Peptide mapping results

General procedure of peptide mapping: Each $10 \mu \mathrm{~g}$ of deglycosylated sample was diluted to $1 \mu \mathrm{~g} / \mu \mathrm{L}$ with 50 mM ammonium bicarbonate (ABC) buffer. Antibody reduction was achieved by the addition of 20 mM dithiothreitol (DTT) in 40% trifluoroethanol (TFE) to a final concentration of 10 mM . After incubation at $65^{\circ} \mathrm{C}$ for 60 min , alkylation was performed by adding 50 mM iodoacetamide (IAM) to a final concentration of 16.7 mM and incubating at $25^{\circ} \mathrm{C}$ for 30 min , in the absence of ambient light. The sample was then diluted up to a total volume of $70 \mu \mathrm{~L}$ with 50 mM ABC buffer. We added $10 \mu \mathrm{~L}$ of $20 \mathrm{ng} / \mu \mathrm{L}$ trypsin (Cat \# T6567-5X20UG, Sigma) and incubated at $37{ }^{\circ} \mathrm{C}$ to carry out protein digestion. After 18 hours incubation, digestion was quenched by adding $2 \mu \mathrm{~L}$ of 20% trifluoroacetic acid (TFA).

The resulting peptide mixture was analyzed on Orbitrap Fusion Tribrid (Thermo Fischer Scientific) interfaced with Easy-nLC (Thermo Fischer Scientific). We used an Acclaim PepMap® 100 ($75 \mu \mathrm{~m} \times 2 \mathrm{~cm}$, Thermo Fischer Scientific) for the trap column and an ESI-column ($75 \mu \mathrm{~m} \times 12.5 \mathrm{~cm}, 3 \mu \mathrm{~m}$, NTCC-360/75-3-125, Nikkyo Technos) for the analysis column. The chromatographic method was consisted of a 0.5 min hold at 2% solvent B (0.1% formic acid in acetonitrile) and 23 min linear gradient from 2 to 30% solvent B. The next wash step was performed as 2 min linear gradient from 30 to 75% solvent B and a 9.5 min hold at 75% solvent B. The solvent A consisted of 0.1% formic acid.

Mass spectrometry analysis was carried out in a data dependent acquisition (DDA) mode with full scans ($350-2,000 \mathrm{~m} / \mathrm{z}$) acquired at a mass resolution of 120,000 . A spray voltage and an ion transfer tube temperature were set to 1600 V and $275^{\circ} \mathrm{C}$, respectively. Among detected ions, charge states other than 2-4 were filtered out and run in top speed mode
with 3 s cycles for MS/MS analysis. The tandem mass spectra were produced by collision induced dissociation (CID) method. An AGC target ion number for MS^{1} was set to 4 e 5 and le 4 for MS^{2}. A maximum injection time for MS^{1} and MS^{2} was both set to 50 msec . For the dynamic exclusion, a duration time was set to 15 sec .

The resulted MS/MS data was searched against either trastuzumab sequence (Fig. 24) using Proteome Discoverer 1.4 or 2.2 (Thermo Fischer Scientific) and BioPharma Finder 1.1 or 3.0 (Thermo Fischer Scientific). For Proteome Discoverer search, Sequest HT was used as a search engine and a total intensity threshold was set to 0.01% intensity of the base peak chromatogram peak top. Trypsin was selected for digestion. The maximum peptide length was set to 50 amino acids. The mass tolerance of precursor ions and fragment ions were set to 5 ppm and 0.5 Da , respectively. Carbamidomethylation of cysteine (+57.021 Da) was specified as a fixed modification, and oxidation of methionine (+15.995 Da) and 3-(2-amino-2-oxo-ethyl) sulfanylpropionate of lysine (+145.019 Da) were included as variable modifications. Peptides without high peptide confidence were filtered out. For BioPharma Finder search, S/N threshold was set to 100 and ms noise level was defined by ms signal threshold to be 0.01% intensity of the base peak chromatogram peak top. Trypsin was selected for digestion. The maximum peptide length was set to 50 amino acids. The mass tolerance was set to 0.3 Da . Fixed modifications and variable modifications were set similar to Proteome Discoverer search. Peptides with confidence score higher than 80% and with MS^{2} spectrum were counted in for the analysis. The resulted data of 3-(2-amino-2-oxo-ethyl)sulfanylpropionate lysine residues and corresponding MS ${ }^{1}$ and MS ${ }^{2}$ spectrum are shown in Figs. 25, 27, 29 and 31, respectively. As shown in Fig. 24, the residues in the CH1, CH2 and CH3 domain (heavy chain constant region) are described with EU numbering. On the other hand, residues in the
light chain and VH domain (heavy chain variable region) are labeled with sequence number. Each AAPCs showed site selective modification in both Proteome Discoverer and BioPharma Finder results. Sequence coverage are shown in Figs. 26, 28, 30 and 32, respectively.
a. Amino acid sequence of trastuzumab

Light Chain					
1 DIQMTQSPSS	LSASVGDRVT	ITCRASQDVN	TAVAWYQQKP	GKAPKLLIYS	50
51 ASFLYSGVPS	RFSGSRSGTD	FTLTISSLQP	EDFATYYCQQ	HYTTPPTFGQ	100
101 GTKVEIKRTV	AAPSVFIFPP	SDEQLKSGTA	SVVCLLNNFY	PREAKVQWKV	150
151 DNALQSGNSQ	ESVTEQDSKD	STYSLSSTLT	LSKADYEKHK	VYACEVTHQG	200
201 LSSPVTKSFN	RGEC				214
Heavy Chain					
1 EVQLVESGGG	LVQPGGSLRL	SCAASGFNIK	DTYIHWVRQA	PGKGLEWVAR	50
51 IYPTNGYTRY	ADSVKGRFTI	SADTSKNTAY	LQMNSLRAED	TAVYYCSRWG	100
101 GDGFYAMDYW	GQGTLVTVSS	ASTKGPSVFP	LAPSSKSTSG	GTAALGCLVK	150
151 DYFPEPVTVS	WNSGALTSGV	HTFPAVLQSS	GLYSLSSVVT	VPSSSLGTQT	200
201 YICNVNHKPS	NTKVDKKVEP	KSCDKTHTCP	PCPAPELLGG	PSVFLFPPKP	250
251 KDTLMISRTP	EVTCVVVDVS	HEDPEVKFNW	YVDGVEVHNA	KTKPREEQYN	300
301 STYRVVSVLT	VLHQDWLNGK	EYKCKVSNKA	LPAPIEKTIS	KAKGQPREPQ	350
351 VYTLPPSREE	MTKNQVSLTC	LVKGFYPSDI	AVEWESNGQP	ENNYKTTPPV	400
401 LDSDGSFFLY	SKLTVDKSRW	QQGNVFSCSV	MHEALHNHYT	QKSLSLSPG	449

b. Numbering correspondence table

以

上up

Figure 24. ${ }^{\text {a }}$ The sequence of trastuzumab used for all peptide mapping analysis of AAPC
1-4. 214 amino acids for the light chain, 449 amino acids for the heavy chain. There are 13 modifiable lysine residues in the light chain and 31 in the heavy chain. ${ }^{\text {b }}$ The table of trastuzumab heavy chain sequence numbering correspondence. The residues in the CH 1 , CH 2 and CH 3 domain (heavy chain constant region) are described with EU numbering. On the other hand, residues in the light chain and VH domain (heavy chain variable region) are labeled with sequence number. The lysine residues identified as modified are marked with yellow.
a. Results of modification search

b. Spectrum of modified peptide

c. MS/MS Spectrum of modified peptide

Figure 25. The results of peptide mapping analysis of AAPC 1. ${ }^{\text {a }}$ Lysine residues identified as DSP-NHS linker modified are shown. Both in Proteome Discoverer and BioPharma Finder search showed K246/K248 selective modification. ${ }^{\text {b }}$ The spectrum of 952.22888 representing THTCPPCPAPELLGGPSVFLFPP ${ }^{246} \mathrm{KP}^{248}$ KDTLMISR (4+, with double carbamidomethylation and one 3-(2-amino-2-oxo-ethyl) sulfanylpropionation, theoretical $m / z: 952.22900$). ${ }^{c}$ MS/MS spectrum of 952.22888 precursor ion.

```
Light Chain
longhi
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
```



```
PD
E A K V Q W K V
lngth 201 202 203 204 205 206 207 208 209 210 211 212 213 214
MPF L S S P V T K S F F N R G G E C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Heav & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline lengt & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 2930 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 3839 & 4041 & 42 & 4344 & 4546 & 46 & 7 & 49 & 50 \\
\hline PD & E & \(v\) & Q & L & v & E & s & G & g & G & L & v & Q & P & G & G & s & L & R & , & s & c & - & A & s & G & F & N & 1 K & D & T & Y & , & H & w & v & - & A & c & K & E & E w & v v & & \\
\hline bpF & E & \(v\) & Q & L & v & E & s & G & G & G & L & \(v\) & Q & P & G & G & s & L & R & L & s & c & A & A & s & G & & N & 1 K & D & T & Y & 1 & н & w & v & R Q & A P & G K & K G & L E & E w & v v & A & \\
\hline \multicolumn{46}{|l|}{eu} \\
\hline lengt & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 7980 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 90 & 92 & 9394 & 9596 & 7 & 7 & 99 & \\
\hline pD & 1 & Y & P & T & N & G & Y & T & R & Y & A & D & s & v & K & G & R & F & T & 1 & s & A & D & & & к & & T & A Y & L & 0 & M & N & s & L & R & A E & D T & A & V Y & Y C & c s & 5 R & w & \\
\hline bpF & 1 & Y & P & T & N & G & y & T & R & r & A & D & s & v & к & G & R & F & T & & & & & T & s & K & N & T & A Y & L & Q & м & N & s & L & R & A E & D T & A v & v Y & Y C & c s & s & w & \\
\hline \multicolumn{46}{|c|}{} \\
\hline lengt & 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 17 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & & 126 & 127 & 128 & 129130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138139 & 140141 & 142 & 143144 & 145146 & 146147 & 17 & 149 & \\
\hline \multirow[t]{2}{*}{} & G & D & G & F & Y & A & M & D & Y & w & G & Q & G & T & L & v & T & v & s & s & A & s & & K & G & & & & & L & A & & s & s & к & s & T s & G G & T A & A A & L G & G c & c & \(v\) & \\
\hline & G & D & G & F & Y & A & m & D & Y & w & G & Q & G & т & 1 & \(v\) & T & v & s & s & A & s & T & к & G & & & & & & A & & s & s & K & s & T s & G G & T & A A & L G & G c & c L & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
еu \\
lengh \\
PD \\
BPF
\end{tabular}} & 148 & 149 & 150 & 151 & 152 & 153 & 154 & 155 & 156 & & & 159 & & 161 & 162 & 163 & 164 & 165 & 166 & 1671 & 168 & 169 & 170 & 171 & 172 & 173 & 174 & 175 & 176177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185186 & 187188 & 18919 & 190191 & 192193 & 193194 & 94195 & 196 & \\
\hline & 151 & 152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 & 169 & 1701 & 171 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188189 & 190191 & 19219 & 193194 & 195196 & 196197 & 97198 & 199 & \\
\hline & D & Y & F & P & E & P & v & T & v & s & w & N & s & - & & & T & s & G & & H & & & & & & & Q & s s & \({ }_{\text {G }}\) & L & Y & s & L & s & s & v v & T V & & s s & S L & G & & & \\
\hline & D & Y & F & P & E & P & \(v\) & T & \(v\) & s & w & N & s & G & A & L & T & s & G & & & & & P & A & & L & Q & s s & G & L & Y & s & L & s & s & v v & T v & P S & s s & S L & G & G & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
eu \\
lengh \\
PD \\
BPF
\end{tabular}} & 198 & 199 & 200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 & 224 & 225 & 226227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235236 & 237 & 239 & 240241 & 24224 & 24324 & 44245 & 246 & \\
\hline & 201 & 202 & 203 & & 205 & 206 & & 208 & 209 & & & & & & & & & 218 & 219 & & & & & & & & 227 & & & & & 233 & & & & & & & & & & & & & \\
\hline & Y & 1 & c & N & v & N & H & к & P & s & N & T & к & v & D & к & K & v & E & P & K & s & c & D & K & T & H & T & c P & & c & P & A & P & E & L & L G & G P & s \(v\) & V F & L F & F P & P & K & \\
\hline & Y & 1 & c & N & v & N & H & к & P & s & N & T & K & \(v\) & D & к & к & \(v\) & E & & к & s & c & D & к & & н & & c P & & c & P & A & P & E & & L G & G P & s v & \(\checkmark \mathrm{F}\) & F & F P & P & & \\
\hline \multirow[t]{4}{*}{} & & & 250 & 251 & 252 & & & & & & & & & & 262 & & 264 & 265 & 266 & 267 & & 269 & 270 & 271 & 272 & 273 & 274 & 275 & 276277 & 278 & 279 & 280 & 281 & 282 & 283 & 284 & 285286 & 287288 & & 290291 & 292293 & 29329 & 2429 & & \\
\hline & 251 & 252 & 253 & 254 & 255 & 256 & 257 & 258 & 259 & 260 & 261 & 262 & 263 & 264 & 265 & 266 & 267 & 268 & 269 & 2702 & 271 & 272 & 273 & 274 & 275 & 276 & 277 & 278 & 279280 & 281 & 282 & 283 & 284 & 285 & 286 & 287 & 288289 & 290291 & & 293294 & 295296 & 296297 & & & \\
\hline & K & & T & L & M & & & R & T & P & & & T & c & & v & v & & & & & & & & & & & & N w & & & & & & & & & A K & & & E & & & & \\
\hline & к & D & T & L & M & 1 & s & R & T & P & E & v & T & c & \(v\) & v & \(\checkmark\) & D & & & & & & & & & & & N w & & & & & & & & H N & A K & T K & K P & R E & E E & E & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
eu \\
length \\
pD \\
bpF
\end{tabular}} & 298 & 299 & 300 & 301 & 302 & 3033 & 304 & 3053 & 306 & 307 & 308 & 309 & 310 & 311 & 312 & 313 & 314 & 315 & 316 & 3173 & 318 & 319 & 320 & 321 & 322 & 323 & 324 & 325 & 326327 & 328 & 329 & 330 & 331 & 332 & 333 & 334 & 335336 & 337338 & 839934 & 340341 & 342343 & 34334 & 3434 & 346 & \\
\hline & 301 & 302 & 303 & & 305 & 3063 & & 308 & & & & & & & & & & 318 & 319 & & & & & & & & 327 & & & & & & & & & & & & & & & & & & \\
\hline & s & T & Y & R & v & v & s & v & L & T & \(v\) & L & H & Q & D & w & L & N & G & к & E & Y & к & c & K & v & s & N & K A & L & P & A & P & & E & & T I & , & A k & , & & P R & , & P & \\
\hline & s & T & Y & R & v & v & s & v & L & T & \(v\) & L & H & Q & D & w & L & N & G & & & & & & к & & s & N & K A & & & & & & & & T I & K & & \(\checkmark\) & P & P R & R & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
EU \\
length \\
PD \\
BPF
\end{tabular}} & 348 & 349 & 350 & 351 & 352 & 353 & 354 & 355 & 356 & 357 & 358 & & 360 & 361 & 362 & & 364 & 365 & 366 & 367 & 368 & 369 & 370 & 31 & 372 & 373 & 374 & 375 & & 378 & 379 & 380 & 381 & 382 & 383 & 384 & 385386 & 387388 & 38939 & 390391 & 392393 & & 34395 & 396 & \\
\hline & 351 & 352 & 353 & 354 & 355 & 3563 & 357 & 358 & 359 & 360 & 361 & 362 & 363 & 364 & 365 & 366 & 367 & 368 & 369 & 3703 & 371 & 372 & 373 & 374 & 375 & 376 & 377 & 378 & 379380 & 381 & 382 & 383 & 384 & 385 & 386 & 387 & 388389 & 390391 & 139239 & 393394 & 395396 & 396397 & 7398 & \[
399
\] & \\
\hline & v & & T & & & & & & & & & & & N & Q & v & s & L & & & & & & & & & & & & A & & & & & & & G Q & P E & & \(\mathrm{N}^{\mathrm{Y}}\) & \({ }^{\text {K T }}\) & T T & T P & & \\
\hline & v & Y & T & L & P & P & s & R & E & E & M & & к & N & Q & v & s & L & T & & & v & к & G & F & Y & P & s & D I & A & \(v\) & & w & E & s & N & G Q & E & N N & N Y & r & T T & T P & P & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
EU \\
length \\
PD \\
BPF
\end{tabular}} & 398 & 399 & 400 & 401 & 402 & 4034 & 404 & 405 & 406 & 407 & 408 & 409 & 410 & 411 & & & 414 & 415 & 416 & 4174 & 418 & 419 & & 421 & 422 & & 424 & 425 & 426427 & 428 & 429 & 430 & 431 & 432 & 433 & 434 & 435436 & 437438 & 4394 & 440441 & 442443 & 44344 & 44445 & 446 & \\
\hline & 401 & & & & & & & 408 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & 443444 & 445446 & & 47448 & & \\
\hline & L & D & s & D & G & s & F & F & L & Y & s & к & L & T & \(v\) & D & к & s & R & w & Q & Q & G & N & v & F & s & c & s v & M & H & E & A & L & H & N & H Y & Q & K & 1 & s L & L s & s & & \\
\hline & L & D & s & D & G & & F & & L & r & & к & L & T & v & & K & & & & & & & N & & & & c & s v & M & & & & & & & H & Q & K & s L & S L & L s & 5 P & & \\
\hline
\end{tabular}
```

Figure 26. Sequence coverage of acquired peptides. Coverages of light chain were 94.4\% and 100%, heavy chain were 79.5% and 87.1% by Proteome Discoverer (PD) and BioPharma Finder (BPF), respectively. Modification observed lysine residues are marked with yellow, and most modified ones are indicated in orange.
a. Results of modification search

b. Spectrum of modified peptide

c. MS/MS Spectrum of modified peptide

Figure 27. The results of peptide mapping analysis of AAPC 2. ${ }^{\text {a }}$ Lysine residues identified as DSP-NHS linker modified are shown. Both in Proteome Discoverer and BioPharma Finder search showed K246/K248 selective modification. ${ }^{\text {b }}$ The spectrum of 952.23132 representing THTCPPCPAPELLGGPSVFLFPP ${ }^{246} \mathrm{KP}^{248}$ KDTLMISR (4+, with double carbamidomethylation and one 3-(2-amino-2-oxoethyl)sulfanylpropionation, theoretical $m / z: 952.22900$). ${ }^{c}$ MS/MS spectrum of 952.23132 precursor ion.

```
Light Chai
ll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
```



```
lllll
Enghh crlllllllllllllllll
L S S P V T K S F N R G E C
Meavy Chain
M EU
lllllllllllllllllllll
|
```



```
G D G F Y A M D Y W G O G T L V T V S S A S T K G P S V F P P L P S S K S T S G G T A A L G C L V K
|\mp@code{lul}
```



```
|
```



```
K D T L M I S R T P F V T C V V V D V S H E D P E V K F N W Y V D GG V E V H N A K T K P R E E O Y N
```



```
BPF S T Y Y R V V S V L T V L L H Q D D W L N N G K K E Y K K C K \ V S N N K A L L P
```



```
V Y T L P P S R E E M T K N Q V S L T C L V K G F Y P S D I A V E W E S N G O P E N N Y K T T P P V
lll
llllllllllll
```

Figure 28. Sequence coverage of acquired peptides. Coverages of light chain were 100\% and 100%, heavy chain were 81.5% and 86.0% by Proteome Discoverer (PD) and BioPharma Finder (BPF), respectively. Modification observed lysine residues are marked with yellow, and most modified ones are indicated in orange.
a. Results of modification search

b. Spectrum of modified peptide

c. MS/MS Spectrum of modified peptide

Figure 29. The results of peptide mapping analysis of AAPC 3. ${ }^{\text {a }}$ Lysine residues identified as DSP-NHS linker modified are shown. Both in Proteome Discoverer and BioPharma Finder search showed K288/K290 selective modification. ${ }^{\text {b }}$ The spectrum of 769.04663 representing FNWYVDGVEV-HNA ${ }^{288} \mathrm{KT}^{290} \mathrm{KPR}$ (3+, with one 3-(2-amino-2-oxo-ethyl)sulfanylpropionation, theoretical $m / z: 769.04457$). ${ }^{\text {c }} \mathrm{MS} / \mathrm{MS}$ spectrum of 769.04663 precursor ion.

```
Light Chain
ly
```



```
MD Clllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllll
lenghh 201 202 203 204 205 206 207 208 209 210 211 212 213 214
BPF L
lolem Cl
```



```
M,
```



```
PD
```



```
MD [lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
```

Figure 30. Sequence coverage of acquired peptides. Coverages of light chain were 62.1% and 96.3%, heavy chain were 72.6% and 84.2% by Proteome Discoverer (PD) and BioPharma Finder (BPF), respectively. Modification observed lysine residues are marked with yellow, and most modified ones are indicated in orange.
a. Results of modification search

b. Spectrum of modified peptide

c. MS/MS Spectrum of modified peptide

Figure 31. The results of peptide mapping analysis of AAPC 4. ${ }^{\text {a }}$ Lysine residues identified as DSP-NHS linker modified are shown. Both in Proteome Discoverer and BioPharma Finder search showed K317 selective modification. ${ }^{\text {b }}$ The spectrum of 791.75018 representing VVSVLTVLHQDW-LNG ${ }^{317}$ KEYK (3+, with one 3-(2-amino-2-oxo-ethyl)sulfanylpropionation, theoretical $m / z: 791.74753$). ${ }^{\text {c }} \mathrm{MS} / \mathrm{MS}$ spectrum of 791.75018 precursor ion.

```
M
men
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
```



```
lll
```



```
lll
llongh clllllllllllllllll
LS S P V T K S F N R G E C
```


Figure 32. Sequence coverage of acquired peptides. Coverages of light chain were 94.4\% and 100%, heavy chain were 83.3% and 86.0% by Proteome Discoverer (PD) and BioPharma Finder (BPF), respectively. Modification observed lysine residues are marked with yellow, and most modified one is indicated in orange.

3. Conjugation to several subtypes of antibodies and reaction mechanism

3.1. Conjugation to several subtypes of antibodies

In the experiments described thus far, we investigated regiodivergent affinity peptide labelling for obtaining AAPCs based on trastuzumab. Next, we examined the possibility of attaching affinity peptides to a range of human IgGs. For use as biopharmaceuticals, FDA has only approved IgG subclasses 1,2 and 4^{85}. Thus, we chose adalimumab (human anti-TNF $\alpha \operatorname{IgG1}$), denosumab (human anti-RANKL IgG2), and dupilumab (human antiIL4/13 IgG4) to test our ability to conjugate the Fc-III-derived affinity peptide 1a, and from the three Z34C peptide derivatives we also selected 2a for further studies. Gratifyingly, our conjugation was successful with all three mAb isotypes attempted, and the reaction selectivity and PAR were nearly the same as observed for trastuzumab (Table 2 and Figs. 33-38). The selectivity of the peptide conjugations to the mAbs Fc regions was confirmed by the reduction MS spectrum which indicated affinity peptides labelled only in heavy chain of mAbs. Additionally we conducted peptide mapping analysis after conjugation of peptide reagent 1a to adalimumab. The peptide map-ping analysis indicated similar results as with trastuzumab and we identified residues K246 and K248 (EU numbering) in the Fc fragment as the modified residues (see the 3.3. Experimental Section). Protein A has been reported to bind only to subclasses of human IgG1, 2 and 4, but not human $\operatorname{IgG} 3$, and this information is particularly pertinent to understanding the results obtained here ${ }^{86}$. In agreement with a previous report, the Fc-III peptide-binding region is similar to the Z34C binding area, and it there-fore should have an affinity for Fc in human IgG1, IgG2 and IgG4.

Table 2. Results of the conjugation of affinity peptide reagents to adalimumab (human IgG1), denosumab (human IgG2) and dupilumab (human IgG4). PARs were determined by Agilent DAR Calculator.

Type of antibodies	Fc affinity peptide reagents	Peptide/antibody ratio (PAR)			
		0	1	2	3
Adalimumab (Human lgG1)	1a	-	7\%	93\%	-
	2a	-	8\%	91\%	1\%
Denosumab (Human IgG2)	1a	-	9\%	91\%	-
	2a	-	-	100\%	-
Dupilumab (Human IgG4)	1a	-	8\%	92\%	-
	2a	-	6\%	94\%	-

a

 Peptide: 10 eq (4 mM in DMF) $1 \mathrm{~h}, 20^{\circ} \mathrm{C}$

Adalimumab
human, lgG1

Figure 33. Peptide reagent 1a, 2a conjugation to adalimumab. ${ }^{\text {a }}$ Scheme of conjugation 1a to adalimumab. ${ }^{\text {b }}$ Scheme of conjugation 2a to adalimumab. ${ }^{\text {c }}$ HIC-HPLC.
a ESI-TOMFS (Intact)

b ESI-TOMFS (Reduced, LC)

c ESI-TOMFS (Reduced, HC)

Figure 34. ${ }^{a}$ ESI-TOFMS (Intact). ${ }^{\text {b }}$ ESI-TOFMS (Reduced condition, light chain). ${ }^{\text {c }}$ ESITOFMS (Reduced condition, heavy chain.)

Buffer: $\mathrm{pH} 5.5,50 \mathrm{mM} \mathrm{NaO}$
Peptide: $10 \mathrm{eq}(4 \mathrm{mM}$ in DMF) $1 \mathrm{~h}, 20^{\circ} \mathrm{C}$

 2a

Figure 35. Peptide reagent 1a, 2a conjugation to denosumab. ${ }^{\text {a }}$ Scheme of conjugation 1a to denosumab. ${ }^{\text {b }}$ Scheme of conjugation 2a to denosumab. ${ }^{\text {c }}$ HIC-HPLC.
a ESI-TOMFS (Intact)

b ESI-TOMFS (Reduced, LC)

Figure 36. ${ }^{a}$ ESI-TOFMS (Intact). ${ }^{\text {b }}$ ESI-TOFMS (Reduced condition, light chain). ${ }^{\text {c }}$ ESITOFMS (Reduced condition, heavy chain).

Figure 37. Peptide reagent 1a, 2a conjugation to dupilumab. ${ }^{\text {a }}$ Scheme of conjugation 1a to dupilumab. ${ }^{\text {b }}$ Scheme of conjugation 2a to dupilumab. ${ }^{\text {c }}$ HIC-HPLC.
a ESI-TOMFS (Intact)
$\left.\begin{array}{r|r|r} \\ \times 10^{4} \\ 3- \\ 2- \\ 1- \\ 0\end{array}\right]$ Dupilumab 146906.46

b ESI-TOMFS (Reduced, LC)

$\left.\begin{array}{r} \times 10^{5} \\ 6 \\ 4 \\ 4 \\ 2 \\ 0 \end{array}\right]$	Dupilumab	24019.54
$\left.\begin{array}{r} \times 10^{5}- \\ 4- \\ 2- \\ 0 \end{array}\right]$	AAPCS13	24019.41

c ESI-TOMFS (Reduced, HC)

Figure 38. ${ }^{\text {a }}$ ESI-TOFMS (Intact). ${ }^{\text {b }}$ ESI-TOFMS (Reduced condition, light chain). ${ }^{\text {c }}$ ESITOFMS (Reduced condition, heavy chain).

3.2. Reaction mechanism

Several mechanistic insights can be inferred from our regiodivergent labelling, and we verified the influence of pH in these reactions. In pH 7.4 HEPES buffer, the conjugation of peptide reagents 1a-4a with trastuzumab was incomplete because the NHS ester immediately decomposed to form the inactivated peptide reagent in situ (see the Supplementary Information). Moreover, after the conjugation reactions of 1a, 2a and 4a, a nonspecific mode of modification, LC+3-mercaptopropionate, was observed (Fig. 39). Therefore, acidic conditions in our affinity labelling are essential for completing the reaction in a site-specific manner. Typically, the reaction between primary amines and NHS esters is favoured under neutral to slightly basic conditions. At a lower pH , protonation will render the lysine residues unreactive. However, the protonated and deprotonated forms of lysine exist in dynamic equilibrium in an acidic environment. Lysine condensation with the NHS ester proceeds only if the electrophile exists in the vicinity of the nucleophilic target residue because of the affinity of the peptide for the antibody. Moreover, we propose that lower pH is optimal to prevent non-specific conjugation and allows our unexpected mode of site-specific conjugation to proceed.

Figure 39. Peptide reagent 1a-4a conjugation to trastuzumab. ${ }^{\text {a }}$ Scheme of conjugation 1a-4a to trastuzumab. ${ }^{\text {b }}$ ESI-TOFMS (Reduced condition, LC is light chain and HC is heavy chain.)

For emerging site selectivity, the sequence design of peptide reagents is the most important aspect of our methodology. Thus, the lysine in the peptide sequence accurately directs the residue modification in the mAb, and embedded lysines in the peptides must be mutated to arginine. Moreover, these mutated peptides require sufficient affinity to accomplish conjugation. To gain more fundamental insights into the site selectivity, in
this study, the K_{d} values of hydrolysed peptide reagents were evaluated by using SPR (Table 3 and see the 3.3. Experimental Section Figs. 43-46). Several general conclusions can be drawn at this juncture. First, each peptide retained high affinity for trastuzumab even if we connected a DSP linker and mutated the embedded lysine to arginine. Second, the order of relative affinity to trastuzumab was $1 \mathbf{a}>2 \mathrm{a}>4 \mathrm{a}>3 \mathrm{a}$, and only 3 a did not completely react. This means that a higher affinity than that of 3 a is required for the reaction in which binding K_{d} was evaluated as $82.5 \pm 0.07 \mathrm{nM}$.

Table 3. Hydrolysed peptide reagents 1a-4a bind to trastuzumab in the Biacore SPR assay.

Hydrolyzed Peptide reagent	Trastuzumab
	$\mathbf{K}_{\mathrm{D}} \mathbf{(n M)}$
$\mathbf{2 a}$	12.5 ± 0.01
3a	28.4 ± 0.05
$\mathbf{4 a}$	82.5 ± 0.07

3.3. Experimental section

3.3.1. Peptide mapping of S9

General procedure of peptide mapping: Each $10 \mu \mathrm{~g}$ of deglycosylated sample was diluted to $1 \mu \mathrm{~g} / \mu \mathrm{L}$ with 50 mM ammonium bicarbonate (ABC) buffer. Antibody reduction was achieved by the addition of 20 mM dithiothreitol (DTT) in 40% trifluoroethanol (TFE) to a final concentration of 10 mM . After incubation at $65^{\circ} \mathrm{C}$ for 60 min , alkylation was performed by adding 50 mM iodoacetamide (IAM) to a final concentration of 16.7 mM and incubating at $25^{\circ} \mathrm{C}$ for 30 min , in the absence of ambient light. The sample was then diluted up to a total volume of $70 \mu \mathrm{~L}$ with 50 mM ABC buffer. We added $10 \mu \mathrm{~L}$ of $20 \mathrm{ng} / \mu \mathrm{L}$ trypsin (Cat \# T6567-5X20UG, Sigma) and incubated at $37{ }^{\circ} \mathrm{C}$ to carry out protein digestion. After 18 hours incubation, digestion was quenched by adding $2 \mu \mathrm{~L}$ of 20% trifluoroacetic acid (TFA).

The resulting peptide mixture was analyzed on Orbitrap Fusion Tribrid (Thermo Fischer Scientific) interfaced with Easy-nLC (Thermo Fischer Scientific). We used an Acclaim PepMap® 100 ($75 \mu \mathrm{~m} \times 2 \mathrm{~cm}$, Thermo Fischer Scientific) for the trap column and an ESI-column ($75 \mu \mathrm{~m} \times 12.5 \mathrm{~cm}, 3 \mu \mathrm{~m}$, NTCC-360/75-3-125, Nikkyo Technos) for the analysis column. The chromatographic method was consisted of a 0.5 min hold at 2% solvent B (0.1% formic acid in acetonitrile) and 23 min linear gradient from 2 to 30% solvent B. The next wash step was performed as 2 min linear gradient from 30 to 75% solvent B and a 9.5 min hold at 75% solvent B. The solvent A consisted of 0.1% formic acid.

Mass spectrometry analysis was carried out in a data dependent acquisition (DDA) mode with full scans ($350-2,000 \mathrm{~m} / \mathrm{z}$) acquired at a mass resolution of 120,000 . A spray voltage and an ion transfer tube temperature were set to 1600 V and $275^{\circ} \mathrm{C}$, respectively. Among
detected ions, charge states other than 2-4 were filtered out and run in top speed mode with 3 s cycles for MS/MS analysis. The tandem mass spectra were produced by collision induced dissociation (CID) method. An AGC target ion number for MS ${ }^{1}$ was set to 4 e 5 and 1e4 for MS^{2}. A maximum injection time for MS^{1} and MS^{2} was both set to 50 msec . For the dynamic exclusion, a duration time was set to 15 sec.

The resulted MS/MS data was searched against either adalimumab sequence (Fig. 40) using Proteome Discoverer 1.4 or 2.2 (Thermo Fischer Scientific) and BioPharma Finder 1.1 or 3.0 (Thermo Fischer Scientific). For Proteome Discoverer search, Sequest HT was used as a search engine and a total intensity threshold was set to 0.01% intensity of the base peak chromatogram peak top. Trypsin was selected for digestion. The maximum peptide length was set to 50 amino acids. The mass tolerance of precursor ions and fragment ions were set to 5 ppm and 0.5 Da , respectively. Carbamidomethylation of cysteine $(+57.021 \mathrm{Da})$ was specified as a fixed modification, and oxidation of methionine (+15.995 Da) and 3-(2-amino-2-oxo-ethyl) sulfanylpropionate of lysine (+145.019 Da) were included as variable modifications. Peptides without high peptide confidence were filtered out. For BioPharma Finder search, S/N threshold was set to 100 and ms noise level was defined by ms signal threshold to be 0.01% intensity of the base peak chromatogram peak top. Trypsin was selected for digestion. The maximum peptide length was set to 50 amino acids. The mass tolerance was set to 0.3 Da . Fixed modifications and variable modifications were set similar to Proteome Discoverer search. Peptides with confidence score higher than 80% and with MS/MS spectrum were counted in for the analysis.

The resulted data of 3-(2-amino-2-oxo-ethyl)sulfanylpropionate lysine residues and corresponding MS and MS/MS spectrum are shown in Fig. 41. As shown in Fig. 42, the
residues in the $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 domain (heavy chain constant region) are described with EU numbering. On the other hand, residues in the light chain and VH domain (heavy chain variable region) are labeled with sequence number. AAPC S9 showed site selective modification in both Proteome Discoverer and BioPharma Finder results. Sequence coverage are shown in Fig. 42.
a. Amino acid sequence of adalimumab

Light Chain					
1 DIQMTQSPSS	LSASVGDRVT	ITCRASQGIR	NYLAWYQQKP	GKAPKLLIYA	50
51 ASTLQSGVPS	RFSGSGSGTD	FTLTISSLQP	EDVATYYCQR	YNRAPYTFGQ	100
101 GTKVEIKRTV	AAPSVFIFPP	SDEQLKSGTA	SVVCLLNNFY	PREAKVQWKV	150
151 DNALQSGNSQ	ESVTEQDSKD	STYSLSSTLT	LSKADYEKHK	VYACEVTHQG	200
201 LSSPVTKSFN	RGEC				214
Heavy Chain					
1 EVQLVESGGG	LVQPGRSLRL	SCAASGFTFD	DYAMHWVRQA	PGKGLEWVSA	50
51 ITWNSGHIDY	ADSVEGRFTI	SRDNAKNSLY	LQMNSLRAED	TAVYYCAKVS	100
101 YLSTASSLDY	WGQGTLVTVS	SASTKGPSVF	PLAPSSKSTS	GGTAALGCLV	150
151 KDYFPEPVTV	SWNSGALTSG	VHTFPAVLQS	SGLYSLSSVV	TVPSSSLGTQ	200
201 TYICNVNHKP	SNTKVDKKVE	PKSCDKTHTC	PPCPAPELLG	GPSVFLFPPK	250
251 PKDTLMISRT	PEVTCVVVDV	SHEDPEVKFN	WYVDGVEVHN	AKTKPREEQY	300
301 NSTYRVVSVL	TVLHQDWLNG	KEYKCKVSNK	ALPAPIEKTI	SKAKGQPREP	350
351 QVYTLPPSRD	ELTKNQVSLT	CLVKGFYPSD	IAVEWESNGQ	PENNYKTTPP	400
401 VLDSDGSFFL	YSKLTVDKSR	WQQGNVFSCS	VMHEALHNHY	TQKSLSLSPG	450

b. Numbering correspondence table

```
E|
```


Figure 40. ${ }^{\text {a }}$ The sequence of adalimumab used for peptide mapping analysis of AAPC S9. 214 amino acids for the light chain, 450 amino acids for the heavy chain. There are 13 modifiable lysine residues in the light chain and 30 in the heavy chain. ${ }^{\text {b }}$ The table of adalimumab heavy chain sequence numbering correspondence. The residues in the CH 1 , CH 2 and CH 3 domain (heavy chain constant region) are described with EU numbering. On the other hand, residues in the light chain and VH domain (heavy chain variable region) are labeled with sequence number. The lysine residues identified as modified are marked with yellow.
a. Results of modification search

c. Spectrum of modified peptide

c. MS/MS Spectrum of modified peptide

Figure 41. The results of peptide mapping analysis of AAPC S9. ${ }^{\text {a }}$ Lysine residues identified as DSP-NHS linker modified are shown. Both in Proteome Discoverer and BioPharma Finder search showed K246/K248 selective modification. ${ }^{\text {b }}$ The spectrum of 952.22913 representing THTCPPCPAPELLGGPSVFLFPP ${ }^{246} \mathrm{KP}^{248}$ KDTLMISR (4+, with double carbamidomethylation and one 3-(2-amino-2-oxoethyl)sulfanylpropionation, theoretical $m / z: 952.22900$). ${ }^{c}$ MS/MS spectrum of 952.22913 precursor ion.

Figure 42. Sequence coverage of acquired peptides. Coverages of light chain were 95.8\% and 100%, heavy chain were 74.9% and 83.8% by Proteome Discoverer (PD) and BioPharma Finder (BPF), respectively. Modification observed lysine residues are marked with yellow, and most modified one is indicated in orange.

3.3.2. SPR study

Binding kinetics were determined using a Biacore T-200 system. Trastuzumab was dissolved in sodium acetate buffer (pH 5.5) and immobilized by reaction with premixed N hydroxysuccimimide and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride onto a CM5 censor chip. The analytes were adjusted to the desired concentration by serial dilution in a running buffer (HBS-EP; 0.01 M HEPES, $0.15 \mathrm{M} \mathrm{NaCl}, 3 \mathrm{mM}$ EDTA, 0.005% Tween 20, pH 7.4 ; to measure peptide binding, we added 1% DMSO). The sensorgrams were obtained with an association time of 180 s , dissociation time of 600 s , and flow rate of $50 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$. For all samples, the sensor chip was washed with glycine hydrochloride buffer (pH 2.0) twice for 5 s for each sample injection because the dissociation of the analyte was not complete within 600 s . To determine the binding kinetics $\left(k_{\mathrm{a}}\right.$, k_{d}, and K_{d} values), the obtained sensorgrams were analysed by Biacore T200 Evaluation software v.1.0, using a 1:1 binding model.

Figure 43. Sensorgrams of the hydrolyzed 1a. trastuzumab (3500 RU) was immobilized onto a CM5 sensor chip. Curves are corresponding to $10 \mathrm{nM}-2 \mu \mathrm{M}$. Black line indicates fitting curve. Binding kinetics of the 1a against trastuzumab were $k_{\mathrm{a}}: 7.32 \pm 0.005(1 / \mathrm{ms}$ $\left.\times 10^{4}\right), k_{\mathrm{d}}: 9.16 \pm 0.005\left(1 / \mathrm{s} \times 10^{-4}\right), K_{\mathrm{D}}: 12.5 \pm 0.01(\mathrm{nM})$.

Figure 44. Sensorgrams of the hydrolyzed 2a. Trastuzumab (3500 RU) was immobilized onto a CM5 sensor chip. Curves are corresponding to $10 \mathrm{nM}-1 \mu \mathrm{M}$. Black line indicates fitting curve. Binding kinetics of the 2a against trastuzumab were $k_{\mathrm{a}}: 1.92 \pm 0.007(1 / \mathrm{ms}$ $\left.\times 10^{6}\right), k_{\mathrm{d}}: 5.48 \pm 0.004\left(1 / \mathrm{s} \times 10^{-2}\right), K_{\mathrm{D}}: 28.4 \pm 0.05(\mathrm{nM})$.

Figure 45. Sensorgrams of the hydrolyzed 3a. Trastuzumab (3500 RU) was immobilized onto a CM5 sensor chip. Curves are corresponding to $10 \mathrm{nM}-1 \mu \mathrm{M}$. Black line indicates fitting curve. Binding kinetics of the 3a against trastuzumab were $k_{\mathrm{a}}: 2.49 \pm 0.005(1 / \mathrm{ms}$ $\left.\times 10^{4}\right), k_{\mathrm{d}}: 2.06 \pm 0.002\left(1 / \mathrm{s} \times 10^{-3}\right), K_{\mathrm{D}}: 82.5 \pm 0.07(\mathrm{nM})$.

Figure 46. Sensorgrams of the hydrolyzed 4a. Trastuzumab (3500 RU) was immobilized onto a CM5 sensor chip. Curves are corresponding to $10 \mathrm{nM}-1 \mu \mathrm{M}$. Black line indicates fitting curve. Binding kinetics of the 4a against trastuzumab were $k_{\mathrm{a}}: 3.14 \pm 0.004(1 / \mathrm{ms}$ $\left.\times 10^{4}\right), k_{\mathrm{d}}: 1.15 \pm 0.006\left(1 / \mathrm{s} \times 10^{-3}\right), K_{\mathrm{D}}: 36.7 \pm 0.06(\mathrm{nM})$.

4. Synthesis of ADC and biological evaluations

4.1. Synthesis of ADC

Having established a reliable conjugation route, we then carefully planned and executed the synthesis of an ADC from an AAPC 1 (Fig. 47). THIOMAB ${ }^{19}$ is a well-defined technology that is used in antibody engineering to introduce a reactive cysteine residue in a site-specific manner. To expose reactive cysteine, cleavage inter-chain (and engineered cysteine caps) disulphide bonds with a reducing agent followed by a spontaneous re-oxidation step to re-connect the intermolecular disulfide bond between a heavy chain and a light chain (HC-LC) and/or be-tween the two heavy chains (HC-HC). We hypothesized that these elegant methods could be adapted to the linker cleavage of AAPC 1a.

To test this hypothesis, we initially began the process with linker cleavage by TCEP. Twenty equivalents of TCEP were added to 1 and the reaction mixture was stirred at $37^{\circ} \mathrm{C}$ for 2 h . The reaction proceeded smoothly, and linker-cleaved "HC+3-mercaptopropionate" and non-modified LC products were clearly observed by high-resolution ESI mass spectrometry (Fig. 49). Subsequently, we proceeded to the re-oxidation step after NAP column purification to eliminate excess TCEP. Forty equivalents of dehydroascorbic acid (DHAA) were added to the buffer solution. DHAA acted only as the reconnector of intermolecular disul-fide bonds and did not interact with the thiol moiety, which was newly installed into the Fc. As we had succeeded in obtaining the functionalized non-mutated antibody 1 b , we next performed payload conjugation via thiol-maleimide reaction ${ }^{87}$ and finally we obtained the desired ADC 1c with an average DAR of 1.9 (Fig. 48). We measured the free sulfhydryl groups of 1b using Ellman's assay ${ }^{88,89}$ and found the free thiol per antibody ratio to be 1.87 (Table 4).

SMCC-DM1: 10 eq. (5 mM in DMF)
mAb: $1.75 \mathrm{mg} / \mathrm{mL}$
Buffer: pH 7.4, 50 mM PBS, 10 mM EDTA
$2 \mathrm{~h}, 20^{\circ} \mathrm{C}$

1b

Figure 47. Synthetic route of ADC 1c.

Deconvoluted Spectrum

Figure 48. Result of Agilent DAR Calculator of ADC 1c. To determine accurate DAR, before deglycosylation MS analysis was used. $0.1363 \times$ DAR $1+0.8569 \times$ DAR $2=$ average DAR 1.9.

Figure 49. Reduction ESI-TOFMS of ADC 1c (after deglycosylation).

Figure 50. SEC analysis of ADC 1c.

Table 4. Ellman`s test of $1 b^{\mathrm{a}}$.

Sample Name	Condition	$\begin{gathered} \text { Abs } \\ (280 \mathrm{~nm}) \end{gathered}$	$\begin{gathered} \text { Abs } \\ (320 \mathrm{~nm}) \end{gathered}$	Abs $(412 \mathrm{~nm})$	$\begin{gathered} \text { Abs } \\ (600 \mathrm{~nm}) \end{gathered}$	[mAb] M	[SH] M	[SH]/[mAb]
1b+DTNB	Add 2 uL of 10 mM DNTB to $98 \mu \mathrm{~L}$ purified protein	0.35842	0.41296	0.02012	0.00019	No	$1.40848 \mathrm{E}-06$	1.871
1b blank	Add 2 uL of buffer to $98 \mu \mathrm{~L}$ purified protein	0.16216	0.00225	0.00084	0.00068	7.52872E-07	-	-

${ }^{\text {a }}$ Antibody extinction coefficient (280 nm): $212400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, DTNB extinction coefficient (412nm): $14150 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

4.2. Biological evaluation

To confirm the anticancer potential of our ADC 1c, we used the Biacore HER2 binding assay and an in vivo xenograft mouse model to observe tumor regression (Figs. 51 and 52). The K_{D} of 1 c was evaluated as 0.261 pM , which is similar to that of native trastuzumab, K_{D} was evaluated as 0.232 pM (Fig 51). As expected, our conjugation method-ology to obtain ADC 1c did not influence antigen binding. In an in vivo study, HER2-positive NCI-N87 cel1 ${ }^{90}$ xenografts were grown to an average volume of $100 \mathrm{~mm}^{3}$ and then treated twice a week for 2 weeks. Tumor volume and body weight were measured every 3 days during the treatment period. No significant weight loss caused by the administration of either 1c or trastuzumab (as a positive control) was observed over the course of the study (see the 4.3. Experimental Section Fig. 53). Trastuzumab dosed at $20 \mathrm{mg} \mathrm{kg}^{-1}$ was able to shrink tumor volumes during the course of treatment, but tumors began to grow slowly a week after treatment was ceased. Notably, a $5 \mathrm{mg} \mathrm{kg}^{-1}$ dose of the ADC 1c shrank the tumor volume to approximately one-half the original size, and the tumors did not regain their original size, even 41 days after the final treatment likely indicating that the remaining mass was devoid of tumor cells (Fig. 52). In short, 1c showed an efficient mode of ADC action at the in vivo study, causing a greater decrease in tumor volume than did a clinical dose of trastuzumab.

Figure 51. Sensorgrams of the ADC 1c. HER2-Fc (300 RU) was immobilized onto a CM5 sensor chip. Curves are corresponding to $0.3125 \mathrm{nM}-5 \mathrm{nM}$. Black line indicates fitting curve. Binding kinetics of the 1c against HER2-Fc were k_{a} : $8.77 \pm 3.25(1 / \mathrm{ms} \times$ $\left.10^{6}\right), k_{\mathrm{d}}: 2.29 \pm 1.11\left(1 / \mathrm{s} \times 10^{-6}\right), K_{\mathrm{D}}: 0.261 \pm 0.211(\mathrm{pM})$.

Figure 52. Antitumor activity of anti-HER2 ADC 1c in the NCI-N87 xenograft tumor models (female NCr nude mice). Trastuzumab ($20 \mathrm{mg} \mathrm{kg}^{-1}$, blue), ADC $1 \mathrm{c}\left(1.0 \mathrm{mg} \mathrm{kg}^{-1}\right.$, yellow; $2.5 \mathrm{mg} \mathrm{kg}^{-1}$, grey; $5.0 \mathrm{mg} \mathrm{kg}^{-1}$, orange), or vehicle control (light blue) was administered to mice when the mean tumor volume reached $\sim 100 \mathrm{~mm}^{3}$. Error bars represent s.e.m.

4.3. Experimental Section

4.3.1. Synthesis of ADC 1c

4.3.1.1. Linker cleavage and re-oxidation.

Twenty equivalents of TCEP $\cdot \mathrm{HCl}(4 \mathrm{mM}$ in 50 mM PBS, 10 mM EDTA, pH 7.4$)$ were added to a solution of $1\left(2.66 \mathrm{mg} \mathrm{mL}^{-1}\right.$ in 50 mM PBS, 10 mM EDTA, pH 7.4$)$ and the reaction mixture was incubated for 1 h at $37{ }^{\circ} \mathrm{C}$. After the reaction was complete, purification was conducted by illustra NAP-10 to remove excess TCEP. After reduction, the material was used immediately while fresh. Subsequently, 20 equivalents of DHAA (4 mM in DMF) were added to a solution of reduced product ($0.4 \mathrm{mg} \mathrm{mL}^{-1}$ in 50 mM PBS, 10 mM EDTA, pH 7.4), and the reaction mixture was incubated 3 h at $20^{\circ} \mathrm{C}$. The product was purified by illustra NAP-10 to remove excess DHAA to obtain $\mathbf{1 b}$.

4.3.1.2. Conjugation of SMCC-DM1.

Ten equivalents of SMCC-DM1 (5 mM in DMF) were added to a so-lution of $\mathbf{1 b}$ (11.7 $\mu \mathrm{M}, 1.75 \mathrm{mg} \mathrm{mL}^{-1}, 50 \mathrm{mM}$ PBS, 10 mM EDTA, pH 7.4), and the reaction mixture was incubated for 2 h at $20^{\circ} \mathrm{C}$. After the reaction was complete, 50 equivalents of N acetylcysteine (50 mM in 50 mM PBS, 10 mM EDTA, pH 7.4) were added and the mixture was incubated at $20^{\circ} \mathrm{C}$ for 1 h . Purification was conducted by using an illustra NAP-10 or NAP-25 column to remove excess payload to obtain 1c.

4.3.2. SPR binding assay

Binding kinetics were determined using a Biacore T-200 system. The ErbB2/HER2 Fc chimaera protein was dissolved in sodium acetate buffer (pH 5.0) and immobilized by
reaction with premixed N-hydroxysuccimimide and 1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride onto a CM5 censor chip. The analytes were adjusted to the desired concentration by serial dilution in a running buffer (HBS-EP; 0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.005% Tween 20, pH 7.4). The sensorgrams were obtained with an association time of 180 s , dissociation time of 600 s , and flow rate of $50 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$. For all samples, the sensor chip was washed with glycine hydrochloride buffer (pH 2.0) twice for 5 s for each sample injection because the dissociation of the analyte was not complete within 600 s . To determine the binding kinetics ($k_{\mathrm{a}}, k_{\mathrm{d}}$, and K_{d} values), the obtained sensorgrams were analysed by Biacore T200 Evaluation software v.1.0, using a 1:1 binding model.

Figure 53. Sensorgrams of the trastuzumab. HER2-Fc (300 RU) was immobilized onto a CM5 sensor chip. Curves are corresponding to $0.3125 \mathrm{nM}-5 \mathrm{nM}$. Black line indicates fitting curve. Binding kinetics of the trastuzumab against HER2-Fc were $k_{\mathrm{a}}: 9.99 \pm$ $1.22\left(1 / \mathrm{ms} \times 10^{6}\right), k_{\mathrm{d}}: 2.32 \pm 0.57\left(1 / \mathrm{s} \times 10^{-6}\right), K_{\mathrm{D}}: 0.232 \pm 0.127(\mathrm{pM})$.

4.3.3. Xenograft assay

4.3.3.1. Test articles

1) AJ 1 (ADC), 5 mL at $2 \mathrm{mg} / \mathrm{mL}$
2) Herceptin, 5 mL at $5 \mathrm{mg} / \mathrm{mL}$
3) Formulation buffer (20 mM Histidine, 5% Trehalose, pH 5.2), 250 mL

4.3.3.2. NCI-N87 cells

NCI-N87 cells ATCC (ATCC CRL-5822) were cultured in RPMI supplemented with $10 \% \mathrm{FBS}$ and $1 \% \mathrm{P} / \mathrm{S}$, in a humidified incubator at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$.

4.3.3.3. Animal experiments

All procedures were approved by the Institutional Animal Care and were performed according to the NIH guide for the care.

4.3.3.4. Animals

NOD.CB17 Prkdc<Scid>/J homozygous mice were procured through Jackson Laboratory (Strain 001303, Female, DOB +/-3 days). Mice were fed Teklad irradiated (sterilized) mouse diet and bedded with Teklad irradiated (sterilized) corncob bedding from Envigo (Indianapolis, IN). Mice were housed in Optimice carousel sterile quarters with filtered air supply in disposable cages from Animal Care Systems, Inc. (Centennial, CO).
4.3.3.5. NCI-N87 implantation

On the day of implantation, NCI-N87 cells were trypsinized and allowed to detach from flasks. Trypsin was then neutralized with complete media and cells were spun at 400 xg . Media was aspirated and cells were resuspended in 50:50 Cultrex:RPMI at a concentration of 5×10^{7} cells / mL. A volume of $100 \mu \mathrm{~L}$ was injected into the right hind flank of each animal (a total of 5×10^{6} cells).
[Cultrex: BME, Type 3, Trevigen Cat. \# 3632-005-02, Lot \# 40498J17]

4.3.3.6. Study Arms and Treatments

Tumor volumes were monitored, and on when mean tumor volume reached $100 \mathrm{~mm}^{3}$, mice were stratified and placed into 5 treatment groups of 10 mice as outlined in Table 5. Treatments were administered by tail vein injection ($100 \mu \mathrm{~L}$ volumes). Doses were administered two times a week for a total of 4 doses.

Table 5. Study arms ($\mathrm{n}=10$ mice per arm), with all doses as $\mathrm{mg} / \mathrm{kg}$.

Group	\mathbf{n}	Treatment	$\mathbf{m g} / \mathbf{k g}$
1	10	Vehicle	NA
2	10	$\mathbf{1 c}$	5
3	10	$\mathbf{1 c}$	2.5
4	10	$\mathbf{1 c}$	1
5	10	Trastuzumab	20

Average \% weight change

Figure 54. Average animal weight relative to day 0 . Overall the group averages did not change dramatically from the first day of treatment through day 31 (the scale of the Y axis is narrow in Figure 1). Interestingly, the average weight dipped slightly for the trastuzumab arm and the lowest dose of $\mathbf{1 c}$, however, the higher doses of $1 \mathbf{c}$ mimicked that of the vehicle only group. It is unclear why the 1c low dose mice lost weight, while the $5 \mathrm{mg} / \mathrm{kg}$ and $2.5 \mathrm{mg} / \mathrm{kg}$ groups did not. All animals except one of the control animals survived the study without outward manifestations of morbidity. Animal \#3 in the control group (labeled cage 1A, 2 notches in left ear) had a quickly growing tumor, and then suddenly lost significant weight between days $35-42$, and had to be euthanized due to poor health. It did not appear that other animals in the same cage were contributing to the decline in health.

Table 6. Returned p-values using a type 2, 2-sided t -test using tumor volumes at 52 days.

samples	p-value
$\mathbf{1 c} 5 \mathrm{mg} / \mathrm{kg}$	$7.07 \mathrm{E}-08$
$\mathbf{1 c} 2.5 \mathrm{mg} / \mathrm{kg}$	$3.30 \mathrm{E}-04$
$\mathbf{1 c} 1 \mathrm{mg} / \mathrm{kg}$	$1.44 \mathrm{E}-03$
Trastuzumab	$6.23 \mathrm{E}-06$

5. Conclusion

In conclusion, we expect the chemistry of the affinity peptide mediated regiodivergent functionalization of IgGs to be valuable for the construction of complex antibody-related biomolecules. Site-specific synthesis of ADCs is a growing area of pharmaceutical research. However, compared to the existing methodologies, our strategy has the following advantages: (1) engineering of mAbs is not required to site-specifically synthesize ADCs from native mAbs regardless of glycosylation status, enabling us to target the early stage of ADC programmes; (2) the reliable reduction and re-oxidation routes are the same as in THIOMAB and are adaptable to our conjugation system; (3) it is possible to modify other lysine sites in mAbs using other affinity peptides or proteins; and (4) the new affinity-peptide-dependent regiodivergent labelling strategy can be extended not only to ADCs but also to other protein conjugates.

References

[1] N. Krall, F. P. da Cruz, O. Boutureira, G. J. L. Bernardes, Nat. Chem. 2015, 8, 103-113.
[2] I. S. Carrico, Chem. Soc. Rev. 2008, 37, 1423-1431.
[3] C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, 4740-4745.
[4] O. Boutureira, G. J. L. Bernardes, Chem. Rev. 2015, 115, 2174-2195.
[5] N. Stephanopoulos, M. B. Francis, Nat. Chem. Biol. 2011, 7, 876-884.
[6] A. Beck, L. Goetsch, C. Dumontet, N. Corvaïa, Nat. Rev. Drug Discovery 2017, 16, 315-337.
[7] R. V. J. Chari, M. L. Miller, W. C. Widdison, Angew. Chem. Int. Ed. 2014, 53, 3796-3827.
L. Ducry, B. Stump, Bioconjugate Chem. 2010, 21, 5-13.
[9] S. Hashida, M. Imagawa, S. Inoue, K. H. Ruan, E. Ishikawa, J. Appl. Biochem. 1984, 6, 56-63.
[10] L. Wang, G. Amphlett, W. A. Blättler, J. M. Lambert, W. Zhang, Protein Sci. 2005, 14, 2436-2446.
[11] M. M. C. Sun, K. S. Beam, C. G. Cerveny, K. J. Hamblett, R. S. Blackmore, M. Y. Torgov, F. G. M. Handley, N. C. Ihle, P. D. Senter, S. C. Alley, Bioconjugate Chem. 2005, 16, 1282-1290.
[12] S. Verma, D. Miles, L. Gianni, I. E. Krop, M. Welslau, J. Baselga, M. Pegram, D. Y. Oh, V. Diéras, E. Guardino, L. Fang, M. W. Lu, S. Olsen, K. Blackwell, N. Engl. J. Med. 2012, 367, 1783-1791.
[13] P. M. LoRusso, D. Weiss, E. Guardino, S. Girish, M. X. Sliwkowski, Cancer Res. 2011, 17, 6437-6447.
[14] A. Younes, L. N. Bartlett, J. P. Leonard, D. A. Kennedy, C. M. Lynch, E. L. Sievers, A. F. Torres, N. Engl. J. Med. 2010, 363, 1812-1821. P. D. Senter, E. L. Sievers, Nat. Biotechnol. 2012, 30, 631-637. B. Q. Shen, K. Xu, L. Liu, H. Raab, S. Bhakta, M. Kenrick, K. L. P. Reponte, J. Tien, S. F. Yu, E. Mai, D. Li, J. Tibbitts, J. Baudys, O. M. Saad, S. J. Scales, P. J. McDonald, P. E. Hass, C. Eigenbrot, T. Nguyen, W. A. Solis, R. N. Fuji, K. M. Flagella, D. Patel, S. D. Spencer, L. A. Khawli, A. Ebens, W. L. Wong, R. Vandlen, S. Kaur, M. X. Sliwkowski, R. H. Scheller, P. Polakis, J. R. Junutula, Nat. Biotechnol. 2012, 30, 184-189.
P. Strop, S. H. Liu, M. Dorywalska, K. Delaria, R. G. Dushin, T. T. Tran, W. H. Ho, S. Farias, M. G. Casas, Y. Abdiche, D.Zhou, R. Chandrasekaran, C. Samain, C. Loo, A. Rossi, M. Rickert, S. Krimm, T. Wong, S. M. Chin, J. Yu, J. Dilley, J. C. Riggers, G. F. Filzen, C. J. O’Donnell, F. Wang, J. S. Myers, J. Pons, D. L. Shelton, A. Rajpal, Chem. Biol. 2013, 20, 161-167.
A. Lucas, L. Price, A. Schorzman, M. Storrie, J. Piscitelli, J. Razo, W. Zamboni, Antibodies 2018, 7, 10-17.
[19] J. R. Junutula, H. Raab, S. Clark, S. Bhakta, D. D. Leipold, S. Weir, Y. Chen, M. Simpson, S. P. Tsai, M. S. Dennis, Y. Lu, Y. G. Meng, C. Ng, J. Yang, C. C. Lee1, E. Duenas, J. Gorrell, V. Katta, A. Kim, K. McDorman, K. Flagella, R. Venook, S. Ross, S. D. Spencer, W. L. Wong, H. B. Lowman, R. Vandlen, M. X. Sliwkowski, R. H. Scheller, P. Polakis, W. Mallet, Nat. Biotechnol. 2008, 26, 925-932.
J. Y. Axup, K. M. Bajjuri, M. Ritland, B. M. Hutchins, C. H. Kim, S. A. Kazane, R. Halder, J. S. Forsyth, A. F. Santidrian, K. Stafin, Y. Lu, H. Tran, A. J. Seller, S. L. Biroc, A. Szydlik, J. K. Pinkstaff, F. Tian, S. C. Sinha, B. F. Habermann, V.
V. Smider, P. G. Schultz, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 16101-16106. Lewis, Bioconjugate Chem. 2013, 24, 1057-1067.
[30] X. Li, T. Fang, G. -J. Boons Angew. Chem., Int. Ed. 2014, 53, 7179-7182. E. S. Zimmerman, T. H. Heibeck, A. Gill, X. Li, C. J. Murray, M. R. Madlansacay, C. Tran, N. T. Uter, G. Yin, P. J. Rivers, A. Y. Yam, W. D. Wang, A. R. Steiner, S. U. Bajad, K. Penta, W. Yang, T. J. Hallam, C. D. Thanos, A. K. Sato, Bioconjugate Chem. 2014, 25, 351-361.
D. Rabuka, J. S. Rush, G. W. deHart, P. Wu, C. R. Bertozzi, Nat. Protoc. 2012, 7, 1052-1067.
B. L. Carlson, E. R. Ballister, E. Skordalakes, D. S. King, M. A. Breidenbach, S. A. Gilmore, J. M. Berger, C. R. Bertozzi, J. Biol. Chem. 2008, 283, 20117-20125. P. Agarwal, R. Kudirka, A. E. Albers, R. M. Barfield, G. W. de Hart, P. M. Drake, L. C. Jones,, D. Rabuka, Bioconjugate Chem. 2013, 24, 846-851.
S. Jeger, K. Zimmermann, A. Blanc, J. Grünberg, M. Honer, P. Hunziker, H. Struthers, R. Schibli, Angew. Chem., Int. Ed. 2010, 49, 9995-9997.
Z. Qu, R. M. Sharkey, H. J. Hansen, L. B. Shih, S. V. Govindan, J. Shen, D. M. Goldenberg, S. Leung, J. Immunol. Meth. 1998, 213, 131-144.
E. Boeggeman, B. Ramakrishnan, M. Pasek, M. Manzoni, A. Puri, K. H. Loomis, T. J. Waybright,, P. K. Qasba, Bioconjugate Chem. 2009, 20, 1228-1236.
Z. Zhu, B. Ramakrishnan, J. Li, Y. Wang, Y. Feng, P. Prabakaran, S. Colantonio, M. A.Dyba, P. K. Qasba, D. S. Dimitrov, mAbs 2014, 6, 1-6.
B. M. Zeglis, C. B. Davis, R. Aggeler, H. -C. Kang, A. Chen, B. Agnew, J. S.
R. V. Geel, M. A. Wijdeven, R. Heesbeen, J. M. M. Verkade, A. A. Wasiel, S. S. V. Berkel, F. L. V. Delft, Bioconjugate Chem. 2015, 26, 2233-2242.
G. Badescu, P. Bryant, M. Bird, K. Henseleit, J. Swierkosz, V. Parekh, R. Tommasi, E. Pawlisz, K. Jurlewicz, M. Farys, N. Camper, X. Sheng, M. Fisher, R. Grygorash, A. Kyle, A. Abhilash, M. Frigerio, J. Edwards, A. Godwin, Bioconjugate Chem. 2014, 25, 1124-1136.
[40] F. F. Schumacher, J. P. M. Nunes, A. Maruani, V. Chudasama, M. E. B. Smith,
K. A. Chester, J. R. Baker, S. Caddick, Org. Biomol. Chem. 2014, 12, 7261-7269.
[41] A. Maruani, M. E. B. Smith, E. Miranda, K. A. Chester, V. Chudasama, S. Caddick, Nature Commun. 2015, 6, 6645-6652.
[42] J. P. M. Nunes, M. Morais, V. Vassileva, E. Robinson, V. S. Rajkumar, M. E. B. Smith, R. B. Pedley, S. Caddick, J. R. Baker, V. Chudasama, Chem. Commun. 2015, 51, 10624-10627.
[43] A. Maruani, H. Savoie, F. Bryden, S. Caddick, R. Boyle, V. Chudasama, Chem. Commun. 2015, 51, 15304-15307.
[45] A. Kawamura, S. Hindi, D. M. Mihai, L. James, O. Aminova, Bioorg. Med. Chem. 2008, 16, 8824-8829.
[46] Y. Jung, J. M. Lee, J. Kim, J. Yoon, H. Cho, B. H. Chung, Anal. Chem. 2009, 81, 936-942.
[49] A. E. Sauer-Eriksson, G. J. Kleywegt, M. Uhlén, T. A. Jones, Structure 1995, 3, 265-278.
A. Konrad, A. E. Karlström, S. Hober, Bioconjugate Chem. 2011, 22, 2395-2403.
B. Nilsson, T. Moks, B. Jansson, L. Abrahamsen, A. Elmblad, E. Holmgren, C. Henrichson, T. A. Jones, M. Uhlen, Protein Eng. 1987, 1, 107-113.
L. Cedergren, R. Andersson, B. Jansson, M. Uhlen, B. Nilsson, Protein Eng. 1993, 6, 441-448.
J. Deisenhofer, Biochemistry 1981, 20, 2361-2370.
F. Yu, P. Järver, P. Nygren, PLoS One 2013, 8, e56597.
[55] J. Z. Hui, A. A. Zaki, Z. Cheng, V. Popik, H. Zhang, E. T. L. Prak, A. Tsourkas, Small 2014, 10, 3354-3363.
[56] A. Perols, A. E. Karlström, Bioconjugate Chem. 2014, 25, 481-488.
S. Kanje, S. Hober, Biotechnol. J. 2015, 10, 564-574.
J. Z. Hui, S. Tamsen, Y. Song, A. Tsourkas, Bioconjugate Chem. 2015, 26, 14561460.
[59] J. Z. Hui, A. Tsourkas, Bioconjugate Chem. 2014, 25, 1709-1719.
[60] S. Kanje, E. von Witting, S. C. C. Chiang, Y. T. Bryceson, S. Hober, Bioconjugate Chem. 2016, 27, 2095-2102.
[61] J. Park, Y. Lee, B. J. Ko, T. H. Yoo, Bioconjugate Chem. 2018, 29, 3240-3244.
[62] N. Vance, N. Zacharias, M. Ultsch, G. Li, A. Fourie, P. Liu, J. L. F. Vanasse, J. A. Ernst, W. Sandoval, K. R. Kozak, G. Phillips, W. Wang, J. Sadowsky, Bioconjugate Chem. 2019, 30, 148-160.
[63] W. L. DeLano, M. H. Ultsch, A. M. de Vos, J. A. Wells, Science 2000, 287, 12791283.
B. A. Kerwin, R. L. Remmele, J. Pharm. Sci. 2007, 96, 1468-1479.
C. Yu, J. Tang, A. Loredo, Y. Chen, S. Y. Jung, A. Jain, A. Gordon, H. Xiao, Bioconjugate Chem. 2018, 29, 3522-3526.
[66] S. Kishimoto, Y. Nakashimada, R. Yokota, T. Hatanaka, M. Adachi, Y. Ito, Bioconjugate Chem. 2019, 30, 698-702.
[67] J. Ohata, Z. T. Ball, J. Am. Chem. Soc. 2017, 139, 12617-12622.
[69] W. Choe, T. Durgannavar, S. Chung, Materials 2016, 9, 994-998.
[70] N. Kruljec, T. Bratkovič, Bioconjugate Chem. 2017, 28, 2009-2017.
[71] M. A. Starovasnik, A. C. Braisted, J. A. Wells, Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 10080-10085.
[72] A. C. Braisted, J. A. Wells, Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 5688-5692.
[73] A. J. Lomant, G. Fairbanks, J. Mol. Biol. 1976, 104, 243-246.
[74] S. Henikoff, J. G. Henikoff, Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 1091510921.
D. Bordo, P. Argos, J. Mol. Biol. 1991, 217, 721-726.
[76] J. Eichler, R. A. Houghten, Protein Pept. Lett. 1997, 4, 157-162.
[77] I. Annis, B. Hargittai, G. Barany, Methods Enzymol. 1997, 289, 198-202.
[78] J. V. Staros, Acc. Chem. Res. 1988, 21, 435-439.
[79] P. Cuatrecasas, I. Parikh, Biochemistry 1972, 11, 2291-2298.
[80] J. Carlsson, H. Drevin, R. Axén, Biochem. J. 1978, 173, 723-733.
[81] M. D. Partis, D. G. Griffiths, G. C. Roberts, R. B. Beechey, J. Protein Chem. 1983, 2, 263-268.
[82] T. Mouchahoir, J. E. Schiel, Anal. Bioanal. Chem. 2018, 410, 2111-2119.
[83] J. Adachi, C. Kumar, Y. Zhang, J. V. Olsen, M. Mann, Genome Biol. 2006, 7, R80.
[84] Y. P. Lucy, O. Salas-Solano, J. F. Valliere-Douglass, MABS 2017, 9, 307-318.
[85] P. J. Carter, Nat. Rev. Immunol. 2006, 6, 343-352.
[86] G. Kronvall, P. G. Quie, R. C. Williams, Jr., J. Immunol. 1970, 104, 273-283.
[87] S. B. Gunnoo, A. Madder, ChemBioChem 2016, 17, 529-538.
[88] G. L. Ellman, Arch. Biochem. Biophys. 1959, 82, 70-78.
[89] F. F. Schumacher, J. P. M. Nunes, A. Maruani, V. Chudasama, M. E. B. Smith, K. A. Chester, J. R. Baker, S. Caddick, Org. Biomol. Chem. 2014, 12, 7261-7268.
[90] J. G. Park, et al., Cancer Res. 1990, 50, 2773-2778.

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Professor Yuji Ito for providing me this precious study opportunity as a Ph.D student in his laboratory.

I especially would like to express my deepest appreciation to my colleagues from Ajinomoto Co., Inc., and Ajinomoto Bio-Pharma Services, Inc., as follows: Michiya Kanzaki, Masahiro Yamanashi and Tatsuya Okuzumi for many helpful comments and suggestions in this study; Kazutaka Shimbo, Natsuki Shikida and Reiko Yuji for many helpful experiments and comments on peptide mapping; and Brian A. Mendelsohn, Michael Molony, Samuel Janssen, Zahra Khedri, Josh Toschi and Yutaka Matsuda for critical opinions on ADC synthesis, analysis and biological evaluation; Zhala Tawfiq for technical assistance for Ellman`s assay. There elaborated guidance, considerable encouragement and invaluable discussion that make my research of great achievement and my study life unforgettable.

I am also very grateful to the Ajinomoto Co., Inc. for making my Ph.D. study possible by the financial support.

Finally, I would like to extend my indebtedness to my family for their understanding, support, encouragement and sacrifice throughout my study.

