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Abstract

Many strapworks seen in medieval Islamic arts can be made by tessellating several kinds of girih tiles.

The present paper studies tilings with the hexagonal girih tile. First we show that there exists a unique

tiling with five-fold rotational symmetry. Next tilings that contain tree-like sub-patterns are introduced.

Remarkably then can contain at most two tree-like sub-patterns. Finally all periodic tilings are deter-

mined. We show further that a similar way of making such periodic tilings can generate uncountably

many aperiodic tilings.
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1 Introduction

It has long been thought that strapworks seen in medieval Islamic Architecture were designed as a net-

work of zigzag lignes and drawed directly with a ruler and a compass. However P.J.Lu and P.J.Steinhardt

show that by 13th century AD a breakthrough occurred in which such strapworks were re-designed as

by-products of tilings with some kinds of polygons.

These polygons are called ”girih tiles” (”girih” comes from a Persian word meaning ”knot”). They

are equilateral polygons with all internal angles being multiples of 36◦. Although every tile is decorated

with simple lines, a tessellation of these tiles generates a surprisingly complex zigzag lines.

The above authors, examing a lot of medieval Islamic arts, have found five kinds of girih tiles. They

claim that any periodic patterns in Islamic arts can be generated by tiling these girih tiles . Furthermore

they claim that a certain tiling can generate even a quasi-crystaline Penrose pattern.

The present paper asks if the above claims are correct or not. Although our final object concerns tilings

with five kinds of girih tiles, in the present study we confine ourselves within tiling with a particular kind

of girih tile, i.e. a hexagonal tile.

In the section 2, after a hexagonal tile isdefined exactly, a way of specifining position and orientation

of a tile is proposed. In the section 3 we enumerate ways to place hexagonal tilesrounda point. In the
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section 4 a pattern of five-fold rotational symmetry will be made. Such a pattern is unique. In the

section 5 we show patterns that have no symmetry, in particular, aperiodic. On the other hand, in the

section 6, we show many periodic patterns as well as aperiodic patterns. As is easily seen, uncountably

many aperiodic strapworks exist.

2 Lattice generated by an angle 36◦

Our problem is to place Girih tiles so that they cover the whole plane without any gap and any overlap.

Every Girih tile has the following two properties:

(1) any interior angles are multiples of β := 36◦. And, since 5β = 180◦, any exterior angles

are also multiples of β.

(2) every tile is equilateral, i.e. lengthes of any edges are equal each other. In the below we

always asuume that the common length equals 1.

From the properties of Girih tiles, it follows that any vertices of tiles can be represented as

4∑
k=0

akbk,

where ak ∈ Z, and

bk =

(
cos kβ
sin kβ

)
.

In other words every vertex can be representes as a linear combination of bases b0,b1,b2,b3,b4 with

integral coefficients. Viewing such forms of representation, we call them ’lattice points’. Thus lattice

points can be specified by ’coordinates’ (a0, a1, a2, a3, a4).

bf Remark. A note to lattice points. The set of all lattice points is not Z5. In fact five vectors bk are

linearly dependent over Q.

To prove the fact, we suppose that
∑4

k=0 akbk = 0. First we compute x-coordinates:

0 = a0 + a1 cosβ + a2 cos 2β + a3 cos 3β + a4 cos 4β

= a0 + a1 ·
√
5 + 1

4
+ a2 ·

√
5− 1

4
+ a3 ·

(
−
√
5− 1

4

)
+ a4 ·

(
−
√
5 + 1

4

)

=
1

4

[
(4a0 + a1 − a2 − a3 − a4) + (a1 + a2 − a3 − a4)

√
5
]

Accordingly we see that

4a0 + a1 − a2 + a3 − a4 = 0 and a1 + a2 − a3 − a4 = 0.

Next we compute y-coordinates:

0 = a0 sin 0 · β + a1 sinβ + a2 sin 2β + a3 sin 3β + a4 sin 4β

= (a1 + a4) sinβ + (a2 + a3) sin 2β = sinβ [(a1 + a4) + (a2 + a3) · 2 cosβ]

= sinβ

[
(a1 + a4) + (a2 + a3) ·

√
5 + 1

2

]
=

sinβ

2

[
2(a1 + a4) + (a2 + a3) + (a2 + a3)

√
5
]
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Hence it follows that
a1 + a4 = 0 and a2 + a3 = 0.

From these four relations we an easily deduce a1 = a3 = −a0, a2 = a4 = a0. Therefore the relation

b0−b1+b2−b3+b4 = 0 holds. And no other relations hold. Since b1,b2,b3,b4 are linearly dependent

over Q, there exists a one-to-one correspondence between the set of all lattice points and Z4.

3 Hexagonal Girih tile

One kind of five Girih tiles is a hexagon P1P2P3P
′
1P

′
2P

′
3 with the following properties

(1) P1P2 = P2P3 = P3P
′
1 = P′

1P
′
2 = P′

2P
′
3 = P′

3P1 = 1

(2) ∠P1 = ∠P′
1 = 2β,∠P2 = ∠P′

2 = 4β,∠P3 = ∠P′
3 = 4β.

Let us make a tiling by such hexagonal tiles in general. Then we can assume that their vertices lie at

lattice points (defined in the previous section). If we consider a tile P1P2P3P
′
1P

′
2P

′
3, its position in the

entire plane can be specified by the position of vertex P1 and the direction of the vector
−−−→
P1P

′
1, which is

the same as that of
−−−→
P2P3. Thus the tile can be known by the coordinates (a0, a1, a2, a3, a4) of P0 and

the orirntation of the index k such that bk =
−−−→
P2P3. Note that k should be taken as mod 10. We will

denote the tile simply by (a0, a1, a2, a3, a4 : k).

Now we place such hexagonal tiles around a point O. Then, for each tile, there arise three possibilities:

(i) P1 or P′
1 coinsides with O; (ii P2 or P′

2 coinsides with O; (iii) P3 or P′
3 coinsides with O. Let denote

the tile by H1 or H2 or H3 respectively according as the first or the second or the third possibility occurs.

Suppose that the number k of tiles are placed around a point O. Then the sum of k interior angles,

one angle coming from one tile, must be equal to 10β = 360◦. Accordingly three patterns of sums

4 + 4+ 2, 4 + 2+ 2+ 2, 2 + 2+ 2+ 2+ 2 are permissible. Further each pattern of sum can be realized in

several differentare ways

• 4 + 4 + 2 : H1H2H2, H1H2H3, H1H3H2, and H1H3H3.

• 4 + 2 + 2 + 2 : H1H1H1H2, H1H1H1H3.

• 2 + 2 + 2 + 2 + 2 : H1H1H1H1H1.

It is easy to see that patterns H1H2H2 and H1H3H3 are symmetric to each other, and also patterns

H1H1H1H2 and H1H1H1H3 symmetric to each other. Thus, neglecting H1H3H3 and H1H1H1H3, we

call patterns H1H2H2, H1H3H2, H1H2H3, H1H1H1H2, H1H1H1H1H1 by Pα, Pβ , Pγ , Pδ, Pϵ respectively.

4 Tiling generated by Pϵ

Let us place five tiles around the lattice point O. These tiles can be represented by

(0, 0, 0, 0, 0 : 1), (0, 0, 0, 0, 0 : 3), (0, 0, 0, 0, 0 : 5), (0, 0, 0, 0, 0 : 7), (0, 0, 0, 0, 0 : 9).

The following lemma can be seen easily by placing tiles ’by hand’.
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Lemma 1. A pair of tiles (0, 0, 0, 0, 0 : 1), (0, 0, 0, 0, 0 : −1) necessarily generates a tree-like pattern

of tiles where

(i) the upper boudary consists of tiles (n, n, 0, 0, 0 : 1), n = 1, 2, . . .

(ii) the lower boudary consists of tiles (n, 0, 0, 0,−n : −1), n = 1, 2, . . .

(iii) the surrounded area between two boudarys consists of tiles (m + n + 1,m, 0, 0,−n :

0),m, n = 1, 2, . . .

Fig 1 shows the tree stated in Lemma 1.

From Lemma 1 the following Proposition immediately follows.

Proposition 1. Make a tiling from a pattern (Pϵ). Then the tiling is unique. It has a five-fold

rotational symmetry but it is not periodic.

Fig 2 below shows a part (in the entire plane) of the tiling. Here boundaries of tiles are colored by

magenta. Blue lines shows the strapwork derived from the tiling.

Fig 1 Fig 2

5 Tiling generated by Pδ

Let us place four tiles around the lattice point O. These tiles can be represented by

(0, 0, 0, 0, 0 : 0), (0, 0, 0, 0, 0 : 2), (0, 0, 0, 0, 0 : −2), (0,−1,−1, 0, 0 : −3).

Here the three tiles from the first are of H1.

Lemma 2. A triplet of tiles (0, 0, 0, 0, 0 : 0), (0, 0, 0, 0, 0 : 2), (0, 0, 0, 0, 0 : −2) necessarily generates

a pattern of union of several trees and two lalf-lines.
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We call the pattern in Lemma 2 a fat tree. A fat tree is shown in Fig 3 where brown tiles are a uion

of several trees, and orange tiles are unions of half-lines.

Fig 3

Proposition 2. If a tiling has the number k of fat trees, it is necessary that k ≦ 2.

Fig 4 shows a tiling that consists of 2 fat trees and 2 trees. Fig 5 shows a strapwork that derives from

the tiling in Fig 4.

Fig 4 Fig 5

6 Tiling that contain neither Pδ nor Pϵ

It is easy to prove the following result.
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Lemma 3. If a tiling contains Pγ , then it necessarily contains Pδ or Pϵ.

Thus it remains to study tilings generated by Pα or those by Pβ . We only investigate the former

because investigation on the latter can go similarly.

Place three tiles H1H2H2 are placed around O. It can be realized by setting H1 = (−1,−1, 0, 1, 0 : 0),

the former H2 = (0,−1,−1, 0, 0 : 1), and the latter H2 = (0, 0, 0, 0, 1 : 0). To simplify statement we

change name of the latter H2 to H ′
2 while naming of the former H2 is unchaged.

It is easy to see that two infinite sequences of tiles automatically will arise: one sequence is

H1, T
−1H1, T

−2H1, · · · and the other is H2, T
−1H2, T

−2H2, · · · , where T denotes the translation

operator defined by a vector b0 + b1 and T−1 denotes its inverse. Note that these infinite sequences

continue leftward from the initial H1 and H2. We ask if they can continue rightward too. The answer is

given by the folowing lemma.

Lemma 4. A tiling generated by Pα is the union of infinite sequences {TnH1 : n ∈ Z} and {TnH2 :

n ∈ Z}.

We call these infinite sequences by bands, and denote them by B1, B2 respectively.

Proposition 3. If we stack two bands periodically, a periodic tiling occurs. On the contary, by stackin

two bands aperiodically, we get an aperiodic tiling.

Fig 6 shows an example of aperiodic tilings. Fig 7 is a strapwork that derives from the tiling in Fig 6.

Fig 6 Fig 7

Corollary 1. The number of periodic tilings is countably infinite. On the contary, The number of

aperiodic tilings uncountably infinite.
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