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 Sri Lanka is divided into three major climatic zones based on the rainfall received; 

wet zone, intermediate zone, and dry zone. Though the dry zone contributes largely to 

agricultural production, the rainfall occurs in the dry zone is confined into two or three 

months of the year, resulting in long dry spells. Hence, the tank cascade system (TCS) in 

the lowlands within the dry and intermediate zone has evolved, in order to manage the 

surface water resources in a sustainable manner. Recently, it has been recognized as a 

globally important agricultural heritage site by the Food and Agriculture Organization of 

the United Nations (FAO). 

 As a convenient substitute for insufficient surface water resources in the dry zone of 

Sri Lanka, groundwater use has dramatically increased during the last three decades, 

coinciding with changes in agriculture and livelihoods. Accordingly, the TCS is endangered 

along with overexploitation and quality deterioration. Therefore, we aimed to assess spatial 

and temporal variations in both irrigation and drinking water quality in the tank cascade 

landscape.  

 Interpolation methods are extensively used to map the spatial distribution of water 

quality parameters. However, the selection of the most appropriate method is a critical issue 

in environmental studies. We assessed the relative performances of deterministic and 

geostatistical methods in explaining the spatiotemporal variation of water quality 
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parameters/indices in the Ulagalla tank cascade landscape using root mean square error 

(RMSE) in a leave-one-out cross-validation. Empirical Bayesian kriging (EBK) performed 

well for most parameters throughout the study period and we recommended EBK as the best 

method to interpolate water quality parameters/indices in the Ulagalla cascade and other 

tank cascade landscapes in Sri Lanka and similar environments. 

 We sampled groundwater from 29 wells to give a homogeneous distribution within 

the Ulagalla cascade, during both Yala (dry) and Maha (wet) seasons, the two main cropping 

seasons in Sri Lanka. We collected the samples for consecutive 12 months starting from 

April 2016. We evaluated the suitability of groundwater for irrigation using the analytic 

hierarchy process and GIS. Water quality did not vary notably between seasons. However, 

it deteriorated with the onset of high-intensity heavy rain, especially during the Maha 

season. A water quality zoning map indicated that groundwater in 4% and 96% of the study 

area is suitable and moderately suitable for irrigation, respectively.  

 Since Chronic kidney disease of unknown etiology (CKDu) is a major health 

concern in the north central province, we tried to assess the suitability of groundwater for 

drinking by integrating the Sri Lankan standards of drinking water quality parameters and 

GIS. Based on the overall suitability, we found that the major portion falls under doubtful 

and unsuitable categories during both seasons. Hence, urgent attention is required to 

introduce proper long term drinking water treatment technology.  

 We established new protocols to classify groundwater suitability for both irrigation 

and drinking for the first time in the tank cascade landscape in Sri Lanka. Hence, irrigation 

and drinking water quality in tank cascade landscapes and similar environments can be 

assessed using these methodologies and results.  

Keywords: AHP, CKDu, EBK, Geostatistical methods, GIS, Hardness, Salinity, Tank 

cascade system   
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要約 

 
スリランカは、降雨量により 3 つの主要な気候帯(湿潤帯、中間帯、乾燥帯)にわけられ

る。乾燥地帯は農業生産に大きく貢献するが、降雨期間は 1 年の 2、３か月に限られ、

長い乾燥期間となる。そのために、地表水資源を持続可能な方法で管理するために、乾

燥地帯および中間地帯内の低地におけるタンクカスケードシステム（TCS）が進化した。 

最近、このシステムは FAO により、世界的に重要な農業遺産として認められた。 

 スリランカの乾燥帯において不十分な地表水の代用として、この 30 年で農牧畜の変化

とともに地下水利用が劇的に増加している。そのため、TCS は過剰利用と水質低下が危

惧されている。そこで、本研究では、TCS における灌漑および飲用水水質の時間空間的

変化について評価した。 

  水質パラメータの空間分布のマッピングに内挿法が使われる。しかし、どの方法が

適しているかについては環境研究において重要な課題である。そこで、ウラガラ TSC の

水質指標の空間変化説明における決定論的手法と地理統計的指標の適用性の評価を行な

った。その結果、経験ベイズクリギング(EBK)がほとんどのパラメータに関して良い適用

性を示した。これより、EBK をウラガラ TSC やスリランカの類似した環境での水質指標

の空間内挿に最適手法であると結論した。 

主な耕作期間である Yala(乾燥期)と Maha(湿潤期)に、ウラガラカスケードで均一に分布

する 29 の井戸において地下水を 2016 年 4 月からの 12 カ月間サンプリングした。地下水

の灌漑への適性を AHP と GIS により評価した。その結果、水質は季節間で大きく変わる

ことはなかったが、高降雨強度により特に Maha 期に水質が悪化することが認められ

た。水質のゾーニングでは、灌漑水として 4%が最適で 96%が適しているという結果とな

った。 

 中北部では原因不明の腎臓病(CKDu)が問題となっているため、スリランカ飲料水水質

基準と GIS を用いて地下水の飲用水としての適性について評価した。全体的な適性とし

て、両シーズンにおいて不適であるという結果となった。したがって、適切な飲料水処

理技術の導入が急務である。 

以上より、本研究では、スリランカのTCSに関して初めて地下水の灌漑および飲用水とし

ての適性について分類する方法が示された。そして、スリランカにおける類似環境にあ

るTCSでは、本研究の手法および結果を適用することが可能であると考える。 
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1.0 General Introduction 

Sri Lanka is a tropical island in the Indian subcontinent and located at 5054’-9052’N 

79039’-81053’. The total extent of the island is 6,570,134 ha. The central highlands (more 

than 2500 m above mean sea level) are surrounded by broad lowland plains and 

characterized by both wet and dry climates (Geekiyanage and Pushpakumara, 2013). Based 

on the rainfall received, the country is divided into three major climatic zones; wet zone 

(>2500 mm), intermediate zone (1750-2500 mm) and dry zone (<1750 mm). The rainfall 

is mainly governed by the monsoon, and on average, the rainfall of dry zone exceeds 1000 

mm (Madduma Bandara, 1985). However,  high evaporation ranges from 1700-1900 mm, 

and seasonal changes of rainfall occur in the dry zone implies the water stress condition 

during dry periods (Panabokke et al., 2002). This spatial and temporal variation of rainfall 

has led the ancient farming communities to invent tank cascade systems (TCS), which can 

act as a sustainable water management system.  

 TCS is an unique water storage and supply system used in the intermediate and dry 

zones of Sri Lanka. The system has been in use since the third century BCE (Madduma 

Bandara, 1985), mainly for irrigation and domestic water use. The main principle behind 

the TCS is re-use and recycling of water through a connected series of tanks. Hence, the 

TCS is defined as a connected series of tanks arranged within a micro- (or meso-) catchment 

of the dry zone landscape for storing, conveying, and utilizing water from an ephemeral 

rivulet (Madduma Bandara, 1985). TCS provides cooler micro-climate which enhance the 

plant and animal biodiversity while providing habitat for endangered elephants, resident, 

and migrant water birds. (Bebermeier et al., 2017; Bitterman et al., 2016; Van Meter et al., 

2016).  

During the last few decades, the usage of groundwater in the dry zone of Sri Lanka has 

rapidly increased owing to the inability of surface water resources to cater to growing 
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demand, hastening the deterioration of water quality in the tank cascade landscape 

(Bebermeier et al., 2017). Thus, an increasing amount of attention has been given to 

sustainably managing water resources in the tank cascade landscapes, and several 

monitoring studies of groundwater in this landscape have been conducted (Wijesundara et 

al., 2012; Gunarathna et al., 2016a,b; Kumari et al., 2016). However, no appropriate 

continuous monitoring system has been put in place, because continuous monitoring of 

groundwater over a large area for an extended duration is expensive and labor-intensive. 

Therefore, a suitable method for estimating groundwater availability and quality is needed 

that requires a minimum number of sampling sites in order to better manage the water 

resources in the tank cascade landscapes. 

 Spatial interpolation in ArcGIS has been used to understand the spatial and temporal 

variation of natural resources (Chai et al., 2011; Gunaalan et al., 2018). Deterministic and 

geospatial interpolation techniques are considered as the major two types of spatial 

interpolation methods. Deterministic interpolation techniques include inverse distance 

weighted (IDW), radial basis functions (RBFs), global polynomial interpolation (GPI), and 

local polynomial interpolation (LPI) methods; geostatistical interpolation techniques 

include kriging/co-kriging (ordinary kriging [OK], simple kriging [SK], universal kriging 

[UK], etc.), areal interpolation, and empirical Bayesian kriging (EBK) (Bao et al., 2014; 

Kumar et al., 2007; Uyan and Cay, 2013). Since the interpolation accuracy depends on 

sample size (Stahl et al., 2006), area  (Gunaalan et al., 2018; Mirzaei and Sakizadeh, 2016), 

spatial distribution (Güler, 2014), normality of the data set (Wu et al., 2016), grid size ( 

Hengl, 2007) and interpolation method (Luo et al., 2008; Xie et al., 2011), it is vital to assess 

the relative performance of interpolation methods and select the best interpolation method 

to predict the groundwater quality in tank cascade system.  
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 Groundwater quality is mainly influenced by the physical and chemical 

characteristics of the aquifer, characteristics of chemical interaction with mineral surfaces, 

anthropogenic contaminants, and the length of time water spend in the groundwater 

(Domenico and Schwartz, 1998). Since good water quality is important to maintain a healthy 

ecosystem, it is required to assess the groundwater resources. A large number of water 

quality parameters have led to creating confusion in terms of water quality. As a result, 

water quality indexes (WQI) have been developed by a number of researchers (Chandrajith 

et al., 2011a; Science and Banerjee, 2009). In recent years multi-criteria decision-making 

tools (MCDM) have been successfully used in disaster management and environmental 

management studies (Üstün and Barbarosoğlu, 2015). However, the analytic hierarchy 

process (AHP), one of the MCDM techniques is widely used for environmental studies 

(Jozaghi et al., 2018; Machiwal et al., 2011; Pramanik, 2016). 

 Chronic kidney disease of unknown aetiology (CKDu) is considered as one of the 

major health problems in the dry zone, especially the north-central province of Sri Lanka. 

A special feature of this disease is the patients with CKDu do not exhibit the common 

causative factors of kidney disease such as diabetes or hypertension or the aging population 

(Athuraliya et al., 2011).  Since the available surface water resources are limited in this area, 

people rely heavily on the extraction of groundwater from shallow regolith aquifer and the 

fractures in the hard rock. The tanks available at the tank cascade system has significant 

control of the recharge of shallow regolith aquifer (Chandrajith et al., 2011b; Mahatantila et 

al., 2011). Among the 3500-4000 cascade systems, most are clustered in the north-central 

province, especially in the Anuradhapura district (Cooray et al., 2019). People use dug wells 

(maximum depth of 15 m build on shallow regolith aquifer) and tube wells ( maximum 

depth of 60 m build on hard rock aquifers) to fulfill the drinking water requirement. 

However, the World Health Organization (WHO) recommended that the provision of safe 
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drinking water is very important to prevent CKDu. Hence reverse osmosis plants were 

established in these areas since 2011.  

 The Ulagalla cascade is a major TCS located near Anuradhapura city, in the dry zone 

of Sri Lanka. Although the cascade has not been studied comprehensively, elevated 

concentrations of nutrients were observed in the adjacent Thirappane and Mahakanumulla 

cascades (Wijesundara et al., 2012), showing that not only the quantity but also the quality 

of irrigation water poses problems for sustainable farming. However, no scientific protocol 

has yet been developed to assess the suitability of groundwater for irrigation and drinking 

purposes in the tank cascade landscapes or similar environments. 

  

1.1 General objective of the study 

To develop a GIS-based protocol to assess the groundwater quality in the tank cascade 

landscape in Sri Lanka. 
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2.0. Interpolation Methods for Groundwater Quality Assessment in Tank Cascade 

Landscape 

 

2.1. Introduction 

 The tank cascade system (TCS) is a unique water storage and supply system used in 

the intermediate and dry zones of Sri Lanka. The system has been in use since the third 

century BCE (Madduma Bandara, 1985), mainly for irrigation and domestic water use. The 

main principle behind the TCS is re-use and recycling of water through a connected series 

of tanks. Hence, the TCS is defined as a connected series of tanks arranged within a micro- 

(or meso-) catchment of the dry zone landscape for storing, conveying, and utilizing water 

from an ephemeral rivulet (Madduma Bandara, 1985). As can be seen in Figure 2.1, the 

major elements of TCS are categorized as meso-catchment, micro-catchment (catchment 

area of the individual tanks within the cascade), the main valley, side valleys and irrigated 

paddy lands. It has been recognized as a globally important agricultural heritage site by the 

Food and Agriculture Organization of the United Nations (FAO).  

 The dry zone of Sri Lanka receives an annual rainfall less than 1750 mm whereas, 

annual evaporation ranges from 1700-1900 mm, which implies the water stress condition 

during dry periods (Panabokke et al., 2002). This area is characterized by a short rainy 

period (from September to January), which receives 80% of the total rainfall and long dry 

period (from February to October). As this area is dominated by reddish-brown earth with 

low water retention capacity, the water scarcity problem is intensified in this area 

(Panabokke et al., 2002). This spatial and temporal variation of rainfall has led the ancient 

farming communities to invent TCS, which can act as a sustainable water management 

system. TCS provides cooler micro-climate which enhance the plant and animal biodiversity 

while providing habitat for endangered elephants, resident, and migrant water birds. Though 

it is not totally similar to Sri Lankan tank cascade systems, comparable environments are in 
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use for paddy irrigation in India (Bebermeier et al., 2017; Bitterman et al., 2016; Van Meter 

et al., 2016). 

 

 

 

Figure 2.1. Schematic representation of tank cascade system in dry zone of Sri Lanka 

(adapted from Panabokke et al., 2002) 
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 As a convenient substitute for insufficient surface water resources in the dry zone of 

Sri Lanka, groundwater use has dramatically increased during the last three decades, 

coinciding with changes in agriculture and livelihoods (Jayakody, 2006; Kumari et al., 

2013). Moreover, a close relationship between the groundwater and surface water has been 

identified in the tank cascade landscape (Bebermeier et al., 2017). Hence, the sustainability 

of the tank cascade landscape is endangered along with the overexploitation and quality 

deterioration of groundwater. Thus, an increasing amount of attention has been given to 

sustainably managing water resources in the tank cascade landscapes, and several 

monitoring studies of groundwater in this landscape have been conducted (Wijesundara et 

al., 2012; Gunarathna et al., 2016a,b; Kumari et al., 2016). However, no appropriate 

continuous monitoring system has been put in place, because continuous monitoring of 

groundwater over a large area for an extended duration is expensive and labor-intensive. 

Therefore, a suitable method for estimating groundwater availability and quality is needed 

that requires a minimum number of sampling sites in order to better manage the water 

resources in the tank cascade landscapes. Spatial interpolation, including deterministic and 

geostatistical interpolation techniques in ArcGIS, has been used to understand the spatial 

and temporal variation of natural resources, including groundwater, and related 

environmental concerns (Chai et al., 2011; Gunaalan et al., 2018). Deterministic 

interpolation techniques include inverse distance weighted (IDW), radial basis functions 

(RBFs), global polynomial interpolation (GPI), and local polynomial interpolation (LPI) 

methods; geostatistical interpolation techniques include kriging/co-kriging (ordinary 

kriging [OK], simple kriging [SK], universal kriging [UK], etc.), areal interpolation, and 

empirical Bayesian kriging (EBK). The ArcGIS Geostatistical Analyst extension can fill the 

gap between geostatistics and GIS analysis and has been used to characterize the spatial 

variability of variables in detail (Bao et al., 2014; Kumar et al., 2007; Uyan and Cay, 2013). 
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 Interpolation accuracy is sensitive to the precise demarcation of boundaries and 

areas (Gunaalan et al., 2018; Mirzaei and Sakizadeh, 2016), the effectiveness of predicting 

parameters of unknown locations using known values, sample size (Stahl et al., 2006), 

spatial distribution of sampling sites (Güler, 2014), normality of the dataset (Wu et al., 

2016), grid size or resolution (Hengl, 2007), and interpolation method (Luo et al., 2008; Xie 

et al., 2011). Moreover, if the distribution of sampling locations or wells does not 

appropriately represent the spatial variation of water quality parameters, any biases will be 

intensified (Heistermann and Kneis, 2011; Wagner et al., 2012). However, different 

interpolation methods tend to provide similar predictions at low (Mirzaei and Sakizadeh, 

2016) and very high sampling densities (Gunnink and Burrough, 1996). In most cases, 

interpolation methods have been used without proper assessment of their accuracy. Only a 

few assessments of accuracy have been conducted. Mirzaei and Sakizadeh (2016) evaluated 

three interpolation methods to estimate a water quality index and found EBK to be the best 

method. Xie et al. (2011) stated that the best interpolation method to explain the spatial 

variation of heavy metals in soil varied with the size of the polluted area. Seyedmohammadi 

et al. (2016) compared five interpolation methods to estimate the spatial variation of 

electrical conductivity (EC) in groundwater and reported that OK was superior to the others. 

Based on the relative performance of four interpolation methods to interpolate EC, total 

dissolved solids (TDS), and pH, EBK was found as the best method (Gunarathna et al., 

2016a, b).  

 

2.1.1 Objectives of the study  

 To date, no study has evaluated these interpolation methods with an extensive 

number of parameters covering all contaminant groups (anions, cations, nutrients) and water 

quality indices along with temporal effects. Because the assessment of spatial and temporal 
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variation of groundwater is essential in sustainable management of water resources, the 

objective of this study was to describe and predict the relative performance of deterministic 

(IDW, LPI, GPI, and RBFs) and geostatistical (UK, OK, and EBK) interpolation methods 

and to select the best interpolation method to explain the spatial and temporal variation of 

groundwater quality in the Ulagalla cascade, Sri Lanka. Many physicochemical parameters 

were studied, including anions, cations, nutrients, and other water quality indices, as well as 

temporal effects. The relationships between characteristics of datasets and those of different 

interpolation methods were also examined. 

 

2.2. Materials and Methods 

 

2.2.1. Study Area 

Ulagalla cascade covers approximately 51 km2 in the Anuradhapura district of Sri 

Lanka (8°5’–8°14’N; 80°31’–80°34’E). The economy of this area is based on agriculture, 

which comprises tank-based paddy cultivation and rainfed or irrigated upland crop 

cultivation using groundwater. The mean annual rainfall in Anuradhapura is 1255 mm, and 

there is a distinct dry period from May to September. The monthly average maximum and 

minimum temperatures in the dry zone range from 25.0 to 37.7 °C and 17.4 to 26.8 °C, 

respectively (Abeysekara and Punyawardena, 2016; Gunarathna and Kumari, 2013a). A 

shallow regolith aquifer of the hard rock region is the main aquifer type in the study area. 

Groundwater potential is comparatively limited because of the low groundwater storage 

capacity and transmissivity of the underlying crystalline basement (Sirimanne, 1952a).  
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2.2.2. Data collection and Data Preparation 

The total cascade area was divided into 1-km2 cells, and one agro-well was purposely 

selected to represent each cell so as to evaluate the quality of groundwater in the study area. 

Within the existence of agro-wells and the availability of water in the agro-wells throughout 

the study period, a total of 29 wells were selected (Figure 2.2). Three replicates from 

aforesaid 29 wells were collected monthly from April 2016 to March 2017 to measure the 

water quality parameters using standard procedures (APHA, 2005).  All the chemical 

analyses were carried out at the laboratory of soil and water sciences, Department of 

Agricultural Engineering and Soil Science, Faculty of Agriculture, Rajarata University of 

Sri Lanka. Sodium adsorption ratio (SAR) (Wilcox, 1955) and total hardness (TH) (Todd 

and Mays, 2005) were calculated from measured data. The following 12 water quality 

parameters or indices were used: electrical conductivity (EC); pH; concentrations of sodium 

(Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl−), nitrate (NO3-N), 

phosphate (PO4
3−), and bicarbonate (HCO3

−); sodium adsorption ratio (SAR); and total 

hardness (TH). 
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 Figure 2.2. Location of the study areas: (a) South Asia; (b) Sri Lanka; (c) Anuradhapura 

district; (d) Groundwater sampling locations in Ulagalla cascade 

Attribute data containing information about the physicochemical parameters/indices 

were joined with geographic coordinates obtained with a handheld global positioning 

system (GPS) receiver (eXplorist 510, Magellan, USA) of each sampling point (Appendix 

Table A1). ArcGIS 10.2 (ESRI, California, USA) and R statistical software (R Foundation 

for Statistical Computing, Vienna, Austria) (Team R, 2016) were used for the interpolation 

analysis and statistical analysis, respectively.  
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2.2.3. Interpolation Methods 

 

2.2.3.1. Inverse Distance weighted (IDW) 

In IDW, the interpolation weights are calculated as a function of the observed sampling 

point and the prediction point (Gunnink and Burrough, 1996). The accuracy of IDW 

depends on the number of closest neighboring sampling points (Yao et al., 2013). The values 

for unknown points are estimated with Equation 2.1: 
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Where Z(x0) is the interpolated value, xi is the ith data value, β is the user-defined exponent 

for weighting, n is the total number of sampling data values, and hij is the distance between 

the known point and the unknown point (Seyedmohammadi et al., 2016). 

 

 2.2.3.2. Global Polynomial Interpolation (GPI)  

 The GPI method positions a plane between sample points by fitting a polynomial 

formula to the points. Using a value on the plane that relates to the prediction location, the 

unknown point is determined by minimizing the errors (Webster and Oliver, 2008) With the 

use of low order polynomials GPI creates slowly while describing the physical processes. 

However, with complex polynomials, it is difficult to ascribe physical meaning to GPI 

(Johnston et al., 2003).  

 

 

 

 



17 

 

2.2.3.3. Local polynomial Interpolation (LPI)  

 Whereas GPI fits one polynomial to the entire surface, LPI fits many polynomials, 

each within specified overlapping local neighborhoods. Although this method produces 

smooth surfaces, it is best suited for use only with data that have a narrow range of variation. 

LPI creates a surface from many different polynomial formulas, each of which is optimized 

for a specified neighborhood, neighborhood shape, and maximum and minimum number of 

points. LPI is sensitive to the neighborhood distance, and the sample points in a 

neighborhood can be weighted by their distance from the prediction location. Because LPI 

is sensitive to neighborhood distance and a small search neighborhood may create empty 

areas in the prediction surface, the method shows better results with grid-based sampling 

data than with random point sampling (Hani et al., 2011; Johnston et al., 2003). 

 

2.2.3.4. Radial Basis Functions (RBFs) 

RBFs are a form of artificial neural networks with a series of exact interpolation 

techniques. They use an equation derived from the distance between an interpolated point 

and the sampling points (Aguilar et al., 2005; Lin and Chen, 2004). The method consists of 

five deterministic interpolation techniques: thin-plate spline, spline with tension, completely 

regularized spline, multi-quadratic function, and inverse multi- quadratic function. The RBF 

method is used mainly to create smooth surfaces from a large number of data points. 

Although RBFs give good results for areas with gently varying surfaces, the method will 

not provide accurate results if there are any large variations in the surface within a short 

horizontal distance (Johnston et al., 2003). The most commonly used RBF technique, 

completely regularized spline was used for this analysis. 
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2.2.3.5. Kriging 

Kriging is a linear interpolation method that assumes that the parameter to be 

interpolated can be modeled by random processes with spatial autocorrelation. Hence, 

kriging techniques are widely used to describe and model spatial patterns and predict values 

at unmeasured locations. Three types of kriging were evaluated in this study: ordinary 

kriging, universal kriging, and empirical Bayesian kriging. 

 

2.2.3.5.1. Ordinary Kriging (OK) 

OK is the most widely used kriging method. It uses an average of a subset of 

neighboring points to produce a particular interpolation point. OK can use either 

semivariograms or covariances to explain the autocorrelation and can use transformations 

to avoid trends (Johnston et al., 2003), but the semivariance function plays a major role in 

deriving weights of OK (Johnston et al., 2003). The empirical semivariance function can be 

used to estimate the parameters of the semivariogram function and the nugget effect as 

expressed in Equation 2.2: 
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where γ is the semivariance, N(h) is the number of data pairs within a given class of distance 

and direction, h is the lag distance, and Z(xi) and Z(xi + h) are the sample values at two points 

separated by the distance interval h (Xie et al., 2011). 

 

2.2.3.5.2. Universal Kriging 

 UK can be used to produce prediction, quantile, probability, or standard error maps. 

The method is used to estimate the spatial means when the data have a strong trend, and the 
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trend is modeled using simple functions. The use of UK is limited to large surfaces, such as 

a large country because it is difficult to follow a trend along the direction of spreading (Kis, 

2016). 

 

2.2.3.5.3. Empirical Bayesian Kriging (EBK) 

 EBK is different from other classical kriging methods because the parameters are 

automatically optimized using a number of semivariogram models instead of a single 

semivariogram. The following steps are used in EBK: (1) A semivariogram model is 

estimated using available data. (2) A new value is simulated for each input data location 

using the semivariogram model. (3) Based on the simulated data, a new semivariogram 

model is estimated. Bayes’s rule is then used to calculate the weight of the new 

semivariogram model. By repeating steps 2 and 3, the semivariogram estimated in step 1 is 

used to simulate a new set of values at the input locations (Krivoruchko, 2012). 

 

2.2.4. Data Processing 

Because the Kriging methods require the sample distribution to be normal, the Shapiro 

Wilk test was performed for all 144 datasets (12 water quality parameters/indices × 12 

months) to check the goodness-of-fit of the data (P < 0.05). The results showed that K+, 

Mg2+, NO3-N, Cl−, and EC were not normally distributed at any time, and the other 

parameters and indices were normally distributed only for several months. Hence, datasets 

that were not normally distributed were log-transformed, and thereafter except very few, all 

the other data sets were normally distributed. 
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2.2.5. Validation and Model Evaluation 

Cross-validation and validation with an independent dataset are the most common 

methods used to compare different interpolation methods, whereby the data are divided into 

a training set and a validation set. The validation set is used to test the model acquired from 

the training set. Those allowed us to assess the goodness-of-fit of interpolation methods and 

the appropriateness of the neighborhood (Dashtpagerdi et al., 2013; Gunarathna et al., 

2016a,b). Because the number of sampling points was limited, we used leave-one-out cross-

validation (Gunarathna et al., 2016a) to estimate the spatial variation of water quality 

parameters/indices in the study area, removing one data point from the known dataset and 

estimating its value from the other known values. If a model has a standardized mean error 

close to 0, the RMSE and average standard error are as small as possible as compared with 

other models, which means the model provides the most accurate predictions. Hence, we 

used RMSE (Equation 2.3) to compare the models: 
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Where; Ẑi is the estimated value, Zi is the measured value at sampling point i (i = 1,.., n), 

and n is the total number of observations. 

The coefficient of variance (CV), which is the ratio of the standard deviation to the 

mean of each parameter/index, was used to study the relative variability of the dataset. We 

used the local Moran’s Index (MI), one of the most commonly used criteria for spatial 

autocorrelation of quantitative data (Moran, 1950), to estimate the level of spatial 

autocorrelation of water quality parameters/indices in the Ulagalla cascade. 
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2.3. Results and Discussion 

 

2.3.1. Relative Performance of Deterministic and Geostatistical Interpolation Methods 

 The RMSE values of cross-validation for the 12 water quality parameters/indices 

during 12 consecutive months are summarized in Appendix Tables A2–A13. Note that the 

RMSE values of the OK and UK interpolation methods were similar to each other for all 

the parameters/indices, and are considered together as kriging (KR). EBK was superior to 

all other interpolation methods in estimating spatial variation of K+, Mg2+, NO3-N, and EC 

in all 12 months (Table 2.1; Appendix Tables A4, A6, A7, A11); of Na+, HCO3
−, Cl−, and 

TH in 11 months (Table 2.1; Appendix Tables A3, A9, A10, A13); of SAR in 10 months 

and of pH and PO4
3− in 7 months (Table 2.1; Appendix Tables A12, A2, A8). EBK was 

outperformed in only 6 months in the interpolation of Ca2+ (Table 2.1; Appendix Tables 

A5). Overall, EBK was the best method for interpolating groundwater quality 

parameters/indices in 121 out of the 144 incidences. 

Based on the number of success incidences obtained from the cross-validation results, 

the interpolation methods can be sorted, as EBK > LPI > GPI > IDW > KR > RBF (Table 

2.1). This ranking supports the findings of Gunarathna et al., (2016a,b) and Mirzaei and 

Sakizadeh (2016), who also found EBK to be superior to other interpolation methods with 

the use of a limited number of variables. Even though EBK recorded the lowest RMSE value 

for most of the parameters/indices, that was not the case with Ca2+ and PO4
3-, for which 

several methods had the lowest RMSE during different months (Table 2.1). Hence, we 

selected Ca2+ (Table 2 .2) and PO4
3- (Table 2.3) to elucidate differences in the methods. 
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Table 2.1. Summary of selected best interpolation methods for different 

parameters/indices during the study period 

 pH Na+ K+ Ca2+ Mg2+ NO3--N PO43− HCO3− Cl− EC SAR TH 

Apr EBK EBK EBK GPI EBK EBK EBK EBK KR EBK RBF EBK 

May EBK EBK EBK EBK EBK EBK KR EBK EBK EBK KR EBK 

Jun EBK EBK EBK EBK EBK EBK EBK EBK EBK EBK EBK EBK 

Jul IDW EBK EBK EBK EBK EBK RBF EBK EBK EBK EBK EBK 

Aug GPI EBK EBK EBK EBK EBK RBF EBK EBK EBK EBK EBK 

Sep EBK EBK EBK GPI EBK EBK KR EBK EBK EBK EBK EBK 

Oct EBK EBK EBK LPI EBK EBK EBK EBK EBK EBK EBK LPI 

Nov EBK IDW EBK GPI EBK EBK RBF EBK EBK EBK EBK EBK 

Dec GPI EBK EBK EBK EBK EBK RBF KR EBK EBK EBK EBK 

Jan LPI EBK EBK GPI EBK EBK EBK EBK EBK EBK GPI EBK 

Feb LPI EBK EBK LPI EBK EBK EBK EBK EBK EBK RBF EBK 

Mar EBK EBK EBK EBK EBK EBK RBF EBK EBK EBK RBF EBK 
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Table 2.2. Summary statistics of calcium concentration in Ulagalla cascade  

 Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 

Mean 182.9 38.2 63.6 70.4 35.3 49.7 30.1 35.0 92.2 86.4 84.5 37.3 

Standard 

deviation 

89.7 28.4 30.3 47.2 19.5 25.1 20.6 17.5 44.0 36.5 53.8 23.1 

CV (coefficient 

of variance) 

49 74 48 67 55 50 69 50 48 42 64 62 

Moran's Index 

(MI) 

−0.19 −0.12 −0.39 0.04 −0.18 −0.30 0.13 −0.26 −0.26 −0.22 −0.03 −0.07 

P-value of MI 0.31 0.57 0.02 0.60 0.32 0.08 0.22 0.13 0.12 0.22 0.96 0.79 

Skewness 

(original data) 

0.40 1.28 0.62 0.91 1.45 0.84 1.99 0.81 1.22 0.22 1.62 1.66 

Skewness (after 

log 

transformation) 

0.4 0.07 0.62 −0.18 0.33 0.84 −0.19 0.81 −1.04 0.22 −0.43 −0.07 

Range 350 114 117 161 85 106 100 80 226 129 264 100 

Lowest RMSE GPI EBK EBK EBK EBK GPI LPI GPI EBK GPI LPI EBK 

2nd lowest 

RMSE 
LPI KR KR GPI KR EBK EBK LPI GPI EBK EBK KR 

3rd lowest 

RMSE 
KR LPI GPI LPI GPI KR RBF EBK LPI LPI GPI GPI 

4th lowest 

RMSE 

EBK GPI LPI KR LPI LPI IDW KR KR KR KR LPI 

5th lowest 

RMSE 

IDW RBF IDW IDW RBF IDW KR IDW IDW IDW IDW RBF 

6th lowest 

RMSE 

RBF IDW RBF RBF IDW RBF GPI RBF RBF RBF RBF IDW 

Well numbers 

with extreme 

values 

 1  10, 

14 

1 10 27, 

28 

10 10  10 1, 10 

 

As inexact interpolators among the selected methods, GPI and LPI showed quite similar 

results compared to other methods used in the present study, and this was supported by 

Wang et al. (2014). Xiao et al. (2016) also confirmed that GPI is suitable only when the 

variability of the dataset is relatively small. Although GPI can be used to analyze the surface 

trend of regionalized variables, it is not accurate when extreme values are present (Mutuna 

and Kurima 2012; Wang et al., 2014). LPI is also capable of simulating a narrow range of 
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variability with high accuracy (Xiao et al., 2016). GPI was ranked in the top three methods 

during 10 months of the study period, and the CV was relatively small in 6 of those 10 

months (Table 2.2). Moreover, no extreme values were recorded near the boundaries in 

those 6 months. In the other 4 months, the variation of the dataset was moderate, and no 

extreme values were recorded near the boundaries (Table 2.2). According to the summary 

statistics of phosphate concentration (Table 2.3), the conditions of low variation and no 

extreme values near boundaries were met in only 3 months, and GPI was ranked among the 

top three only once. 

IDW is widely used in the field of environmental sciences, but it is rarely recommended 

as the best interpolation method in comparison studies (Li and Heap, 2011). In their review, 

Li and Heap (2011) reported that IDW is highly sensitive to sample density and data 

variation (CV). The poor performance of IDW in our study could be attributed to the high 

spatial data variation and relatively low sample size. In the classification using Ca2+ and 

PO4
3-, IDW was never the best-fit model when the CV was high. Therefore, we do not 

recommend the use of IDW to interpolate spatial variation of groundwater quality 

parameters/indices in the tank cascade landscapes unless the data show low spatial variation 

and have a higher sample density with an evenly distributed sampling pattern. 
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Table 2.3. Summary statistics of phosphate concentration in Ulagalla cascade 

 
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 

Mean 0.04 0.05 0.06 0.57 0.58 0.06 0.11 0.16 0.09 0.04 0.32 0.70 

Standard 

deviation 

0.04 0.06 0.05 0.24 0.27 0.08 0.16 0.15 0.12 0.05 0.06 0.78 

CV 

(coefficient of 

variance) 

97 119 87 42 47 135 139 91 134 106 20 111 

Moran's Index 

(MI) 

0.33 0.26 0.37 0.43 0.36 0.25 0.17 0.26 0.25 0.23 0.03 0.20 

P-value of MI 0.00 0.02 0.00 0.00 0.00 0.03 0.14 0.04 0.04 0.06 0.61 0.09 

Skewness 

(original data) 

2.2 2.9 2.4 1.9 1.9 2.4 2.2 2.0 2.1 2.0 −2.1 2.7 

Skewness 
(after log 

transformation) 

0.8 0.8 0.2 1.0 0.5 0.8 0.5 1.2 0.5 0.7 −2.6 1.0 

Range 0.15 0.26 0.26 0.99 1.30 0.34 0.63 0.57 0.44 0.17 0.26 3.69 

Lowest RMSE IDW RBF RBF EBK RBF RBF EBK EBK EBK EBK EBK EBK 

2nd lowest 

RMSE 
EBK KR EBK KR EBK KR RBF GPI RBF RBF LPI LPI 

3rd lowest 

RMSE 
RBF LPI IDW RBF KR LPI IDW KR KR KR GPI GPI 

4th lowest 

RMSE 

LPI EBK KR IDW IDW EBK LPI LPI IDW IDW IDW KR 

5th lowest 

RMSE 

GPI IDW GPI LPI LPI IDW GPI RBF LPI GPI RBF RBF 

6th lowest 

RMSE 

KR GPI LPI GPI GPI GPI KR IDW GPI LPI KR IDW 

Well numbers 

with extreme 

values 

14, 

16, 

12 

14, 

16 

2, 14 14, 

16 

1, 2, 

14, 

15, 

16 

1, 2, 

11, 

14, 

15, 16 

14, 

16, 

11 

11, 

14, 

16, 

25 

14, 

16, 

11 

14, 

11 

14, 

16, 

11 

16, 

15, 

11 

 

Kriging (KR) is one of the most widely used interpolation methods in the field of 

environmental sciences, and it has been recommended in comparison studies (Li and Heap, 

2011). Basic assumptions of KR are spatially autocorrelated observations (a function of the 

distance between observations) and normally distributed data (Zimmerman et al., 1999). 

Therefore, KR has a strong ability to predict the overall trend of groundwater contamination 

when a dataset is autocorrelated (Ahmed, 2002; Mutuna and Kurima, 2012; Nas, 2009; Xie 
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et al., 2011; Zehtabian et al., 2013). As shown in Table 2.3, KR was ranked on the first three 

for six months when the data was significantly autocorrelated in 8 months and was in the 

top three in 5 of those eight months. This characteristic was also observed in the Ca2+ 

dataset, where KR performed well in June when the data were autocorrelated. 

Because EBK divides the dataset into subsets and simulates a semivariogram for each 

subset to reduce the uncertainty relative to that in KR, it provides relatively better 

interpolation accuracy on small datasets and non-stationary datasets than KR (ESRI,  2015). 

In Tables 2.2 and 2.3, EBK was listed in the top three in 21 of 24 incidences. This shows 

that EBK performs well irrespective of CV, MI, extreme values near boundaries (EVnB), 

and skewness (SK). However, when the dataset was less variable, showed autocorrelation, 

and had no EVnB, other interpolation methods performed better than EBK. Hence, we 

recommend using EBK when data show high variability and no autocorrelation, and extreme 

values near boundaries and are not normally distributed. 

As the quality of the dataset determines the accuracy of different interpolation methods, 

we assessed the importance of CV, MI, SK, and EVnB (characteristics that show the quality 

of a dataset) to the success of each method using an attribute evaluation option available in 

the CORElearn package (Robnik-Sikonja and Savicky, 2017) of R software (Table 2.4). The 

relative importance of the characteristics can be sorted as EVnB > CV > SK > MI for GPI 

and EVnB > SK > CV > MI for LPI. These results confirm the sensitivity of GPI and LPI 

to CV and EVnB. The relative importance for RBF was CV > EVnB > SK > MI, 

demonstrating that RBF is sensitive to the variability of the dataset and EVnB. The relative 

failure of RBF in this study can be explained by the high spatial variation of the water quality 

parameters/indices. The relative importance for IDW was EVnB > CV > MI > SK, 

confirming its sensitivity to dataset variability and extreme values. The relative importance 
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for KR was EVnB > MI > CV > SK, confirming that KR can be successfully used when the 

dataset is autocorrelated with low variability while lacking extreme values near boundaries.  

Table 2.4. The relative importance of attributes on different interpolation 

methods 

Relative importance 

Attributes GPI LPI RBF IDW KR EBK 

CV 0.013 0.036 0.181 0.274 0.013 0.025 

MI −0.031 0.010 0.010 0.243 0.052 0.009 

SK −0.02 0.081 0.050 0.730 0.001 −0.013 

EVnB 0.262 0.093 0.077 0.422 0.218 0.154 

CV –coefficient of variance, MI- Moran’s Index, SK- Skeweness, EVnB- extreme values 

near the boundary 

 

2.3.2. Distribution pattern of observed and simulated data using the EBK method 

Figure 2.3 shows the boxplot diagrams of the observed and EBK-predicted values of 

the 12 parameters/indices. The measured and predicted values of almost all the 

parameters/indices were right-skewed except pH, showing that the majority of the values 

are clustered below the median and the means are greater than the median. Further, it can 

be noted that EBK was unable to properly predict extreme values, but there were no 

significant differences between observed and predicted values. The final spatial distribution 

maps of water quality parameters/indices prepared using the EBK interpolation method for 

the mean values of the 12 parameters/indices are shown in Figure 2.4. It was observed that 

the concentration of most parameters/indices was comparatively low at the upper part of the 

cascade, and it has increased at the lower part of the cascade due to the accumulation effect. 
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Figure 2.3. Boxplot diagrams of observed and EBK-predicted values of 

(a) Na+ (mg/L)  (b) K+ (mg/L) , (c) Ca2+(mg/L), (d) Mg2+ (mg/L) , (e) Cl- (mg/L) , 

(f) HCO3
-  (mg/L),  (g) NO3-N (mg/L) , (h)  PO4

3- (mg/L) , (i) pH , (j) EC 

(μS/cm) ,  (k) SAR and (l) TH (mg/L) in Ulagalla cascade 
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Figure 2.4. Spatial distribution of (a) Na+ (mg/L),  (b) K+ (mg/L) , 

(c) Ca2+(mg/L),  (d) Mg2+ (mg/L) , (e) Cl- (mg/L) , (f) HCO3
-  (mg/L),  (g) NO3-N 

(mg/L) , (h)  PO4
3- (mg/L) , (i) pH , (j) EC (μS/cm) ,  (k) SAR, and (l) TH 

(mg/L)  in Ulagalla cascade 

 

2.4. Conclusions 

A clear understanding of spatial and temporal variation in water quality 

parameters/indices is a key issue in agriculture as well as in environmental studies. At 

present, many algorithms are used with the aim of selecting the best interpolation method 

for delineation of the spatial distribution of water quality parameters/indices. We 

investigated the interpolation accuracy of a variety of methods in a tank cascade landscape. 

The EBK method proved superior to deterministic and other geostatistical methods in 

interpolating groundwater quality parameters (anions, cations, and nutrients) and indices 
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associated with tank cascade landscapes. Kriging interpolation was successful when the 

dataset was autocorrelated with low variability. IDW had the worst results in estimating the 

spatial distribution of water quality parameters/indices. Better performance was obtained 

with the GPI and LPI methods when the dataset was less variable and had no extreme values 

near boundaries. 

Because groundwater monitoring is labor-intensive and expensive, it is important to use 

optimum sampling density and to choose the design in a methodical way. Furthermore, it is 

advisable to decide on the interpolation method before sampling and then schedules sample 

density and design accordingly. This study can be used as a guide for such decision making 

for groundwater monitoring in a tank cascade landscape.  

In general, the preparation of a composite water quality zonation map for the Ulagalla 

cascade with the integration of the EBK method and water quality indices/parameters can 

be carried out. Future research can be conducted to find out the optimum number of 

sampling points to obtain a precise estimation of water quality in the tank cascade landscape.  
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Appendix 

 Appendix Table A1. Longitude and latitude of the sampling locations 

Well 

no.     Longitude 

       

Latitude 

    

Well 

no.     Longitude        Latitude 

1 80° 32' 28'' E 8° 13' 35'' N 16 80° 32' 35'' E 8° 9' 34'' N 

2 80° 32' 21'' E 8° 14' 5'' N 17 80° 34' 11'' E 8° 6' 36'' N 

3 80° 32' 47'' E 8° 13' 18'' N 18 80° 33' 51'' E 8° 7' 18'' N 

4 80° 33' 1'' E 8° 12' 43'' N 19 80° 33' 21'' E 8° 7' 8' N 

5 80° 33' 0'' E 8° 12' 1'' N 20 80° 33' 30'' E 8° 8' 16'' N 

6 80° 32' 30'' E 8° 12' 27'' N 21 80° 33' 36'' E 8° 8' 38'' N 

7 80° 33' 27'' E 8° 11' 58'' N 22 80° 33' 55'' E 8° 9' 0'' N 

8 80° 33' 38' E 8° 11' 25'' N 23 80° 33' 7'' E 8° 8' 9'' N 

9 80° 33' 33'' E 8° 10' 53'' N 24 80° 32' 43'' E 8° 8' 53'' N 

10 80° 32' 59'' E 8° 11' 6'' N 25 80° 33' 32'' E 8° 6' 29'' N 

11 80° 32' 23'' E 8° 11' 32'' N 26 80° 32' 35'' E 8° 7' 24'' N 

12 80° 31' 55'' E 8° 10' 36'' N 27 80° 33' 21'' E 8° 7' 42'' N 

13 80° 32' 16'' E 8° 9' 49'' N 28 80° 31' 37'' E 8° 13' 28'' N 

14 80° 33' 11'' E 8° 9' 54'' N 29 80° 31' 56'' E 8° 12' 46'' N 

15 80° 32' 60'' E 8° 10' 27'' N    
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Appendix Table A2. Accuracy of different methods at predicting pH 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 0.422 0.421 0.442 0.440 0.482 0.482 0.393 

May 0.294 0.269 0.294 0.276 0.270 0.270 0.266 

June 0.406 0.430 0.425 0.438 0.409 0.409 0.402 

July 0.303 0.314 0.319 0.310 0.313 0.313 0.306 

August 0.401 0.392 0.412 0.400 0.413 0.413 0.404 

September 0.468 0.456 0.486 0.469 0.499 0.499 0.451 

October 0.417 0.395 0.426 0.406 0.440 0.440 0.391 

November 0.397 0.398 0.408 0.405 0.398 0.398 0.370 

December 0.394 0.356 0.397 0.357 0.395 0.395 0.377 

January 0.373 0.358 0.375 0.352 0.367 0.367 0.359 

February 0.355 0.373 0.359 0.344 0.351 0.351 0.347 

March 0.257 0.249 0.252 0.246 0.243 0.243 0.236 
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Appendix Table A3. Accuracy of different methods at predicting sodium concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 92.45 92.48 95.10 94.76 96.52 96.52 90.46 

May 78.64 79.38 79.95 81.00 81.91 81.91 77.20 

June 72.20 64.76 74.33 67.48 63.97 63.97 63.13 

July 69.93 64.29 70.40 67.04 64.68 64.68 62.25 

August 76.94 71.68 80.03 74.68 77.974 77.974 70.36 

September 78.63 76.92 78.91 79.49 82.32 82.32 70.71 

October 59.37 57.47 60.22 59.78 62.48 62.48 52.50 

November 59.40 61.57 60.22 59.60 60.392 60.392 60.15 

December 101.53 101.44 103.13 104.55 104.267 104.267 98.98 

January 66.72 66.66 65.96 68.75 67.62 67.62 63.51 

February 91.87 94.39 93.75 97.04 94.024 94.024 91.52 

March 77.68 77.91 79.63 78.36 82.09 82.09 71.69 
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Appendix Table A4. Accuracy of different methods at predicting potassium 

concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 2.497 2.512 2.509 2.461 2.435 2.435 2.413 

May 2.094 2.149 2.099 2.131 2.095 2.095 2.040 

June 3.008 2.922 2.954 2.847 2.886 2.886 2.841 

July 2.853 2.805 2.872 2.783 2.818 2.818 2.693 

August 2.272 2.311 2.297 2.256 2.187 2.187 2.190 

September 1.873 1.907 1.881 1.842 1.810 1.810 1.795 

October 1.509 1.566 1.528 1.553 1.486 1.486 1.453 

November 1.710 1.712 1.707 1.703 1.707 1.707 1.652 

December 3.669 3.686 3.694 3.674 3.659 3.659 3.500 

January 2.753 2.719 2.777 2.710 2.661 2.661 2.558 

February 3.300 3.482 3.324 3.307 3.249 3.249 3.198 

March 1.043 1.041 1.040 1.016 1.075 1.075 1.011 
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Appendix Table A5. Accuracy of different methods at predicting calcium 

concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 99.562 90.209 100.446 91.437 93.295 93.295 94.296 

May 32.981 30.199 32.803 30.184 29.581 29.581 28.213 

June 36.401 32.650 37.321 33.056 32.387 32.387 31.622 

July 49.471 47.518 50.900 47.606 49.863 49.863 45.759 

August 23.423 20.558 23.355 20.890 20.212 20.212 19.383 

September 29.037 26.220 29.319 26.744 26.700 26.700 26.594 

October 20.529 21.708 20.212 17.601 20.772 20.772 20.183 

November 19.873 17.981 20.212 18.285 18.807 18.807 18.682 

December 49.393 45.419 49.848 45.836 46.767 46.767 43.777 

January 41.396 38.672 42.099 38.988 39.115 39.115 38.914 

February 55.709 53.134 56.238 51.639 54.282 54.282 52.781 

March 25.096 23.094 25.008 23.289 22.864 22.864 22.832 
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Appendix Table A6. Accuracy of different methods at predicting magnesium 

concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 52.09 48.59 51.09 49.33 51.61 51.61 46.22 

May 38.74 35.86 38.09 36.70 36.62 36.62 33.58 

June 33.33 30.96 33.06 31.05 30.94 30.94 29.02 

July 48.02 48.26 46.85 46.06 45.52 45.52 43.98 

August 21.45 19.44 21.72 19.79 22.28 22.28 18.13 

September 20.26 18.93 19.76 19.02 19.11 19.11 17.84 

October 19.94 19.19 19.09 18.96 19.80 19.80 18.59 

November 24.27 23.11 23.92 23.12 23.69 23.69 21.57 

December 59.82 57.08 58.69 57.28 59.94 59.94 53.49 

January 37.24 37.04 35.26 36.30 36.45 36.45 34.28 

February 55.12 56.53 53.29 53.73 54.51 54.51 52.07 

March 25.35 23.85 25.07 24.16 24.28 24.28 23.55 
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Appendix Table A7. Accuracy of different methods at predicting nitrate nitrogen 

concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 3.449 3.572 3.563 3.526 3.349 3.349 3.192 

May 3.035 2.890 3.188 2.884 2.794 2.794 2.735 

June 2.519 2.349 2.527 2.449 2.256 2.256 2.170 

July 2.684 2.685 2.829 2.670 2.529 2.529 2.490 

August 0.801 0.840 0.773 0.805 0.778 0.778 0.750 

September 2.334 2.395 2.416 2.382 2.247 2.247 2.119 

October 4.982 5.147 5.200 5.209 4.904 4.904 4.718 

November 4.537 4.770 4.691 4.694 4.344 4.344 4.299 

December 2.162 2.195 2.265 2.157 2.039 2.039 1.969 

January 2.181 2.246 2.260 2.217 2.067 2.067 2.027 

February 2.166 2.190 2.267 2.148 2.049 2.049 1.985 

March 3.316 3.147 3.507 3.164 3.052 3.052 2.906 
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Appendix Table A8. Accuracy of different methods at predicting phosphate 

concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 0.0383 0.0411 0.0393 0.0400 0.0419 0.0419 0.0387 

May 0.0550 0.0579 0.0429 0.0539 0.0522 0.0522 0.0544 

June 0.0521 0.0554 0.0510 0.0561 0.0547 0.0547 0.0519 

July 0.2372 0.2508 0.2351 0.2505 0.2299 0.2299 0.2289 

August 0.2376 0.2847 0.2137 0.2559 0.2203 0.2203 0.2185 

September 0.0791 0.0845 0.0665 0.0772 0.0761 0.0761 0.0784 

October 0.1630 0.1643 0.1583 0.1641 0.1666 0.1666 0.1543 

November 0.1601 0.1547 0.1578 0.1577 0.1561 0.1561 0.1456 

December 0.1233 0.1252 0.1184 0.1251 0.1214 0.1214 0.1165 

January 0.0511 0.0513 0.0494 0.0514 0.0505 0.0505 0.0478 

February 0.0644 0.0642 0.0660 0.0638 0.0678 0.0678 0.0609 

March 0.8531 0.8177 0.8526 0.8143 0.8521 0.8521 0.7667 

 

 



45 

 

Appendix Table A9. Accuracy of different methods at predicting bicarbonate 

concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 7.635 8.537 7.152 7.084 7.484 7.484 7.791 

May 10.472 12.321 10.672 10.795 10.583 10.583 10.177 

June 25.261 25.468 25.984 26.111 25.386 25.386 23.049 

July 26.454 28.259 27.438 28.560 27.723 27.723 25.567 

August 26.394 25.871 27.128 26.459 25.518 25.518 23.879 

September 21.248 21.488 21.703 21.815 21.398 21.398 20.118 

October 24.846 24.494 24.940 24.767 26.945 26.945 22.679 

November 37.413 36.044 36.765 36.308 36.299 36.299 33.808 

December 23.242 22.315 23.540 22.811 21.880 21.880 22.271 

January 23.791 22.593 24.270 23.372 22.774 22.774 21.953 

February 13.513 13.121 13.770 13.571 13.889 13.889 13.124 

March 16.755 16.211 16.609 16.734 16.073 16.073 15.043 
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Appendix Table A10. Accuracy of different methods at predicting chloride 

concentration 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 523.00 472.00 514.00 479.00 473.57 473.57 474.63 

May 437.00 399.00 432.00 405.00 397.85 397.85 377.13 

June 299.00 260.00 303.00 266.00 256.10 256.10 243.52 

July 339.00 295.00 340.00 303.00 292.21 292.21 275.89 

August 340.00 310.00 340.00 316.00 301.81 301.81 290.23 

September 380.00 352.00 380.00 358.00 349.04 349.04 331.90 

October 349.00 320.00 349.00 324.00 317.13 317.13 301.21 

November 348.00 323.00 350.00 327.00 319.33 319.33 302.74 

December 467.00 426.00 473.00 433.00 423.95 423.95 401.40 

January 347.00 321.00 351.00 327.00 322.52 322.52 304.87 

February 366.00 341.00 368.00 347.00 341.23 341.23 325.94 

March 332.00 301.00 336.00 308.00 301.53 301.53 288.31 
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Appendix Table A11. Accuracy of different methods at predicting electrical 

conductivity 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 556.00 522.00 562.00 533.00 511.68 511.68 485.51 

May 1014.00 972.00 1020.00 991.00 954.44 954.44 900.32 

June 901.00 789.00 915.00 809.00 781.29 781.29 733.61 

July 889.00 775.00 894.00 796.00 760.98 760.98 717.11 

August 966.00 861.00 974.00 883.00 846.27 846.27 800.76 

September 20.00 24.00 19.00 19.00 19.22 19.22 18.55 

October 1048.00 980.00 1049.00 999.00 961.50 961.50 907.20 

November 1052.00 985.00 1057.00 1002.00 961.89 961.89 914.46 

December 771.00 719.00 775.00 732.00 703.45 703.45 669.21 

January 843.00 797.00 849.00 812.00 779.35 779.35 739.80 

February 598.00 560.00 602.00 571.00 549.77 549.77 522.34 

March 824.00 764.00 817.00 780.00 762.11 762.11 719.89 
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Appendix Table A12. Accuracy of different methods at predicting sodium adsorption 

ratio 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 1.571 1.667 1.446 1.546 1.459 1.459 1.639 

May 2.298 2.442 2.197 2.306 2.110 2.110 2.231 

June 1.394 1.367 1.435 1.421 1.449 1.449 1.311 

July 2.046 1.950 2.118 2.040 2.057 2.057 1.886 

August 2.458 2.420 2.526 2.475 2.779 2.779 2.269 

September 2.568 2.591 2.601 2.673 2.564 2.564 2.372 

October 2.177 2.187 2.217 2.261 2.253 2.253 2.012 

November 2.027 2.122 2.047 2.086 2.225 2.225 1.949 

December 2.150 2.186 2.160 2.196 2.142 2.142 2.100 

January 1.788 1.749 1.843 1.817 1.829 1.829 2.148 

February 1.921 2.008 1.622 1.872 1.781 1.781 1.694 

March 2.168 2.319 2.097 2.157 2.104 2.104 2.159 
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Appendix Table A13. Accuracy of different methods at predicting total hardness 

 RMSE 

 IDW GPI RBF LPI OK UK EBK 

April 364.00 338.00 363.00 339.00 357.00 357.00 349.00 

May 228.00 207.00 225.00 210.00 208.57 208.57 195.55 

June 202.00 185.00 204.00 186.00 183.93 183.93 170.94 

July 290.00 295.00 288.00 283.00 275.66 275.66 267.19 

August 134.00 120.00 135.00 122.00 117.87 117.87 113.19 

September 143.00 131.00 141.00 132.00 132.02 132.02 123.10 

October 117.00 117.00 111.00 103.00 114.81 114.81 110.32 

November 139.00 130.00 138.00 131.00 137.79 137.79 122.21 

December 344.00 325.00 340.00 325.00 336.25 336.25 307.04 

January 227.00 223.00 220.00 220.00 228.00 228.00 222.00 

February 338.00 339.00 331.00 324.00 332.00 332.00 318.69 

March 158.00 146.00 156.00 148.00 146.53 146.53 144.43 
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3.0 Classification of Groundwater Suitability for Irrigation in Tank cascade landscape 

by GIS and Analytic Hierarchy Process 

 

3.1. Introduction 

Fresh surface water resources are unevenly distributed throughout the world and are 

becoming scarce owing to rapid population growth, industrialization, and human activities 

(Annapoorna and Janardhana, 2015). So people have turned to groundwater as a major 

source for drinking, domestic, and irrigation purposes (Jalali, 2008). Although the quality is 

important as availability, it is often ignored, especially in developing regions. Since the 

irrigation water with poor quality harms both the soil and crop productivity (Gunarathna et 

al., 2016b; Raychaudhuri et al., 2014), various studies have evaluated the quality of 

groundwater for irrigation (Kumari et al., 2016; Nag and Suchetana, 2016; Sarath Prasanth 

et al., 2012). Quality is determined through the use of several parameters and indices, 

namely electrical conductivity (EC), total dissolved solids (TDS), nitrate-nitrogen (NO3-N), 

ammonium nitrogen (NH4-N), sodium adsorption ratio (SAR), total hardness (TH), 

magnesium adsorption ratio (MAR), Kelly’s ratio (KR), and chloride (Gunarathne and 

Kumari, 2014; Kumari et al., 2013; Subramani et al., 2010; Thapa et al., 2018). A 

comprehensive assessment of groundwater suitability for irrigation requires the integration 

of these indices. 

 Geographical information system (GIS) is a powerful tool for assessing the 

environmental changes, quality, and availability of water and for managing water resources 

(Gunaalan et al., 2018). Spatial analysis extension in GIS allows us to interpolate 

environmental parameters between known values through the use of techniques such as 

inverse-distance-weighted, ordinary kriging, universal kriging, empirical Bayesian kriging 
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(EBK), spline, and trend surface analysis (Estoque et al., 2017; Gunarathna et al., 2016c, 

2016a; Ranagalage et al., 2018). 

 Multi-criteria decision-making tools can support the resolution of complex problems 

by evaluating activities using multiple criteria, as in disaster management and environmental 

management studies (Üstün and Barbarosoğlu, 2015). In recent years, a tool named the 

analytic hierarchy process (AHP), developed by Saaty (1987), has been used in 

environmental planning and management studies (Jozaghi et al., 2018; Machiwal et al., 

2011; Pramanik, 2016). 

 The tank cascade system (TCS), used mainly in the dry and intermediate zones of 

Sri Lanka since the third century BCE, is considered as one of the most efficient traditional 

water management systems in the world and is still an essential element of water 

management for agriculture in Sri Lanka (Abeywardana et al., 2018; Bebermeier et al., 

2017). The key concept of the TCS is recycling and reuse of water through a network of 

tanks organized within micro-catchments to store and convey water (by gravitational flow) 

originating from ephemeral rivulets (Madduma Bandara, 1985). TCSs collect rainwater, 

maintain the water content of the soil and groundwater, control soil erosion, and maintain 

the ecological balance (Gunarathne and Kumari, 2014). During the last few decades, the 

usage of groundwater in the dry zone of Sri Lanka has rapidly increased owing to the 

inability of surface water resources to cater to growing demand, hastening the deterioration 

of water quality in the tank cascade landscape (Bebermeier et al., 2017). 

 The Ulagalla cascade is a major TCS located near Anuradhapura city, in the dry zone 

of Sri Lanka. Although the cascade has not been studied comprehensively, elevated 

concentrations of nutrients were observed in the adjacent Tirappane and Mahakanumulla 

cascades (Wijesundara et al., 2012), showing that not only the quantity but also the quality 
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of irrigation water poses problems for sustainable farming. This highlights the need to 

examine water quality comprehensively, and to pay more attention to continuous monitoring 

and management of groundwater quality in tank cascade landscapes. However, no scientific 

protocol has yet been developed to assess the suitability of groundwater for irrigation in the 

tank cascade landscapes or similar environments. 

 Although mapping is used worldwide to demarcate areas with suitable groundwater 

for irrigation in regions with a continuous water table (Kavurmaci and Üstün, 2016; Rabeiy, 

2018), regions without a continuous water table have been neglected. Further, no attempt 

has been made to map irrigation water suitability zones in the tank cascade landscapes or 

similar environments.  

 

3.1.1. Objectives of this study 

 To model spatial and temporal variations in irrigation water quality in tank cascade 

landscape using AHP and GIS, and to establish a protocol to classify the groundwater 

suitability for irrigation.  

 

3.2. Materials and Methods  

 

3.2.1. Study area  

 The Ulagalla cascade is a linear cascade in the low country dry zone (DL1b) in the 

north-central province of Sri Lanka, located at 8°5’–8°14’N latitude and 80°31’–80°34’E 

longitude, covers about 51 km2 of area. The cascade comprises 19 interconnected small 

tanks (Figure 3.1). 
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Figure 3.1. Location map of the Ulagalla cascade: (a) South Asia; (b) Sri Lanka; 

(c) Anuradhapura district; (d) sampling locations 

The study area is underlain by charnockite, granitic gneiss, and undifferentiated 

Highland Series rocks (Figure 3.2a). The major aquifer type in the tank cascade landscape 

is a shallow regolith aquifer with 2–10 m in thickness. The groundwater potential is limited 

owing to a low groundwater storage capacity and the transmissivity of the underlying 

crystalline basement (Sirimanne, 1952) and also recognized that there is no continuous body 

of groundwater with a single water table but as separate pockets of groundwater (Figure 

3.3). The groundwater is found in both weathered rock zone (2-10 m thickness) and deeper 

fracture zone of the basement rock (30-40 m) (Panabokke and Perera, 2005). 
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Figure 3.2. (a) Geological map and (b) land use map of Ulagalla cascade 

 

Figure 3.3. The cross-sectional view of regolith aquifer 

Groundwater has been extracted for irrigation and domestic purposes for more than 

2000 years from dug wells (Panabokke and Perera, 2005). The farmers in the dry zone draw 
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irrigation water from large-diameter “agro-wells”, as agricultural activities are prominent in 

this area. Commonly grown upland crops (e.g. chilli, eggplant, okra, banana, etc.) are grown 

under rainfed “chena” cultivation. Other mainland uses are paddy, forest, and homestead 

(Figure 3.2b). Two major growing seasons are recognized in Sri Lanka: the Maha (wet) 

season and the Yala (dry) season. The Maha season from October to February receives 

rainfall from the second inter-monsoon (depression and cyclonic storms in the Bay of 

Bengal) and north-east monsoon. The Yala season from April to August receives rainfall 

from first inter-monsoon (Convective type) and the south-west monsoon (Gunarathna et al., 

2019; Gunarathna and Kumari, 2013). We assessed groundwater quality parameters over 12 

months to investigate seasonal variations in irrigation water quality. 

The study area contains a moderately deep to deep, imperfectly drained soil 

(SRCANSOL, 2009). The depth of the soil layer is around 1.2 m in the study area. Figure 

3.4 shows the soil profile of the tank cascade system in the dry zone of Sri Lanka (Perera, 

2017a).  

 

Figure 3.4. The typical soil profile of an agro-well in Tank cascade landscape 
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3.2.2. Cascade boundary demarcation and groundwater sampling 

 To demarcate the extent of the Ulagalla cascade boundary, we used 1:50000-

scale topographic sheets published by the Survey Department of Sri Lanka and the 

Shuttle Radar Topography Mission 30-m digital elevation model (Ahmadi et al., 2014). 

 We randomly selected 29 active agro-wells to give a homogeneous distribution 

within the study area (Figure 3.1), and samples were collected for 12 consecutive 

months starting from April 2016. Samples were collected in acid-cleaned high-density 

polyethylene bottles rinsed several times with the groundwater to be sampled. The 

bottles were tightly closed, labelled, and transported out of direct sunlight to the 

laboratory, where they were stored at 4 °C. They were analyzed by standard procedures 

(APHA, 2005). pH, EC, and TDS were measured in situ with an HQ 40d multiparameter 

analyzer (Hach, Colorado, USA). Sodium (Na+), potassium (K+), magnesium (Mg2+), 

and calcium (Ca2+) ions were determined by inductively coupled plasma optical 

emission spectrometry (iCAP 7400 ICP-OES, Thermo Scientific, Cambridge, UK). 

Alkalinity as CaCO3 was analyzed by acid-base titration. Chloride (Cl−) was determined 

by standard AgNO3 titration. Available phosphorus (PO4
3−) was determined by the 

ascorbic acid method (Olsen et al., 1954). Nitrate-nitrogen (NO3-N) was analyzed by 

the salicylic acid method (Cataldo et al., 1975). Sulfate (SO4
2−) concentration was 

measured by method 8051 SulfaVer 4 (powder pillows) (Hach, 2005). The research 

methodology is presented in Figure 3.5. 
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 Figure 3.5 Flow chart of the methodology used in this research 

 

3.2.3. Indices of irrigation water quality 

We selected six water quality indices important for field crops grown in the study area. 

We estimated chloride concentration, electrical conductivity (EC), sodium adsorption ratio 

(SAR) (Equation 3.1) (Wilcox, 1955), magnesium adsorption ratio (MAR) (Equation 3.2) 

(Raghunath, 1987), Kelly’s ratio ( KR) (Equation 3.3) (Todd and Mays, 2005) and total 

hardness (TH) (Equation 3.4) (Kelly, 1963) as: 
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KR          (3.3) 

LmgMgLmgCaLmg /)(1.4/)(49.2/)(CaCO TH 3      (3.4) 

where all concentrations in Equations 1–3 are expressed in meq of solute per L of solvent. 

 

3.2.4. Spatial interpolation 

 Kumari et al. (2018) compared the performance of deterministic and geostatistical 

methods used to interpolate irrigation water quality in the tank cascade landscape. They 

reported EBK as the best interpolation method for the Ulagalla cascade. Gunarathna et al. 

(2016a, c) also reported that EBK was the best method to interpolate irrigation water quality 

based on EC, pH, and TDS. Since EBK is a straightforward and robust method that uses a 

number of semivariograms instead of just one (Krivoruchko, 2012), we used it here. 

 

3.2.5. Analytic hierarchy process (AHP) 

 The AHP is recognized as a powerful decision support tool in natural resource 

management studies. It structures complex problem hierarchically and examine each level 

of the hierarchy individually. It uses pairwise comparison matrices to compare all possible 

pairs of criteria and determine which criterion has the highest priority (Bozdag, 2015). 

Criteria are scaled from 1 to 9 (Table 3.1), where 1 indicates equal importance, and 9 

indicates the highest priority. A reciprocal value (e.g., 1/9) indicates the reciprocal 

comparison. To confirm the consistency of the priority ratio, the consistency index (CI) is 

calculated (Equation 3.5). 

1

max






n

n
CI


         (3.5) 
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where, λmax is the largest or principle Eigenvalue of the matrix, and n is the number of criteria 

in the matrix. To ensure that the pairwise comparison matrix is consistent, the consistency 

ratio (CR) is calculated (Hsu and Hu, 2008) as: 

RI

CI
CR            (3.6) 

where the value of the random consistency index (RI) is given by Saaty (2004) (Table 3.2). If 

CR ≤ 10%, it is acceptable. If CR ≥ 10%, the AHP may not give meaningful results, and the 

subjective judgment of the pairwise ranking must be revised (Saaty, 1987). 

 We used six criteria that influence irrigation water quality: EC, SAR, MAR, TH, 

Cl−, and KR. Since each criterion relies on different measured parameters and reflects a 

different aspect of water quality, they need to be given weights, which must be assigned 

with great care. As the AHP has proved a powerful decision support tool in this regard 

(Bozdag, 2015), we invited ten experts in irrigation water quality from universities and the 

Department of Agriculture in Sri Lanka to prioritize these criteria for upland crops 

commonly grown in the study area in an AHP Excel template (www.scbuk.com/ahp.html). 

The names of the criteria or requirements were entered in the template, and the experts were 

asked to work through the matrix, comparing criteria in pairs. Once the pairwise ranking 

was completed, a normalized matrix was calculated, and the consistency was checked with 

the CR.  All the CR values were within the acceptable limit (ranged from 2- 9 %), so the 

computed weights were valid. As the experts’ opinions are likely to be subjective, we used 

the average values of the respective weights as the final weights. 

 Next, we divided water quality parameters and indices into subgroups and assigned 

ranks according to Ayers and Wescot (1994) (Table 3.3). Considering the effect of each 

parameter or index on irrigation water quality, we ranked subgroups on a scale of 1 to 3 as 

follows: 1, no harmful effect on irrigation water quality; 2, moderate effect; and 3, harmful 

effect. EC < 0.7 dS/m has no unfavorable effect on irrigation water quality, so it is ranked 
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1; 0.7 ≤ EC ≤ 3 dS/m is moderately suitable, so it is ranked 2, and EC > 3 dS/m is unsuitable, 

so it is ranked 3. MAR and KR have only two classes: MAR < 50 and KR < 1 are ranked 1, 

and MAR > 50 and KR > 1 are ranked 3. TH has four classes (Ayers and Wescot, 1994); 

hence, TH < 75 is ranked 1, values of 75–150, and 150–300 are ranked 2, and TH > 300 is 

ranked 3. The values of all wells for each criterion were spatially distributed in ArcGIS 

software using the EBK interpolation method and reclassified as above ranks. All 

reclassified layers were combined, and the weighted overlay method was performed. The 

cell values of each reclassified layer were multiplied by their weights obtained by AHP. 

Irrigation suitability maps (monthly variation, seasonal variation, and overall) of the study 

area was obtained by calculating the total irrigation water suitability score (IW) as 

i

i

ni

i WFIW *
1






          (3.7) 

where Fi is the value of the reclassified layer of respective water quality criterion, Wi is the 

weight of the respective criterion obtained from AHP, and n is the total number of criteria. 

The irrigation suitability maps showed areas as suitable (IW = 1.00–1.33), moderately 

suitable (IW = 1.34–2.33), or unsuitable (IW = 2.34–3.00).  
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Table 3.1. Relational scale for pairwise comparisons (adopted from Bozdag, 2015) 

Importance Description Explanation 

1 Equal importance Two criteria contribute equally to the objective 

3 Moderate importance Experience and judgment slightly favor one criterion 

over the other 

5 Strong importance Experience and judgment strongly favor one criterion 

over the other 

7 Very strong 

importance 

Experience and judgment very strongly favor one 

criterion over the other 

9 Extreme importance The evidence favoring one criterion over another is 

of the highest possible validity 

2, 4, 6, 8 Intermediate values When compromise is needed 

Reciprocals Values for inverse 

comparison 

If criterion i had one of the above numbers assigned 

to it when compared with criterion j, then j has the 

reciprocal value when compared with i 

Table 3.2. Random consistency indices (RI) for different numbers of criteria (adopted 

from Saaty, 2004) 

Number of criteria 

(N) 

Random consistency index 

(RI) 
1 0.00 

2 0.00 

3 0.58 

4 0.90 

5 1.12 

6 1.24 

7 1.32 

8 1.41 

9 1.45 

10 1.49 

11 1.51 

12 1.54 

13 1.56 

14 1.57 

15 1.59 
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Table 3.3. Irrigation water quality restriction classes and ranks of irrigation criteria in 

Ulagalla cascade 

Irrigation 

criterion 

Range Water 

class/restriction 

Rank 

EC <0.7 none 1 

0.7–3 slight to moderate 2 

>3 severe 3 

SAR <3 none 1 

3–9 slight to moderate 2 

>9 severe 3 

Cl− <140 none 1 

140–350 slight to moderate 2 

>350 severe 3 

MAR <50 suitable 1 

>50 unsuitable 3 

KR <1 suitable 1 

>1 unsuitable 3 

TH <75 soft 1 

75–150 moderate 2 

150–300 hard 2 

>300 very hard 3 

 

 

3.3. Results and Discussion  

 

3.3.1. Hydrochemistry of groundwater in Ulagalla cascade 

The pH, EC, and major ions of the groundwater samples in the Ulagalla cascade are 

summarized in Table 3.4. Most of the parameters recorded a wide range and a high SD. The 

groundwater in all of Sri Lanka except the far north is drawn mainly from hard metamorphic 

aquifers. Hence, the mineral composition depends mainly on the metamorphic rocks. This 

indicates the influence of mineral dissolution associated with seasonal rainfall and 

anthropogenic activities (Rubasinghe et al., 2015). 

Cl− content showed wide variation (20 to 2120 mg/L; Table 3.4). Cl− is one of the 

important parameters that govern groundwater quality. Generally, weathering of silicate-
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rich rocks, excess application of fertilizer, seawater intrusion, and animal and human waste 

contribute Cl− to groundwater (Singh and Khan, 2011). Since charnockite is prominent in 

the study area (Figure 3.2a), it can contribute to Cl− through mineral dissolution. Since a 

major portion of the cascade is still under a rural settlement with lowland and upland 

cropping and lacks urban settlements and industry, the effect of industrial effluent on 

groundwater quality is minimal. The wells with elevated Cl− concentration occurred in 

coconut plantations and home gardens. Hence, fertilizer (KCl) applied for coconut 

cultivation, and the improper disposal of household wastewater might be the main sources. 

Nutrient concentrations, notably NO3-N and phosphate, are not yet problematic, but the 

continuous application of excess fertilizer can lead to problems. Hence, continuous 

monitoring and good management practices are essential. 

The major cations of the groundwater in Ulagalla cascade decreased in the order of Na+ 

> Ca2+ > Mg2+ > K+, and the major anions decreased in the order of Cl− > HCO3
− > SO4

2− > 

NO3-N > PO4
3−, during both seasons. 

 

Table 3.4. Descriptive statistics of chemical parameters in groundwater during Yala and 

Maha seasons 

Water quality 

parameter a 

Yala season Maha season 

Max Min Mean SD Max Min Mean SD 

pH 8.8 6.2 7.7 0.4 9.3 6.8 7.9 0.4 

EC 4300.0 172.4 1267.1 787.4 4310.0 337.0 1274.4 803.0 

Na+ 329.4 5.9 130.4 70.6 363.8 23.0 139.3 80.5 

K+ 15.5 0.2 2.4 2.5 20.7 0.2 2.9 2.8 

Ca2+ 386.2 6.4 78.1 73.2 280.1 4.3 65.6 45.7 

Mg2+ 202.6 1.5 46.3 39.0 284.2 5.1 55.7 44.6 

HCO3
− 175.0 37.5 87.4 20.4 215.0 27.5 84.9 23.2 

Cl− 2020.0 20.0 312.9 340.1 2120.0 40.0 351.2 334.9 

SO4
2− 84.0 1.0 30.6 15.2 94.0 2.0 34.7 18.7 

NO3-N 17.6 0.1 1.5 2.5 25.2 0.1 1.4 3.3 

PO4
3− 1.5 0.0 0.3 0.3 0.6 0.0 0.1 0.1 

amg/L except EC, μS/cm; Max-maximum, Min-minimum, SD-standard deviation. 
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3.3.2. The weighting of criteria for irrigation water quality 

The relative weights assigned by each expert for each criterion were averaged, and the 

average relative weights were used (Table 3.5) to generate the irrigation suitability maps of 

Ulagalla cascade. 

Table 3.5. Average relative weights assigned to irrigation criteria in Ulagalla cascade 

Irrigation criteria EC SAR Cl- MAR KR TH 

Average relative weights 0.27 0.25 0.16 0.11 0.11 0.10 

 

Salinity, measured as EC, is considered the most influential water quality criterion 

(Ravikumar et al., 2011). It has been identified as the major constraint in the dry zone of Sri 

Lanka, where it reduces crop productivity (Najim and Jayakody, 2008). The group of experts 

gave it the highest weight, of 0.27. SAR indicates soil alkalinity and has a direct relationship 

with Na adsorption to soil; a high value indicates decreased infiltration (Gunatilake et al., 

2014). It was given the second-highest weight. High concentrations of Cl− can be toxic to 

sensitive crops such as citrus and leafy field crops (Murkute et al., 2005). As Cl− is not 

adsorbed to the soil, the Cl− in irrigation water readily moves with soil water. It causes leaf 

burn and drying, and in severe conditions leaf drop (Gunatilake et al., 2014). The Cl− 

concentration was given a weight of 0.16. Both MAR and KR were given a weight of 0.11, 

and TH was given a weight of 0.10. Although hardness of irrigation water does not have 

any direct effect on crop growth, hardness triggered by HCO3
− affects soil, ultimately it can 

affect crop growth. 

 

3.3.3. Irrigation water quality zoning in Ulagalla cascade 

No major difference in water quality zoning was observed between seasons. Most of the 

cascade falls in the moderate suitability category (Figure 3.6). 
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 Understanding the seasonal variation of groundwater quality is important in 

management decisions. However, for planning or policy decisions, we need an overall idea 

about the groundwater quality of the area. Hence, we developed the overall irrigation water 

suitability map of the cascade by overlaying the 12 months irrigation suitability maps 

(Figure 3.8) to demarcate suitable, moderately suitable, and unsuitable areas for irrigation. 

In the overall irrigation water suitability map, 4% of the cascade is suitable, and 96% is 

moderately suitable for irrigation (Figure 3.7). 

 

Figure 3.6. Comparison of irrigation water quality in Ulagalla cascade between 

Yala and Maha seasons 
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Figure 3.7. Overall irrigation water suitability map of Ulagalla cascade  

 Although there was no major difference in irrigation water quality between 

seasons, the monthly zoning maps showed greater variation in several months of 

the Maha season than in the Yala season (Figure 3.8). 
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Figure 3.8. Monthly variation in irrigation water quality in Ulagalla cascade 
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Figure 3.9. Monthly average rainfall (RF) during 1980–2017 and monthly rainfall 

during the study period  

 Since irrigation water quality is directly affected by rainfall, we examined the 

rainfall pattern and found that the pattern during the study period differed from the 

monthly average over the period of 1980–2017 (Figure 3.9). The Maha season begins 

in October with second inter-monsoonal rainfall occurs due to the influence of weather 

systems like depression and cyclonic storms in the Bay of Bengal. It contributes around 

38% of the annual rainfall in Anuradhapura (Gunarathna and Kumari, 2013). October 

typically features high-intensity rainfall, and the subsequent runoff can explain the 

deterioration in irrigation water quality (Figure 3.8). This result shows the “first-flush” 

phenomenon. Particularly in dry zones, salts tend to accumulate on the soil surface with 

evaporation (Rubasinghe et al., 2015). This situation was aggravated at the end of the 

Yala season, as no rainfall was recorded in August or September (Figure 3.8). These 

accumulated salts washed off in the heavy rain during October–November, when heavy 
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rain can fall in thunderstorms on many parts of the island (Rubasinghe et al., 2015), 

causing a clear deterioration in irrigation water quality (Figure 3.8). 

A similar pattern was observed during the Yala season also. In general, the Yala season 

receives less rainfall than the Maha season (Gunarathna and Kumari, 2013). However, 

during the study period, it received more rainfall than the Maha season. From April to 

August (except in May), most of the groundwater in the Ulagalla cascade was moderately 

suitable for irrigation (Figure 3.8a–e). In May, high-intensity heavy rainfall caused 

substantial runoff with a high concentration of contaminants (Figure 3.8b), reducing 

irrigation water quality at the bottom (northern end) of the cascade. These results confirm 

that irrigation water quality in this area is influenced by heavy rainfall rather than by total 

rainfall, not only at the beginning but also in the middle of the rainy season. 

During sampling, we noted that wells 1, 2, 5, 9, 15, and 19 were unlined. Lined wells 

are typically ringed with a brick or concrete wall (1.0–1.5 m height) (Perera, 2017b). 

Unlined wells can be contaminated through direct runoff. Farmers should be encouraged to 

build at least a brick wall around their agro-wells to exclude runoff and improve irrigation 

water quality. 

 

3.3.4. Groundwater quality for irrigation: Present status and future implications in 

the tank cascade landscape 

Since groundwater in most of the cascade is only moderately suitable for irrigation 

(Figure 3.7), urgent attention is required to manage this valuable resource sustainably. 

Salinity is the major constraint in dry zones (Kumari et al., 2016; Mikunthan et al., 2013). 

However, water hardness is higher in dry zones than in wet zones (Piyasiri and Senanayake, 

2016; Rubasinghe et al., 2015), and during the study period, it varied from 47 to 1842 mg/L. 

Therefore, special care should be taken when micro-irrigation systems such as drip irrigation 
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are introduced as clogging has already demotivated the farmers in the area. Farmers must 

be trained in the maintenance and operation of drip irrigation systems (Karunaratne and 

Pathmarajah, 2002), so extension officers have to pay attention to irrigation suitability maps 

when introducing new irrigation methods or crops, and need to alert farmers to salinity 

control measures. 

A groundwater management policy needs to be implemented soon to assure the 

sustainable use of the resource. Attention must be given to continuous monitoring and 

management of groundwater quality, especially in areas with restrictions for irrigation 

purposes. The systematic evaluation of all major cascade systems will help the sustainable 

use of groundwater resources. Our approach can be used to develop a system of irrigation 

water suitability classification in Sri Lanka, and researchers can use it in developing 

techniques for mapping irrigation water quality zones. 

 

3.4. Conclusions 

We aimed to demarcate the suitable areas for irrigation in the Ulagalla cascade. We 

used AHP to understand the relative importance of six irrigation water quality criteria, and 

developed an irrigation water suitability map using a weighted overlay in GIS. 

Monthly variations in irrigation water quality revealed that the first flush associated 

with surface runoff is prominent in the study area following high-intensity heavy rainfall in 

both seasons, but there was no distinct difference in quality between seasons. 

Only 4% of the groundwater in the Ulagalla cascade is suitable for irrigation, and 96% 

is moderately suitable. Our results can be incorporated into the decision-making process of 

agricultural production and environmental planning in the study area. We recommend this 

AHP- and GIS-based water quality zoning procedure for research in the tank cascade 

landscapes and similar environments. 
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4.0 Application of GIS-based drinking water quality index to assess the groundwater 

quality for drinking in CKDu affected tank cascade landscape 

 

4.1 Introduction 

 Safe drinking water with acceptable quality and sufficient quantity is a basic need 

for good health, and it is also a basic right of humans. Although surface water and 

groundwater serve as drinking water sources all over the world, it is limited in many regions 

(Meride and Ayenew, 2016; Mukate et al., 2019). Due to the rapid increase in the 

population, intensive agriculture, urbanization, and climate change will increase the demand 

for drinking water, and it will become more limited in the next few years (Jackson et al., 

2001; Meride and Ayenew, 2016).  

 Deterioration of drinking water quality takes place due to the introduction or removal 

of different substances by both natural and anthropogenic factors (Fyfe et al., 1983; 

Rubasinghe et al., 2015; Todd and Mays, 2005). Among the introduction of the 

anthropogenic factor of heavy metals, nitrate, arsenic, fluoride, and synthetic chemical 

emissions due to industrialization and agricultural activities play a key role (Cabrera et al., 

1999; Shah et al., 2000; Wasana et al., 2017).  However, drinking water quality have a great 

influence on public health as prolong exposure to poor quality drinking water increases the 

disorders in the kidney, liver, and risk of cancer, etc. Moreover, the effect of chemical 

contamination of drinking water has been identified as chronic rather than acute and cause 

the death of human in many regions of the world (Wasana et al., 2017). Water quality 

deterioration affects not only human health but also economic development and social 

prosperity. Therefore, continuous monitoring, assessment, and sustainable management of 

the drinking water resources are vital. 
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 As natural purification processes like ion exchange, filtration, and aerobic 

decomposition take place in the soil column, groundwater has been identified as a pure form 

of water compared to surface water (Shabbir and Ahmad, 2015). Groundwater is identified 

as the most important source of drinking and irrigation water in many tropical regions, 

especially in rural areas. Natural groundwater chemistry is determined by aquifer lithology, 

weathering of rocks, seawater intrusion, and other characteristics of flow paths (Tóth, 1999). 

The climate also plays a key role in groundwater chemistry due to its effects on weathering 

of rocks, evaporation, evapotranspiration, and concentration of chemical components in 

groundwater. It has been identified that the composition of groundwater changes during wet 

and dry periods, and in some cases, several ions have reached very high levels causing 

several geochemical diseases. Fluoride can be considered as one example. Especially in the 

dry zone, it is found in excessive amounts in groundwater and causes dental and skeletal 

fluorosis (Dissanayake and Chandrajith, 2019). However, both natural and anthropogenic 

factors can deteriorate the effective use of groundwater. During the recent past, the 

application of agrochemicals in excessive quantities has also created greater threats in 

farming communities in the dry zone of Sri Lanka. WHO reported that the high level of 

nitrate in drinking water is linked to methemoglobinemia (blue baby syndrome) especially 

in infants (Sutharsiny et al., 2014). 

 Chronic kidney disease of unknown etiology (CKDu) has been identified as a serious 

global health concern. The special feature of this disease is the patients with CKDu do not 

exhibit the common causative factors of kidney disease such as diabetes or hypertension or 

the aging population (Athuraliya et al., 2011).  In addition to these traditional causes, 

glomerular, and tubule-interstitial diseases due to infections, nephrotoxic drugs, herbal 

medications, and snake bites also can end up with CKD (Jayasumana et al., 2017). CKDu 

is evident in several countries like Mexico, Guatemala, Nicaragua, Bulgaria, Croatia, India, 
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Sri Lanka, etc. Since the early 1990s, a rapid increase of CKDu is observed in North Central 

Province and the North Western Province of Sri Lanka. 

Moreover, it is now appearing in Uva, Eastern, and Northern Provinces also (Elledge et al., 

2014). Though the prevalence of CKDu is not well documented, some studies indicate that 

the no of CKDu patients has been doubling every four to five years, and now more than 

15000 people are affected (Kafle et al., 2019). Fatigue, panting, nausea, lack of appetite, and 

anemia are the main symptoms of CKDu (Elledge et al., 2014). Agricultural workers are 

most affected by this disease, and among them, the majority are males in their productive 

working age of 30-60 years (Chandrajith et al., 2011b).  Hence, CKDu has become one of 

the major environmental health issues in farming communities of the dry zone of Sri Lanka 

in both social and economic aspects. 

 A number of active hypotheses have been made to explain the etiology of CKDu. 

Among them, the consumption of groundwater or agricultural commodities made using 

irrigation water plays a major role. Since the irrigation water has direct contact with 

agrochemicals, long term exposure to these water may be responsible for CKDu. However, 

some authors proposed fluoride and hardness of drinking water are the causative factors for 

CKDu (Athuraliya et al., 2009; Chandrajith et al., 2011a, 2011b). Moreover, the excessive 

hardness of drinking water has aggravated the prevalence of CKDu in the dry zone of Sri 

Lanka. Hence proper systematic assessment of drinking water and strategic plan is required 

to provide safe drinking water to the CKDu affected areas. 

 

4.1.1. Objectives of this study 

The objectives of the study were to assess /investigate the groundwater quality for drinking 

in the tank cascade systems affected with CKDu and to establish a GIS-based water quality 

index to classify the suitability of groundwater for drinking.  
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4.2. Materials and Methods  

 

4.2.1. Study area 

 The Ulagalla cascade is in the low country dry zone (DL1b) in the north-central 

province of Sri Lanka, located at 8°5’–8°14’N latitude and 80°31’–80°34’E longitude, 

covers about 51 km2 of area. The cascade comprises 19 interconnected small tanks (Figure 

4.1). The major aquifer type in the tank cascade landscape is a shallow regolith aquifer with 

2–10 m in thickness. The groundwater potential is limited owing to a low groundwater 

storage capacity and the transmissivity of the underlying crystalline basement (Sirimanne, 

1952b). Groundwater has been extracted for irrigation and domestic purposes for more than 

2000 years from dug wells (Panabokke and Perera, 2005). 

 

Figure 4.1. Groundwater sampling locations in Ulagalla cascade 
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4.2.2. Sample collection and analytical procedures 

 We selected a total of 29 dug wells to give a homogeneous distribution, and the 

samples were collected in September to represent dry season and December to represent the 

wet season. Groundwater samples were collected in acid-cleaned high-density polyethylene 

bottles rinsed several times with the groundwater to be sampled. The bottles were tightly 

closed, labeled, and transported out of direct sunlight to the laboratory, where they were 

stored at 4 °C. They were analyzed by standard procedures (APHA, 2005). pH and TDS 

were measured in situ with an HQ 40d multi-parameter analyzer (Hach, Colorado, USA). 

The samples collected for cation such as sodium (Na+), magnesium (Mg2+), calcium (Ca2+), 

Arsenic (As3+), and cadmium (Cd2+) ions were determined by inductively coupled plasma 

optical emission spectrometry (iCAP 7400 ICP-OES, Thermo Scientific, Cambridge, UK). 

Alkalinity as CaCO3 was analyzed by acid-base titration. Chloride (Cl−) was determined by 

standard AgNO3 titration. Available phosphorus (PO4
3−) was determined by the ascorbic 

acid method (Olsen et al., 1954). Nitrate-nitrogen (NO3-N) was analyzed by the salicylic 

acid method (Cataldo et al., 1975). Sulfate (SO4
2−) concentration was measured by method 

8051 SulfaVer 4 (powder pillows) (Hach, 2005). Total hardness was calculated based on 

the measured Ca and Mg data (Equation 4.1) (Kelly, 1963). 

LmgMgLmgCaLmg /)(1.4/)(49.2/)(CaCO TH 3      (4.1) 

 

4.2.3. Assigning weights and ranks for drinking water quality parameters 

 Sri Lankan standards and WHO standards for drinking water of selected drinking 

water quality parameters are listed below (Table 4.1). Based on the literature (Cooray et al., 

2019; Shabbir and Ahmad, 2015; Vasanthavigar et al., 2010) and the views of the experts, 

weights were assigned for each parameter.  
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 We assigned the maximum weight of 5 was assigned to TDS, fluoride, nitrate, 

cadmium, and arsenic, considering their ability to cause health problems. We assigned 1 for 

Phosphate, considering the least significance to human health. Meanwhile, we assigned 

other parameters respective weights depending on the relative significance. Subsequently, 

the relative weight (Wi) of the chemical parameters were computed using the following 

equation. 





n

i

i

i
i

w

w
W

1

          (4.2) 

Where, Wi is the relative weight, wi is the weight of each parameter, and n is the number of 

parameters. 
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Table 4.1. Sri Lankan Standards, WHO standards and relative weights of drinking water 

quality parameters 

Water quality 

parameter 

Sri Lankan 

standards 

WHO 

standards 

Weight Relative 

weight 

pH 6.5-8.5 6.5-8.5 2 0.0392 

TDS 500 500 5 0.0980 

Total hardness 250 - 4 0.0784 

Total alkalinity 200 120 2 0.0392 

Calcium 100 75 3 0.0588 

Magnesium 30 50 3 0.0588 

Sodium 200 200 3 0.0588 

Fluoride 1 1.5 5 0.0980 

Chloride 250 250 4 0.0784 

Sulfate 250 250 4 0.0784 

Phosphate 2 - 1 0.0196 

Nitrate nitrogen 10 10 5 0.0980 

Cadmium 0.003  5 0.0980 

Arsenic 0.01 0.05 5 0.0980 

  

 Next, we divided the drinking water quality parameters into two subgroups and 

assigned ranks (Table 4.2). Considering the effect of each parameter on drinking water 

quality, we ranked the subgroups on scale 1 and 2 as follows: 1, suitable for drinking, and 

2, not suitable for drinking. pH between 6.5- 8.5 has no unfavorable effect on drinking. So 

it is ranked 1, pH less than 6.5 or more than 8.5 is unsuitable, so it is ranked 2. TDS < 500 

is ranked as 1, and TDS > 500 is ranked 2. TH < 250 is ranked 1 and TH > 250 is ranked 2. 
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Total alkalinity < 200 is ranked 1, and total alkalinity > 200 is ranked 3. Ca2+ < 100 is ranked 

1 and Ca2+ > 100 is ranked 2. Mg2+ < 30 is ranked 1, and Mg2+ > 30 is ranked 2. Na+ < 200 

is ranked 1, and Na+ > 200 is ranked 2. F- < 1 is ranked 1 and F- > 1 is ranked 2. Cl- < 250 is 

ranked 1, and Cl- > 250 is ranked 2. Sulfate < 250 is ranked 1, and sulfate > 250 is ranked 

2. Phosphate < 2 is ranked 1, and phosphate > 2 is ranked 2. Nitrate < 50 is ranked 1, and 

nitrate > 50 is ranked 2. Cd2+ < 0.003 is ranked 1, and Cd2+ > 0.003 is ranked 2. As3+ < 0.01 

is ranked 1, and As3+ > 0.01 is ranked 2. The values of all wells for each drinking water 

quality parameter were spatially distributed in ArcGIS software using the EBK interpolation 

method and reclassified as above ranks. All reclassified layers were combined, and the 

weighted overlay method was performed. The cell values of each reclassified layer were 

multiplied by their relative weights. Drinking water quality suitability maps of the study 

area were obtained by calculating the total drinking water quality suitability score (DWQS) 

as;  

i

i

ni

W*FDWQS
1

i




          (4.3) 

Where Fi is the value of the reclassified layer of respective drinking water quality parameter, 

Wi is the relative weight of the respective parameter, and n is the total number of parameters. 

The drinking water suitability maps showed areas as excellent (DWQS= 1.00) or doubtful 

(DWQS=1-1.33) unsuitable (DWQS=1.34-2.0). 
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Table 4.2. Drinking water quality restriction classes and ranks in Ulagalla cascade 

Water quality parameter Range Water class Rank 

pH 6.5-8.5 suitable 1 

<6.5 or >8.5 unsuitable 2 

TDS 0-500 suitable 1 

>500 unsuitable 2 

Total hardness 0-250 suitable 1 

>250 unsuitable 2 

Total alkalinity 0-200 suitable 1 

>200 unsuitable 2 

Calcium 0-100 suitable 1 

>100 unsuitable 2 

Magnesium 0-30 suitable 1 

>30 unsuitable 2 

Sodium 0-200 suitable 1 

>200 unsuitable 2 

Fluoride 0-1 suitable 1 

>1 unsuitable 2 

Chloride 0-250 suitable 1 

>250 unsuitable 2 

Sulfate 0-250 suitable 1 

>250 unsuitable 2 

Phosphate 0-2 suitable 1 

>2 unsuitable 2 

Nitrate 0-50 suitable 1 

>50 unsuitable 2 

Cadmium 0-0.003 suitable 1 

>0.003 unsuitable 2 

Arsenic 0-0.01 suitable 1 

>0.01 unsuitable 2 
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4.3. Results and discussion 

 

4.3.1. Physico-chemical analysis of groundwater 

 Table 4.3 shows the descriptive statistics of the groundwater in both wet and dry 

seasons. All the samples were slightly alkaline, and very few were more basic (9.1). TDS 

values varied from 74.7 to 2250 mg/L in all areas during both seasons. High TDS values 

indicate the mineralization of groundwater. Particularly in Anuradhapura where 

characterized by low rainfall, high ambient temperature, and high evaporation, groundwater 

tends to move upward and tend to accumulate more salts. It led to concentrate more solids 

in the groundwater (Gunatilake et al., 2014). Na+ is the highest dominant cation in the study 

area.  Na+ is added to the groundwater by weathering from plagioclase bearing rocks, 

exchange of Ca2+ and Na+  in the surface of clay minerals and leaching of detergents used 

for domestic activities (Hem, 1985). Mg2+ concentration in the groundwater is generally less 

than Ca2+ due to the slow dissolution ability of Mg2+ bearing minerals and greater abundance 

of Ca2+ in the earth's crust. These two minerals act as the most common minerals that make 

water hard. According to the geology of the study area, charnockite and granitic genesis 

which contains plagioclase feldspar might be the reason for higher sodium concentration in 

the study area. Higher Ca2+ concentration was recorded due to the dissolution of carbonate 

minerals such as calcite and dolomite (Ca Mg (CO3)2) in limestone rocks. A high 

concentration of Mg was observed due to the dissolution of dolomite (Rabeiy, 2018). 

Accordingly, the total hardness expressed as CaCO3 in the study area is much higher than 

the SLS and WHO standards. A higher concentration of sulfate in the cascade (33.6 mg/L 

in the wet season) indicates the occurrence of permanent hardness in the study area 

(Rubasinghe et al., 2015). 
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Table 4.3. Descriptive statistics of chemical parameters (all in mg/L) in groundwater during 

wet and dry seasons  

Water 

quality 

parameters 

Dry season Wet season 

Min Max Mean St. Dv. Min Max Mean St. Dv. 

pH 6.6 9.1 7.6 0.4 6.8 9.3 7.9 0.4 

TDS 74.7 1912.0 656.5 395.4 224.0 2250.0 691.3 428.8 

Na+ 5.9 268.9 119.8 63.7 23.0 363.8 131.6 76.4 

Ca2+ 8.6 174.5 54.8 34.6 4.3 240.9 60.9 42.4 

Mg2+ 1.5 176.0 36.0 32.5 5.1 251.5 50.9 40.8 

F- 0.3 1.9 1.2 0.4 0.3 1.9 1.0 0.4 

Cl- 20.0 1430.0 285.3 287.4 40 2120.0 358.5 337.5 

Alkalinity 37.5 175.0 91.1 23.9 27.5 215.0 87.0 25.3 

SO4
2- 6.0 91.0 26.9 15.5 2.0 94.0 33.6 18.6 

PO4
3- 0.0 1.5 0.3 0.3 0 0.6 0.1 0.1 

NO3-N 0.1 13.3 1.1 2.0 0.1 25.2 1.5 3.5 

Cd2+ 0.0 0.4 0.0 0.1 0.0 6.3 0.1 0.6 

As3+ 0.0 1.1 0.1 0.1 0.0 0.3 0.1 0.1 

TH 50.0 1156.3 298.2 214.9 46.9 1630.9 301.6 238.8 

 

 Among the main anionic constituents in groundwater chloride plays a major role as 

it is the most dominant anion. As charnockite is prominent in the study area, it can contribute 

to Cl− through mineral dissolution. Moreover, the wells with elevated Cl− concentration 

occurred in coconut plantations and home gardens. Hence, fertilizer (KCl) applied for 

coconut cultivation, and the improper disposal of household wastewater might be the main 
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sources. Higher NO3
--N concentration in groundwater was recorded during the wet season 

than in dry season with a maximum of 25.2 mg/L. The most probable cause for the high 

concentration of NO3
--N concentration during the wet season could be the excess fertilizer 

leaching to the shallow groundwater. Mikunthan et al. (2013) studied the groundwater 

quality in Jaffna extensively and found that the nitrate level increase in groundwater due to 

the reaching of excess fertilizer to the shallow groundwater table. Fluoride is a major health-

related contaminant that requires regulatory protocols before water consumption. On the 

other hand, several researchers suggested that the hardness below the threshold level 

correlated with good health, and the increase of iconicity above the threshold would 

correlate with CKDu (Dissanayake and Chandrajith, 2019). Heavy metals in small 

concentrations also have a nephrotoxic effect. Accordingly, long term exposure to heavy 

metals with low concentrations can trigger the progression of CKDu (Kulathunga et al., 

2019). Hence, fluoride, heavy metals, and hardness can be considered as the most important 

drinking water quality parameters that affect CKDu. Many ionic concentrations were higher 

in the wet season than in dry season. The major anions decreased in the order of Cl- > SO4
2- 

>NO3
-N > F- > PO4

3- in Ulagalla cascade. On the other hand Na+ is the most dominant cation 

and the cations varied as Na+> Ca2+ >Mg2+ > K+. 

 

4.3.2. Hydro-chemical facies of groundwater 

 Hydro-chemical facies are vital in understanding the origins and distribution of 

groundwater. Trilinear diagram developed by Piper (Piper, 1944) has been widely used to 

infer hydro-chemical facies (Glynn and Plummer, 2005; Sarkar and Shekhar, 2015). The 

major cations (Na+, K+, Ca2+, and Mg2+) and anions (Cl-, HCO3
- and SO4

2-) are shown by 

separate ternary plots. The two ternary plots are projected into a diamond which represents 

the origin of the water. As can be seen in Figure 4.2, thirty-one percent (31%), 45%, and 24 
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% of the samples were categorized as mixed Ca-Na-HCO3 type, mixed Ca-Mg- Cl type, and 

Na-Cl type respectively. Calcium type groundwater is mainly distributed in southern, 

eastern, and north-central regions. Hence Ca type predominates in the study area. It has been 

observed that the Cl- type predominates in this area due to the effect of salinity caused by 

excessive evaporation and salt accumulation (Dissanayake, 2005). 

 

Figure 4.2. Piper diagram showing fields of different hydro-chemical facies in groundwater 

 

4.3.3. Drinking water quality zoning in Ulagalla cascade 

 As discussed in the section 4.3.2, hydro-chemical facies based on Piper diagram has 

limited values in terms of suitability for drinking purpose. Hence, the availability of an 

integrated value based on the SLS permissible levels is more useful. As the first step, we 

ranked the drinking water quality parameters based on Sri Lankan standards. Thereby, we 
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prepared the spatial distribution of the suitability of groundwater for drinking (Figure 4.3 

and 4.4). Based on Figure 4.3 and 4.4, a major portion of the study area of TDS, Mg2+, F-, 

Cl-, and TH exceed the permissible levels for drinking during both seasons. We observed 

the concentration of most of the ions increased during the wet season than in dry season. 

During the dry period, the salts tend to accumulate on the soil surface due to high 

evaporation, high ambient temperature, and less or no rainfall. This situation is aggravated 

at the end of the dry season as no rainfall was observed during August and September. With 

the onset of heavy rainfall, these accumulated salts might be washed off and contribute to 

the deterioration of groundwater in the wet season. Whereas mineral dissolution also 

contributes much to the water quality deterioration during the wet season. 

 

Figure 4.3. Spatial distribution of (a) pH, (b) TDS (mg/L), (c) Na+(mg/L), (d) Ca2+ (mg/L), 

(e) Mg2+ (mg/L), (f)F- (mg/L), (g) Cl- (mg/L), (h) NO3-N (mg/L), (i) PO4
3- (mg/L), (j) SO4

2- 

(mg/L), (k) Alkalinity, (l) TH (mg/L), (m) As3+ (mg/L) and (n) Cd2+ (mg/L) during dry 

season in Ulagalla cascade 
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Figure 4.4. Spatial distribution of (a) pH, (b) TDS (mg/L), (c) Na+(mg/L), (d) Ca2+ (mg/L), 

(e) Mg2+ (mg/L), (f)F- (mg/L), (g) Cl- (mg/L), (h) NO3-N (mg/L), (i) PO4
3- (mg/L), (j) SO4

2- 

(mg/L), (k) Alkalinity, (l) TH (mg/L), (m) As3+ (mg/L) and (n) Cd2+ (mg/L) during wet 

season in Ulagalla cascade 
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Figure 4.5. Overall drinking water suitability map during (a) dry and (b) wet season in 

Ulagalla Cascade 

 We could not observe any significant difference between overall drinking water 

suitability maps of the wet and dry season. All most all the cascade falls into doubtful 

category during both seasons (Figure 4.5). Accordingly, an appropriate drinking water 

treatment method is essential for the study area. Since the groundwater contains high 

electrical conductivity (EC), membrane-based treatment methods are successful in 

desalination.  Installation of community-scale reverse osmosis (RO) plants based on 

membrane treatment, in a proper manner can be successful in CKDu prevalent areas.  
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4.4. Conclusions 

 We aimed to demarcate the suitable areas for drinking in the Ulagalla cascade. This 

is the first study assessing the groundwater for drinking in the tank cascade system affected 

with CKDu. We used Sri Lankan standards of drinking water quality parameters and 

developed a drinking water suitability map using a weighted overlay in GIS. Moreover, this 

is the first attempt of GIS-based drinking water quality assessment in Sri Lanka.  

 Variation of drinking water quality parameters in wet and dry season revealed that 

surface runoff occurs during the onset of the rainy season, and the mineral dissolution has 

led to increasing the ionic concentration in groundwater during the wet season. The overall 

suitability of groundwater for drinking varied notably between seasons. We found that the 

whole cascade falls under doubtful and unsuitable for drinking during the wet season. This 

implies the importance of the installation of proper water treatment methods. Though the 

community-based RO plants have been installed in the CKDu prevalent areas, better 

maintenance and management of these treatment plants are needed. 
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5.0 General conclusions 

 A clear understanding of spatial and temporal variation in water quality 

parameters/indices is a key issue in agriculture as well as in environmental studies. Hence, 

this study aimed to develop a GIS-based protocol to assess the groundwater quality in the 

tank cascade landscape in Sri Lanka. Ulagalla cascade, located near Anuradhapura city, Sri 

Lanka, was selected as the study area. 

 Because the assessment of the spatial and temporal variation of groundwater is 

essential in the sustainable management of water resources, the relative performance of 

deterministic (IDW, LPI, GPI, and RBFs) and geostatistical (UK, OK, and EBK) 

interpolation methods were described and predicted. Thereby, the best interpolation method 

to explain the spatial and temporal variation of groundwater quality in the tank cascade 

landscape was selected. The EBK method was the best-fitted interpolation method in 

estimating groundwater quality parameters (anions, cations, and nutrients) and indices 

associated with tank cascade landscapes ad similar environments. 

 Spatial and temporal variation of irrigation water quality in the tank cascade 

landscape was modeled using AHP and GIS. AHP was used to understand the relative 

importance of six irrigation water quality criteria, and the irrigation water suitability maps 

were developed using weighted overlay in GIS. Irrigation was quality assessed during major 

growing seasons, namely Yala (dry season) and Maha (wet season) in Sri Lanka. Monthly 

variations in irrigation water quality revealed that the first flush associated with surface 

runoff is prominent in the study area following high-intensity heavy rainfall in both seasons, 

but there was no distinct difference in quality between seasons. GIS and AHP based 

classification can be successfully used to estimate groundwater quality in tank cascade 

landscape in Sri Lanka. Developed protocols can be incorporated in the decision-making 
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process of agricultural production and the environmental planning of tank cascade landscape 

in Sri Lanka. 

 Suitability of groundwater for drinking in the tank cascade landscape affected with 

CKDu was assessed and GIS-based protocol was established to classify the suitability of 

groundwater for drinking. The overall suitability of groundwater for drinking varied notably 

between seasons. The whole cascade falls under doubtful and unsuitable for drinking during 

the wet season. This implies the importance of the installation of proper water treatment 

methods. Since the groundwater contains high electrical conductivity, membrane-based 

treatment methods are successful in desalination.  Installation of community-scale reverse 

osmosis (RO) plants based on membrane treatment, in a proper manner, can be successful 

in CKDu prevalent areas. Moreover, better maintenance and management of these treatment 

plants are also needed. 


