Journal of Human Genetics (JHG-19-001 revised MS)

Gene regulation by antitumor *miR-130b-5p* in pancreatic ductal adenocarcinoma: the clinical significance of oncogenic *EPS8*

Haruhi Fukuhisa¹, Naohiko Seki², Tetsuya Idichi¹, Hiroshi Kurahara¹, Yasutaka Yamada², Hiroko Toda¹, Yoshiaki Kita¹, Yota Kawasaki¹, Kiyonori Tanoue¹, Yuko Mataki¹, Kosei Maemura¹, Shoji Natsugoe¹

¹ Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
² Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan

Running title: Regulation of *EPS8* by antitumor *miR-130b-5p* in PDAC

Correspondence to: Naohiko Seki, Ph.D. Associate Professor of Functional Genomics Department of Functional Genomics Chiba University Graduate School of Medicine 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan Tel: +81-43-226-2971 Fax: +81-43-227-3442 E-mail: naoseki@faculty.chiba-u.jp

Abstract

Our ongoing analyses identifying dysregulated microRNAs (miRNAs) and their controlled target RNAs have shed light on novel oncogenic pathways in pancreatic ductal adenocarcinoma (PDAC). The PDAC miRNA signature obtained by RNA sequencing showed that both strands of pre-miR-130b (miR-130b-5p, the passenger strand and miR-130b-3p, the guide strand) were significantly downregulated in cancer tissues. Our functional assays revealed that miR-130b-5p significantly blocked the malignant abilities of PDAC cell lines (PANC-1 and SW1990), e.g., cancer cell proliferation, migration and invasion. A total of 103 genes were identified as possible oncogenic targets by miR-130b-5p regulation in PDAC cells based on genome-wide gene expression analysis and in silico database search. Among the possible targets, high expression of 9 genes (EPS8, ZWINT, SMC4, LDHA, GJB2, ZCCHC24, TOP2A, ANLN and ADCY3) predicted a significantly poorer prognosis of PDAC patients (5-year overall survival, p < 0.001). Furthermore, we focused on *EPS8* because its expression had the greatest impact on patient prognosis (overall survival, p < 0.0001). Overexpression of *EPS8* was detected in PDAC clinical specimens. Knockdown assays with siEPS8 showed that its overexpression enhanced cancer cell proliferation, migration and invasion. Analysis of downstream RNA networks regulated by EPS8 indicated that MET, HMGA2, FERMT1, RARRES3, PTK2, MAD2L1 and FLI1 were closely involved in PDAC pathogenesis. Genes regulated by antitumor miR-130b-5p were closely involved in PDAC molecular pathogenesis. Our approach, discovery of antitumor miRNAs and their target RNAs, will contribute to exploring the causes of this malignant disease.

Keywords: microRNA, passenger strand, *miR-130b-5p*, pancreatic ductal adenocarcinoma, *EPS8*, antitumor

 $\mathbf{2}$

Introduction

Due to a lack of early diagnostic strategies and its aggressive nature, pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers known to medicine [1]. Treatment options for locally advanced or metastatic PDAC are limited, and the median life expectancy is 6-11 months and 3-6 months for patients presenting with locally advanced disease or metastatic disease, respectively [2, 3]. Searching for new therapeutic targets and developing useful prognostic molecular markers are important goals to improve treatment outcomes of PDAC.

MicroRNAs (miRNAs) are small noncoding RNAs 19-24 nucleotides in length. They regulate gene expression by repressing translation or by cutting mRNAs in a sequencedependent manner [4-6]. A single miRNA species is capable of modulating many protein-coding and noncoding RNA transcripts [7-9]. Thus, aberrantly expressed miRNAs can disrupt normal cell function, including supporting cancer pathogenesis [7-9].

Based on our original miRNA expression signatures by current genomic approaches, including that for PDAC, we have identified RNA networks that are controlled by antitumor miRNAs in several cancers [10-15]. In PDAC cells, our previous studies demonstrated that miR-375, miR-216b-3p, miR-217, miR-148a and miR-124-3p were downregulated in PDAC tissues and these miRNAs had tumor suppressing functions, including controlling various oncogenes in PDAC cells [14, 16-19].

For example, expression of anillin (ANLN), actin-binding protein was directly controlled by miR-217 and aberrant expression of ANLN promoted to cancer cell migration and invasion capabilities of PDAC cell lines [17]. Ectopic expression of miR-124-3p attenuated cancer cell aggressiveness through targeting oncogenic signaling via FAK, AKT and ERK in PDAC cells [19]. Integrin α 3 (*ITGA3*) and integrin β 1 (*ITGB1*) were direct targets of miR-124-3p regulation in PDAC cells [19]. These findings suggest that analyses of antitumor miRNAs that regulate RNA networks will enhance understanding of PDAC molecular pathogenesis. In this study, we focused on the passenger and guide strands of the *miR-130b* duplex (*miR-130b-5p*, the passenger strand and *miR-130b-3p*, the guide strand) based on miRNA expression signature of PDAC by RNA sequencing. Involvement of passenger strands of miRNAs is a new concept of miRNA biogenesis and these miRNAs provide the opportunity to find new regulatory networks in cancer cells. Here, we investigated the antitumor roles of *miR-130b-5p*, and their regulated oncogenic genes in PDAC pathogenesis.

Materials and methods

Human PDAC clinical specimens and cell lines

The present study was approved by the Bioethics Committee of Kagoshima University (Kagoshima, Japan; approval no. 160038 28-65). Written prior informed consent and approval were obtained from all of the patients.

In this study, 31 PDAC clinical samples were collected from PDAC patients who underwent resection at Kagoshima University Hospital from 1997 to 2016. Fifteen normal pancreatic tissue specimens were collected from noncancerous regions. The clinical samples were staged according to the American Joint Committee on Cancer/Union Internationale Contre le Cancer (UICC) TNM classification. Clinical features in PDAC specimens are shown in Supplemental Table 1.

We used two PDAC cell lines: SW1990, purchased from the American Type Culture Collection (Manassas, VA, USA), and PANC-1, purchased from RIKEN Cell Bank (Tsukuba, Ibaraki, Japan).

Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR)

The procedure for qRT-PCR has been described previously [17-21]. TaqMan qRT-PCR probes were obtained from Thermo Fisher Scientific(Waltham, MA, USA) as follows: *miR-130b-5p* (product ID: 002114), *miR-130b-3p* (product ID: 00456) and *EPS8* (product ID: Hs00610286 mH). *GUSB* (product ID: Hs99999908 m1) and *RNU48* (product ID: 001006) were used as internal controls.

Transfection of mimic and inhibitor miRNA, small interfering RNA (siRNA) into PDAC cells

The following mature miRNAs and siRNAs were transfected into PDAC cells (PANC-1 and SW1990): miR-130b-5p (product ID: PM12970, Applied Biosystems, Foster City, CA, USA), miR-130b-3p (product ID: PM10777, Applied Biosystems) and Stealth Select RNAi siRNA, EPS8 siRNAs (product IDs: HSS103325 and HSS103326, Invitrogen, Carlsbad, CA, USA). The transfection procedures were described in previous studies [20-25].

Incorporation of miR-130b-5p into the RISC: assessment by Ago2 immunoprecipitation

Agonaute-2 (Ago2) is an essential components of the RNAinduced silencing complex (RISC) that binds to miRNAs. miRNAs were transfected into PANC-1 cells and were isolated using a microRNA Isolation Kit, Human Ago2 (Wako Pure Chemical Industries, Ltd., Osaka, Japan) as described previously [22-24]. The expression levels of Ago2-conjugated miRNAs were assessed by qRT-PCR assay.

Cell proliferation, migration and invasion assays

Functional assays for determining cell proliferation, migration, and invasion were described previously [16-19].

Identification of putative oncogenic target genes regulated by miR-130b-5p in PDAC cells

To identify *miR-130b-5p*-controlled oncogenes, the following data sets were used: genome-wide gene expression analyses using PDAC cells transfected with *miR-130b-5p* predicted putative target genes that have *miR-130b-5p* binding sites in their 3' untranslated regions (TargetScan database ver. 7.1) and gene expression data of PDAC clinical specimens (Gene Expression Omnibus dataset: GEO accession number, GSE15471). Gene expression data (*miR-130b-5p* transfected PANC-1 cells) were

deposited into the GEO database (accession number: GSE115801). An outline of the approach is shown in Supplemental Figure 1 and was described in previous studies [20-25].

Exploration of downstream targets regulated by si-EPS8 in PDAC cells

Genome-wide gene expression and database oriented *in silico* analyses were applied to identify *EPS8*-mediated downstream genes. Outlines of the strategies were described in our previous studies [17, 18, 20, 21]. Our target search strategy in this study is shown in Supplemental Figure 2. Gene expression data were deposited in GEO database (accession number: GSE118966).

PDAC clinical data analysis by TCGA database

TCGA database was used to investigate the clinical significance of PDAC miRNAs and the genes they regulated (https://tcga-data.nci.nih.gov/tcga/). Gene expression and clinical data were obtained from cBioPortal (http://www.cbioportal.org/) and OncoLnc (http://www.oncolnc.org) (data downloaded on April 28, 2018). Detailed information on the databases were described in the previous papers [26-28].

Western blot analysis and Immunohistochemistry

The procedures for Western blotting and immunohistochemistry were described in previous studies [17-19]. These assays used the following antibodies: anti-EPS8 (product ID: #43114, Cell Signaling Technology, Danvers, MA, USA) and anti-GAPDH (product ID: SAF6698, Wako).

Tissue sections were incubated overnight at $4^{\circ}C$ with anti-EPS8 antibodies diluted 1:400 (HPA003897; Sigma- Aldrich, St. Louis, MO, USA).

Luciferase reporter assays

The following 2 sequences were cloned into the psiCHECk-2 vector (C8021; Promega Corporation, Madison, WI, USA): the

wild-type sequence of the 3'-untranslated regions (UTRs) of *EPS8*, or the deletion-type, which lacked the *miR-130b-5p* target sites from *EPS8* (position 713-719). The procedures for transfection and dual-luciferase reporter assays were provided in previous studies [20-25].

Statistical analysis

To assess the significance of differences between 2 groups, we used Mann-Whitney U tests. Differences between multiple groups were assessed by one-way ANOVA and Tukey tests for posthoc analysis. We evaluated the correlations between the expression levels of *miR-130b-5p* and *EPS8* using Spearman's rank test. Tests utilized Expert StatView version 5.0 (SAS Institute, Inc., Cary, NC, USA) and JMPPro 14.0.0 (SAS Institute, Inc., Cary, NC, USA).

Results

Downregulation of miR-130b-5p and miR-130b-3p in PDAC clinical specimens and cell lines

We performed qRT-PCR to evaluate the expression levels of miR-130b-5p and miR-130b-3p in PDAC tissues (n = 31) as well as in normal pancreatic tissues (n = 15) and in 2 PDAC cell lines (PANC-1 and SW1990). Clinical features of the patients are summarized in Supplemental Table 1.

The expression levels of miR-130b-5p and miR-130b-3p were significantly downregulated in cancer tissues (p = 0.0005 and p = 0.0009; Figure. 1A). Spearman's rank test showed a positive correlation between the expression levels of miR-130b-5p and miR-130b-3p (p < 0.0001, r = 0.875; Figure 1B).

In 2 cancer cell lines, PANC-1 and SW1990, the expression levels of *miR-130b-5p* and *miR-130b-3p* were extremely low (Figure 1A).

Effects of ectopic expression of miR-130b-5p and miR-130b-3p on PDAC cells

To verify the antitumor roles of miR-130b-5p and miR-130b-3p, we conducted gain-of-function studies by miRNA transfection into PANC-1 and SW1990 cells.

In cell proliferation assays, the inhibition of cancer cell growth was only detected with miR-130b-5p transfection into PANC-1 cells (Figure 1C). Cell migration activities were reduced in the cells transfected with miR-130b-5p or miR-130b-3p (Figure 1D).

Matrigel invasion assays revealed that transfection with miR-130b-5p or miR-130b-3p significantly decreased cell invasive capacity (Figure 1E). However, no change was observed in miR-130b-3p transfection into PANC-1 cells (Figure 1E).

Incorporation of miR-130b-5p and miR-130b-3p into the RISC in PDAC cells

Ago2 is an essential component of the RISC. We hypothesized that the miR-130b-3p passenger strand in PDAC cells might be incorporated into the RISC where it could act as a tumor suppressor. To test that possibility, Ago2 was immunoprecipitated from PANC-1 cells that had been transfected with either miR-130b-5p or miR-130b-3p. Following isolation of Ago2-bound miRNAs, they were analyzed by qRT-PCR to determine whether miR-130b-5p or miR-130b-3p or both were associated. In transfectants, we observed higher levels of miR-130-5p expression than in mock transfectants or miR-controls or miR-130b-3p (p < 0.005) (Supplemental Figure 3).

Identification of putative target genes controlled by miR-130b-5p in PDAC cells

To predict putative target genes controlled by *miR-130b-5p* in PDACs, we combined data from the following: genome-wide gene expression data (miR-*130b-5p* transfected into PANC-1 cells; GEO accession number: GSE115801), gene expression data from PDAC clinical specimens (GSE15471) and TargetScan database. The selection strategy of *miR-130b* targets is shown in Supplemental Figure 1. A total of 103 genes were identified as putative *miR*-

130b-5p controlled oncogenes in PDAC cells (Table 1).

To investigate the relationship between these target genes and the course of PDAC, we examined these genes with TCGA database. Among these targets, high expression of 9 genes (*EPS8*, *ZWINT*, *SMC4*, *LDHA*, *GJB2*, *ZCCHC24*, *TOP2A*, *ANLN* and *ADCY3*) was associated with poor prognosis (5-year overall survival rates: p < 0.01) (Figure 2).

Below, we focused on *EPS8* (epidermal growth factor receptor kinase substrate 8) because its expression was the most significantly predicted poor prognosis of the PDAC patients (Table 2, Figure 2).

Expression of *EPS8* in PDAC clinical specimens and its clinical significance

The levels of *EPS8* mRNA were significantly upregulated in PDAC tissues (Figure 3A), with a negative correlation between the expression of *EPS8* and *miR-130b-5p* (p = 0.0191, r = -0.349; Spearman's rank tests, Figure 3B).

Cox hazard regression analyses assessed the clinical significance of *EPS8* expression for OS in patients with PDAC. With multivariate analysis, we found that *EPS8* expression was an independent predictive factor for OS (hazard ratio = 1.893, p = 0.0053; Figure 3C).

PDAC clinical specimens were subjected to immunohistochemical analyses. The results indicated that EPS8 protein was strongly expressed in cancer lesions. In contrast, expression was infrequent and weak in normal pancreatic cells (Figure 3D).

Direct regulation of EPS8 by miR-130b-5p in PDAC cells

In cells transfected with *miR-130b-5p*, the levels of *EPS8* mRNA and EPS8 protein were significantly lower than mock- or miR-control-transfected cells (Figures 4A and 4B). Binding sites for *miR-130b-5p* in the 3'-UTR of *EPS8* (positions 713-719, Figures 4C, upper) were predicted by the TargetScan database. We used luciferase reporter assays with vectors carrying either the wild-type or deletion-type 3'-UTR of *EPS8*. We observed greatly reduced luminescence after transfection with *miR-130b-5p* and the vector carrying the wild-type 3'-UTR of *EPS8*. Transfection with the deletion-type vector did not reduce luminescence intensities in PANC-1 and SW1990 cells. Thus, *miR-130b-5p* directly bound to *EPS8* in the 3'-UTR (Figure 4C).

In addition, we investigated the effect of suppression of *EPS8/EPS8* by *miR-130a-5p* (seed sequence is almost identical) in PDAC cells. Expression of *EPS8/EPS8* was slightly suppressed by *miR-130a-5p* in PANC-1 and SW1990 (data not shown).

Effects of silencing EPS8 on PDAC cells

Next, we transfected siRNAs into PANC-1 and SW1990 cells to examine the function of *EPS8* in PDAC cells. The mRNA and protein expression levels of *EPS8*/EPS8 were decreased by si-*EPS8* (Supplemental Figures 4A and 4B).

We examined the effects of knockdown of *EPS8* in PDAC cells, and found that cell proliferation was not affected (Figure 4D). Cancer cell migration and invasive activities were significantly inhibited by si-*EPS8* transfection into PDAC cells, PANC-1 and SW1990. However, silencing of *EPS8* did not affect cell proliferation (Figures 4D-4F).

Downstream genes affected by silencing of EPS8 in PDAC cells

To identity downstream genes controlled by *EPS8*, we used two sets of genome-wide gene expression data (si-*EPS8* transfected cells: GSE118966 and PDAC expression data: GSE15471). Our selection strategy is shown in Supplemental Figure 2.

In total, 48 genes were identified as putative downstream genes controlled by *EPS8* in PDAC cells (Table 2). Among 8 genes, high expression affected overall survival rates (p < 0.05). Specifically, *MET*, *HMGA2*, *CORO1C*, *FERMT1*, *RARRES3*, *PTK2*, *MAD2L1* and *FLI1* were significantly associated with poor prognosis in patients with PDAC by TCGA analysis (Table 2 and Supplemental Figure 5).

Discussion

miRNAs have unique characteristics. For example, a single miRNA species can regulate vast numbers of RNA transcripts in normal and pathological cells. Expression of RNAs controlled by miRNA varies depending on the cell [7-9]. Therefore, identification of aberrantly expressed miRNAs and their targets is the first step in elucidating molecular pathogenesis in PDAC cells. Using our original miRNA signature of PDAC by RNA sequencing, the molecular network controlled by antitumor miRNAs in PCAD cells is being clarified [14, 16-19]. In this study, we focused on both strands of pre-*miR-130b(miR-130b-5p* and *miR-130b-3p*) because these miRNAs were significantly downregulated in our and other PDAC signatures [14, 29, 30].

Several miRNAs form families based on their seed sequences. The miR-130 family consists of 4 miRNAs: miR-130a (chromosome 11q12.1), miR-130b (22q11.21), miR-301a (17q22) and miR-301b (22q11.21) [31-33]. The seed sequences of passenger strands miR-130a-5p and miR-130b-5p are almost identical. The seed sequences of guide strands of all member of the miR-130 family (miR-130a-3p, miR-130b-3p, miR-301a-3p and miR-301b-3p) are identical (seed sequences are summarized in Supplemental Figure 6). Previous studies showed that a number of miR-130 family (guide strands) were overexpressed in cancer tissues and their functions were involved in oncogenesis, e.g., bladder cancer, esophageal squamous cell carcinoma and lung cancer [32, 34, 35].

Contrary to these reports, *miR-130a* and *miR-130b* were downregulated in cancer tissues and they acted as antitumor miRNAs in ovarian cancer, prostate cancer, endometrial cancer and papillary thyroid carcinoma [36, 37]. Our present data shows that both strands (*miR-130b-5p* and *miR-130b-3p*) were significantly reduced in PDAC clinical specimens and cell lines. Furthermore, ectopic expression of these miRNAs inhibited malignant phenotypes in PDAC cells, suggesting that both *miR-130b-5p* and *miR-130b-3p* play antitumor roles in PDAC cells. In a previous study of PDAC cells, expression of *miR-130b-3p* was suppressed in cancer tissues and its expression was an independent prognostic predictor of the patients' disease course [38]. Overexpression of *miR-130b-3p* induced apoptotic cells through targeting of *STAT3* in PDAC cells [38]. These findings showed that *miR-130b* has multiple functions, oncogenic or antitumor roles depending on the specific cancer cell. It is indispensable to elucidate the molecular mechanism controlling *miR-130b* expression in several types of cancer cells.

Previous study showed that hyper-methylation of promoter region of miR-130b was observed in ovarian cancer clinical tissues and cell lines and methylation cased to downregulation of miR-130b expression [31, 33]. In prostate cancer, downregulation of miR-130b/miR-301b cluster was detected in clinical specimens and cell lines [31, 33]. Methylation levels of their promoter region was significantly higher in prostate cancer tissues compared to normal tissues [31, 33]. Expression levels of miR-130b and miR-301b were upregulated by treatment of demethylation drugs [31, 33]. These findings showed that downregulation of miR-130b was mediated by aberrant methylation on its promoter region. For miR-130 family, comprehensive analysis of the molecular mechanism of suppressing their expression in PDAC cells is indispensable.

This is the first report that *miR-130b-5p* (the passenger strand) acted as an antitumor miRNA in PDAC. Therefore, we focused on *miR-130b-5p* to investigate its control of oncogenes involved in PDAC pathogenesis. In this study, a total of 103 putative oncogenes were identified that were regulated by *miR-130b-5p* in PDAC cells. Among these targets, overexpression of 9 genes (*EPS8, ZWINT, SMC4, LDHA, GJB2, ZCCHC24, TOP2A, ANLN* and *ADCY3*) were closely associated with poor prognosis of the patients with PDAC. Interestingly, aberrant expression of *ANLN* (actin-binding protein anillin) was detected in PDAC clinical specimens [17]. Knockdown assays of *ANLN* expression markedly inhibited cancer cell migration and invasive capabilities of PDAC cell lines [17]. In addition, *ANLN* was directly controlled by antitumor *miR-217* in PDAC cells [17].

Furthermore, we investigated the functional significance of EPS8 (epidermal growth factor receptor pathway substrate 8) in PDAC cells. EPS8 binds several adaptor proteins and acts as a substrate for receptor and non-receptor tyrosine kinases, e.g., EGFR, FGFR, VEGFR and Src [39]. Other studies showed that EPS8 has actin-binding ability and it acts by capping barbed ends and promoting bundling [40]. Furthermore, EPS8 forms a trimer (EPS8, Abi-1 and SOS-1) and this complex acts as a guanine nucleotide exchange factor (GEFs) in Rac signaling and contributes to Racbased actin polymerizing processes [41]. Aberrantly expressed EPS8 was reported in colon cancer, breast cancer, hematologic malignancies and cervical cancer, and its overexpression was closely involved in the malignant phenotype [42-45]. Our present data revealed that EPS8 regulated cancer cell migration and invasion and its expression is promising as a diagnostic marker for PDAC. Aberrant expression of EPS8 might be a promising therapeutic target for PDAC.

Finally, to investigate the *EPS8*-mdiated oncogenic genes and pathways in PDAC cells, we applied genome-wide gene expression analyses using knockdown of *EPS8* in cells. A total of 48 genes were identified as putative *EPS8*-mediated targets in PDAC cells. Surprisingly, aberrant expression of 7 genes (*MET*, *HMGA2*, *FERMT1*, *RARRES3*, *PTK2*, *MAD2L1* and *FLI1*, p < 0.05) was closely associated with poor prognosis of patients with PADC. In this study, it was revealed that many of the genes controlled by antitumor *miR-130b-5p* and *ESP8*-mediated downstream genes were closely involved in the molecular pathogenesis of PDAC. Elucidation of novel RNA networks controlled by antitumor miRNAs will accelerate comprehensive understanding of molecular pathogenesis of PDAC.

In conclusion, our results showed that expression of both strands of the pre-miR-130b duplex were significantly downregulated in PDAC clinical specimens and thus the miR-130bduplex could act as an antitumor miRNA in such cells. A total of 9 genes (EPS8, ZWINT, SMC4, LDHA, GJB2, ZCCHC24, TOP2A, ANLN and ADCY3) were closely associated with PDAC pathogenesis. Among

13

these targets, aberrant expression of *EPS8* enhanced cancer aggressiveness, suggesting that *EPS8* could be a promising therapeutic target for PDAC. Our approach, discovery of antitumor miRNAs and their target RNAs, will contribute to exploring the causes of this malignant disease.

Acknowledgment

This study was supported by Japan Society for the Promotion of Science 17H04285, 18K08626, 18K08687, 18K16322, 18K09338, 16K19945, and 18K15219.

Conflict of Interest

Authors declare no conflicts of interest for this article

References

- Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016;388:73-85.
- Das S, Batra SK. Pancreatic cancer metastasis: are we being pre-EMTed? Curr Pharm Des. 2015;21:1249-55.
- Polireddy K, Chen Q. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. J Cancer. 2016;7:1497-514.
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-97.
- Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-33.
- Liu WW, Meng J, Cui J, Luan YS. Characterization and Function of MicroRNA(*)s in Plants. Frontiers in plant science. 2017;8:2200.
- Goto Y, Kurozumi A, Enokida H, Ichikawa T, Seki N. Functional significance of aberrantly expressed microRNAs in prostate cancer. Int J Urol. 2015;22:242-52.
- 8. Koshizuka K, Hanazawa T, Arai T, Okato A, Kikkawa N, Seki N. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev. 2017;36:525-45.
- Yonemori K, Kurahara H, Maemura K, Natsugoe S. MicroRNA in pancreatic cancer. J Hum Genet. 2017;62:33-40.
- 10. Itesako T, Seki N, Yoshino H, Chiyomaru T, Yamasaki T, Hidaka H, et al. The microRNA expression signature of bladder cancer by deep sequencing: the functional significance of the miR-195/497 cluster. PLoS One. 2014;9:e84311.
- Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, et al. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer. 2017;117:409-20.
- 12. Koshizuka K, Nohata N, Hanazawa T, Kikkawa N, Arai T, Okato A, et al. Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre-miR-150 as antitumor miRNAs. Oncotarget. 2017;8:30288-304.
- Mizuno K, Mataki H, Arai T, Okato A, Kamikawaji K, Kumamoto T, et al. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J Hum Genet. 2017;62:671-78.
- 14. Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Koshizuka K, et al. The

microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster. Oncotarget. 2017;8:70097-115.

- 15. Toda H, Kurozumi S, Kijima Y, Idichi T, Shinden Y, Yamada Y, et al. Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: antitumor miR-204-5p targets AP1S3. J Hum Genet. 2018;63:1197-210.
- Yonemori K, Seki N, Kurahara H, Osako Y, Idichi T, Arai T, et al. ZFP36L2 promotes cancer cell aggressiveness and is regulated by antitumor microRNA-375 in pancreatic ductal adenocarcinoma. Cancer Sci. 2017;108:124-35.
- Idichi T, Seki N, Kurahara H, Yonemori K, Osako Y, Arai T, et al. Regulation of actin-binding protein ANLN by antitumor miR-217 inhibits cancer cell aggressiveness in pancreatic ductal adenocarcinoma. Oncotarget. 2017;8:53180-93.
- Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, et al. Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of passenger strand of pre-miR-148a on gene regulation. Cancer Sci. 2018;109:2013-26.
- Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, et al. Involvement of anti-tumor miR-124-3p and its targets in the pathogenesis of pancreatic ductal adenocarcinoma: direct regulation of ITGA3 and ITGB1 by miR-124-3p. Oncotarget. 2018;9:28849-65.
- Yamada Y, Arai T, Sugawara S, Okato A, Kato M, Kojima S, et al. Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma. Cancer Sci. 2018;109:1239-53.
- 21. Yamada Y, Sugawara S, Arai T, Kojima S, Kato M, Okato A, et al. Molecular pathogenesis of renal cell carcinoma: Impact of the anti-tumor miR-29 family on gene regulation. Int J Urol. 2018;25:953-65.
- 22. Osako Y, Seki N, Koshizuka K, Okato A, Idichi T, Arai T, et al. Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer cell migration and invasion in esophageal squamous cell carcinoma. J Hum Genet. 2017;62:935-44.
- 23. Sugawara S, Yamada Y, Arai T, Okato A, Idichi T, Kato M, et al. Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis. J Hum Genet. 2018;63:657-68.
- 24. Yamada Y, Arai T, Kojima S, Sugawara S, Kato M, Okato A, et al. Regulation of antitumor miR-144-5p targets oncogenes: Direct regulation of syndecan-3 and its clinical significance. Cancer Sci. 2018;109:2919-36.
- 25. Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, et al. Pirin[:] a

potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p. Mol Oncol. 2019;13:322-37.

- Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401-4.
- Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling. 2013;6:pl1.
- 28. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science. 2016;2:e67.
- 29. Mah SM, Buske C, Humphries RK, Kuchenbauer F. miRNA*: a passenger stranded in RNA-induced silencing complex? Crit Rev Eukaryot Gene Expr. 2010;20:141-8.
- 30. Yang J, Zeng Y. Identification of miRNA-mRNA crosstalk in pancreatic cancer by integrating transcriptome analysis. Eur Rev Med Pharmacol Sci. 2015;19:825-34.
- Yang C, Cai J, Wang Q, Tang H, Cao J, Wu L, et al. Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol. 2012;124:325-34.
- 32. Egawa H, Jingushi K, Hirono T, Ueda Y, Kitae K, Nakata W, et al. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep. 2016;6:20574.
- 33. Ramalho-Carvalho J, Graca I, Gomez A, Oliveira J, Henrique R, Esteller M, et al. Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer. J Hematol Oncol. 2017;10:43.
- 34. Yu T, Cao R, Li S, Fu M, Ren L, Chen W, et al. MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer. 2015;15:29.
- 35. Zhang Q, Zhang B, Sun L, Yan Q, Zhang Y, Zhang Z, et al. MicroRNA-130b targets PTEN to induce resistance to cisplatin in lung cancer cells by activating Wnt/betacatenin pathway. Cell Biochem Funct. 2018;36:194-202.
- 36. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013;32:3286-95.
- 37. Dettmer MS, Perren A, Moch H, Komminoth P, Nikiforov YE, Nikiforova MN. MicroRNA profile of poorly differentiated thyroid carcinomas: new diagnostic and prognostic insights. J Mol Endocrinol. 2014;52:181-9.

- 38. Zhao G, Zhang JG, Shi Y, Qin Q, Liu Y, Wang B, et al. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One. 2013;8:e73803.
- 39. Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, et al. Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGFdependent mitogenic signals. EMBO J. 1993;12:3799-808.
- Logue JS, Cartagena-Rivera AX, Baird MA, Davidson MW, Chadwick RS,
 Waterman CM. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration. eLife. 2015;4:e08314.
- 41. Chen H, Wu X, Pan ZK, Huang S. Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res. 2010;70:9979-90.
- 42. Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST, et al. Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem. 2007;282:19399-409.
- 43. Chen C, Liang Z, Huang W, Li X, Zhou F, Hu X, et al. Eps8 regulates cellular proliferation and migration of breast cancer. Int J Oncol. 2015;46:205-14.
- 44. He YZ, Liang Z, Wu MR, Wen Q, Deng L, Song CY, et al. Overexpression of EPS8 is associated with poor prognosis in patients with acute lymphoblastic leukemia. Leuk Res. 2015;39:575-81.
- 45. Li Q, Bao W, Fan Q, Shi WJ, Li ZN, Xu Y, et al. Epidermal growth factor receptor kinase substrate 8 promotes the metastasis of cervical cancer via the epithelialmesenchymal transition. Mol Med Rep. 2016;14:3220-8.

Figure Legends

Figure 1: The functional significance of *miR-130b-5p* and *miR-130b-3p* in PDAC cells.

(A) Expression levels of miR-130b-5p and miR-130b-3p in PDAC clinical specimens and cell lines (PANC-1 and SW1990). *RNU48* was used as an internal control. (B) Spearman's rank test demonstrated a positive correlation between the expression levels of miR-130b-5p and miR-130b-3p. (C)-(E) Effects of ectopic expression of miR-130b-5p and miR-130b-3p on PADC cells. (C) Cell proliferation was determined by XTT assays 72 h following transfection with miR-130b-5p or miR-130b-3p. (D) Results of cell migration assays. (E) Cell invasion activity was determined using Matrigel invasion assays. *, p < 0.05 **, p <0.0001,

Figure 2: Clinical significance of the expression of 9 genes (EPS8, ZWINT, SMC4, LDHA, GJB2, ZCCHC24, TOP2A, ANLN and ADCY3) based on The Cancer Genome Atlas (TCGA) database. Survival rate differences were analyzed by Kaplan-Meier survival curves and log-rank statistics. (A) Kaplan-Meier plots of overall survival and (B) disease-free survival with log-rank tests for genes with high and low expression from The Cancer Genome Atlas database.

Figure 3: Aberrant expression of *EPS8* in PDAC specimens and its clinical significance

(A) Expression levels of *EPS8* in PDAC clinical specimens. *GUSB* was the internal control. (B) Spearman's rank test was used to evaluate the correlation between *EPS8* expression and *miR-130b-5p* expression in PDAC clinical specimens. (C) Analysis of the expression levels of *EPS8* in patients with PDAC using TCGA database. Forest plot of univariate Cox proportional hazards regression analysis of 5-year overall survival. Univariate and multivariate analyses for OS using TCGA database were carried out by Cox proportional hazards regression analysis of PDAC clinical samples. (D) Immunohistochemical analysis of PDAC clinical samples. EPS8 was

19

strongly expressed in cancer lesions.

Figure 4: Oncogenic function of *EPS8* in PDAC cells. (A), (B) miR-130b-5p directly regulated *EPS8* in PDAC cells. Expression levels of *EPS8* mRNA (A) or EPS8 protein (B) 72 h or 96 h following transfection with 10 nM miR-130b-5p into cell lines. (C) miR-130b-5p binding site (positions 713-719) in the 3'-UTR of *EPS8* mRNA. Dual luciferase reporter assays using vectors encoding putative miR-130b-5p target sites in the *EPS8* 3'-UTRs for both wild-type and deleted regions. *Renilla* luciferase values were normalized to firefly luciferase values. *. p < 0.005. (D)-(F) Effects of silencing *EPS8* in PDAC cells. (D) Cell proliferation, (E) migration and (F) invasion assays. These assays showed that inhibition of migration and invasion were observed in si-*EPS8*-transfected cell lines (PANC-1 and SW1990). *, p < 0.005.

Supplemental Figure 1: Strategy for identification of putative target genes regulated by *miR-130b-5p* in PDAC cells. A total of 1,622 and 2,301 genes were downregulated by *miR-130b-5p* transfection into PANC-1 and SW1990 cells, respectively. Among these genes, 103 genes were controlled by *miR-130b-5p* and 40 genes have putative target sites of *miR-130b-5p* by TargetScan database analyses. High expression of 9 genes was significantly associated with poor prognosis of the patients with PDAC by OncoLnc database analyses.

Supplemental Figure 2: Strategy for identification of putative downregulated genes mediated by *EPS8* in PDAC cells. A total of 697 genes were downregulated by si-*EPS8* transfection into PANC-1 cells. Among these genes, 48 were upregulated in PDAC clinical specimens and 8 genes were closely associated with PDAC prognosis.

Supplemental Figure 3: Both strands of pre-miR-130b (miR-130b-5p, the passenger strand and miR-130b-3p, the guide strand) were incorporated into RISC. (A) Schematic illustration of miRNA detection methods. Isolation of RISC-incorporated miRNAs by Ago2 immunoprecipitation. (B) Amounts of miR-130b-5p or miR-130b-3p after transfection with miR-130b-5p or miR-130b-3p. PCR data were normalized by the expression of miR-21. *, p < 0.005.

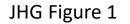
Supplemental Figure 4: Downregulation of *EPS8* mRNA and EPS8 protein expression after si-*EPS8* transfection of PDAC cell lines (PANC-1 and SW1990).

(A) *EPS8* mRNA expression in PDAC cell lines was evaluated by qRT-PCR 72 h after transfection with si-*EPS8*-1 or si-*EPS8*-2. *GUSB* was used as an internal control; data were normalized to *GUSB* expression. *, p < 0.0001 (B) EPS8 protein expression in PDAC cell lines was evaluated by Western blot analysis 96 h after transfection with si-*EPS8*-1 or si-*EPS8*-2. GAPDH was used as a loading control.

Supplemental Figure 5: Clinical significance of the expression of 7 genes (*MET*, *HMGA2*, *FERMT1*, *RARRES3*, *PTK2*, *MAD2L1* and *FLI1*) based on The Cancer Genome Atlas (TCGA) database. (A) Kaplan-Meier plots of overall survival and (B) disease-free survival with log-rank tests for genes with high and low expression from The Cancer Genome Atlas database.

Supplemental Figure 6: The sequences and chromosomal locations of *miR-130*-family miRNAs.

(A) Chromosomal locations of miR-130a, miR-130b, miR-301a and miR-301b.
(B) Mature miRNAs of both strands of pre-miRNA (miR-130a, miR-130b, miR-301a and miR-301b) and seed sequences of these miRNAs are shown by underlining.


21

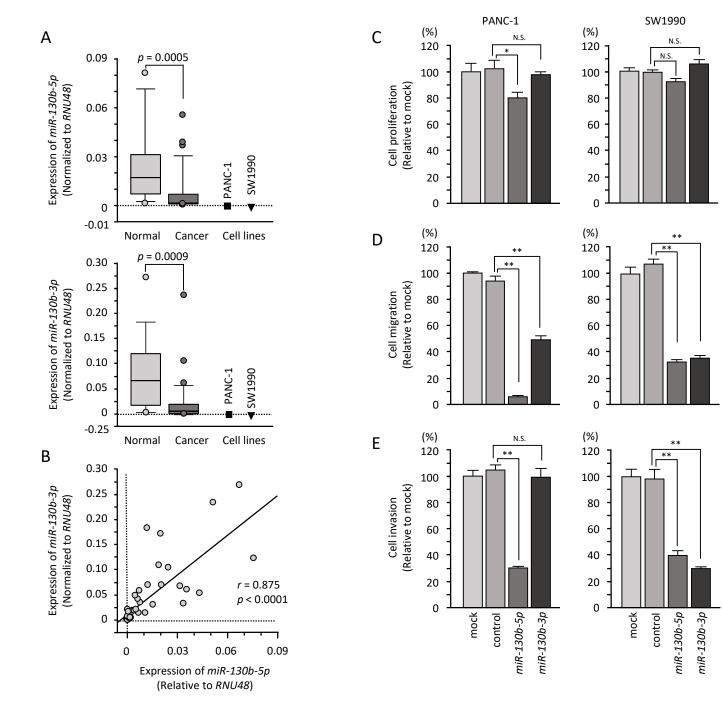
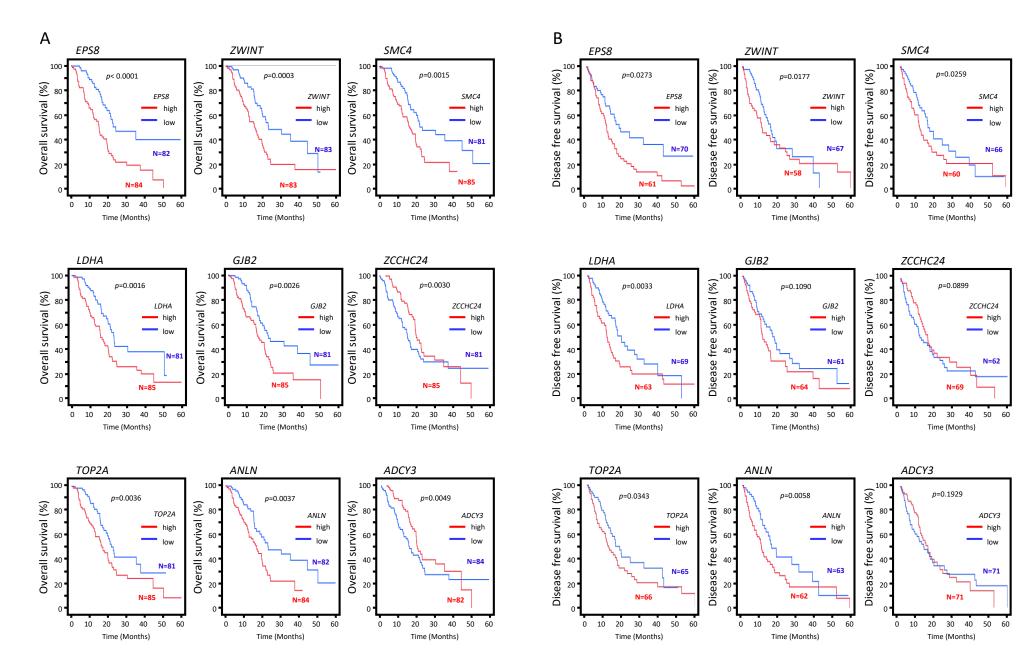
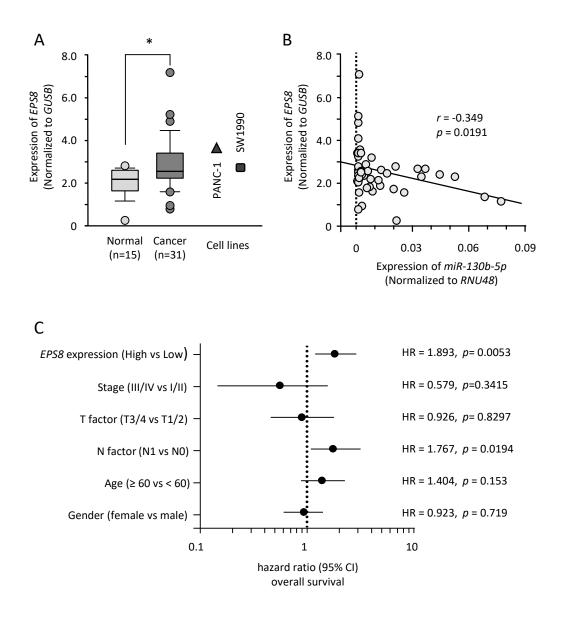
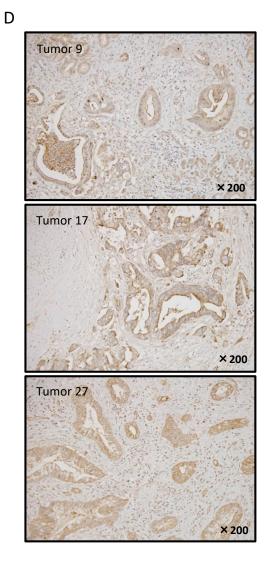
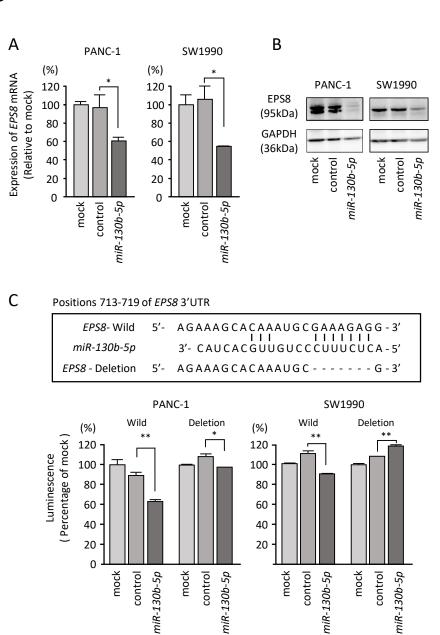

Entrez GeneID	Gene symbol	Gene name	Expression in PANC– 1 miR–130b–5p transfectants (FClog2<–1.0)	GEO (FClog2>1.0)	TCGA_OncoLnc OS <i>p</i> −value (in 5 years)	
2059	EPS8	epidermal growth factor receptor pathway substrate 8	-1.0391617	1.2628669	<0.000	
11130 10051	ZWINT SMC4	ZW10 interacting kinetochore protein structural maintenance of chromosomes 4	-1.4909135 -1.1281776	1.1604217 1.0477006	0.000 0.001	
3939	LDHA	lactate dehydrogenase A	-1.0913677	1.2467416	0.001	
2706	GJB2	gap junction protein, beta 2, 26kDa	-1.0175266	3.6934876	0.002	
219654 7153	ZCCHC24 TOP2A	zinc finger, CCHC domain containing 24 topoisomerase (DNA) II alpha 170kDa	-1.2267109 -1.7036874	1.4362591 1.5301974	0.003 0.003	
54443	ANLN	anillin, actin binding protein	-1.3910149	1.7292130	0.003	
109 9055	ADCY3 PRC1	adenylate cyclase 3 protein regulator of cytokinesis 1	-1.0753918 -1.3384857	1.0011512 1.0667097	0.004 0.012	
6241	RRM2	ribonucleotide reductase M2	-1.3087503	1.1663941	0.019	
55013	CCDC109B	coiled-coil domain containing 109B	-1.1029720	1.9479591	0.022	
55601 3691	DDX60 ITGB4	DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 integrin, beta 4	-1.5366727 -1.2837483	1.5572646 1.2316791	0.024 0.029	
91404	SESTD1	SEC14 and spectrin domains 1	-1.6589893	1.3892033	0.032	
444 2687	ASPH GGT5	aspartate beta-hydroxylase gamma-glutamyltransferase 5	-1.1716107 -1.1898923	1.4017963 1.1288950	0.033 0.048	
56925	LXN	latexin	-1.4351722	2.0470986	0.048	
6772	STAT1	signal transducer and activator of transcription 1,	1 0004700	1 5051450	0.05	
26509	MYOF	91kDa myoferlin	-1.6604798 -1.1385632	1.5651450 2.4245954	0.052 0.057	
8777	MPDZ	multiple PDZ domain protein	-1.2851086	1.0890113	0.066	
26031	OSBPL3	oxysterol binding protein-like 3 Dab, mitogen-responsive phosphoprotein, homolog	-1.7567873	1.6363204	0.071	
1601	DAB2	2 (Drosophila)	-1.0613184	1.0355528	0.078	
55075	UACA	uveal autoantigen with coiled-coil domains and	0.4404770	4 0705007	0.000	
3339	HSPG2	ankyrin repeats heparan sulfate proteoglycan 2	-2.4191770 -1.2415609	1.2785207 1.0803752	0.082 0.092	
80896		N-acetylneuraminate pyruvate lyase	1.2410000	1.0000702	0.007	
	NPL	(dihydrodipicolinate synthase)	-1.2635889	1.6554387	0.095	
79718 9749	TBL1XR1 PHACTR2	transducin (beta)-like 1 X-linked receptor 1 phosphatase and actin regulator 2	-1.2307795 -1.9079069	1.0184109 1.0210196	0.098 0.104	
2745	GLRX	glutaredoxin (thioltransferase)	-1.4243727	1.2816241	0.108	
5954 79026	RCN1 AHNAK	reticulocalbin 1, EF-hand calcium binding domain	-1.2084924 -1.3486654	1.4771140	0.110	
79026 4628	AHNAK MYH10	AHNAK nucleoprotein myosin, heavy chain 10, non-muscle	-1.3486654 -1.0401611	1.0858593 1.1421649	0.110 0.123	
2115	ETV1	ets variant 1	-1.0961652	2.3057034	0.123	
51316 5357	PLAC8 PLS1	placenta-specific 8 plastin 1	-1.7858686 -1.0227555	1.6964420 1.1227326	0.125 0.125	
5357 54933	RHBDL2	plastin 1 rhomboid, veinlet–like 2 (Drosophila)	-1.4695596	1.1227326	0.129	
45389	SLC38A6	solute carrier family 38, member 6	-1.2434853	1.4723484	0.15	
54492 1687	NEURL1B DFNA5	neuralized E3 ubiquitin protein ligase 1B deafness, autosomal dominant 5	-1.2289410 -2.4118986	1.2359435 1.3480556	0.168 0.170	
5159	PDGFRB	platelet-derived growth factor receptor, beta	2.4110300	1.0400000	0.170	
		polypeptide	-1.6300844	1.7990630	0.190	
5738 4093	PTGFRN SMAD9	prostaglandin F2 receptor inhibitor SMAD family member 9	-1.1871296 -1.0708561	1.4020885 1.1712591	0.193 0.219	
57182	ANKRD50	ankyrin repeat domain 50	-1.5082961	1.2401948	0.222	
3696	ITGB8	integrin, beta 8	-1.1564417	1.5737898	0.23	
3434	IFIT1	interferon-induced protein with tetratricopeptide repeats 1	-1.5218506	1.2770477	0.240	
99474	TMEM200B	transmembrane protein 200B	-2.0416780	1.0096044	0.240	
57674	RNF213 SMYD3	ring finger protein 213		1.4979298	0.24	
64754 57157	PHTF2	SET and MYND domain containing 3 putative homeodomain transcription factor 2	-1.0121193 -1.4924613	1.1509621 1.3032500	0.250 0.25	
84441	MAML2	mastermind-like 2 (Drosophila)	-1.3098994	1.3333797	0.259	
1311	COMP	cartilage oligomeric matrix protein protein tyrosine phosphatase-like A domain	-1.1994047	3.5716603	0.260	
01494	PTPLAD2(HACD4)	containing 2	-1.0844336	1.5488394	0.268	
5552	SRGN	serglycin	-1.4376887	1.4919588	0.278	
30271	PLEKHH2	pleckstrin homology domain containing, family H (with MyTH4 domain) member 2	-2.2517653	1.2622999	0.282	
41168	FAM26F	family with sequence similarity 26, member F	-1.0591393	1.1706267	0.282	
5176	SERPINF1	serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor),				
0170	OLIN IN I	member 1	-1.0058947	1.3390279	0.326	
29969	MDFIC	MyoD family inhibitor domain containing	-1.4263206	1.2081294	0.384	
3433	IFIT2	interferon-induced protein with tetratricopeptide repeats 2	-1.3565645	1.4609243	0.39	
7046	TGFBR1	transforming growth factor, beta receptor 1	-1.7564989	1.5672281	0.400	
9638 10403	FEZ1 NDC80	fasciculation and elongation protein zeta 1 (zygin NDC80 kinetochore complex component	-1.3657641 -1.2600021	1.1956161 1.5473172	0.409 0.41	
59232	NALCN	sodium leak channel, non selective	-2.0426240	1.7215563	0.42	
7464	CORO2A	coronin, actin binding protein, 2A	-1.1782600	1.0355257	0.43	
10687 14882	PNMA2 OSBPL8	paraneoplastic Ma antigen 2 oxysterol binding protein-like 8	-1.2503138 -1.2117767	2.0604417 1.0806354	0.46 [°] 0.469	
3912	LAMB1	laminin, beta 1	-1.1625280	1.6784895	0.48	
29887	SNX10	sorting nexin 10	-1.1817684	1.2034102	0.488	
4053	LTBP2	latent transforming growth factor beta binding protein 2	-1.1001697	1.7000597	0.488	
57333	RCN3	reticulocalbin 3, EF-hand calcium binding domain	-1.0096655	1.2093748	0.500	
57480	PLEKHG1	pleckstrin homology domain containing, family G (with RhoGef domain) member 1	-1.3316975	1.5672085	0.509	
93869	GPX8	glutathione peroxidase 8 (putative)	-2.4862900	2.1368702	0.522	
1122	CHML	choroideremia-like (Rab escort protein 2)	-1.4233093	1.2285766	0.528	
8829 8819	NRP1 SAP30	neuropilin 1 Sin3A-associated protein, 30kDa	-1.4793081 -1.0623255	1.3021802 1.0942839	0.54 0.54	
83879	CDCA7	cell division cycle associated 7	-1.2634476	1.3187604	0.56	
4921	DDR2	discoidin domain receptor tyrosine kinase 2	-1.0453687	1.4877484	0.56	
30328 10123	ULBP2 ARL4C	UL16 binding protein 2 ADP-ribosylation factor-like 4C	-2.3729725 -1.2759942	1.2354260 2.2831240	0.568 0.570	
55711	FAR2	fatty acyl CoA reductase 2	-1.2279121	1.0489434	0.574	
25878	MXRA5	matrix-remodelling associated 5	-1.1647496	2.3869526	0.57	
62073	ITPRIPL2	inositol 1,4,5-trisphosphate receptor interacting protein-like 2	-1.3766663	1.0587933	0.602	
8321	FZD1	frizzled class receptor 1	-1.7407991	1.1861601	0.61	
6443	SGCB	sarcoglycan, beta (43kDa dystrophin-associated	-1.4844265	1.1196231	0.66	
23092	ARHGAP26	glycoprotein) Rho GTPase activating protein 26	-1.4844265 -1.8215991	1.4714981	0.66	
4815	NINJ2	ninjurin 2	-1.2982117	1.1460175	0.67	
30011	SH3KBP1	SH3-domain kinase binding protein 1 minichromosome maintenance complex	-1.3079715	1.6522795	0.699	
4175	MCM6	component 6	-1.0063353	1.0153162	0.71	
5911	RAP2A	RAP2A, member of RAS oncogene family	-1.1328840	1.0579273	0.73	
9902 33418	MRC2 EMB	mannose receptor, C type 2 embigin	-1.0907621 -1.1111135	1.3853211 1.4472933	0.77 ⁻ 0.784	
84168	ANTXR1	anthrax toxin receptor 1	-1.1164263	2.9024701	0.784	
1287	COL4A5	collagen, type IV, alpha 5	-1.1768475	1.1700162	0.802	
8082 8543	SSPN LMO4	sarcospan LIM domain only 4	-1.5962458 -1.3773192	1.1331555 1.0676418	0.80 [°] 0.820	
8543 10551	AGR2	LIM domain only 4 anterior gradient 2	-1.2424725	2.0485048	0.820	
23271	CAMSAP2	calmodulin regulated spectrin-associated protein				
		family, member 2 frizzlad class recentor 7	-1.0790195	1.3784356	0.85	
8324 4286	FZD7 MITF	frizzled class receptor 7 microphthalmia-associated transcription factor	-1.4669601 -1.6427531	1.5851643 1.1172881	0.859 0.86	
1475	CSTA	cystatin A (stefin A)	-1.5165935	2.0940666	0.86	
90459	ERI1	exoribonuclease 1	-1.2428759	1.0876643	0.889	
1296	COL8A2 DOCK5	collagen, type VIII, alpha 2 dedicator of cytokinesis 5	-1.4797236 -1.0028888	1.9936453 1.2031072	0.934 0.955	
80005	111111		1.3020000		11 ***	

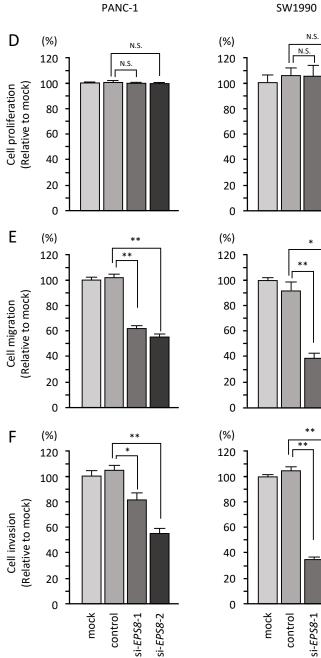
Table.1 Identification of putative targets regulated by *miR-130b-5p* in PDAC cells


Entrez GeneID	Gene symbol Gene name		Expression in PANC−1 si− <i>EPS8</i> transfectants (FClog2<−1.0)	GEO (FClog2>1.0)	TCGA_OncoLnc OS <i>p−</i> value (in 5 years)	
2059	EPS8	epidermal growth factor receptor pathway substrate 8	-2.8271956	2.3997214	<0.0001	
4233	MET	MET proto-oncogene, receptor tyrosine kinase	-1.0782841	2.8329950	0.0015	
8091	HMGA2	high mobility group AT-hook 2	-2.3884200	2.4964874	0.0031	
55612	FERMT1	fermitin family member 1	-1.3296491	3.1556027	0.0103	
5920	RARRES3	retinoic acid receptor responder (tazarotene induced) 3	-1.1847581	2.8853405	0.0125	
5747	PTK2	protein tyrosine kinase 2	-1.0931424	2.1476655	0.0134	
4085	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	-1.3218220	2.2757983	0.0412	
2313	FLI1	Fli-1 proto-oncogene, ETS transcription factor	-1.2141428	2.1929195	0.0443	
3437	IFIT3	interferon-induced protein with tetratricopeptide repeats 3	-2.7479300	2.5652308	0.0574	
84034	EMILIN2	elastin microfibril interfacer 2	-2.3441610	2.3126762	0.0868	
3397	ID1	inhibitor of DNA binding 1, dominant negative helix-loop-helix	-1.2009468	2.4448597	0.0969	
79026	AHNAK	AHNAK nucleoprotein	-1.3035727	2.1226394	0.1105	
54739	XAF1	XIAP associated factor 1	-1.2250342	3.6524053	0.1327	
7764	ZNF217	zinc finger protein 217	-1.0156298	2.1386855	0.1358	
6286	S100P	S100 calcium binding protein P	-1.7940164	12.7159950	0.1515	
6001	RGS10	regulator of G-protein signaling 10	-1.3992062	3.0485551	0.1700	
5159	PDGFRB	platelet-derived growth factor receptor, beta polypeptide	-2.2982244	3.4799414	0.1902	
7220	TRPC1	transient receptor potential cation channel, subfamily C, member 1	-1.0543852	2.8364346	0.1999	
23603	CORO1C	coronin, actin binding protein, 1C	-1.8096170	2.9602175	0.2026	
330	BIRC3	baculoviral IAP repeat containing 3	-1.5710629	2.6069708	0.2322	
3434	IFIT1	interferon-induced protein with tetratricopeptide repeats 1	-1.2829789	2.4234254	0.2408	
57674	RNF213	ring finger protein 213	-2.2830563	2.8243713	0.2474	
3915	LAMC1	laminin, gamma 1 (formerly LAMB2)	-1.0173159	2.5432700	0.2490	
659	BMPR2	bone morphogenetic protein receptor, type II (serine/threonine kinase)	-2.0797455	2.4564056	0.3162	
716	C1S	complement component 1, s subcomponent	-1.3375945	4.1859550	0.3696	
7498	XDH	xanthine dehydrogenase	-1.0785036	2.2759452	0.3800	
29969	MDFIC	MyoD family inhibitor domain containing	-1.1913158	2.3103788	0.3845	
3433	IFIT2	interferon-induced protein with tetratricopeptide repeats 2	-2.7081504	2.7528467	0.3916	
7046	TGFBR1	transforming growth factor, beta receptor 1	-1.0406232	2.7592096	0.4061	
259232	NALCN	sodium leak channel, non selective	-1.8967161	3.2979198	0.4212	
64859	NABP1	nucleic acid binding protein 1	-1.0262889	2.4854288	0.4593	
29887	SNX10	sorting nexin 10	-1.0249023	2.3028336	0.4885	
219285	SAMD9L	sterile alpha motif domain containing 9-like	-1.2528054	2.2927480	0.5013	
6453	ITSN1	intersectin 1 (SH3 domain protein)	-1.0911493	2.3252943	0.5098	
253782	CERS6	ceramide synthase 6	-1.2245360	2.0965688	0.5536	
727936	GXYLT2	glucoside xylosyltransferase 2	-2.9657586	4.1614670	0.5649	
9120	SLC16A6	solute carrier family 16, member 6	-1.0826521	2.3125410	0.5799	
1953	MEGF6	multiple EGF-like-domains 6	-1.4605589	2.2775905	0.5966	
26064	RAI14	retinoic acid induced 14	-1.4694735	2.7101336	0.6374	
6016	RIT1	Ras-like without CAAX 1	-1.1128588	2.2873511	0.6606	
4026	LPP	LIM domain containing preferred translocation partner in lipoma	-1.3406305	2.0011916	0.7361	
1728	NQO1	NAD(P)H dehydrogenase, quinone 1	-1.2154182	4.5524726	0.8302	
59339	PLEKHA2	pleckstrin homology domain containing, family A (phosphoinositide	-1.5718870	2.0061517		
1071	EDED	binding specific) member 2	-1.0145493		0.8335	
1871	E2F3	E2F transcription factor 3		2.4384596	0.8898	
397	ARHGDIB	Rho GDP dissociation inhibitor (GDI) beta	-1.5170516	3.2517672	0.9057	
10365	KLF2	Kruppel-like factor 2	-1.7209059	2.0431898	0.9088	
51056	LAP3	leucine aminopeptidase 3	-1.7265989	2.0905375	0.9187	
1296	COL8A2	collagen, type VIII, alpha 2	-1.0540862	3.9824197	0.9346	


Table.2 Identification of EPS8 mediated downstream genes in PDAC cells




JHG Figure 2



JHG Figure 4

SW1990

si-EPS8-2

Supplemental Table.1A Clinical samples patient characteristics

No.	Age	Sex	Location	т	Ν	М	stage	Differentiation
Tumor 1	42	М	pancreas head	3	1	0	2B	well-moderate
Tumor 2	44	М	pancreas head	3	1	0	2B	modetrate
Tumor 3	76	М	pancreas head	3	1	0	2B	mode-poor
Tumor 4	67	М	pancreas head	3	1	0	2B	moderate
Tumor 5	78	F	pancreas head	3	0	0	2A	Papillary
Tumor 6	66	М	pancreas head	3	1	0	2B	moderate
Tumor 7	58	F	pancreas head	3	0	0	2A	moderate
Tumor 8	42	F	pancreas head	3	1	0	2B	well
Tumor 9	65	М	pancreas body	3	1	1	4	well
Tumor 10	56	F	pancreas body	3	1	0	2B	well
Tumor 11	79	F	pancreas head	1	0	0	1A	well
Tumor 12	70	М	pancreas head	3	1	0	2B	well
Tumor 13	63	F	pancreas head	3	0	0	2A	poor
Tumor 14	52	М	pancreas body	3	1	0	2B	well
Tumor 15	56	М	pancreas body	3	1	1	4	well
Tumor 16	65	М	pancreas body	2	0	0	1B	well
Tumor 17	78	F	pancreas head	3	1	0	2B	well+poor
Tumor 18	50	F	pancreas head	3	0	1	4	neuro
Tumor 19	66	F	pancreas head	3	0	0	2A	well
Tumor 20	66	F	pancreas head	3	1	0	2B	well+poor
Tumor 21	67	М	pancreas tail	0	0	0	0	no date
Tumor 22	74	М	pancreas tail	3	0	0	2A	well
Tumor 23	70	F	pancreas body	3	1	0	2B	well+mucosa
Tumor 24	74	F	pancreas body	3	1	0	2B	well
Tumor 25	65	F	pancreas head	3	1	0	2B	well+poor
Tumor 26	78	М	pancreas head	3	0	0	2A	well
Tumor 27	76	М	pancreas head	3	1	0	2B	moderate
Tumor 28	75	М	pancreas head	3	1	0	2B	poor
Tumor 29	71	F	pancreas body	3	0	0	2A	well+poor
Tumor 30	64	М	pancreas head	3	0	0	2A	moderate
Tumor 31	72	F	pancreas tail	3	1	0	2B	moderate

Supplemental Table.1B Features of patients in noncancerous pancreatic tissues.

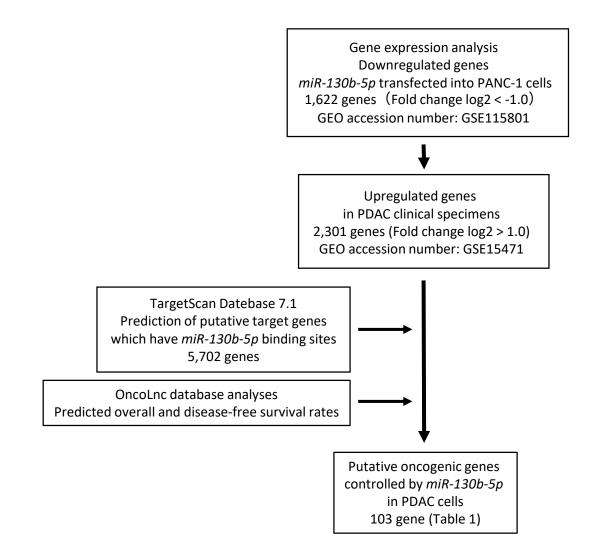
		•
No.	Age	Sex
Normal 1	65	F
Normal 2	58	F
Normal 3	77	F
Normal 4	67	М
Normal 5	42	F
Normal 6	71	F
Normal 7	60	М
Normal 8	56	F
Normal 9	67	М
Normal 10	85	F
Normal 11	66	F
Normal 12	65	F
Normal 13	63	М
Normal 14	64	М
Normal 15	72	F

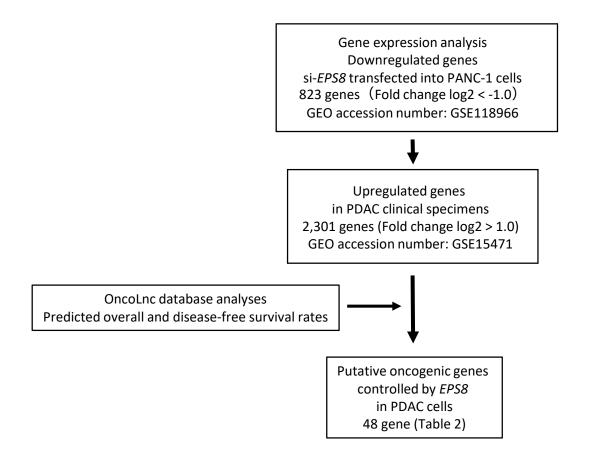
Entrez GeneID	Gene symbol	Gene name	Expression in PANC-1 miR-130b-5p transfectants (FClog2<-1.0)	GEO (FClog2>1.0)	*TCGA_OncoLnc OS <i>p</i> −value (in 5 years)	TCGA_OncoLnc DFS <i>p</i> −value (in 5 years)
2059	EPS8	epidermal growth factor receptor pathway substrate 8	-1.0391617	1.262866923	0.0001	0.0273
11130	ZWINT	ZW10 interacting kinetochore protein	-1.4909135	1.160421740	0.0003	0.0177
10051	SMC4	structural maintenance of chromosomes 4	-1.1281776	1.047700587	0.0015	0.0259
3939	LDHA	lactate dehydrogenase A	-1.0913677	1.246741586	0.0016	0.0033
2706	GJB2	gap junction protein, beta 2, 26kDa	-1.0175266	3.693487627	0.0026	0.109
219654	ZCCHC24	zinc finger, CCHC domain containing 24	-1.2267109	1.436259135	0.0030	0.0899
7153	TOP2A	topoisomerase (DNA) II alpha 170kDa	-1.7036874	1.530197372	0.0036	0.0343
54443	ANLN	anillin, actin binding protein	-1.3910149	1.729212966	0.0037	0.0058
109	ADCY3	adenylate cyclase 3	-1.0753918	1.001151172	0.0049	0.1929

Supplemental Table.2 Common putative 9 target genes their p-value is smaller than 0.01

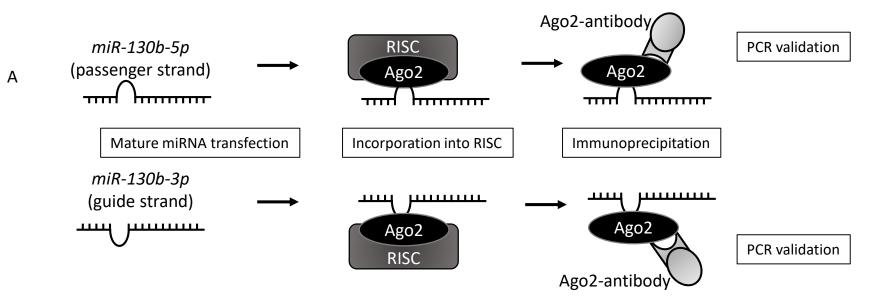
**p*-value<0.01

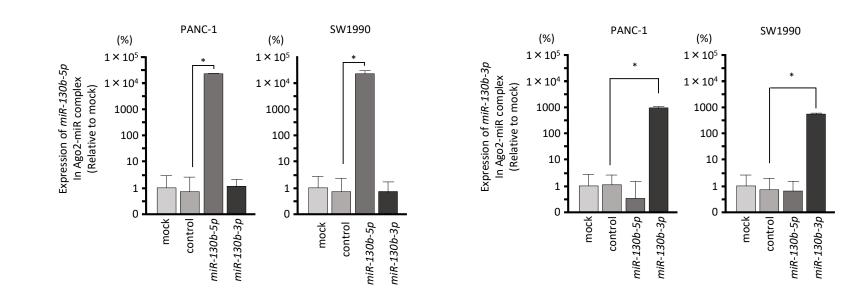
Entrez GeneID			Conserv	ved sites		GEO	*TCGA_OncoLnc	TCGA_OncoLnc DFS
	Gene symbol	8mer	7mer-m8	7mer–A1	Total	(FClog2>1.0)		<i>p−</i> value (in 5 years)
2059	EPS8	0	1	2	3	1.262866923	0.0001	0.0273
219654	ZCCHC24	0	0	2	2	1.436259135	0.0030	0.0899
7153	TOP2A	0	0	1	1	1.530197372	0.0036	0.0343

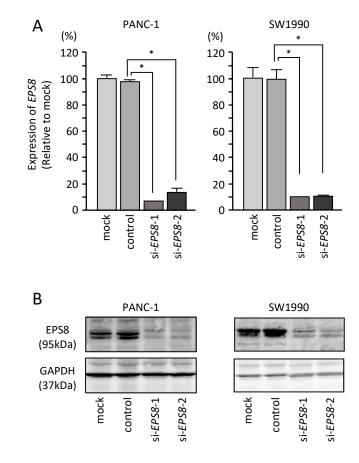

Supplemental Table.3 Target genes keep conserved sites for miR-130b-5p and highly expressed in PDAC

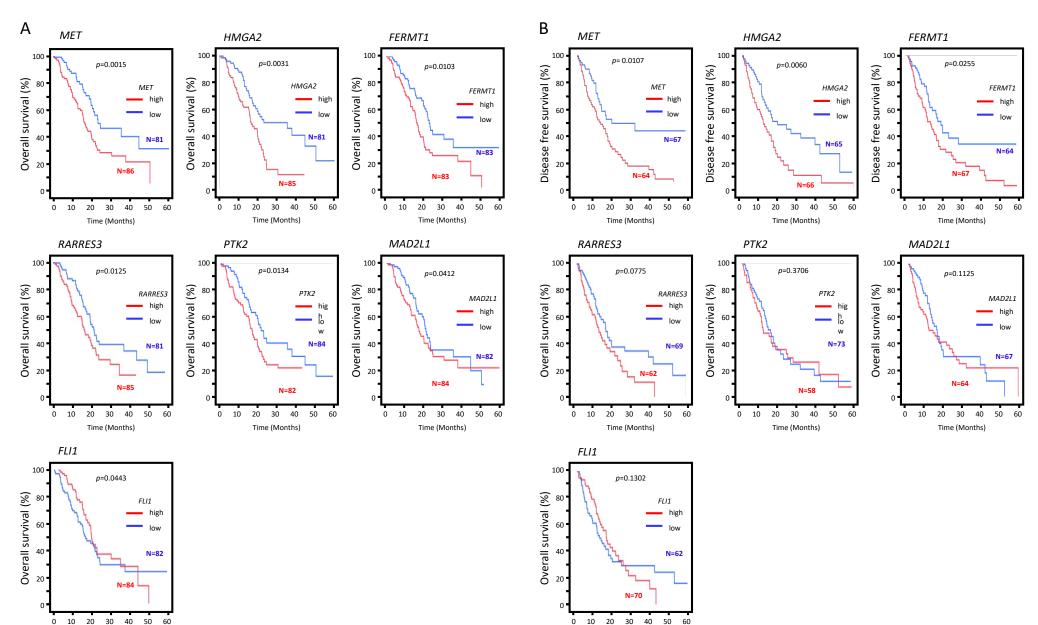

**p*-value<0.01

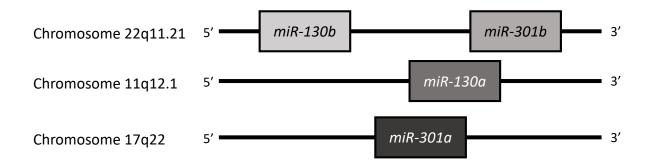
Entrez GeneID	Gene symbol	Gene name	Expression in PANC−1 si− <i>EPS8</i> transfectants (FClog2<−1.0)	GEO (FClog2>1.0)	*TCGA_OncoLnc OS <i>p</i> −value (in 5 years)	TCGA_OncoLnc DFS p−value (in 5 years)
2059	EPS8	epidermal growth factor receptor pathway substrate 8	-2.8271956	2.3997214	0.0001	0.0273
4233	MET	MET proto-oncogene, receptor tyrosine kinase	-1.0782841	2.8329950	0.0015	0.0107
8091	HMGA2	high mobility group AT-hook 2	-2.3884200	2.4964874	0.0031	0.0060
55612	FERMT1	fermitin family member 1	-1.3296491	3.1556027	0.0103	0.0255
5920	RARRES3	retinoic acid receptor responder (tazarotene induced) 3	-1.1847581	2.8853405	0.0125	0.0775
5747	PTK2	protein tyrosine kinase 2	-1.0931424	2.1476655	0.0134	0.3706
4085	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	-1.3218220	2.2757983	0.0412	0.1125
2313	FLI1	Fli-1 proto-oncogene, ETS transcription factor	-1.2141428	2.1929195	0.0443	0.1302

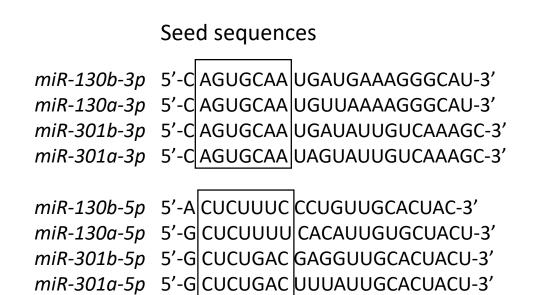

Supplemental Table.4 Downregurated 8 genes their p-value is smaller than 0.05 in si-EPS8 transfected PANC-1 cells


**p*-value<0.05




JHG Supplemental Figure 3




JHG Supplemental Figure 5

Time (Months)

Time (Months)

