1	An alternative nisin A resistance mechanism affects virulence in <i>Staphylococcus aureus</i>
2	
3	running title: High nisin A resistance in Staphylococcus aureus
4	
5	Miki Kawada-Matsuo ^{1#} , Atsuko Watanabe ^{2#} , Kaoru Arii ³ , Yuichi Oogai ¹ , Kazuyuki
6	Noguchi ³ , Shouichi Miyawaki ² , Tetsuya Hayashi ⁴ and Hitoshi Komatsuzawa ⁵ *
7	¹ Department of Oral Microbiology, Kagoshima University Graduate School of Medical
8	and Dental Sciences, Kagoshima, Japan
9	² Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University
10	Graduate School of Medical and Dental Sciences, Kagoshima, Japan
11	³ Department of Periodontology, Kagoshima University Graduate School of Medical and
12	Dental Sciences, Kagoshima, Japan
13	⁴ Department of Bacteriology, Faculty of Medical Sciences, Kyushu University,
14	Fukuoka, Japan
15	⁵ Department of Bacteriology, Hiroshima University Graduate School of Biomedical and
16	Health Sciences, Hiroshima, Japan
17	

18 *corresponding author

19 E-mail: <u>komatsuz@hiroshima-u.ac.jp</u>

- 20 # Miki Kawada-Matsuo and Atsuko Watanabe contributed equally to this work. Author
- 21 order was determined both alphabetically and in order of increasing seniority.

- 23
- 24

25 Abstract

26	Nisin A is a bacteriocin produced by Lactococcus lactis and is widely used as a food
27	preservative. Staphylococcus aureus has the BraRS-VraDE system that provides
28	resistance against low concentrations of nisin A. BraRS is a two-component system that
29	induces the expression of the ABC transporter VraDE. Previously, we isolated a highly
30	nisin A-resistant strain with increased VraDE expression due to a mutation in <i>braRS</i> . In
31	this study, we isolated S. aureus MW2 mutants with BraRS-VraDE-independent nisin A
32	resistance. These mutants, designated SAN2 (S. aureus nisin resistant) and SAN469,
33	had a mutation in <i>pmtR</i> , which encodes a transcriptional regulator responsible for the
34	expression of the <i>pmtA-D</i> operon. As a result, these mutants exhibited increased
35	expression of PmtA-D, a transporter responsible for the export of phenol soluble
36	modulin (PSM). Characterization of the mutants revealed that they have decreased
37	susceptibility to human β defensin-3 (hBD3) and LL37, which are innate immune
38	factors. Additionally, these mutants showed higher hemolytic activity than the original
39	MW2 strain. Furthermore, in a mouse bacteremia model, the SAN2 strain exhibited a
40	lower survival rate than the original MW2 strain.
41	These results indicate that the increased expression of <i>pmtA-D</i> due to <i>pmtR</i> mutation
42	is an alternative nisin A resistance mechanism that also affects virulence in S. aureus.

45	Recently, the emergence of antibiotic-resistant bacteria has resulted in serious
46	problems for chemotherapy. In addition, many antibacterial agents, such as disinfectants
47	and food additives, are widely used. Therefore, there is a possibility that bacteria are
48	exposing many antibacterial agents and becoming resistant to some antibacterial agents.
49	In this study, we investigated whether S. aureus can become resistant to nisin A, one of
50	the bacteriocins applied as a food additive. We isolated a highly nisin A-resistant strain
51	designated SAN2 that displayed increased expression of Pmt proteins, which are
52	involved in the secretion of virulence factors called PSMs. This strain also showed
53	decreased susceptibility to human antimicrobial peptides and increased hemolytic
54	activity. In addition, SAN2 showed increased lethal activity in a mouse bacteremia
55	model. Our study provides new insights that the acquisition of resistance against food
56	preservatives may modulate virulence in S. aureus, suggesting that we need to pay more
57	attention to the use of food preservatives together with antibiotics.
58	

Importance

59 Introduction

60 Staphylococcus aureus is a commensal bacterium in humans; it generally localizes in 61 the nasal cavity, skin and intestine and sometimes causes opportunistic infections, such 62 as suppurative diseases, pneumonia and sepsis (1-3). Additionally, S. aureus causes 63 food-borne poisoning because this organism produces several heat-stable enterotoxins 64 (2). To cure S. aureus infections, antibacterial agents are generally administered. 65 However, the emergence of methicillin-resistant S. aureus (MRSA) sometimes causes 66 difficulties in chemotherapeutic treatment. Glycopeptides such as vancomycin and 67 teicoplanin are now used for MRSA infection, although vancomycin-intermediate 68 and/or vancomycin-resistant bacteria have been reported (4-6). In addition to antibiotics, 69 other antibacterial agents, such as disinfectants and food preservatives, are widely used. 70 Qac genes in S. aureus were identified as resistance factors for quaternary ammonium 71 compounds, such as chlorhexidine and mupirocin (7, 8). Therefore, S. aureus shows 72 resistance not only to several antibiotics but also to other antibacterial agents. 73 Nisin A is a bacteriocin produced by Lactococcus lactis (9). Nisin A belongs to the 74 lantibiotics, which are antimicrobial peptides containing unusual amino acids, 75 lanthionines (10, 11). The target of nisin A is lipid II, which is involved in cell wall 76 biosynthesis (12, 13). The binding of nisin A to lipid II inhibits cell wall biosynthesis

77	and eventually causes the formation of pores or disturbances in bacterial membranes.
78	Nisin A has a broad range of antibacterial activities against mainly Gram-positive
79	bacteria, including species of Streptococcus, Staphylococcus and Clostridium (14-19).
80	We and other groups have demonstrated that a two-component system (TCS) named
81	BraRS is responsible for resistance to nisin A (20, 21). When S. aureus cells are exposed
82	to nisin A, BraS senses nisin A, and phosphorylation of BraR then occurs.
83	Phosphorylated BraR binds upstream of <i>vraDE</i> , which encodes an ABC transporter
84	responsible for nisin A resistance. Inactivation of <i>braRS</i> resulted in increased
85	susceptibility to nisin A. However, a high concentration of nisin A is still effective
86	against S. aureus cells (18). Due to its broad-spectrum activity, nisin A is widely used as
87	a food additive worldwide for the prevention of food-borne poisoning (14, 22, 23).
88	Additionally, the use of bacteriocins, including nisin A, as clinical antibacterial agents
89	has been investigated (14, 17, 24).
90	Previously, to determine whether nisin A treatment induces increased nisin A
91	resistance, we tried to isolate mutants that showed increased levels of nisin A resistance
92	by incubation with a subminimum inhibitory concentration (sub-MIC) of nisin A and
93	ultimately obtained three mutants that constitutively expressed high levels of VraDE

94	(25). Then, we found point mutations in the promoter region of $braRS$ in the $braR$ or
95	braS coding region in each mutant.
96	In this study, to explore potential nisin A resistance mechanisms independent of the
97	BraRS-VraDE system, we tried to isolate S. aureus strains that are highly resistant to
98	nisin A by exposing S. aureus to nisin A and eventually obtained mutants with
99	BraRS-VraDE-independent nisin A resistance. Our analysis of these mutants
100	demonstrated that they utilize an alternative nisin A resistance mechanism and that the
101	mutations also affect the virulence of S. aureus.
102	
103	Results
104	
105	Isolation of S. aureus strains highly resistant to nisin A
106	Previously, we obtained three types of S. aureus strains highly resistant to nisin A,
107	which showed increased levels of <i>vraDE</i> expression (25). We tried to isolate additional
108	strains highly resistant to nisin A. From two independent experiments, we obtained two
109	mutants that showed no increased expression of <i>vraDE</i> . We designated these mutants
110	SAN2 and SAN469. The nisin A MICs for SAN2 and SAN469 were 2,048 $\mu g/ml,$ while
111	the MIC for the original MW2 strain was 512 μ g/ml (Table 1).

112	We also evaluated the MICs of these mutants against bacitracin, gallidermin and
113	nukacin ISK-1, which also inhibit the lipid cycle for cell wall biosynthesis (Table 1).
114	There was no difference in MICs for these three agents between the mutants and the
115	original MW2 strain.
116	
117	Analysis of gene expression in MW2 and SAN2 by microarray analysis
118	To identify the factors responsible for high resistance to nisin A, we investigated the
119	expression of all genes located on the chromosome of MW2. As shown in Table 2, the
120	expression of MW1875 to MW1871 was significantly increased in the SAN2 strain,
121	with more than 30-fold higher expression levels than that of the original MW2 strain in
122	the absence of nisin A. MW1875-MW1871 were previously associated with
123	phenol-soluble modulin (PSM) transport (PmtA-D; MW1874-MW1871) and a
124	transcriptional regulator (PmtR; MW1875) (26). In the strain SAN2, the expression
125	levels of several other genes were also increased but lower extents (2- to 3-fold greater
126	than the MW2 levels).
127	
128	Effects of MW1875 or MW1874 inactivation on nisin A susceptibility

129 From microarray analysis, we thought MW1875-MW1871 was associated with high

130	resistance to nisin A. Therefore, we constructed corresponding inactivation mutants to
131	examine whether these genes truly contributed to high nisin A resistance. Since <i>pmtR</i>
132	and <i>pmtA-D</i> (MW1875-MW1871) formed an operon, we constructed two insertional
133	mutants (MM2278 and MM2153) in which pYT1 was integrated in MW1875 or
134	MW1874 of strain SAN2 and one insertional mutant (MM2202) with an insertion in
135	MW1875 of strain MW2 (Table 3). The two SAN2 mutants showed the same nisin A
136	MIC as MW2. Similarly, the MW2 mutant (MM2202) retained the same MIC as MW2
137	(Table 3). A complemented strain, MM2279, in which the <i>pmtRABCD</i> operon
138	(MW1875-MW1871) was expressed by pCL15 in MM2278, also showed a similar MIC
139	as SAN2, indicating that the increased expression of <i>pmtRABCD</i> was involved in high
140	nisin A resistance in SAN2. We also constructed one mutant (MM2259) in which only
141	MW1875 was inactivated but MW1874-1871 was constitutively expressed and found
142	that MM2259 showed the same MIC as the SAN2 strain.
143	
144	DNA sequences of the MW1875 to 1871 (<i>pmtR</i> and <i>pmtA</i> to <i>D</i>) regions
145	The DNA sequences of the MW1875-1871 regions in MW2, SAN2 and SAN469
146	were determined. In SAN2, only one mutation was detected in MW1875 (Fig. 1). This
147	mutation induced an alanine (Ala) at the 43 rd amino acid of MW1875 to aspartic acid

148 (Asp) in the SAN2 strain. In SAN469, the fifth amino acid position in MW1875 was149 mutated to a stop codon.

150

151	Isolation of strains highly resistant to nisin A derived from other S. aureus strains
152	To determine whether similar $pmtR$ mutants were able to be obtained from other
153	strains after exposure to nisin A, we isolated nisin A-resistant mutants from S. aureus
154	COL and TY34. From two independent experiments in each strain, we obtained two
155	mutants with increased expression of <i>pmtRABCD</i> , one from each strain (Table 3). We
156	designated the mutants SAN233 (from COL) and SAN455 (from TY34). DNA
157	sequencing analysis identified point mutations at the 16 th and 93 rd amino acids of
158	MW1875 (PmtR) in SAN233 and SAN455, respectively (Fig. 1), while there were no
159	mutations in the <i>pmtA-D</i> genes. These two mutations introduced stop codons within the
160	<i>pmtR</i> gene. Therefore, SAN233 and SAN455 did not express full-length PmtR.
161	
162	Expression of <i>pmtR</i> (MW1875), <i>pmtA</i> (MW1874) and <i>vraD</i> in MW2 and its
163	mutants
164	We investigated the expression of <i>pmtR</i> , <i>pmtA</i> and <i>vraD</i> by quantitative PCR. In
165	SAN2, the expression of <i>pmtR</i> and <i>pmtA</i> (more than a 70-fold increase) was

166	significantly increased compared to that in MW2 in the absence of nisin A (Fig. 2A). We
167	observed the same result by immunoblotting analysis (Fig. 2B). We also confirmed the
168	increased expression of <i>pmtR</i> and <i>pmtA</i> in SAN469 by quantitative PCR (Supplemental
169	Fig. 1). In addition, the PmtR and PmtA expression patterns of MW2 and SAN2 in the
170	absence of nisin A were quite similar to those in the presence of nisin A because the
171	expression of <i>pmtR</i> and <i>pmtA</i> was not induced by nisin A (Supplemental Fig. 2).
172	Additionally, we investigated the expression of <i>vraD</i> and found that SAN2 showed no
173	increase in <i>vraD</i> expression at a low concentration of nisin A (32 μ g/ml), while MW2
174	showed increased expression of vraD (Fig. 2C). However, the inactivation of
175	<i>pmtRABCD</i> in SAN2 resulted in increased <i>vraD</i> expression in the presence of nisin A.
176	Then, we investigated <i>vraD</i> expression in the presence of various concentrations of
177	nisin A (Fig. 3A). In MW2, the expression of <i>vraD</i> was induced at concentrations above
178	1/32 MIC nisin A (16 µg/ml), while in SAN2, it was induced by concentrations above
179	1/2 MIC nisin A (1024 µg/ml). We further investigated the induction of <i>vraD</i> expression
180	by bacitracin (1 MIC=64 μ g/ml). Since the MIC of bacitracin was the same in the MW2
181	and SAN2 strains (Table 1), we analyzed the effect of bacitracin at a range from 1/64
182	MIC to 1 MIC. The <i>vraD</i> expression in both strains was similarly induced by bacitracin
183	at each concentration (Fig. 3B).

185	Binding of the wild-type and mutated PmtR protein to the upstream region of
186	MW1875.
187	Fig. 4A shows the previously reported promoter region of <i>pmtR</i> , the transcriptional
188	start site and the binding region of PmtR (27). The results of our EMSA revealed that
189	MW2-rPmtR bound the upstream region of <i>pmtR</i> (<i>pmtR</i> -F), while SAN2-rPmtR did not
190	bind its region (Fig. 4B). This binding of MW2-rPmtR was inhibited by the addition of
191	an excess amount of unlabeled DNA fragments.
192	
193	Hemolytic activity of MW2, SAN2, MM2278 and MM2279
194	Since PSM transported by PmtA-D has been demonstrated to be involved in hemolytic
195	activity (28), we hypothesized that the increased expression of PmtA-D would affect
196	hemolytic activity, and we next analyzed the hemolytic activities of the strains MW2
197	and SAN2 on sheep blood agar. Compared to wild-type MW2, SAN2 produced a larger
198	hemolytic zone (Fig. 5A). When <i>pmtR</i> and <i>pmtA-D</i> (<i>pmtR-D</i> : MW1875 to MW1871)
199	were inactivated in SAN2 (MM2278), the hemolytic zone became smaller than that of
200	SAN2. The hemolytic zone produced by the complemented strain MM2279 was similar
201	in size to that of SAN2.

202	It was reported that PSM or δ -hemolysin enhanced the activity of β -hemolysin (28).
203	Since MW2 (and SAN2) do not produce β -hemolysin, we investigated the synergistic
204	hemolytic activity of MW2 and its derivatives with RN4220 (which produces
205	β -hemolysin). An enhanced hemolytic zone with RN4220 was produced (white arrows)
206	by SAN2, MM2279 and SAN469, while MW2 and MM2278 did not have an enhanced
207	hemolytic effect with RN4220 (Fig. 5B). We also investigated the hemolytic activity of
208	COL, SAN233, TY34 and SAN455 and found similar results (Supplemental Fig. 3).
209	
210	Susceptibility to hBD3 and LL37 in MW2, SAN2, MM2278 and MM2279
211	Since it was reported in a previous study that <i>pmtR-D</i> inactivation increased the
212	susceptibility to hBD3 and LL37 (29), we investigated the effect of the increased
213	expression of <i>pmtA-D</i> in SAN2 on susceptibility to hBD3 (Fig. 6) and LL37
214	(supplemental Fig. 4). As shown in Fig. 6, compared to the original MW2 strain, SAN2
215	showed a decrease in susceptibility to hBD3, while the inactivation of <i>pmtRABCD</i>
216	increased susceptibility to the peptides, resulting in the same susceptibility as that of
217	MW2. The complemented strain (MM2279) showed susceptibility similar to that of
218	
	SAN2.

221	We performed a mouse survival experiment using a bacteremia model. Injection of
222	the MW2 strain killed only one out of 8 mice 3 days after injection, while 5 of 8 mice
223	were killed between 1 to 5 days after the injection of SAN2 (Fig. 7A, P=0.010, log-rank
224	test). No mouse was killed by injection of the SAN2 <i>pmtR-D</i> inactivation strain
225	(MM2278), while 4 of 5 mice were killed between 1 to 3 days after the injection of the
226	complemented strain (MM2279) (Fig. 7B; P=0.002, Fig. 7C; P=0.604, log-rank test).
227	
228	Discussion
229	
230	In this study, we demonstrated a novel high nisin A resistance mechanism that
231	functions independently of the BraRS-VraDE system. We obtained 4 mutant strains with
232	the increased expression of PmtA-D from MW2, COL and TY34 that acquired high
233	nisin A resistance. All these mutants had a point mutation in the <i>pmtR</i> gene, yielding a
234	mutant PmtR with an Ala43Asp substitution (SAN2 from MW2) or truncated PmtR
235	(SAN469 from MW2, SAN233 from COL and SAN455 from TY34). EMSAs showed
236	that the SAN2-derived PmtR protein (SAN2-rPmtR) did not bind the DNA region
237	upstream of <i>pmtR-D</i> . Since PmtR is a negative transcriptional regulator of the

Mouse survival rate after injection of MW2, SAN2, MM2278 and MM2279

238	pmtRABCD operon (27), SAN2-PmtR and the three truncated PmtRs could not suppress
239	the expression of the <i>pmtR-D</i> operon, resulting in the increased expression of <i>pmtR-D</i> .
240	The mutation site of PmtR in SAN2 is within the helix-turn-helix DNA-binding region.
241	Based on our EMSA, a mutated-PmtR in SAN2 lost the ability to bind to the target
242	DNA region. This result implies two possibilities. One possibility is that the mutation
243	site is critical for DNA binding. Another is that the mutation causes a structural change
244	in PmtR leading to loss of DNA binding.
245	PmtA-D form an ABC transporter from two membrane proteins (PmtA and C) and
246	two ATPases (PmtB and D) (26). PmtA-D is involved in the transport of PSMs and
247	δ -hemolysin (Hld) from the cytoplasm to the extracellular space (26, 28). PSMs have
248	broad virulence activities, such as surface spreading activity responsible for epithelial
249	colonization, biofilm formation, proinflammatory activity, cytolytic activity and
250	antimicrobial activity (30, 31, 32). In addition, Cheung GYC et al. recently reported that
251	the Pmt transporter is also associated with human-derived antimicrobial peptides, such
252	as hBD3 and LL37 (29). We also found that high expression of Pmt transporters in
253	SAN2 resulted in high resistance against hBD3 and LL37. These results suggest the
254	association of Pmt transporters with the susceptibility of human antimicrobial peptides.
255	Although there are no clear structural similarities among PSMs, δ -hemolysin, hBD3 and

256	LL37, we speculate that PmtA-D may be associated with the export of these peptides
257	with membrane insertional activity (Fig. 8). However, we also evaluated the
258	susceptibility to bacitracin, gallidermin and nukacin ISK-1 and found no difference
259	between the MW2 and SAN2 strains. Nukacin ISK-1 is functionally similar to nisin A
260	because these are both lantibiotics with the same target, lipid II (12, 33). Furthermore,
261	we found a different response of <i>vraD</i> expression: bacitracin induced <i>vraD</i> expression
262	in both the MW2 and SAN2 strains with the same low concentration of nisin A, while
263	only a high concentration of nisin A induced the expression of <i>vraD</i> compared to that
264	for MW2 (Fig. 3A and 3B). These results indicate that the Pmt system recognizes the
265	limited structure of antimicrobial peptides, such as nisin A and LL37, with membrane
266	insertional activity.
267	Joo HS et al. demonstrated that $PSM\alpha 1$ -3 binds PmtR to release it from its target
268	DNA region, which is followed by induction of the expression of the <i>pmt</i> operon (27).
269	PSM expression is upregulated by the agr system (28, 31). Since agr expression
270	increases in the late exponential phase (34, 35), the expression levels of PSM and
271	PmtA-D are increased at the late exponential phase. In this study, we collected bacterial
272	cells for the evaluation of gene expression at mid exponential phase (OD=0.5) and
273	found strong expression of <i>pmtA</i> in SAN2, but not MW2 (Fig. 2A and S1), indicating

274	that in the SAN2 mutant, PmtA-D expression is independent of the growth phase due to
275	the lack of functional PmtR. Therefore, the expression of PmtA-D is constitutively
276	increased; thus, PSMs are constantly exported from the cell during SAN2 growth. As
277	mentioned above, PSMs have broad virulence activities, so the increased PSM transport
278	may modulate the virulence of <i>S. aureus</i> . We found that the hemolytic activity of SAN2
279	was greater than that of the wild-type MW2, likely because $PSM\alpha$ has an enhanced
280	effect on hemolytic activity (28). Additionally, susceptibility to human antimicrobial
281	peptides was decreased in the mutants. Finally, in a mouse experiment, we found that
282	compared to the wild-type MW2, SAN2 showed an increase in fatality rate due to its
283	increased virulence. The Pmt-dependent nisin A resistance identified in this study is
284	different from the previously identified BraRS-VraDE system in terms of the
285	modulation of virulence in S. aureus.
286	Previously, we isolated strains that are highly resistant to nisin A that showed high
287	constitutive expression of VraDE (25). VraDE, which is regulated by BraRS, is an
288	intrinsic resistance factor against nisin A, bacitracin, gallidermin and nukacin ISK-1. In
289	MW2, sub-MIC (1/16 MIC) nisin A induced the expression of VraDE, while sub-MIC
290	nisin A did not induce its expression in SAN2. However, <i>pmtA-D</i> inactivation in SAN2
291	caused inducible expression of VraDE by sub-MIC nisin A. Additionally, induction of

292	<i>vraD</i> expression occurred at high concentrations of nisin A in SAN2, suggesting that the
293	Pmt system is a dominant system contributing to nisin A resistance in SAN2 (Fig. 8).
294	In this study, we used nisin A obtained from Sigma-Aldrich with 2.5% formulation.
295	Since MIC of nisin A in MW2 showed 512 μ g/ml in this study, MIC of purified nisin A
296	is estimated to 12.8 μ g/ml. There are several reports regarding to the concentration of
297	nisin A in several foods such as cheese, sausage and milk (36, 37). Although nisin A
298	concentration is varied among foods, its concentration is mostly above 10 μ g/g.
299	Therefore, the concentration of nisin A for the isolation of the resistant mutant in this
300	study is close to that for food preservatives, speculating the possibility that nisin A
301	resistant S. aureus might be generated by food preservatives.
302	In conclusion, we found a new mechanism for high nisin A resistance that is mediated
303	by the increased expression of Pmt proteins in S. aureus. It is important to note that the
304	increased expression of Pmt proteins causes high nisin A resistance and enhances
305	virulence. Since nisin A is widely used as a food additive, it is important to use it
306	cautiously.
307	
308	Materials and Methods

310 Bacterial strains and growth conditions

311	The bacterial strains used in this study are shown in Table 3. S. aureus and
312	Escherichia coli XL-II were grown in trypticase soy broth (TSB) (Becton, Dickinson
313	and Company, Franklin Lakes, NJ, USA) and Luria-Bertani (LB) broth, respectively.
314	Tetracycline (WAKO Chemicals, Osaka, Japan) (TET, 5 μ g/ml) and chloramphenicol
315	(Sigma Aldrich, St. Louis, MO, USA) (CHL: 5 µg/ml) were used for S. aureus, and
316	ampicillin (WAKO Chemicals, Osaka, Japan) (AMP, 100 μ g/ml) was used for <i>E. coli</i>
317	when necessary.
318	
319	MIC determination
320	The MICs of several antibacterial agents were determined by microdilution with liquid
321	culture (TSB), as described previously (38). Nukacin ISK-1 was purified as described

- 322 previously (20). Nisin A with 2.5% formulation (Sigma Aldrich, St. Louis, MO, USA)
- 323 was used in this study. Bacitracin and gallidermin were obtained from WAKO
- 324 Chemicals, Osaka, Japan and Santa Cruz Blotechnology, TX, USA, respectively. S.
- 325 *aureus* strains (10^5 cells) were inoculated into 100 µl of TSB containing various
- 326 concentrations of nisin A (from 4096 to 4 µg/ml), nukacin ISK-1 (from 128 to 0.125
- $\mu g/ml$), gallidermin (from 128 to 0.125 $\mu g/ml$) and bacitracin (from 256 to 0.25 $\mu g/ml$).

328 MICs were determined after incubation for 24 h at 37°C. MIC determination was
329 repeated independently three times.

330

331 Isolation of mutants highly resistant to nisin A

332 S. aureus mutants highly resistant to nisin A were obtained by a method described 333 elsewhere (25). Briefly, a microdilution method that is generally used to evaluate the 334 minimum inhibitory concentration (MIC) of antibacterial agents was used for isolation of the mutants. An overnight culture of S. aureus MW2 was diluted to 10^7 cells/ml, and 335 336 10 µl of the diluted culture was applied to each well (100 µl), which contained a 2-fold 337 dilution series of nisin A (16 to 16384 µg/ml). After incubation at 37°C overnight, 338 bacterial cells that grew in 1/2 MIC nisin A were collected and diluted 100-fold. Ten 339 microliters of this diluted sample were then applied to each well (100 μ l), which 340 contained serial 2-fold dilutions of nisin A (16 to 16384 µg/ml). This procedure was 341 repeated three times. Ultimately, bacterial cells grown in the presence of 1/2 MIC nisin 342 A were appropriately diluted and plated on tryptic soy agar (TSA). After overnight 343 incubation, 14 colonies were picked and incubated in 5 ml of TSB. Overnight culture 344 was used for the determination of the MIC of nisin A. This experiment was 345 independently performed 3 times. Then, we investigated the vraD expression of the

strains with high nisin A resistance by quantitative PCR and found no increase in *vraD*expression.

- We also tried to isolate strains highly resistant to nisin A from *S. aureus* COL and
 TY34 by the same method described above.
- 350
- 351 Microarray analysis.

Overnight cultures of *S. aureus* (10^8 cells) were inoculated into 30 ml of fresh TSB and cultured at 37°C with shaking. When the OD₆₆₀ reached 0.4, the bacterial cells were collected by centrifugation at 5,000 x *g* for 5 min at 4°C. Total RNA was extracted by

- 355 using a FastRNA Pro Blue Kit (MP Biomedicals, Cleveland, OH, USA) according to the
- 356 manufacturer's protocol. Then, cDNA from each sample was synthesized from 10 µg of
- 357 total RNA using a FairPlay III Microarray Labeling Kit (Agilent Technologies, Santa
- 358 Clara, CA, USA) according to the manufacturer's instructions. The Agilent eArray
- 359 platform (Agilent Technologies) was used to design the microarray: 13,939 probes
- 360 (60-mers) were designed to target the 2,628 protein-coding genes of S. aureus MW2 (up
- 361 to five probes per gene). Microarray analysis was performed by a method described
- 362 elsewhere (39). The experiments were performed using three biological replicates (three
- 363 technical replicates for each set of conditions), and the expression data were deposited

into the Gene Expression Omnibus (<u>http://www.ncbi.nlm.nih.gov/geo/</u>) under accession
GSE131352. Statistical analysis was determined by student's *t*-test. The *p* values were
indicated in Table 2.

367

- 368 DNA sequences of MW1875-1871 regions
- 369 Since we found the increased expression of genes corresponding to MW1875-1871 in
- the SAN2 strain, we determined the DNA sequence of the MW1875-1871 regions.

371 Primers were constructed to amplify MW1875-1871 with their corresponding flanking

- 372 regions, including the promoter regions of MW1875 (Table 4). To prepare chromosomal
- 373 DNA from the original MW2 strain and the mutant strains, the cells from 1 ml of
- 374 overnight cultures were collected. The cells were suspended in 100 µl of 10 mM
- 375 Tris-HCl (pH 6.8) containing 10 µg of lysostaphin (Sigma Aldrich), incubated at 37°C
- 376 for 20 min, and then incubated at 95°C for 15 min. After centrifugation, cell lysates
- 377 were used as template DNA for PCR. PCR was performed using the Takara Ex Taq
- 378 system, and the amplicons were purified using a QIAquick kit (QIAGEN, Hilden,
- 379 Germany). The nucleotide sequences of each DNA fragment were determined using
- 380 specific primers. The primers used to amplify DNA sequences are listed in Table 4.

381

382	Inactivation of MW1875 and MW1874 in S. aureus and their complementation
383	The strains used in this study are listed in Table 3. Specific gene inactivation by the
384	insertion of the thermosensitive plasmid pYT1 was performed by a method described
385	elsewhere (40). An internal DNA fragment of MW1875 or MW1874 was amplified by
386	PCR using specific primers and then cloned into a pYT1 vector. The plasmid was
387	electroporated into S. aureus RN4220, and then the plasmid in RN4220 was transferred
388	into respective strains by transduction using phage 80α . The obtained strains were
389	grown overnight at 30°C. Appropriate dilutions of the culture were spread on TSA
390	plates containing TET (10 μ g/ml) and then incubated at 42°C overnight. Colonies were
391	picked and replated on TSA containing TET. Disruption of the target gene was checked
392	by PCR. For gene complementation, the vector pCL8, which is a shuttle vector for <i>E</i> .
393	coli and S. aureus (41). A DNA fragment for complementation was PCR-amplified
394	using chromosomal DNA from the MW2 or mutant strains. The DNA fragment was
395	cloned into pCL8 using E. coli XL-II competent cells. The obtained plasmid was
396	electroporated into S. aureus RN4220 and was subsequently transduced into the
397	appropriate strain using phage 80α.
398	To obtain a mutant that constitutively expresses MW1874-1871 by its own promoter
399	upstream of MW1875 without MW1875 expression, we constructed a plasmid by PCR

400	cloning of a DNA fragment containing the internal region of MW1875 (295 bp) and the
401	promoter region of MW1875-1871 (149 bp). Two PCR fragments were obtained and
402	then cloned into the pYT1 vector by using restriction enzymes. The plasmid was finally
403	transduced into the MW2 strain. The plasmid integration was performed using the
404	method described above. Two types of mutants were obtained (Supplemental Fig. 5).
405	Finally, the strain that contained inactivated MW1875 and expressed MW1874-1871
406	was verified by PCR and DNA sequencing.
407	
408	Quantitative PCR and immunoblotting analysis
409	Quantitative PCR was performed to investigate the expression of MW1875 (pmtR),
410	MW1874 (<i>pmtA</i>) and <i>vraD</i> . A small portion of overnight culture (10^8 cells) was
411	inoculated into 5 ml of fresh TSB and then grown at 37°C with shaking. When the
412	optical density at 660 nm reached 0.5, nisin A (16 to 2048 μ g/ml) or bacitracin (1 to 64
413	μ g/ml) was added to the bacterial culture. After incubating for 15 min (for quantitative
414	PCR) and 2 h (for immunoblotting), the bacterial cells were collected. For quantitative
415	PCR, RNA extraction, cDNA synthesis and PCR were performed as described
416	previously (25). Statistical analysis was determined by $p < 0.01$, $p < 0.005$, as
417	determined by Dunnett's post hoc tests compared to the control in each experiment

418	For immunoblotting, antiserum against MW1875 and MW1874 was obtained by
419	immunizing rabbit with the recombinant protein, as described previously (42). Briefly,
420	the coding region of MW1875 or MW1874 amplified by PCR using specific primers
421	was cloned into pQE30 (QIAGEN, Tokyo, Japan), which is used for the construction of
422	histidine-tagged recombinant proteins. The obtained plasmid was transformed into E.
423	coli M15 (pREP4). The resulting recombinant protein was purified according to the
424	manufacturer's instructions. Antiserum was obtained using the recombinant protein. We
425	also immunoblotted VraD using anti-rVraD antibodies obtained previously (25).
426	Collected bacterial cells were resuspended in 200 μ l of Tris-HCl (pH 6.8) containing
427	10 μ g of lysostaphin and incubated for 20 min at 37°C. The cells were then heated at
428	95°C for 15 min. After centrifugation, the supernatant was obtained as a whole-cell
429	lysate. Lysate proteins mixed with an equal volume of sample loading buffer were
430	resolved by 15% SDS-polyacrylamide gel electrophoresis (PAGE). Then, the proteins
431	were transferred to a nitrocellulose membrane. After blocking with 2% skim milk in
432	Tris-buffered saline (TBS; 20 mM Tris, 137 mM NaCl [pH 8.0]) containing 0.05%
433	Tween 20 (TBS-T), the membrane was incubated with specific antiserum (diluted
434	1:1,000 in 1% skim milk in TBS-T) for 1 h at 37°C. The membrane was then washed
435	with TBS-T and incubated with horseradish peroxidase-conjugated anti-mouse IgG

436	(diluted 1:1,000 in TBS-T) (Promega, Madison, WI, USA) for 1 h at 37°C. The
437	membrane was then washed 5 times with TBS-T, and the protein band reacting with the
438	antiserum was detected using a chemiluminescence detection system (PerkinElmer,
439	Waltham, MA, USA).
440	
441	Hemolysis assay
442	Hemolysis assays were performed by using TSB agar plates containing 5% sheep
443	blood (Becton, Dickinson and Company). To evaluate the hemolysis activity of
444	individual strains, three microliters of a 10-fold diluted overnight culture of MW2,
445	SAN2, MM2278 (pmtR, pmtA-D inactivated strain) and MM2279 (complemented strain
446	of MM2278) was spotted individually on a sheep blood agar plate and incubated at
447	37°C for 2 days. The hemolytic area of each strain was calculated by using Image J
448	analysis. This experiment was performed independently 3 times. To evaluate the
449	synergistic effect on β -hemolysin of individual strains, three microliters of a 10-fold
450	diluted overnight culture of the RN4220 strain (a β -hemolysin-producing strain) was
451	spotted. Additionally, three microliters of a 10-fold diluted overnight culture of MW2,
452	SAN2, MM2278 or MM2279 was spotted around RN4220 (distance from the center of
453	the RN4220 spot was 17 mm). The agar plate was incubated at 37°C for 20 h and then

454	kept at 4°C for 2 days. This experiment was performed independently 3 times to
455	confirm the results. We quantified hemolytic activity by measuring the hemolysis zone
456	of each strain. Using Image J analysis. Briefly, we excised same area covering
457	hemolysis zone (1.5 cm \times 1.5 cm). Then, percentage of hemolysis area (%) in MW2,
458	SAN2, MM2278, MM2279 and SAN469 was evaluated by Image J. Statistical analysis
459	was determined by $p < 0.01$, $p < 0.005$, as determined by Dunnett's post hoc tests
460	compared to MW2.

462 Susceptibility to hBD3 and LL37

463 An antibacterial assay was performed as described elsewhere (43). Briefly, overnight 464 cultures of S. aureus strains were collected and washed with 10 mM sodium phosphate buffer (PB). The bacterial suspension was diluted to 10^7 cells/ml with PB, and 10 µl of 465 the bacterial suspension (10^5 cells) was inoculated into 500 µl of PB with or without 466 467 human antimicrobial peptides (β-defensin-3: Peptide Institute Inc., Osaka, Japan; or 468 LL37; 0.5, 0.4, 0.2, 0.1, 0.05 µM) and incubated aerobically for 10 min and 2 hours at 37°C. Dilutions of the reaction mixture (100 µl) were plated on agar medium and 469 470 incubated at 37°C overnight. The colony-forming units (CFU) were determined as the 471 total number of colonies on each plate. The antibacterial effect was calculated as the

472	ratio of the number of surviving cells (survival rate [%]) to the total number of bacteria
473	incubated in a control PB solution after exposure to antimicrobial peptides. Statistical
474	analysis was determined by $p < 0.05$, as determined by Dunnett's post hoc test,
475	compared to untreated MW2.
476	
477	Electrophoretic mobility shift assay (EMSA)
478	For an EMSA, two 6× histidine-tagged recombinant PmtR (rPmtR) proteins from the
479	original MW2 strain and SAN2 were used. Construction of the rPmtRs was performed
480	as described above. Briefly, a DNA fragment encoding <i>pmtR</i> (MW1875) was amplified
481	with specific primers by using chromosomal DNA of MW2 and SAN2. Then, DNA
482	fragments were subsequently cloned into pQE30. The plasmid was then transformed
483	into E. coli M15 (pREP4). The recombinant protein was purified according to the
484	manufacturer's instructions. To assess the binding of rPmtR to a region upstream of
485	pmtR, an EMSA was performed as described previously (25). A DNA fragment
486	encompassing the region upstream of <i>pmtR</i> , <i>pmtA-D</i> was amplified with the specific
487	primers listed in Table 1. The DNA fragments were labeled at the 3' end with
488	digoxigenin (DIG) using a DIG Gel Shift Kit, 2 nd Generation (Roche, Mannheim,
489	Germany). The DIG-labeled fragment (5 ng) was reacted with rPmtR protein (50 mM)

490	in the labeling buffer provided with the kit. When necessary, a nonlabeled DNA
491	fragment (10 ng) was added to the reaction mixture. After native PAGE on a 6%
492	polyacrylamide gel, the DNA fragments were transferred to a positively charged nylon
493	membrane (Roche, Mannheim, Germany) and visualized according to the
494	manufacturer's protocol.
495	
496	Mouse bacteremia experiment
497	Since we found the alteration of virulence in SAN2 strain, we then performed the
498	animal experiment to see whether SAN2 strain show strong virulence in vivo. A mouse
499	bacteremia experiment was performed as described previously (44). Six-week-old
500	female Slc:ddY mice were purchased from SLC (Shizuoka, Japan). Small portions of
501	overnight cultures of S. aureus MW2, SAN2, SAN2 with MW1875-1871 inactivation
502	(MM2278) and MM2278 complemented with MW1875-1871 (MM2279) were
503	inoculated into 5 ml of fresh TSB and incubated at 37°C with shaking. When the OD_{660}
504	reached 0.8, bacterial cells were collected and washed with PBS. Then, the cells were
505	resuspended in PBS at a concentration of 1.0×10^9 CFU/ml. An aliquot of 100 μl (1.0 \times
506	10^8 CFU) was injected into the tail vein of the mice. We divided 3 groups for this
507	experiment: (A) survival comparison between MW2 and SAN2, (B) the comparison

508	between SAN2 and MM2278, (C) the comparison between SAN2 and MM2279.
509	Number of trials: (A) MW2=8, SAN2=8; (B) SAN2=8, MM2278=6; (C) SAN2=6,
510	MM2279=5. Mouse survival was monitored for 6 days. Survival statistics were
511	calculated by the log-rank test (Mantel-Cox). The animal experimentation performed in
512	this study was conducted according to a protocol approved by the President of
513	Kagoshima University after review by the Institutional Animal Care and Use Committee
514	(Ethical number: D18015).
515	
516	Acknowledments
517	This study was supported in part by Grant-in-Aid for Scientific Research (C) (Grant
518	No: 18K09553) from the Ministry of Education, Culture, Sports, Sciences, and
519	Technology of Japan.
520	
521	Conflict of interest
522	The authors declare no competing financial interests in relation to the work described.
523	
524	References
525	

526	1.	Lowy FD. 1998. <i>Staphylococcus aureus</i> infections. New Engl J Med. 339: 520–532.
527	2.	Manders SM. 1998. Toxin-mediated streptococcal and staphylococcal disease. J Am
528		Acad Dermatol. 39: 383–388.
529	3.	Foster TJ. 2004. The Staphylococcus aureus "superbug". J Clin Invest. 114: 1693-
530		1696.
531	4.	Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC. 2008.
532		Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006. Clin
533		Infect Dis. 46: 668–674.
534	5.	Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced
535		vancomycin susceptibility in Staphylococcus aureus, including
536		vancomycin-intermediate and heterogeneous vancomycin-intermediate strains:
537		resistance mechanisms, laboratory detection, and clinical implications. 2010. Clin
538		Microbiol Rev. 23: 99–139.
539	6.	Gardete S, Tomasz A. 2014. Mechanisms of vancomycin resistance in
540		Staphylococcus aureus. J Clin Invest. 124: 2836-2840.
541	7.	McDanel JS, Murphy CR, Diekema DJ, Quan V, Kim DS, Peterson EM, Evans KD,
542		Tan GL, Hayden MK, Huang SS. 2013. Chlorhexidine and mupirocin
543		susceptibilities of methicillin-resistant staphylococcus aureus from colonized

544		nursing home residents. Antimicrob Agents Chemother. 57: 552-558.
545	8.	Wassenaar TM, Ussery D, Nielsen LN, Ingmer H. 2015. Review and phylogenetic
546		analysis of qac genes that reduce susceptibility to quaternary ammonium
547		compounds in Staphylococcus species. Eur J Microbiol Immunol (Bp). 5: 44-61.
548	9.	Delves-Broughton J, Blackburn P, Evans RJ. and Hugenholtz, J. 1996. Applications
549		of the bacteriocin, nisin. Antonie Van Leeuwenhoek. 69: 193–202.
550	10.	Nagao J, Asaduzzaman SM, Aso Y, Okuda K, Nakayama J, Sonomoto K. 2006.
551		Lantibiotics: insight and foresight for new paradigm. J Biosci Bioeng. 102:
552		139-149.
553	11.	Nes IF, Holo H. 2000. Class II antimicrobial peptides from lactic acid bacteria.
554		Biopolymers 55: 50-61.
555	12.	Bierbaum G, Sahl HG. 2009. Lantibiotics: mode of action, biosynthesis and
556		bioengineering. Curr Pharm Biotechnol. 10: 2-18.
557	13.	Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP. 2008. Biosynthesis,
558		immunity, regulation, mode of action and engineering of the model lantibiotic nisin.
559		Cell Mol Life Sci. 65: 455–476.
560	14.	Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. 2016.
561		Biomedical applications of nisin. J Appl Microbiol. 120: 1449-1465.

562	15. Le Lay C, Dridi L, Bergeron MG, Ouellette M, Fliss IL. 2016. Nisin is an effective
563	inhibitor of <i>Clostridium difficile</i> vegetative cells and spore germination. J Med
564	Microbiol. 65: 169-175.
565	16. Udompijitkul P, Paredes-Sabja D, Sarker MR. 2012. Inhibitory effects of nisin
566	against Clostridium perfringens food poisoning and nonfood-borne isolates. J Food
567	Sci. 77: M51-56.
568	17. Tong Z, Ni L, Ling J. 2014. Antibacterial peptide nisin: a potential role in the
569	inhibition of oral pathogenic bacteria. Peptides. 60: 32-40.
570	18. Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K,
571	Mizunoe Y. 2013. Effects of bacteriocins on methicillin-resistant Staphylococcus
572	aureus biofilm. Antimicrob Agents Chemother. 57: 5572-5579.
573	19. Field D, O' Connor R, Cotter PD, Ross RP, Hill C. 2016. In Vitro Activities of Nisin
574	and Nisin Derivatives Alone and In Combination with Antibiotics against
575	Staphylococcus Biofilms. Front Microbiol. 18: 7:508. Cotter PD, Hill C, Ross RP.
576	2005. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 3:
577	777-788.
578	20. Kawada-Matsuo M., Yoshida Y, Zendo T, Nagao J, Oogai Y, Nakamura Y,

579 Sonomoto K, Nakamura N, Komatsuzawa H. 2013. Three distinct two-component

- 580 systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and
- nisin A, in *Staphylococcus aureus*. PLoS One. 8: e69455.
- 582 21. Hiron A, Falord M, Valle J, Débarbouillé M, Msadek T. 2011. Bacitracin and nisin
- 583 resistance in *Staphylococcus aureus*: a novel pathway involving the BraS/BraR
- 584 two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE
- 585 ABC transporters. Mol Microbiol. 81: 602-622.
- 586 22. Gharsallaoui A, Oulahal N, Joly C, Degraeve P. 2016. Nisin as a Food Preservative:
- 587 Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit Rev
- 588 Food Sci Nutr. 56: 1262-1274.
- 589 23. Juturu V, Wu JC. 2018. Microbial production of bacteriocins: Latest research
- development and applications. Biotechnol Adv. 36: 2187-2200.
- 591 24. van Harten RM, Willems RJL, Martin NI, Hendrickx APA. 2017.
- 592 Multidrug-Resistant Enterococcal Infections: New Compounds, Novel
- 593 Antimicrobial Therapies?Trends Microbiol. 25: 467-479.
- 594 25. Arii K, Kawada-Matsuo M, Oogai Y, Noguchi K, Komatsuzawa H. 2019. Single
- 595 mutations in BraRS confer high resistance against nisin A in *Staphylococcus aureus*.
- 596 Microbiologyopen. 17: e791.

- 597 26. Chatterjee SS, Joo HS, Duong AC, Dieringer TD, Tan VY, Song Y, Fischer ER,
- 598 Cheung GY, Li M, Otto M. 2013. Essential *Staphylococcus aureus* toxin export
- 599 system. Nat Med. 19:364-367.
- 600 27. Joo HS, Chatterjee SS, Villaruz AE, Dickey SW, Tan VY, Chen Y, Sturdevant DE,
- 601 Ricklefs SM, Otto M. 2016. Mechanism of Gene Regulation by a *Staphylococcus*
- 602 *aureus* Toxin. MBio. 7: pii: e01579-16.
- 603 28. Cheung GY, Duong AC, Otto M. 2012. Direct and synergistic hemolysis caused by
- 604 Staphylococcus phenol-soluble modulins: implications for diagnosis and
- 605 pathogenesis. Microbes Infect. 14: 380-386.
- 606 29. Cheung GYC, Fisher EL, McCausland JW, Choi J, Collins JWM, Dickey SW, Otto
- 607 M. 2018. Antimicrobial Peptide Resistance Mechanism Contributes to
- 608 *Staphylococcus aureus* Infection. J Infect Dis. 217: 1153-1159.
- 609 30. Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, Cheung GY,
- 610 Otto M. 2012. How *Staphylococcus aureus* biofilms develop their characteristic
- 611 structure. Proc Natl Acad Sci U S A. 109: 1281-1286.
- 612 31. Cheung GY, Joo HS, Chatterjee SS, Otto M. 2014. Phenol-soluble modulins--critical
- 613 determinants of staphylococcal virulence. FEMS Microbiol Rev. 38: 698-719.

- 614 32. Peschel A, Otto M. 2013. Phenol-soluble modulins and staphylococcal infection.
- 615 Nat Rev Microbiol. 11: 667-673.
- 616 33. Nishie M, Nagao J, Sonomoto K. 2012. Antibacterial peptides "bacteriocins": an
- 617 overview of their diverse characteristics and applications. Biocontrol Sci. 17: 1-16.
- 618 34. Novick RP. 2003. Autoinduction and signal transduction in the regulation of
- 619 staphylococcal virulence. Mol Microbiol. 48: 1429-1449.
- 620 35. Yarwood JM, Schlievert PM. 2003. Quorum sensing in Staphylococcus infections. J
- 621 Clin Invest. 112: 1620-1625.
- 622 36. Cleveland J, Montville TJ, Nes IF, Chikindas ML. 2001. Bacteriocins: safe, natural
- 623 antimicrobials for food preservation. Int J Food Microbiol. 71:1-20.
- 624 37. Reunanen J, Saris PE. 2004. Bioassay for nisin in sausage; a shelf life study of nisin
- 625 in cooked sausage. Meat Sci. 66:515-518.
- 626 38. Komatsuzawa H, Suzuki J, Sugai M, Miyake Y, Suginaka H. 1994. The effect of
- 627 Triton X-100 on the in-vitro susceptibility of methicillin-resistant *Staphylococcus*
- 628 *aureus* to oxacillin. J Antimicrob Chemother. 34: 885-897.
- 629 39. Oyama K, Kawada-Matsuo M, Oogai Y, Hayashi T, Nakamura N, Komatsuzawa H.
- 630 2016. Antibacterial Effects of Glycyrrhetinic Acid and Its Derivatives on
- 631 *Staphylococcus aureus*. PLoS One. 11: e0165831.

632	40. Kajimura J, Fujiwara T, Yamada S, Suzawa Y, Nishida T, Oyamada Y, Hayashi I,
633	Yamagishi J, Komatsuzawa H, Sugai M. 2005. Identification and molecular
634	characterization of an N-acetylmuramyl-l-alanine amidase Sle1 involved in cell
635	separation of Staphylococcus aureus. Mol Microbiol. 58: 1087–1101.
636	41. Lin WS, Cunneen T, Lee CY. 1994. Sequence analysis and molecular
637	characterization of genes required for the biosynthesis of type 1 capsular
638	polysaccharide in Staphylococcus aureus. J Bacteriol. 176:7005-7016
639	42. Kawada-Matsuo M, Oogai Y, Zendo T, Nagao J, Shibata Y, Yamashita Y, Ogura Y,
640	Hayashi T, Sonomoto K, Komatsuzawa H. 2013. Involvement of the novel
641	two-component NsrRS and LcrRS systems in distinct resistance pathways against
642	nisin A and nukacin ISK-1 in Streptococcus mutans. Appl Environ Microbiol. 79:
643	4751-4755.
644	43. Matsuo M, Oogai Y, Kato F, Sugai M, Komatsuzawa H. 2011. Growth-phase
645	dependence of susceptibility to antimicrobial peptides in Staphylococcus aureus.
646	Microbiology. 157: 1786-1797.
647	44. Oogai Y, Yamaguchi M, Kawada-Matsuo M, Sumitomo T, Kawabata S,
648	Komatsuzawa H. 2016. Lysine and Threonine Biosynthesis from Aspartate

649	Contributes to Staphylococcus aureus Growth in Calf Serum. Appl Environ
650	Microbiol. 82: 6150-6157.
651	45. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. 2008. Emergence and
652	resurgence of methicillin-resistant Staphylococcus aureus as a public-health threat.
653	The Lancet. 368: 874–875.
654	46. Tomasz A, Drugeon HB, de Lencastre HM, Jabes D, McDougall L, Bille J. 1989.
655	New mechanism for methicillin resistance in Staphylococcus aureus: clinical
656	isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins
657	with modified penicillin-binding capacity. 33: 1869-1874.
658	47. Kato F, Kadomoto N, Iwamoto Y, Bunai K, Komatsuzawa H, Sugai M. 2011.
659	Regulatory mechanism for exfoliative toxin production in <i>Staphylococcus aureus</i> .
660	Infect Immun. 79:1660-1670.

663	Figure	Legends

Fig. 1. ORF map of the *pmt* region (MW1875-1871) and mutation sites in *pmtR* of

666 **isolated mutants.**

667 The mutation sites in the *pmtR* region are indicated by white arrows.

668

669 Fig. 2. Expression of *pmtR*, *pmtA* and *vraD* in the mutants.

- 670 (A) Expression of *pmtR* and *pmtA* in MW2, SAN2, MM2278 (SAN2 with inactivation
- 671 of *pmtR-pmtD*) and MM2279 (the complemented strain in MM2278) was evaluated by
- quantitative PCR using specific primers. *p < 0.001, as determined by Dunnett's post
- hoc test, compared to untreated MW2. (B) Expression levels of PmtR and PmtA in S.
- 674 *aureus* strains were evaluated by immunoblotting analysis using respective specific
- antibodies. (C) Expression of *vraD* in *S. aureus* strains in the presence or absence of

676 1/16 MIC nisin A (32, 128, 32 and 512 μg/ml in MW2, SAN2, MM2278 and MM2279,

677 respectively) was evaluated by quantitative PCR using specific primers. *p < 0.005, as

678 determined by Dunnett's post hoc test, compared to untreated MW2.

679

Fig. 3. Expression of *vraD* in MW2 and SAN2 with various concentrations of nisin
A and bacitracin.

682	The induction of <i>vraD</i> expression in <i>S. aureus</i> MW2 and SAN2 by the addition of
683	various concentrations of nisin A (A) or bacitracin (B) was evaluated by quantitative
684	PCR using specific primers. * $p < 0.05$ and ** $p < 0.01$, as determined by Dunnett's post
685	hoc test, compared to untreated MW2 or SAN2.
686	
687	Fig. 4. EMSAs of PmtR
688	(A) The nucleotide sequence of the <i>pmtR</i> promoter region. Squares, -35 , -10 box; *,
689	pmtR transcriptional start site; bold, PmtR-binding region. (B) EMSAs of PmtR with a
690	DNA fragment labeled with DIG were performed with the method described in the
691	Materials and Methods.
692	

693 Fig. 5. Hemolytic assay of S. aureus mutants

694 (A) Three microliters of a 10-fold diluted overnight culture of MW2, SAN2, MM2278

695 (SAN2 with inactivation of *pmtR-pmtD*) and MM2279 (the complemented strain in

- 696 MM2278) was spotted individually on a sheep blood agar plate and incubated at 37°C
- for 2 days. Percentage of hemolysis area was evaluated by ImageJ. *p < 0.01, **p
- 698 <0.005, as determined by Dunnett's post hoc tests compared to MW2. (B) Three
- 699 microliters of a 10-fold diluted overnight culture of RN4220 (a β-hemolysin-producing

700	strain) was spotted, and the same volume of MW2, SAN2, MM2278, MM2279 and
701	SAN469 was spotted around RN4220 (distance from the center of the RN4220 spot was
702	17 mm). The agar plate was incubated at 37°C for 20 h and then kept at 4°C for 2 days.
703	White arrows indicate a synergistic effect. Percentage of hemolysis area was evaluated
704	by ImageJ. * $p < 0.01$, ** $p < 0.005$, as determined by Dunnett's post hoc tests compared
705	to MW2.
706	
707	Fig. 6. Susceptibility of S. aureus mutants to hBD3

An antibacterial assay for hBD3 was performed as described in the Materials and

709 Methods section. S. aureus was reacted with various concentrations of hBD3 for 10 min

710 (A) and 2 hours (B). p < 0.05, as determined by Dunnett's post hoc test, compared to

711 untreated MW2.

712

713 Fig. 7. Mouse survival experiment

714 Survival percentage of Slc:ddY mice after being challenged with intravenous injection

715 of 1.5×10^{8} CFU of *S. aureus*. (A) Survival comparison between MW2- and

- 716 SAN2-inoculated mice. (B) Survival comparison between wild-type SAN2 and
- 717 MM2278 (SAN2 with inactivation of *pmtR-pmtD*). (C) Survival comparison between

718	wild-type SAN2 and MM2279 (the complemented strain in MM2278). Significant
719	differences between the two strains are shown. Survival statistics were calculated by the
720	log-rank test (Mantel-Cox).
721	
722	Fig. 8. Proposed high nisin A resistance mechanism mediated by the Pmt system.
723	The MW2 strain shows resistance to low concentrations of nisin A by the BraRS system.
724	In the SAN2 strain, the Pmt system contributes to high nisin A resistance due to the
725	mutation in PmtR.
726	

	MIC (µg/ml)			
strain	nisin A	bacitracin	gallidermin	nukacin ISK-1
MW2	512	64	8	16
SAN2	2048	64	8	16
SAN469	2048	64	8	16
COL	1024	64	8	16
SAN233	2048	64	8	16
TY34	512	64	8	16
SAN455	2048	64	8	16

Table 1. susceptibility of nisin A, bacitracin, gallidermin and nukacin ISK-1 against *S. aureus* strains.

Table 2. Genes up-regulated in *S. aureus* SAN2

	gene		Fold-		
gene ID ¹	name	function	difference ²	SD	p value ³
MW1873	pmtB	ABC transporter, membrane domain	62.2	13.7	0.01
MW1874	pmtA	ABC transporter, ATPase domain	54.7	2.8	< 0.001
MW1875	pmtR	transcription regulator, GntR family	49.0	3.3	0.001
MW1872	pmtC	ABC transporter, ATPase domain	47.7	3.2	0.002
MW1871	pmtD	ABC transporter, membrane domain	38.1	6.2	0.007
MW1869		hypothetical protein	2.6	0.3	0.008
MW1868		hypothetical protein	2.4	0.9	0.004
MW1867		hypothetical protein	2.1	0.3	0.02

¹ Gene IDs are from the GEO of the NCBI Database (<u>http://www.ncbi.nlm.nhi.gov/geo/</u>)

² expression level of SAN2 related to that of MW2

³ The p values were analyzed for statistically significant differences by Student's *t*-test

Strains	character	MIC of nisin A	reference
		(µg/ ml)	
S. aureus			
MW2	clinical strain, methicillin-resistant (mecA+)	512	45
COL	clinical strain, methicillin-resistant (mecA+)	1024	46
TY34	clinical strain, methicillin-resistant (mecA+)	512	47
MM2202	pYT1 insertion to MW1875 (MW1875-1871 inactivation) in MW2, TET ^r	512	This study
MM2280	Overexpression of MW1875-71 (pCL8) in MW2, CHL ^r	2048	This study
MM2259	pYT1 insertion to MW1875 (MW1874-1871 overexpression) in MW2, TET ^r	2048	This study
SAN2	nisin A resistant mutant from MW2	2048	This study
MM2278	pYT1 insertion to MW1875 (MW1875-1871 inactivation) in SAN2, TET ^r	512	This study
MM2153	pYT1 insertion to MW1874 (MW1874-1871 inactivation) in SAN2, TET ^r	512	This study
MM2279	MW1875-1871 (SAN2) complementation in MM2278, TET ^r , CHL ^r	2048	This study
SAN469	nisin A resistant mutant from MW2	2048	This study
SAN233	nisin A resistant mutant from COL	2048	This study
SAN455	nisin A resistant mutant from TY34	2048	This study
E. coli			
XL-II	endA1 supE44 thi-1 hsdR17 recA1 gyrA96 relA1 lac	-	Stratagene
	$[F' proAB lacIqZ\Delta M15 Tn10 (TET') Amy CHL']$		
MM1127	His-tag fused MW1875 (MW2) gene in XL-II, AMP ^r	-	This study
MM1128	His-tag fused MW1875 (SAN2) gene in XL-II, AMP ^r	-	This study

Table 3. Strains used in this study

Table4. Primers used in this study	
------------------------------------	--

target gene ID	primer-forward	primer-reverse			
Construction of gene-inactivatied mutants					
pmtR+pmtA-D	5'- ttggatccacaatagtgattttccgatt -3'	5'- caaagctttggcttgcgcttcattaa -3'			
pmtA-D	5'- agggatccatatggctctcaatccg -3'	5'- aaaagettcactcacaacttgatatc -3'			
Construction of the plasmid for gene complementation					
pmtR+pmtA-D-pCL15	5'- ataagcttatacagaaagtgataggg -3'	5'- ttggatccaactgatcacttgaataatt - 3'			
pmtA-D-pCL15	5'- ataagcttttttaagcttcatttatgag -3'	5'- ttggatccaactgatcacttgaataatt - 3'			
pmtR+pmtA-D-pCL8	5'- ctaagcttttgaagtagacaatgcaag -3'	5'- atcccgggttcccaacctcaaaattat -3'			
Pmt promoter+ <i>pmtA-D</i> -pYT1	5'- caagatctaatggtagtgtcatttcatt -3'	5'- caggatcccaacgtccccctatcac -3'			
	5'- ttggatccacaatagtgattttccgatt -3'	5'- caaagctttggcttgcgcttcattaa -3'			
Amplification of DNA fragments used in gel shift assay					
pmtR-F1	5'- aatggtagtgtcatttcattt -3'	5'- caacgtccccctatcac -3'			
Construction of the plasmid for recombinant protein					
rPmtR	5'- ccggatccatgaaaataattttaaaaaacaat -3'	5'- tt <u>aacgtt</u> tcatgatgattcctcctca -3'			
rPmtA	5'- ccggatccatgaatgccatagaattaag -3'	5'- tt <u>aagett</u> ttaaaaacettetteeatea -3'			
Primers for quantitative PCR					
pmtR	5'- aattggttaatgaagcgcaag-3'	5'- gattcctcctcataaatgaacg-3'			
pmtA	5'- taaagcttcgttcatttatgaggagg -3'	5'- acgataaaaaggggcaatca -3'			
vraD	5'- cacttgccaaattccgta -3'	5'- aatacctaatgctgtcgtga -3'			
gyr B	5'- aggtcttggagaaatgaatg -3'	5'- caaatgtttggtccggtt -3'			

Primers used for DNA sequence	e	
pmtR, A-D-seq-F-500	5'- tgaaattcaataacttattaaa -3'	
<i>pmtR</i> , <i>A-D</i> –F-26	5'- atacagaaagtgataggg-3'	
<i>pmtR</i> , A-D –F351	5'- aacgttcatttatgaggagg -3'	
pmtR, A-D – F967	5'- attatatcattcacttaagtg -3'	
pmtR, A-D –F1429	5'- tttggattttagatgctggtca -3'	
pmtR, A-D –F1967	5'- attacaaaaaaatacggctc -3'	
pmtR, A-D-F2409	5'- atggctcaattgatgtgctg -3'	
pmtR, A-D-F3047	5'- cgcgtgatttttcacaaggt -3'	
pmtR, A-D-seq-R		5'- tttaaaattcccaacctca -3'

Underlines indicate the recognition site of the respective restriction enzyme

Fig. 1.

Fig. 2.

TTGATAATGAGACATGCATATTACAAAACTGTGTATATTGTGTATATTGTGTATATTATACAGAAAGTG ▶pmtR ATAGGGGGGACGTTGATG

(B)

Fig. 4.

Fig. 6.

Fig. 7.

