修士論文

2台の降圧形コンバータによる

蓄電デバイスの充放電制御

平成 31 年 1 月 31 日

指導教員:田中 哲郎 准教授

鹿児島学大学院 理工学研究科 電気電子工学専攻

岩下 仁

概要

電気二重層キャパシタ(EDLC)は、二次電池と比較して、重量エネルギー密度は 劣るものの、高い重量パワー密度を持ち、サイクル寿命を気にすることなく急速 充放電を行うことができる蓄電デバイスである。このため、バッテリーシステム においては二次電池のフロントエンドとしての使用が最適である。本研究では、 自動車のデュアルバッテリシステム(48V/12V)への応用を想定し、EDLCを中間電 圧に用いて、2台の降圧形コンバータで2つのバッテリー系を連系させるシステ ムを試作した。作製したシステムは、出力電流制御を基本とする2台の降圧形コ ンバータに、中間電圧の制御機能を付加したものである。論文では、システムの 基本制御特性の実験結果を中心に報告する。

目次

第1章 序論
第2章 電気二重層コンデンサ(EDLC) ······ 4
2.1 電気二重層コンデンサと二次電池 4
2.1.1 EDLCの原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・6
2.2 EDLCの応用・・・・・ 8
2.3 デュアルバッテリーシステムへの応用 ・・・・・・・・・・ 9
第3章 DC-DC コンバータ ····· 11
3.1 コンバータの基礎概念
3.2 降圧型コンバータの基本回路と動作
第4章 降圧形双方向 DC-DC コンバータ ······ 15
4.1 同期整流器による双方向化 ・・・・・・・・・・・・・・・・・・・・・ 15
4.2 基本回路と動作・・・・・ 16
第5章 実験
5.1 実験回路・・・・・・18
5.1.1 P制御 ····· 22
5.1.2 PI 制御 ····· 23
5.1.3 位相遅れ補償・・・・・ 24
5.2 実験方法・・・・・ 25
5.3 実験結果・・・・・ 26
5.3.1 出力電流制御特性(P制御) ·················26
5.3.2 出力電流制御特性(PI制御) ·················27
5.3.3 フィードフォワード制御 (PI 制御) ······ 29
5.3.4 EDLCを用いた連携制御実験・・・・・・・・・・・・・・・・・・ 30
5.3.5 過渡応答
第6章 結論
謝辞
参考文献

第1章 序論

現在、再生可能エネルギー発電システムの出力安定化、エネルギー回生システム による効率向上、瞬停補償システムによる系統安定化などを実現するために必要 不可欠な構成部品として、大型蓄電素子に注目が集まっている。大型蓄電素子の代 表としては、二次電池及び電気二重層コンデンサ(EDLC)が挙げられるが、EDLC に は他の蓄電素子と比較して、化学反応を伴わないため急速充放電が可能である、高 い出力効率を得られるなどの特長がある。これらの特長から、EDLC は近年優れた 蓄電素子として、電子機器や自動車などの様々な用途に使われ始めている[1]。

EDLC は原理的に 2~3V という低い定格電圧を持つため、通常数個の EDLC を直列 接続したモジュール構成で使用される。マツダのアテンザに用いられている「i-ELOOP」という技術では、9本の EDLC(定格電圧 25V)に減速時の回生エネルギー を蓄積し、直接電装機器に電力を供給し、バッテリーの充電も行っている。これを 参考に、本研究では、12V 系と 48V 系のデュアルバッテリーシステムにおいて、中 間電圧の 24V 系を設け、そこにエネルギー回生用 EDLC を接続して効率の良い電力 融通を実現するシステムを提案する。このシステムでは大きな昇圧比を必要とし ないため、システムで使用する双方向コンバータとして最も効率の高い同期整流 方式の降圧形双方向コンバータを採用できる。

本研究では、自動車のデュアルバッテリーシステム(48 V/12 V)において、中 間電圧に EDLC(24 V~12 V)を配置することを想定し、電圧系間の電力伝達を可 能にするコンバータ制御系について検討する。具体的な制御系は、フィードバック 制御による蓄電素子への出力電流制御を基本とし、EDLC 電圧を調整するための出 力電流目標値を与える、フィードフォワード制御を付加したものである。研究では、 基本の降圧形を双方向化したコンバータを2台作製し、EDLCを含めた降圧方向の 連携制御実験を行った。

本論文の構成は次の通りである。第2章では、電気二重層コンデンサ(EDLC)の原 理と応用、および提案するデュアルバッテリーシステムについて簡単に説明する。 第3章では、DC-DCコンバータの基礎概念と降圧形コンバータの基本回路と動作に ついて述べる。第4章では、同期整流器による降圧形コンバータの双方向化につい て述べ、その基本回路と動作について述べる。第5章では、使用した実験回路、実 験方法について示し、P制御および PI制御について簡単に説明する。また、各実

8-2

験結果について報告する。第6章では、結論として本研究のまとめと今後の課題に ついて述べる。結果として、作製した2台の降圧形双方向コンバータとその制御系 で、出力電流制御および、改善の余地はあるものの、中間電圧 EDLC の電圧保持を 行うことができた。

第2章 電気二重層コンデンサ (EDLC)

電気二重層コンデンサ(Electric Double-Layer Capacitor)は、一般的な二次 電池と比較した場合、大電流充放電が可能であり、劣化が少なく充放電サイクル寿 命に優れた蓄電デバイスである。そのため近年、二次電池を使用したアプリケーシ ョンにおいて EDLC への置き換えや、全く新しい用途で EDLC を搭載することが検 討されている[1][2]。この章では、EDLC の原理と応用、および本研究で提案する デュアルバッテリーシステムへの応用について説明する。

2.1 電気二重層コンデンサと二次電池[3]

電気二重層コンデンサ(EDLC)は、原理上、通常のコンデンサと比較して低電圧 かつ大容量であることが特徴として挙げられ、現在では1000 F 以上のものが市販 されている。

エネルギー蓄積の原理から EDLC を二次電池と比較すると、二次電池では電極で の化学反応を介し物質の持つ化学エネルギーという形でエネルギーを蓄えるのに 対し、EDLC は電気二重層にエネルギーを蓄えるコンデンサである。ここで電気二 重層とは、異なる物質の界面に、極めて短い距離を隔てて正負の負荷が配向する現 象である。

EDLC には次のような特長がある。まず、化学反応を伴わないことから、充放電 による劣化が少なく、数百万回の充放電サイクルが可能である。次に、内部抵抗が 低いため、短時間での充放電が行える。また、充放電時に電圧が直線的に変化する コンデンサであり、蓄積エネルギーの把握が容易である。

電池とコンデンサの蓄積エネルギーをいずれも W とし、これらについて定量的 に比較する。まず、起電力 Vの電池において充放電時に蓄積・放出される電荷量を Qとすると、二次電池において電気化学的に蓄積されるエネルギーは QVである。 一方、同じ電圧 Vの EDLC における充放電電荷量を同じく Qとすると、そのエネル ギーは 1/2QV となり、コンデンサに蓄えられるエネルギーは電池の半分になるこ とが分かる。これを図 2.1 に示す。

この結果は、両者の電気的特性の違いから、同条件下において電圧変化しない二 次電池が蓄積エネルギーの上では有利であることを示している。一方、コンデ ンサには、電圧を見ることによって蓄積エネルギーを精度よく知ることができる という利点がある。このように、電圧変化に関しては、見方により両者の特性は一 長一短である。

図 2.1 電池及びコンデンサにおける電荷量に対する 電圧変化及びエネルギー変化

2.1.1 EDLCの原理[4][5]

EDLC は、電解液と電極の境界面に極めて短い距離を隔てて電荷が配向する現象 (電気二重層)を利用し、物理的に電荷を蓄える素子である。電極として比表面積 (単位重量当たりの表面積)の大きな活性炭を用いており、その値は 2000 m²/g に も及ぶ。電解液と電極の境界面に配向する電荷間の距離は、電解液の質と濃度によ って異なるが、0.01 mo1/L 以上の濃度の水系電解液では、30 nm 以内である。

一般に、コンデンサの容量 Cは、次の式で表わされる。

$$C = \varepsilon \frac{s}{d} \tag{2.1}$$

ここで、 *ε* は正負の電荷間の誘電率、*S*は電極の面積、*d*は正負の電荷間の距離 である。この式に値を当てはめ、コンデンサの容量 *C*を考えると、EDLC は電気二 重層と活性炭電極により大容量のコンデンサを実現したものであることが理解で きる。

図 2.2 に EDLC の原理図を示す。図から分かるように、電気二重層を利用する EDLC は、従来のコンデンサで用いられる固有の誘電体を持たない。また、EDLC は充放電に化学反応を伴わないコンデンサであるため、二次電池と比較して、急 速充放電可能、劣化が少なく数百万サイクルの充放電可能、高い出力効率を持つ などの特長をもつ。

EDLC の蓄電を担う電気二重層は、図 2.2 では活性炭と電解質のまっすぐな境界 面に生じるように描いているが、実際の電気二重層は活性炭内部の微細な孔の壁 と電界液の接触面に屈曲した形で生じる。この電気二重層によるコンデンサは図 の下部に描いたように、正負の電極面に生じ、このタイプの EDLC では、内部で 2 つのコンデンサが直列に接続されていることになる。活性炭からなる 2 つの分極 性電極(定義は後述)は集電極を通して低抵抗で外部端子に接続されるが、内部 ではセパレータを通して電解液でつながっている。つまり、図 2.2 の下部にグレ ーで表わした部分は電解液で接続されており、これが EDLC の内部抵抗の主な原 因となっている。

図 2.2 に示すように、EDLC を構成する正負 1 組の活性炭電極を電解液に浸して 充電を進めると、はじめは正負の活性炭電極の電位が、注入されたホール及び電 子の量に応じて電解液に対してごくわずかに、それぞれ正及び負に動く。すると 電解液中の負イオン、正イオンがそれに引き付けられて正極及び負極の表面に近 づく。より正確にはすべてのイオンは熱運動で常に動いているから、上で述べた イオンの動きは統計的な分布を意味し、その分布が変化して充電が進行してい く。このような充電の結果、電極と電解液の間には電位差が生じる。この現象を 電気化学的分極、略して分極と呼び、この現象を起こす電極を分極性電極とい う。また、電極を電解液に浸した時、電極と電解液の間に電圧を与えても定常電 流が流れない電極を理想分極性電極と呼ぶ。この理想分極性電極を維持すること のできる最大電圧を耐電圧と定義すると、実用化されている EDLC の耐電圧は、 2.5~3.3 Vと低い値である。したがって、EDLC を実際に蓄電素子として使用す る際には、耐電圧が低いことを考慮して、直列接続に基づくモジュール構成とす るのが普通である。

図 2.2 EDLC の原理図

2.2 EDLC の応用[4]

EDLCには、静電容量が1F以下の小型製品から、2000Fを超える大型製品まで幅広いバリエーションがあり、形状も表面実装型からネジ端子型まで多彩である。

小型製品と大型製品では用途が大きく異なり、小型・中型の製品はバックアッ プ電源用や補助電源用に使用されている。一方の大型製品は、近年になって普及 し始めたデバイスであり、主に電力の貯蔵と安定化、電力アシスト、バックアッ プ電源、エネルギー回生などに使用されている。表 2.1 に大型 EDLC の実用化事 例を示すが、特にエネルギー問題への意識の高まりから、EDLC の特徴を活かした "省エネ型機器"の開発が各分野で進められている。

主な用途	使用機器
電力の貯蔵	道路鋲(太陽光発電+LED)
	交通情報収集端末(太陽光発電)
	太陽光発電式 LED 街路灯
電力の安定化	大型瞬低対策装置
電力アシスト	デジタル複合機 (複写機)
バックアップ電源	送電線故障監視装置
	災害対策用自動販売機
エネルギー回生	ハイブリッド型トランスファークレーン
	電動式フォークリフト
	ハイブリッド型建設重機
	普通乗用車

表 2.1 大型 EDLC の主な実用化事例

2.3 デュアルバッテリーシステムへの応用[6]

近年、自動車には機能を向上させるため大電力機器が使われるようになり、その結果、図 2.3 に示すように車両全体の消費電力は年々増大している。図 2.3 の 傾向から推定すると、2018 年現在では約 3500 W 越を消費すると考えられる。

日本では自動車用としては 12 Vのバッテリーが主流であるが、上で述べた自 動車の消費電力増大に対応するため、2001 年にトヨタが世界で初めて 42 V 電源 を搭載した「クラウンロイヤル」を発売した。しかし、電装品をすべて 42 Vに 対応したものに置き換えることは容易ではなく、車体価格も高価であり人気が出 なかったため、42 V 電源搭載車は生産終了となった。一方欧州では、最近になっ て同様の理由で、ドイツの自動車メーカーVolkswagen グループを中心に、12 V 系に加え 48 V 系バッテリーを導入したマイルドハイブリッドシステムを導入す る動きがある。このシステムでは、既存の 12V の電源システムを残したまま、一 部の機器の電圧を 48V に変更し、12V 系へは 48V 電源となるリチウムイオンバッ テリーから電力変換し供給している。このような欧州の動向に影響を受けた日本 でも、高い電圧のバッテリー使用が見直され、12 V 系と 48 V 系を併用したデュ アルバッテリーシステムが検討されている。

このシステムでは、オーディオやナビのように低負荷の電装機器は 12 V 系の バッテリーを使用し、ステアリングやターボチャージャのような高負荷の電装機 器は 48 V 系を使用することを想定している。また、12 V 系と 48 V 系の間で電力 を

図 2.3 年代ごとの高級車の平均消費電力[6]

融通しあうことも考えられている。しかし、一般に 48 V から 12 V に降圧する場合、基本の降圧形コンバータで効率よく変換できるが、12 V から 48 V に昇圧する場合は、昇圧比が 4 倍と大きく、基本の昇圧形コンバータによる昇圧では効率が悪くなってしまう。つまり、基本の降圧形コンバータを双方化したコンバータで 12 V 系と 48 V 系の間で直接双方向電力変換を行うのは、昇圧方向の効率低下という問題がある。

現在、マツダのアテンザに用いられている「i-ELOOP」という技術では、9本の EDLC(定格電圧 25 V)で減速時の回生エネルギーを蓄積し、それをコンバータで バッテリー電圧 12V に変換することで、直接電装機器に電力を供給し、バッテリ ーの充電を行っている。i-ELOOPの効果としては約 10 %の燃費改善が見込まれ ている。

この EDLC を用いた技術を参考に、本研究では図 2.4 に示すような、デュアル バッテリーシステムの中間電圧にエネルギー回生用 EDLC を接続したシステムを 提案する。提案するシステムでは、48 V系をメインバッテリー、12 V系をサブ バッテリーとし、2 台の双方向コンバータを降圧方向のみで動作させ電力融通を 行う。このシステムで用いる双方向コンバータは、多様なオペレーションを可能 とするため、基本の降圧形コンバータを双方向化したもので、その制御には双方 向電力伝送に加え、EDLC との間の出力電流制御の機能が求められる。

図 2.4 デュアルバッテリーシステム

第3章 DC-DC コンバータ[7]

スイッチング方式 DC-DC コンバータは、半導体スイッチのオン・オフによって直 流電圧を任意のレベルに変換する電力変換器であり、スイッチング電源の主要な 部分を占めている。スイッチング方式 DC-DC コンバータに出力電圧を安定化する 機構を付け加えたものを、スイッチングレギュレータ (Switching Regulator)と呼 ぶ。図 3.1 にスイッチングレギュレータの基本構成を示す。スイッチングレギュレ ータに、起動回路、各種の保護回路、ノイズフィルタ等が付加されて、完全なスイ ッチング電源となる。

スイッチング方式 DC-DC コンバータには、降圧形、昇圧形、昇降圧形の3つの基本回路があり、これらを状況に応じて使い分ける。DC-DC コンバータは、PWM コン バータと共振形コンバータに大別される DC-DC コンバータが、本研究では PWM コ ンバータを扱っている。

この章では DC-DC コンバータの基礎概念とともに、基本回路として、降圧形コンバータの基本的な動作と特性について述べる。

図 3.1 スイッチングレギュレータの基本構成

3.1 コンバータの基礎概念

DC-DC コンバータでは、スイッチのオン・オフを繰り返すことによって、直流電 圧・電流がいったん高周波の方形波電圧・電流に変換される。出力はこれを整流・ 平滑することによって得ている。スイッチSにかかる電圧 vsとスイッチを流れる 電流 isの波形は、図 3.2 に示すように近似的に方形波である。

図 3.2 において、オンの時比率 Dとオフの時比率 D'を、

$$\begin{cases} D = \frac{T_{on}}{T_s} = \frac{T_{on}}{T_{on} + T_{off}} \\ D' = \frac{T_{off}}{T_s} = \frac{T_{off}}{T_{on} + T_{off}} \end{cases}$$
(3-1)

で定義する。ここで、 T_s はスイッチング周期、 T_{on} はスイッチのオン期間、 T_{of} はス イッチのオフ期間を表す。時比率の定義より、

$$D + D' = 1$$
 (3-2)

が成り立つ。

次に、電圧変換率 M を出力電圧 V_oと入力電圧 V_iの比として以下のように定義する。

$$M \equiv \frac{V_o}{V_i} \tag{3-3}$$

電圧変換率*M*は、コンバータの最も基本的かつ重要な特性である入出力特性を表 す。

図 3.2 スイッチ状態とスイッチング波形

3.2 降圧形コンバータの基本回路と動作

図 3.3 に降圧形コンバータの基本回路を示す。以下の解析では、リアクトル電流 が連続する降圧形コンバータの電圧変換率 *M* を簡易的に導出する目的で、次の仮 定をおく。まず、図 3.3 のスイッチSとダイオードDは理想的なスイッチとし、回 路素子および配線の内部抵抗を無視する。次に、リアクトル *L*とコンデンサ *C*の 値が十分大きく、リアクトル電流とコンデンサ電圧に含まれるリプルは十分に小 さいものとする。このとき、以下の関係式が成り立つ。

(i) スイッチSがオンの時

ダイオード D はオフである。この期間に、リアクトル L は電圧 $V_i - V_o$ で励磁され、リアクトルの鎖交磁束の増加分 $\Delta \phi_{on}$ は、

$$\Delta \phi_{on} = (V_i - V_o) T_{on} \tag{3-4}$$

となる。

(ii) スイッチSがオフの時

リアクトル電流が連続のため、ダイオード D がオンとなる。リアクトル L には スイッチ・オン時とは逆向きの出力電圧 V_o が加わる。このため、リアクトル L の 鎖交磁束は減少し、この期間の鎖交磁束の減少分 $\Delta \phi_{off}$ は、

$$\Delta \phi_{off} = V_o T_{off} \tag{3-5}$$

と表される。

(iii) 電圧変換率

定常状態では、リアクトル Lの鎖交磁束の増加分 $\Delta \phi_{on}$ と減少分 $\Delta \phi_{off}$ が等しくなる。この条件から、降圧形コンバータの電圧変換率 M は、以下のように求められる。

$$(V_i - V_o)T_{on} = V_o T_{off} \tag{3-6}$$

$$M = \frac{V_o}{V_i} = \frac{T_{on}}{T_{on} + T_{off}} = D$$
(3-7)

$$M = D \tag{3-8}$$

時比率 D は1より小さいため、このコンバータは直流電圧を降圧する変換器となる。

図 3.3 降圧形コンバータの基本回路

第4章 降圧形双方向 DC-DC コンバータ

この章では、同期整流器による双方向化と、本研究で使用する降圧形双方向 DC-DC コンバータの基本回路とその動作ついて述べる。

4.1 同期整流器による双方向化[8]

基本の降圧コンバータの実装には、非同期整流(ダイオード整流)による回路と 同期整流式によるものがある。図 4.1 に、2 つの整流方式の回路概要を示す。非同 期整流は古くから使われてきた方式で、シンプルな回路構成が特徴であるが、ダイ オードの順方向電圧降下により、出力電圧が低い場合の効率は 80%を超える程度で ある。一方、同期整流は、2 つのスイッチ駆動が必要なため、制御や回路が複雑に なるものの、最大で 95%近くの効率を得ることができる。近年、バッテリ駆動で比 較的大きな電力を必要とするアプリケーションが増え、同期整流用制御 IC が多く 開発されている。このため、同期整流による実装が容易になり、現在は同期整流が 主流となっている。

・非同期(ダイオード)整流式の動作

① S₁が ON 時には D に電流は流れない (OFF)。

② S₁が OFF 時には D に順方向電流が流れる (ON)。

・同期整流式の動作

② S₁が ON 時には S₂を OFF にする。

a S_1 が OFF 時には S_2 を ON にする。

(a) 非同期整流ダイオード整流 (b) 同期整流

2つの整流方式の違いは図 4.1 で示す通り、非同期整流ではローサイドスイッ チにダイオードが使われ、同期整流ではトランジスタが使われている点である。 非同期整流では、ハイサイドスイッチのオン・オフによってダイオードが相補的 にオン・オフする。一方の同期整流では、基本動作は同じであるが、ローサイド スイッチのオン・オフも制御回路で行う。制御回路を作製する際、ハイサイドと ローサイドのスイッチが同時にオンすると、入力電圧 Viを短絡することになり、 これを避けるため同時 OFF の期間(デッドタイム)を作るなど複雑な制御が必要 となる。しかしながら、同期整流が非同期整流より効率の面で優れるのは、ロー サイドスイッチにトランジスタを使うことで、ダイオードで発生する順方向電圧 降下による損失を大幅に低減できるからである。

4.2 基本回路と動作

2.3節で提案したデュアルバッテリーシステムでは、EDLCモジュールへの充電 は主にエネルギー回生システムで行われ、入出力の電圧関係が約2倍の電圧変換 率で固定されている。この理由により、本研究では同システムの双方向コンバー タとして、もっとも簡単な基本の降圧形コンバータを双方向化した回路を選択し た。

図 4.2 に双方向コンバータの基本回路を示す。この回路は基本の降圧形コンバ ータ(3.2節)のダイオード D を MOSFET に変更することで、1つのコンバータ回路 で双方向の電力伝送を可能にしたものである。図 4.2 では、直流電圧 V_iに電圧 源、直流電圧 V_oに負荷抵抗 Rを接続して描いているが、これは便宜的なもので、 実際には、EDLC モジュールまたはバッテリーが接続される。

この双方向コンバータの基本動作は、電力が V_iから V_oへ伝達される降圧モード の場合、基本の降圧形コンバータの動作と同一である。同期整流器となる S₁と主 スイッチ S₂が、交互にオン・オフを繰り返し、直流電圧 V_oが出力となる。一方、 電力が V_oから V_iへ伝達される昇圧モードの場合、その動作は基本の昇圧形コンバ ータと同一であり、この場合の入力は V_o、出力は V_iである。このモードにおける スイッチ素子の役割は、主スイッチ S₁及び同期整流器 S₂である。

図 4.2 双方向コンバータの基本回路

EDLC モジュールは、この双方向コンバータの直流電圧 V_iまたは V_oとして接続 されるが、コンバータから EDLC モジュールを見ると、通常のコンバータと比べ て、以下の点で大きく異なる。

・EDLC への充電では、負荷が抵抗負荷ではなく大容量コンデンサであること

・出力が定電圧ではなく、充放電に応じた正負の定電流であること

第1点は、充電時の出力制御の観点からは、出力電圧 V_oの変化が無視できるよう な時間範囲では、EDLC モジュールを定電圧源のように扱えることを意味してい る。第2点では、充電時には制御量が出力電流であり、一方で放電時には、コン バータ入力電流の制御を行うことを示している。これは、充電時と放電時で双方 向コンバータの制御系が大きく異なることを意味する。いずれも制御回路の設計 の際に考慮すべき点である。

第5章 実験

この章では、今回作製した降圧形双方向コンバータを含む実験回路とコンバータの制御方法、実験方法、および実験結果について述べる。

5.1 実験回路

本研究では、第4章で説明した降圧形双方向コンバータを用いて実験を行った。 2台の降圧形双方向コンバータの基本回路と各パラメータを図 5.1に示す。

図 5.1 実験で用いた降圧形双方向コンバータ

$V_i = 12 \sim 24 V$	$V_i = 48V$
$V_o = 12 V$	$V_o = 12 \sim 24 \text{V}$
$C_1 = 440 \mu F (220 \mu F \times 2)$	$C_1 = 440 \mu F (220 \mu F \times 2)$
$C_1 = 1980 \mu F (330 \mu F \times 6)$	$C_1 = 1980 \mu F (330 \mu F \times 6)$
$L = 120 \mu H$	$L = 120 \mu H$
<i>S</i> ₁ , <i>S</i> ₂ : IRLIZNPBF	<i>S</i> ₁ , <i>S</i> ₂ : PSMN027
R:電子負荷	$R: EDLC = 130F(1300F \times 10)$

実験で用いた双方向コンバータでは、ハイサイドとローサイドにそれぞれスイ ッチ素子である n-ch MOSFET が使用されており、同時 ON 期間が発生しないように 駆動信号を入力しなければならない。本研究では、図 5.2,5.3 に示すような絶縁型 駆動回路を設計・作製し、双方向コンバータを動作させた。

近年は、ハイサイドとローサイドのスイッチ駆動には専用の駆動 IC があり、 それを用いることで駆動回路を比較的容易に作製できるが、本研究ではこれらの 専用 IC を使用せず、個別部品によりハイサイドとローサイドそれぞれの駆動回 路を作製した。その理由として、フォトカプラを組み込むことで電気的に絶縁さ れ、ノイズの少ないきれいな駆動波形が得られることや、絶縁によりフィードバ ック制御時の GND ループの発生を妨げることが挙げられる。

制御回路のブロック線図を図 5.4,5.5、駆動回路図を図 5.6,5.7 に示す。

フィードフォワード制御

フィードバック制御

図 5.2 24V コンバータ回路の概略図

フィードバック制御

図 5.3 48V コンバータ回路の概略図

図 5.4 24V コンバータ回路側の制御回路ブロック線図

図 5.5 48V コンバータ回路側の制御回路ブロック線図

図 5.6 ローサイド側駆動回路 $\begin{bmatrix} R1 = 5.6\Omega, R2 = 5.6k\Omega\\ C1 = C2 = 0.1\mu F\\ D: 21DQ04 \end{bmatrix}$

 $\begin{bmatrix} R1 = 560\Omega, R2 = 360\Omega \\ R3 = 120\Omega, R4 = 10\Omega \\ C1 = 100 \text{pF}, C2 = 220 \text{pF} \\ C3 = 0.1 \mu F \end{bmatrix}$

5.1.1 P制御[9][10]

P制御(比例制御)はフィードバック制御として最も基本的な制御手法である。一般にP制御は、出力(制御量)と目標値の偏差の一次関数として操作量を構成する手法である。

コンバータについては、多くの場合、制御量は出力電圧、目標値は基準電圧、 操作量は主スイッチの時比率 Dである。本研究では、制御量は出力電流 I。であ り、これに合わせる形で目標値は基準電流 Ior となる。操作量は主スイッチの時 比率 Dのままである。したがって、本研究における P 制御の制御則は、比例ゲイ ンを Kp として、

$$D = K_p(I_{or} - I_o) \tag{5-1}$$

と表わされる。

P 制御においては、制御なし(K_p=0、開ループ)の場合には出力に大きな偏差 (I_{or}-I_o)が出じるが、比例ゲインK_pを大きくして行くと、制御系は閉ループに なって偏差は徐々に小さくなる。同時に、応答(制御量)が振動的になり不安定 状態に近づくのが一般的である。比例ゲインK_pを応答が振動しない範囲で大きい 値に設定しても、P 制御の動作原理上、偏差は完全には零にならず、定常位置偏 差と呼ばれる偏差が残る。これは、制御量と目標値が一致しないことを意味す る。

5.1.2 PI 制御[9][10]

前節で説明した P 制御において、制御量を目標値に近づけるには原理的な限界 があった。これに対し PI 制御は、P 制御に偏差の時間積分に比例して操作量を変 化させる I 制御(積分制御)をつけ加えたもので、定常位置偏差を零にできる制御 方式である。

P 制御と同様に、本研究における PI 制御の制御則は、積分ゲインを K_Iとして、

$$D = K_p (I_{or} - I_o) + K_I \int (I_{or} - I_o) dt$$
(5-2)

と表わされる。この式の右辺第2項が、I制御により付け加わった項である。

PI制御は、P制御とI制御の両者の長所を活かす形で組み合わせたものであ る。大まかに言って、P制御は制御系に偏差が発生したとき、制御量が定常状態 に達するまでに時間的にどのような経路をたどるかという「過渡応答」の調整を 分担し、I制御は定常状態に達してからの「定常特性」の調整を分担している。

5.1.3 位相遅れ補償[11]

理想的な PI 制御の伝達関数 KPIを次式に示す。

$$K_{PI}(s) = K_P + \frac{K_I}{s} = K_p \left(1 + \frac{1}{T_I s} \right)$$
(5-3)

実際のアナログ PI 制御器では、理想的な積分器(直流ゲイン∞)を実現でき ないため、有限の直流ゲインを持つ近似的な積分器が用いられる。このような実 際の PI 制御器の特性は、図 5.8 に示す位相遅れ補償のものと同じ形をしている。 そこで、PI 制御の設計では、位相遅れ補償の考え方を適用して設計を行った。

位相遅れ補償では、図 5.8 のように、低域周波数において+20loga[dB]だけゲ インを持ち上げることができ、a は低周波ゲインの増加量を決定する設計パラメ ータである。このようなゲインの持ち上げは、同時に位相遅れを引き起こしてし まうため、折れ点角周波数 1/T を適切に調節し、安定性の劣化を防ぐ必要があ る。

図 5.8 位相遅れ補償のゲイン特性

5.2 実験方法

実験で使用した測定器を以下に示す。

PW18-1.8Q	直流安定化電源(KENWOOD)	2 台
PW18-10AD	直流安定化電源(KENWOOD)	1台
PAN110 — 3A	直流安定化電源(KIKUSUI)	1台
PWR800H	直流安定化電源(KIKUSUI)	1台
PWR801ML	直流安定化電源(KIKUSUI)	1台
DL1740E	オシロスコープ(YOKOGAWA)	1台
LN — 300A — G6	電子負荷(KEISOKU GIKEN)	1台
WF1974	マルチファンクションジェネレータ(nF)	1台
VOLTAGE LOGGER(5	V) データロガー(HIOKI)	1台
VOLTAGE LOGGER(5	OV)データロガー(HIOKI)	1台
COMMUNICATION BA	SE データロガー親機(HIOKI)	1台

実験では初めに、P制御とPI制御による出力電流制御の特性測定を行う。この 特性測定の際、降圧形コンバータ回路の出力には電子負荷を用いる。上記の実験 で回路の動作を確認した上で、充電した EDLC(10本直列)を、電源として使用 する実験を行う。次に EDLC の電圧(中間電圧)を制御するために2台の降圧形 コンバータ回路を用いて中間電圧の連携制御実験を行う。この中間電圧の制御 は、24V→12V間の降圧形コンバータ回路でフィードフォワード制御によって実現 される。

5.3 実験結果

5.3.1 出力電流制御特性(P制御)

降圧形コンバータ回路の出力電流制御の実験を行った。24V→12V間の降圧形コンバータ回路の実験では、電子負荷をCVモードに設定し、出力電圧を一定(11~ 14V)にして測定を行った。

図 5.9 に K_P =0.018、 K_P =0.024 の時の負荷特性の測定結果を示す。 K_P =0.018 に比べ K_P =0.024 の測定値は、特性の傾きがやや急になっており、ゲインを上げる ことで多少ながら特性の改善が見られた。また、48V→24V 間の降圧形コンバータ 回路においても同様の実験を行い、同様の実験結果を得た。P 制御では、ノイズ 等の影響で動作が不安定になりやすいことから、ゲインをあまり大きくすること はできない。このため、出力電流制御の制御則を P 制御から PI 制御に変更し た。

図 5.9 P制御による出力電流制御特性(24→12V)

5.3.2 出力電流制御特性 (PI 制御)

5.1.3節で説明した位相遅れ補償を援用し近似的な PI 制御を設計し、出力電流 制御を実現した。

図 5.10 に簡単な PI 制御時の増幅器の概略図を示す。P 制御は図の R₁、R₂で構成 され、R₁、R₂の抵抗比で比例ゲインが決定される。PI 制御では R と C から成る積 分要素を実現する要素が加わる。この回路の伝達関数の式から、図 5.11 に示すゲ イン特性が求まり、それを基にパラメータを決定した。

特性測定を P 制御と同様に行い、直流ゲイン $K_{PI}=7.43$ のときの特性結果を図 5.12 に示す。比較のため、P 制御の特性測定結果と重ねて示した。P 制御と PI 制御の結果を比較すると、PI 制御は特性の傾きが非常に急峻であり、出力電流制御 としては十分な特性を有している。

図 5.10 PI 制御時の増幅器

$R1 = 1.2 \mathrm{k}\Omega$, $R2 = 750 \mathrm{k}\Omega$
$ m R3=1.2k\Omega$, $ m R=10k\Omega$
$ m R4=750k\Omega$, $ m C=1\mu F$

図 5.11 PI 制御のゲイン特性

図 5.12 P 制御および PI 制御による出力電流制御特性(24→12V)

5.3.3 フィードフォワード制御(PI制御)

24→12V間降圧形コンバータ回路で、入力電圧となる EDLC 電圧(中間電圧)を 一定に制御するため、フィードフォワード制御を施した。このフィードフォワード 制御についても、5.3.2節の出力電流制御と同様に位相遅れ補償を援用して近似的 な PI 制御を設計した。

負荷には CV モードに設定した電子負荷を用い、出力電圧 12V 一定にし、入力電 圧(中間電圧)を変化させながら測定を行った。*K*_{PI}=5.05 のときの特性結果を図 5.13 に示す。またこの時、出力電流が流れすぎるのを防ぐためリミッタ回路を付 加し、出力電流に上限を設けた。

図 5.13 中間電圧フィードフォワード制御 (PI 制御)

5.3.4 EDLC を用いた連携制御実験

EDLC を 48V→24V 間の降圧形コンバータ回路で充電させ、5.3.3 節で述べた回路を用いて EDLC の中間電圧を一定に保つ実験を行った。24V→12V 間の降圧形コンバータ回路の出力には電子負荷を用い、CV モードで出力電圧を一定に保った。

1つの実験の中で中間電圧の目標値を、16、18、20、22Vと変化させ、データ ロガーを用いて中間電圧を記録した。その時の中間電圧と24V→12V間の降圧形 コンバータ回路の出力電流の測定結果を、それぞれ図 5.14,5.15 に示す。図 5.14 から、中間電圧はほぼ一定に保てているものの、時間の経過に伴い徐々に電圧が 上昇していることがわかる。フィードフォワード制御による中間電圧の調整につ いては、改善の余地があるという結果となった。

図 5.14 連携制御実験における中間電圧の変化

図 5.15 連携制御実験における出力電流特性

5.3.5 過渡応答

作製した2台の降圧形コンバータ回路の応答性を調べるため、過渡応答の測定 実験を行った。2台の降圧形コンバータ回路の出力電流の目標値にマルチファン クションジェネレータから最小値1A、最大値4Aに相当する電圧を矩形波として 入力し、出力電流の過渡応答を測定した。結果を図5.16,5.17に示す。出力電流 が1Aから4Aまで変化するのに要する整定時間はいずれも約40msであり、これ は回生ブレーキへの応用を前提とすれば、十分な値である。

図 5.16 過渡応答(24V→12V間の降圧形コンバータ回路)

図 5.17 過渡応答(48V→24V間の降圧形コンバータ回路)

第6章 結論

本研究では、中間電圧にエネルギー回生用 EDLC を有するデュアルバッテリーシ ステムを提案し、このシステムで用いる降圧形コンバータの出力電流制御を検討 した。また、2 台の降圧形コンバータ回路を用いて、EDLC の電圧を一定に保つ連携 制御試験を試みた。

本研究の検討内容は次のようにまとめられる。

- (1)本研究で提案する中間電圧を持つデュアルバッテリーシステムでは、大き な昇圧比を必要としないため、双方向コンバータとして最も基本的で効率 の高い降圧形双方向コンバータを採用した。
- (2) 降圧形コンバータの出力電流制御で P 制御、PI 制御の比較を行った。PI 制御の設計では、実際の PI 制御器のお特性を考慮し、位相遅れ補償の設 計法を援用して良好な出力電流制御を実現した。
- (3)2台の降圧形コンバータ回路を用いてフィードフォワード制御による EDLC 中間電圧を一定に保つ連携制御を試みた。連携制御により、EDLCの中間 電圧を目標値として与えた電圧にほぼ保つことができたものの、時間の経 過に伴い徐々に電圧が上昇するという結果になった。フィードフォワード 制御による中間電圧の調整については、改善の余地があることが分かっ た。

今後の課題として、PI制御を PID 制御に変更し、コンバータ回路の過渡応答性 を改善することや、連携制御の精度を上昇させるために、アナログ制御からデジ タル制御に変更することが挙げられる。

謝辞

本研究を進めるにあたり、終始ご指導を頂いた指導教員の田中准教授に深く感 謝致します。併せて、田中准教授とともにたくさんの協力をしてくださった副査 の八野知博教授ならびに山本吉朗教授に深く感謝いたします。また、研究にご協 力頂いた研究室生に心から感謝致します。大勢の皆様に助けられ、今回の本論文 を執筆することができました。ありがとうございました。

参考文献

- [1]日本ケミコン、"電気二重層キャパシタの技術と応用"、 http://www.chemi-con.co.jp/catalog/pdf/dl-je/dl-sepa-je/dl-summaryje-140701.pdf
- [2]日本ケミコン、"ハイテクノロジー'05「注目の技術と応用技術」『電気二重 層キャパシタの技術と応用』",

http://www.chemi-con.co.jp/tech_topics/t_release20050106.html

- [3] 西野敦, 直井勝彦, "電気化学キャパシタの開発と応用", シーエムシー出版, 東京, 2004.
- [4]日本ケミコン,"電気二重層キャパシタの『基礎知識』", http://www.chemi-con.co.jp/tech_topics/top_edlc_01.html
- [5] 岡村廸夫, "電気二重層キャパシタと蓄電システム-第3版-", 日刊工業新聞 社, 東京, 2005.
- [6] 鈴木珠城, 寺谷達夫, "車両電源の 42V 化"デンソーテクニカルレビュー, Vol. 8, No. 1, PP. 108-114, 2003 年 5 月.
- [7] 原田耕介,二宮保,顧文建,"スイッチングコンバータの基礎",コロナ社, 東京,1992.
- [8] ROHM 社、"スイッチングレギュレータの基礎 同期整流型と非同期整型の違い"、http://micro.rohm.com/jp/techweb/knowledge/dcdc/s-dcdc/02-sdcdc/92
- [9] 広井和男, "PID 制御のお話 第2回 PID 制御の過去,現在そして将来",

http://www.m-system.co.jp/rensai/rensai_top.htm#pid

[10] 山本重彦,加藤尚武, "PID 制御の基礎と応用",朝倉書店,東京,1997. [11] 杉江俊治,藤田政之, "フィードバック制御入門",コロナ社,東京,1999.