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Abstract

Consider a solid made by intersecting two congruent cones while assuming that axes of these cones
intersect perpendicularly. The paper studies quadrature of both surface area S and volume V of the solid,
and gives explicit exressions for S and V . In a limitting case where cones tend to cylinders, these explicit
expressions reduce to the oldest result by Archimedes. In the final section we investigate relationship
between S and V , and find a relation which states that volume V of our solid is equal to that of a cone
with base being equal to S and height (after being appropriately defined). This relation is similar to the
greatest discovery by Archimedes for spheres.
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1 Introduction
One of the oldest quadrature problems is the following proposed by Archimedes ([1], [2]).

ἐὰν εἰς κύβον κύλινδρος ἐγγράφῇ τὰς μὲν βάσεις ἔχων πρός τοῖς κατεναντίον παραλληλογάμμοις

τὴν δὲ ἐπιφάνειαν τῶν λοιπῶν τεσσάρων ἐπιπέδων ἐφαπτόμενος,

ἐγγράφῇ δὲ καὶ ἄλλος κύλινδρος εἰς τὸν αὐτὸν κύβον τὰς μὲν βασέις ἐν ἄλλοις παραλληλογράμμοις

τὴν δὲ ἐπιφάνειαν τῶν λοιπῶν τεσσάρων ἐπιπέδων ἐφαπτόμενος,

τὸ περιληφθὲν σχῆμα ὐπὸ τῶν ἐπιφανειῶν τῶν κύλινδρων, ὅ ἐστιν ἀμφοτέροι τοῖς κυλίνδροις,

δ΄μοιρον ἐστι τοῦ ὅλου κύβου.

If in a cube a cylinder be inscribed which has its bases in the opposite parallelograms and touches

with its surface the remaining four planes, and if there also be inscribed in the same cube another

cylinder which has its bases in other parallelograms and touches with its surface the remaining four

planes, then the figure bounded by the surfaces of the cylinders, which is within both cylinders, is

two-thirds of the whole cube
This famous problem is treated in many modern textbooks of calculus, and in fact it has be well-

known in ’Wasan’ (mathematics in Japan’s Edo era [3]) Needless to say, mathematcians in Edo era
have invented and solved the problem, independently of Archimedes.

To make the problem easier to understand, we will rephrase it with modern notations.

Consider two cylinders; one with base being a circle of radius r and with axis lying on the x

axis, and another with base being also a circle of radius r and with axis lying on the y axis.
To find volume of the intersection of these cylinders, where we assume that heights of these
cylinder are infinitely long.
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The solution is 16/3r3. It is mysterious that the solution does not contain π although the problem comes
from cylinder (a solid related to a circle). Archimedes seemed to have the same impression.

By the way, there are many quadrature problems concerning volumes of solids. On the other hand, it
seems that there are fewer quadrature problems concerning surfaces of solids, because it is generally more
difficult to quadrature surfaces. However, in case of the intersection of two cylinders solid, quadrature
of the surface is easy, and results in 16r2.

In this paper, instead of the intersection of two congruent cylinders, we consider the intesection of two
congruent cones. We study qudrature of its surface and its volume. To state the problem with notation,
the problem is as follows:

Cnsider two congruent cones: one is with its axis lying on the x axis and with infinite height,
and another with its axis lying on the y axis and also with infinite height. It is assumed that
the apex of the former has x-coordinates a, and the apex of the latter has y-coordinates a.
Now let β denote half apex angle (angle between any generator and the axis) of both cones.
We assume that β < 45◦. Let V be the intersection of two cones. Our problem is to quadrature
the surface area and the volume of V.

In the section 2, we first investigate shape of the solid V, and then we find its surface area by developping
surface on a plane.

In the section 3, we first study shape of the section made by cutting V by a plane which passes through
two apices of cones. It will be seen that shape of the section is like a kite. Finnaly integration of areas
of the kites will provide the volume of V.

In the section 4 our thought will be on relationship between the surface area and the volume of V. By
the way, one of the most famous discoveries (and proofs) by Archimedes is the relationship between the
surface area and the volume of the sphere. Our finding is an analogue of the relationship discoverd by
Archimedes.

2 Surface area
2.1 Shape of V

Figure 1 shows two cones when β = 15◦, and Figure 2 shows their intersection V. Yellow bars denote
the positive parts of the x axis and of y axis.
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Figure 1 Figure 2

Surface of V consists of four parts, which we will call by "leaves". On the surface of the Earth, These
four leaves are arranged as though the following four parts are arranged on the surface of the Earth; a
part with the the west longitude 180 ∼ 90, a part with the the west longitude 90 ∼ 0, a part with the
the east longitude 0 ∼ 90, and a part with the the east longitude 90 ∼ 180.

Adjacent leaves (green ones and red ones in Figure2) lie on surfaces of different cones, and are divided
by intersection curves that are made from surfaces of two cones.

What is the equation of these intersection curves ? Surfaces of two cones respectively have equations

y2 + z2 = τ2(a − x)2, x2 + z2 = τ2(a − y)2,

where τ = tan β. Subtracting one from the other, we have

y2 − x2 = τ2{(a − x)2 − (a − y)2},

and then we see
x = y or x + y = 2aτ2

1 + τ2 . (2.1)

These represent equations of planes. We call the former π1 and the latter π2. Thus the intersection
curves lie on planes π1 or π2.

Four leaves intersect simultaneously at two points N and §, as though on the Earth four parts intersect
simultaneously at the North and the South pole. An easy computation shows that

N =
(

aτ2

1 + τ2 ,
aτ2

1 + τ2 ,
aτ

√
1 − τ2

1 + τ2

)
, § =

(
aτ2

1 + τ2 ,
aτ2

1 + τ2 , −aτ
√

1 − τ2

1 + τ2

)
.

Note that these two points do not lie on the z axis.

2.2 develop the surface of V

Denote by K the cone with axis lying on the x axis. Let us consider a part of the surface of V that
is contained in the surface of K. Cutting this cone by plane x = 0 we have a circle C. Any point P on
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C can be expressed as P = (0, aτ cos ϕ, aτ sin ϕ). Since the apex of the cone is A = (a, 0, 0), equation of
the generator AP is given by

x = a − t cos β, y = t sin β cos ϕ, z = t sin β sin ϕ (−∞ < t < ∞).

Suppose that the generator AP intersects the plane π1 when t = f1(ϕ), and the plane π2 when
t = f2(ϕ). An easy computstion derives

f1(ϕ) = a

cos β + sin β cos ϕ
, f2(ϕ) = a(cos2 β − sin2 β)

cos β − sin β cos ϕ
.

Furthermore it can be easily seen that f1(ϕ) � f2(ϕ) ⇔ cos ϕ � τ . That is, if we define an angle ϕ0

by cos ϕ0 = τ, 0 < ϕ0 < π/2, we have f1(ϕ) � f2(ϕ) ⇔ |ϕ| � ϕ0.

Let g be the generator which passes through a point (y, z) = (−aτ, 0) on the circle C. Now, cutting the
surface of the cone K by g, we develop the surface. Then C will be developped into an arc of a fan with
a/ cos β. The center of the fan coincides with the apex A of K.) Since the length of the circumference
C is equal to the length of the arc of the fan, and it equals 2πaτ , we see that the angle at the center of
the fan equals 2π sin β.

Suppose thst a developped figure lies on ξη plane, and the apex A is developped onto the origin
(ξ, η) = (0, 0), and the generator g onto the ξ axis. Then we consider a generator that passes through
a point (y, z) = (aτ cos ϕ, aτ sin ϕ) on C. If the generator is developped onto a straight line η = ξ tan θ,
we see that

θ = sin βϕ.

Now we use the polar coordinates (ρ, θ) on the ξη plane. By observation steted in the above, developped
figure of a leaf coincides with a region bounded by two curves

ρ = a

cos β + sin β cos(sin βθ) , ρ = a(cos2 β − sin2 β)
cos β − sin β cos(sin βθ) .

Figure 3 shows the region. Blue part denotes a leaf that lies on the cone K, and green part denotes
another leaf that lies on the same cone. Green part is separated into two parts on the developped figure,
but in fact two parts are connected on the surface of K.

Figure 3
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2.3 Surface area

1. The surface of the solid V consists of four leaves. Two of them (which we denote by L1, L2) lie on
the surface of the cone K, and the other two (which we denote by L3, L4) lie on the surface of the other
cone. By change of notations L3, L4 if necessary, we may assume that L3, L4 are congruent to L1, L2

respectively. Accordingly the surface area of V (which we denote by S is equal to two times multiple
of the surface area of L1 ∪ L2. Thus our problem is to find areas of both blue region and green region
in Figure 3, and double the sum of them. That is, if Sblue and Sgreen stand for area of blue region and
green region respectively, we have S = 2Sblue + 2Sgreen.
2. Sblue, Sgreen can be expressed as the following integrals:

Sblue =
∫

|ϕ|�ϕ0

(
1
2 f2(ϕ)2 dθ − 1

2 f1(ϕ)2 dθ

)
= sin β

∫ ϕ0

0
(f2(ϕ)2 − f1(ϕ)2)dϕ

Sgreen =
∫

|ϕ|�ϕ0

(
1
2 f1(ϕ)2 dθ − 1

2 f2(ϕ)2 dθ

)
= sin β

∫ π

ϕ0

(f1(ϕ)2 − f2(ϕ)2)dϕ

Now we introduce a primitive function

F1(ϕ) :=
∫ ϕ

0
f1(ϕ)2dϕ, F2(ϕ) :=

∫ ϕ

0
f2(ϕ)2dϕ,

we can write

Sblue = sin β(F2(ϕ0) − F1(ϕ0))
Sgreen = sin β(F1(π) − F2(π)) + sin β(F2(ϕ0) − F1(ϕ0)).

3. It is necessary to find an explicit expression for the primitive function. This task is elementary but
needs bulky computation. Thus we use a computer algebra system (maxima). A result is as follows:

F1(ϕ)/k1 = 2
(1 − τ2)3/2 arctan

(√
1 − τ

1 + τ
h(ϕ)

)
− 2τ

1 − τ2 · h(ϕ)
(1 − τ)h(ϕ)2 + (1 + τ) ,

F2(ϕ)/k2 = 2
(1 − τ2)3/2 arctan

(√
1 + τ

1 − τ
h(ϕ)

)
+ 2τ

1 − τ2 · h(ϕ)
(1 + τ)h(ϕ)2 + (1 − τ) ,

where we define

h(ϕ) = sin ϕ

1 + cos ϕ
; k1 =

(
a

cos β

)2
, k2 =

(
a(cos2 β − sin2 β)

cos β

)2

.

Since
h(π) = lim

ϕ↑π

sin ϕ

1 + cos ϕ
= +∞,

we see
F1(π)/k1 = 2

(1 − τ2)3/2 arctan(+∞) = 2
(1 − τ2)3/2 · π

2 = π

(1 − τ2)3/2

and
F2(π)/k2 = π

(1 − τ2)3/2 .
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Moreover, as

h(ϕ0) =
√

1 − τ

1 + τ
,

we have

arctan
(√

1 − τ

1 + τ
h(ϕ0)

)
= arctan

(
1 − τ

1 + τ

)
.

Then the addition formula of tan shows that

tan
(π

4 − β
)

=
tan π

4 − tan β

1 + π
4 tan β

= 1 − τ

1 + τ
,

from which follows
arctan

(
1 − τ

1 + τ

)
= π

4 − β.

Consequently we see

arctan
(√

1 − τ

1 + τ
h(ϕ0)

)
= π

4 − β.

Further it can be immediately seen that

arctan
(√

1 + τ

1 − τ
h(ϕ0)

)
= π

4 .

4. These results for primitive function imply

Sblue = sin β · 2a2

(1 − τ2)3/2(1 + τ2)
{−πτ2 + β(1 + τ2)2 + τ(1 − τ2)}

Sgreen = sin β · 4a2πτ2

(1 − τ2)3/2(1 + τ2)
+ sin β · 2a2

(1 − τ2)3/2(1 + τ2)
{−πτ2 + β(1 + τ2)2 + τ(1 − τ2)}

= sin β · 2a2

(1 − τ2)3/2(1 + τ2)
{πτ2 + β(1 + τ2)2 + τ(1 − τ2)}.

Therefore, substituting τ = tan β, we obtain the follwing proposition.

Proposition 1� �
Area of blue leaf:

Sblue = a2

2 · sin 2β

(cos 2β)3/2

(
−π

2 (sin 2β)2 + 2β + sin 2β cos 2β
)

Are of green leaf:

Sgreen = a2

2 · sin 2β

(cos 2β)3/2

(π

2 (sin 2β)2 + 2β + sin 2β cos 2β
)

Surface area of V:
S = 2a2 · sin 2β

(cos 2β)3/2 (2β + sin 2β cos 2β)

� �
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Then the addition formula of tan shows that

tan
(π

4 − β
)

=
tan π

4 − tan β

1 + π
4 tan β

= 1 − τ

1 + τ
,

from which follows
arctan

(
1 − τ

1 + τ

)
= π

4 − β.

Consequently we see

arctan
(√

1 − τ

1 + τ
h(ϕ0)

)
= π

4 − β.

Further it can be immediately seen that

arctan
(√

1 + τ

1 − τ
h(ϕ0)

)
= π

4 .

4. These results for primitive function imply

Sblue = sin β · 2a2

(1 − τ2)3/2(1 + τ2)
{−πτ2 + β(1 + τ2)2 + τ(1 − τ2)}

Sgreen = sin β · 4a2πτ2

(1 − τ2)3/2(1 + τ2)
+ sin β · 2a2

(1 − τ2)3/2(1 + τ2)
{−πτ2 + β(1 + τ2)2 + τ(1 − τ2)}

= sin β · 2a2

(1 − τ2)3/2(1 + τ2)
{πτ2 + β(1 + τ2)2 + τ(1 − τ2)}.

Therefore, substituting τ = tan β, we obtain the follwing proposition.

Proposition 1� �
Area of blue leaf:

Sblue = a2

2 · sin 2β

(cos 2β)3/2

(
−π

2 (sin 2β)2 + 2β + sin 2β cos 2β
)

Are of green leaf:

Sgreen = a2

2 · sin 2β

(cos 2β)3/2

(π

2 (sin 2β)2 + 2β + sin 2β cos 2β
)

Surface area of V:
S = 2a2 · sin 2β

(cos 2β)3/2 (2β + sin 2β cos 2β)

� �

6

Corollary 1� �
Let a tend to ∞ and β tend to 0 with keeping a tan β = r = a constant. Then S tendsto
16a2β2 = 16r2, which is the surface area of the intersection of two cylinders (base radius
r). Moreover, the ratio Sblue/Sgreen goes to 1.

� �
Proof of the corollary. First, by using a tan β = r, we eliminate a in the expression for S of Proposition

1. To simplify expressions, we write x = 2β, g(x) = S/(2r2). Then we have

g(x) = (1 + cos x)(x + sin x cos x)
(cos x)3/2 .

Further we can confirm that g(x) is strictly increasing and convex in an interval 0 < x < π/2, and
g(+0) = 0, g(π/2 − 0) = +∞.

Corollary 2� �
Let increase β upto π/4 while keeping a being a constant. That is, let the apex of a cone
go near to the surface of the other cone. Then S tends to ∞ (in detail Sgreen → +∞ and
Sblue → 0).

� �
It is an interesting problem to find shape of V when β = π/4. Then blue leaves on both cones vanishes

(empty sets). On the other hand, a green leaf on the surface of the cone K : y2 + z2 = (a − x)2 coinsides
with a part of the surface which is made by cutting by plane x = y and contain the apex. That is, the
surface of the cone is cut by a plane which is perpendicular to a generator; the surface of the cone divides
into two parts; boundary curve of each of two parts is a parabola; a green leaf is a part that contains
the apex.

3 Volume
3.1 Cut V by rotating planes

Let A = (a, 0, 0), B = (0, a, 0) be the apices of two cones respectively. Let us rotate the xy plane about
a straight line AB and consider a resulting plane. When the plane makes an angle θ against the xy plane,
we call it πθ.

Consider a ξη coordinates system on the plane πθ. Suppose that the origin of the coordinates system
locates at the midpoint of AB, the ξ axis is on the straight line AB, and the η axis is perpendicular
to AB. In the ξη coordinates system, A has coordinates (ξ, η) = (−a/

√
2, 0), and B has coordinates

(ξ, η) = (a/
√

2, 0).
If a point (ξ, η) on the plane πθ has coordinates (x, y, z), we have

⎛
⎝

x
y
z

⎞
⎠ =

⎛
⎝

a/2
a/2
0

⎞
⎠ + ξ

⎛
⎝

−1/
√

2
1/

√
2

0

⎞
⎠ + η

⎛
⎝

−1/
√

2 · cos θ

−1/
√

2 · cos θ
sin θ

⎞
⎠ .
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That is,
√

2x =
(

a√
2

− ξ

)
− η cos θ,

√
2y =

(
a√
2

+ ξ

)
− η cos θ, z = η sin θ.

Now we study an intersection of the plane πθ with the surface of the cone K (the cone whose axis lies
on the x axis). For this purpose, in the equation of the surface y2 +z2 = (τ(a−x))2, we eliminate x, y, z.
Then we obtain the following

(1 − τ2)
(

ξ + a√
2

)2
− 2(1 + τ2) cos θ

(
ξ + a√

2

)
η + (2 − (1 + τ2) cos2 θ)η2 = 0. (3.1)

It can be seen as a quadratic equation of an unknown variable η/(ξ + a√
2 ).

To compute its determinant D,

D = 2(1 + τ2)
(

cos2 θ − 1 − τ2

1 + τ2

)
.

If D � 0, the quadratic equation (3.1) holds only when ξ + a√
2 = 0, η = 0. That is, the case that A is

the unique intersection of the plane with the cone surface. Otherwise, that is, if | cos θ| >

√
1 − τ2

1 + τ2 , the
intersection of the plane with the cone surface consists of two straight lines. Let k1, k2 be solutions of
the quadratic equation (3.1). Then we have

k1 + k2 = 2(1 + τ2) cos θ

2 − (1 + τ2) cos2 θ
, k1k2 = 1 − τ2

2 − (1 + τ2) cos2 θ
.

We see immediately k1 > 0, k2 > 0. In the below we assume k1 < k2.
Cutting V by πθ, we ask what shape the section has. If we use the ξη coordinates system on the plane

πθ, the section of the first cone by the plane is a region between two straight lines

k1(ξ + a/
√

2) � η � k2(ξ + a/
√

2).

Similarly the section of the second cone by the plane is a region between two straight lines

−k1(ξ − a/
√

2) � η � −k2(ξ − a/
√

2).

Consequently the section of V is a region bounded by these four straight lines. This is a kite.

3.2 Infinitesimally thin plate of kite shape

A kite defined in the above obviously depends on θ. Thus we denote it by Kθ. A kite Kθ is a region
bounded by four lines

η = k1(ξ + d), η = k2(ξ + d), η = −k1(ξ − d), η = −k2(ξ − d),

where d = a/
√

2 . These four lines make four intersections (points) that have coordinates

(0, k1d), (σ, k1(σ + d)), (0, k2d), (−σ, k1(σ + d)),

where σ = (k2 − k1)/(k1 + k2)d.

8
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Now we consider an infinitesimally thin plate sandwiched by Kθ and Kθ+dθ, and compute its volume
dV (θ). When 0 < ξ < σ, the lowest vertex of Kθ has coordinate η1 = k1(ξ + d), and the highest vertex
has coordinate η2 = −k2(ξ − d). Accordingly

dV (θ) = 2
∫ σ

0

(
1
2η2

2dθ − 1
2η2

1dθ

)
dξ = dθ

∫ σ

0
(η2

2 − η2
1)dξ.

We have
∫ σ

0
(η2

2 − η2
1)dξ =

∫ σ

0
{(−k2(ξ − d))2 − (k1(ξ + d))2}dξ

= (k2
2 − k2

1)σ3

3 − (k2
2 + k2

1)dσ2 + (k2
2 − k2

1)d2

= d3

3 · (k2 − k1)2

(k1 + k2)2 (k2
1 + 4k1k2 + k2

2)

= a3

6
√

2
· (k2 − k1)2

(k1 + k2)2 (k2
1 + 4k1k2 + k2).

Introducing λ = 2/(1 + τ2), we can write

k1 + k2 = 2 cos θ

λ − cos2 θ
, k1k2 = λ − 1

λ − cos2 θ
.

Thus, if a function g is defined as

g(θ) = [cos2 θ − (λ − 1)][(3 − λ) cos2 θ + λ(λ − 1)]
cos2 θ(λ − cos2 θ)2

= (3 − λ) cos4 θ + (λ − 1)(2λ − 3) cos2 θ − λ(λ − 1)2

cos2 θ(λ − cos2 θ)2 ,

it can be seen that
(k2 − k1)2

(k1 + k2)2 (k2
1 + 4k1k2 + k2) = 2λ g(θ).

Therefore we obtain
dV (θ) = a3λ

3
√

2
· g(θ)dθ.

3.3 Volume

Our volume is
V = 2

∫ θ1

0
dV (θ),

where θ1 is defined by cos2 θ1 = (1 − τ2)/(1 + τ2), 0 < θ1 < π/2. If a primitive function

G(θ) =
∫ θ

0
g(θ)dθ

is introduced, it can be expressed as

V =
√

2a3λ

3 G(θ1).

9
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Integration using a computer algebra system (maxima) gives

G(θ) = 2 − λ

(λ − 1)
√

λ(λ − 1)
arctan

(√
λ

λ − 1 tan θ

)
+ 1

λ(λ − 1) · tan θ

λ tan2 θ + λ − 1
− (λ − 1)2

λ
tan θ.

Then by an elentary computation we have

G(θ1) = 2
√

2τ2(1 + τ2)
(1 − τ2)3/2 · β + 2

√
2τ3

(1 + τ2)
√

1 − τ2

= 2
√

2 sin2 β

cos β(cos 2β)3/2 · β + 2
√

2 sin3 β

(cos 2β)1/2

=
√

2 sin2 β

cos β(cos 2β)3/2 (2β + sin 2β cos 2β)

Therefoew we obtain the following result.

Proposition 2� �

V = 2a3

3
sin β sin 2β

(cos 2β)3/2 (2β + sin 2β cos 2β)

� �

4 Relation between surface area and volume
Proposition 33 and Proposition 34 in the book by Archimedes are monumental achievements in history

of mathematics [4],[5] . They are stated as follows.

Proposition 33 of Archimedes� �
Πάσης σφαίρας ἡ ἐπιφάνεια τετραπλασία ἐστὶ τοῦ μεγίστου κύκλου τῶν ἐν αὐτῇ.

� �
(The surface of any sphere is equal to four times the greatest circle in it.)

Proposition 34 of Archimedes� �
Πᾶσα σφα῀σιρα τετραπρασία ἐστὶ κώ�ου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ μεγίστῳ κύκλῳ τῶν

ἐν τῇ σφαίρᾳ, ὔξος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας.
� �

(Any sphere is equal to four times the cone which has its base equal to the greatest circle in the sphere
and its height equal to the radius of the sphere.)

From these Propositions we can deduce imediately that the volume of any sphere is equal to that of
a cone with base being equal to surface area of the sphere and with height being equal to radius of the
sphere. To interest us, a similar result holds for V. To state it precisely we prepare a concept.

First, for a point P and a smooth surface Σ, we define the distance between them by d(P, Σ) =
infQ∈Σ d(P, Q). Next, for a solid, assume that its surface consits of a finite number of smooth surfaces
Σ1, Σ2, . . . , Σk, and there exists a point P such that all of distances d(P, Σ1), d(P, Σ2), . . . , d(P, Σk) are
of the same value. Then we say P a center of the solid, the common value of distances the radius of the
solid.

10
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Then the following is true. Proof is easy.

Proposition 3� �
The volume of solid V is equal to that of a cone with base being equal to surface area of
the solid and with height being equal to the radius of the solid.

� �
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