髙

裕子

Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis

ミトコンドリア機能障害は過酸化水素の膜透過性と フェロトーシスを制御するアクアポリンの発現を促進させる

Most anti-cancer agents and radiotherapy exert their therapeutic effects via the production of free radicals. Ferroptosis is a recently described cell death process that is accompanied by irondependent lipid peroxidation. Hydrogen peroxide (H_2O_2) has been reported to induce cell death. However, it remains controversial whether H₂O₂-induced cell death is ferroptosis. In the present study, we aimed to elucidate the involvement of mitochondria in H_2O_2 -induced ferroptosis and examined the molecules that regulate ferroptosis. We found that one mechanism underlying H₂O₂induced cell death is ferroptosis, which occurs soon after H₂O₂ treatment (within 3 h after H₂O₂treatment). We also investigated the involvement of mitochondria in H₂O₂-induced ferroptosis using mitochondrial DNA-depleted ρ^0 cells because ρ^0 cells produce more lipid peroxidation, hydroxyl radicals ('OH), and are more sensitive to H_2O_2 treatment. We found that ρ^0 cells contain high Fe²⁺ levels that lead to 'OH production by H₂O₂. Further, we observed that aquaporin (AQP) 3, 5, and 8 bind nicotinamide-adenine dinucleotide phosphate oxidase 2 and regulate the permeability of extracellular H₂O₂, thereby contributing to ferroptosis. Additionally, the role of mitochondria in ferroptosis was investigated using mitochondrial transfer in ρ^0 cells. When mitochondria were transferred into ρ^0 cells, the cells exhibited no sensitivity to H₂O₂induced cytotoxicity because of decreased Fe²⁺ levels. Moreover, mitochondrial transfer upregulated the mitochondrial quality control protein prohibitin 2 (PHB2), which contributes to reduced AQP expression. Our findings also revealed the involvement of AQP and PHB2 in ferroptosis. Our results indicate that H₂O₂ treatment enhances AQP expression, Fe²⁺ level, and lipid peroxidation, and decrease mitochondrial function by downregulating PHB2, and thus, is a promising modality for effective cancer treatment.