2	DNA analysis of benign adult familial myoclonic epilepsy reveals associations
3	between the pathogenic TTTCA repeat insertion in SAMD12 and the non-
4	pathogenic TTTTA repeat expansion in <i>TNRC6A</i>
5	
6	Akane Terasaki, ¹ Masayuki Nakamura, ^{1*} Yuka Urata, ¹ Hanae Hiwatashi, ¹ Izumi
7	Yokoyama, ¹ Takeshi Yasuda, ² Teiichi Onuma, ³ Kazumaru Wada, ⁴ Sunao Kaneko, ^{5,6}
8	Rumiko Kan, ⁷ Shin-ichi Niwa, ^{8,9} Ohiko Hashimoto, ¹⁰ Osamu Komure, ¹¹ Yu-ichi
9	Goto, ^{12,13} Yuko Yamagishi, ¹⁴ Misa Nakano, ¹⁵ Yoshihiko Furusawa, ¹⁶ and Akira Sano ¹
10	
11	1. Department of Psychiatry, Kagoshima University Graduate School of Medical and
12	Dental Sciences, Kagoshima, Japan
13	2. Department of Neurology, Kurashiki-kinen Hospital, Kurashiki, Japan
14	3. Musashinokokubunji Clinic, Tokyo, Japan
15	4. Department of Comprehensive Rehabilitation Science, Hirosaki University
16	Graduate School of Health Sciences, Hirosaki, Japan

17	5.	North Tohoku Epilepsy Center, Minato Hospital, Aomori, Japan
18	6.	Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine,
19		Hirosaki, Japan
20	7.	Department of Neuropsychiatry, Fukushima Medical University School of
21		Medicine, Fukushima, Japan
22	8.	Department of Psychiatry, Aizu Medical Center, Fukushima Medical University,
23		Fukushima, Japan
24	9.	Department of Neuropsychiatry, Fukushima Medical University Graduate School of
25		Medicine, Fukushima, Japan
26	10	. Hashimoto Clinic, Tokyo, Japan.
27	11	. Department of Neurology, Amagasaki Daimotsu Hospital, Amagasaki, Japan
28	12	. Department of Mental Retardation and Birth Defect Research, National Institute of
29		Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
30	13	. Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo,
31		Japan

32 14. Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan

33	15. Department of Neurology, Suita Municipal Hospital, Osaka, Japan
34	16. Department of Neurology, National Center Hospital, National Center of Neurology
35	and Psychiatry, Tokyo, Japan
36	
37	*Corresponding author: Masayuki Nakamura
38	Department of Psychiatry, Kagoshima University Graduate School of Medical and
39	Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
40	Email address: nakamu36@m.kufm.kagoshima-u.ac.jp
41	Telephone number: +81-99-275-5346
42	Fax number: +81-99-265-7089
43	ORCID ID (Masayuki Nakamura): 0000-0001-5558-0418
44	ORCID ID (Akane Terasaki): 0000-0002-9750-4082
45	
46	Conflict of Interest Statement
47	The authors have nothing to disclose.
48	

49 Abstract

50	Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant disease
51	characterized by adult-onset tremulous hand movement, myoclonus, and infrequent
52	epileptic seizures. Recently, intronic expansion of unstable TTTCA/TTTTA
53	pentanucleotide repeats in SAMD12, TNRC6A, or RAPGEF2 were identified as
54	pathological mutations in Japanese BAFME pedigrees. To confirm these mutations, we
55	performed a genetic analysis on 12 Japanese BAFME pedigrees. A total of 143
56	participants, including 43 familial patients, five suspected patients, three sporadic non-
57	familial patients, 22 unaffected familial members, and 70 unrelated controls, were
58	screened for expanded abnormal pentanucleotide repeats in SAMD12, TNRC6A,
59	RAPGEF2, YEAT2, MARCH6, and STARD7. DNA samples were analyzed using
60	Southern blotting, long-range polymerase chain reaction (PCR), repeat-primed PCR and
61	long-range PCR followed by Southern blotting. Of the 51 individuals with clinically
62	diagnosed or suspected BAFME, 49 carried a SAMD12 allele with an expanded
63	TTTCA/TTTTA pentanucleotide repeat. Genetic and clinical anticipation was observed.
64	As in previous reports, the one patient with homozygous mutant alleles showed more

65	severe symptoms than the heterozygous carriers. In addition, screening for expanded
66	pentanucleotide repeats in TNRC6A revealed that the frequency of expanded TTTTA
67	repeat alleles in the BAFME group was significantly higher than in the control group.
68	All patients who were clinically diagnosed with BAFME, including those in the original
69	family reported by Yasuda, carried abnormally expanded TTTCA/TTTTA repeat alleles
70	of SAMD12. Patients with BAFME also frequently carried a TTTTA repeat expansion in
71	TNRC6A, suggesting that there may be unknown factors in the ancestry of patients with
72	BAFME that make pentanucleotide repeats unstable.
73	

74 Keywords: TTTCA/TTTTA pentanucleotide repeats, *SAMD12*, anticipation, *TNRC6A*75

1 INTRODUCTION

77	Benign adult familial myoclonic epilepsy (BAFME) is a rare autosomal dominant
78	disorder proposed by Yasuda in 1991 (1). BAFME is characterized by adult onset hand
79	tremor, myoclonus, and rare seizures, and has been described as a non-progressive
80	course without cerebellar ataxia or dementia. Historically, various names have been
81	given to the disease, including BAFME, hereditary tremor with epileptiform seizures
82	(2), heredofamilial tremor and epilepsy (3), cortical tremor (4), familial essential
83	myoclonus and epilepsy (5), familial adult myoclonic epilepsy (FAME) (6), familial
84	benign myoclonus epilepsy of adult onset (7), familial cortical tremor with epilepsy (8),
85	autosomal dominant cortical myoclonus and epilepsy, and familial cortical myoclonic
86	tremor with epilepsy (FCMTE) (9).
87	In 1999, we performed a linkage analysis using Yasuda's pedigree, and
88	identified a significant linkage on chromosome 8q23.3-q24.11, within 8 cM (10). In
89	2011, we reconfirmed the BAFME-linked region and performed fine mapping of the
90	BAFME locus (11). As a result, the BAFME-linked region was found to be within an
91	approximately 7.16 Mb span on chromosome 8q23.3-q24.13. However, no causative

92	mutation could be identified in the BAFME-linked region. At that time, we concluded
93	that causative mutations for BAFME might exist in the noncoding regions, such as
94	introns and intergenic regions.
95	As we predicted, the causative mutations for BAFME were located in intronic
96	regions. Recently, the expanded TTTCA/TTTTA pentanucleotide repeats in SAMD12
97	(8q24.11-q24.12), TNRC6A (16p12.1), RAPGEF2 (4q32.1), YEAT2 (3q27.1), and
98	MARCH6 (5p15.2), and the ATTTC pentanucleotide repeats in STARD7 (2q11.2) were
99	reported as pathological mutations in BAFME (12–15). The pathological mutation in
100	SAMD12 causes RNA foci, including UUUCA repeats, in the brain in particular.
101	Anticipation was also reported for SAMD12, TNRC6A, RAPGEF2, and STARD7.
102	In the present study, we therefore analyzed the number of these pentanucleotide
103	repeats in affected and nonaffected individuals from 12 Japanese BAFME families,
104	including the largest BAFME family in the world, which was initially reported by
105	Yasuda (1). In some cases, the amount of genomic DNA (gDNA) was low, and some
106	samples had deteriorated in quality due to long-term storage, making it difficult to
107	determine the repeat length. Various analysis methods were therefore considered, and

108	one combining long-range polymerase chain reaction (long-range PCR), repeat-primed
109	PCR (RP-PCR), and long-range PCR followed by Southern blotting (PCR-Southern
110	blotting) was selected, because it could be performed with a relatively small amount of
111	gDNA and facilitated detection more effectively than conventional Southern blotting. In
112	addition, we investigated the relationship between the expansion of pentanucleotide
113	repeats and phenotypic variation in BAFME.
114	
115	2 METHODS
116	2.1 Standard protocol, approvals, registrations, and patient consent
117	All participants gave written informed consent. The research protocol and consent form
118	were approved by the relevant institutional review boards of Kagoshima University.
118 119	were approved by the relevant institutional review boards of Kagoshima University.
 118 119 120 	were approved by the relevant institutional review boards of Kagoshima University. 2.2 Diagnosis
 118 119 120 121 	were approved by the relevant institutional review boards of Kagoshima University. 2.2 Diagnosis Yasuda reported that BAFME was characterized by the following features: (i)
 118 119 120 121 122 	were approved by the relevant institutional review boards of Kagoshima University. 2.2 Diagnosis Yasuda reported that BAFME was characterized by the following features: (i) autosomal dominant inheritance; (ii) tremulous finger movement or myoclonus of the

124	abnormalities on examination by electroencephalogram (EEG) and marked
125	photosensitivity; (v) enlarged cortical components of somatosensory evoked potential
126	(SEP); (vi) enhanced long-loop reflex (C-reflex); (vii) positive spikes preceding
127	myoclonus ascertained using the jerk-locked averaging method; and (viii) a benign non-
128	progressive course without cerebellar ataxia or dementia (1,10). Kobayashi et al.
129	recently presented diagnostic criteria (16), which were generally consistent with the
130	features proposed by Yasuda. Among the clinical features proposed by Yasuda, we
131	clinically diagnosed individuals who showed (ii), (iii), and/or (viii) as BAFME, and
132	together, they strongly suggested (i). For patients where the electrophysiological
133	information for features (iv) to (vii) could be obtained, a clinical diagnosis of BAFME
134	was confirmed. In the pedigrees of BAFME patients with a clinical diagnosis, the five
135	patients with clinically suspected BAFME included three asymptomatic individuals (III-
136	11 of pedigree 4, IV-3 of pedigree 6, and II-2 of pedigree 7) who only showed
137	abnormalities after examination by EEG; another individual (II-9 of pedigree 10) with
138	tremor only when fatigued; and the other individual (II-11 of pedigree 10) with
139	temporary tremor in the past.

141 2.3 Participants

142 We enrolled 100 healthy Japanese controls who were unrelated to the known BAFME 143 families, three Japanese patients who had been clinically diagnosed with BAFME (two 144 males and one female) but were also unrelated to the known BAFME families, and 145 members of 12 Japanese pedigrees, including 43 individuals with clinically diagnosed 146 BAFME (21 males and 22 females), five individuals with clinically suspected BAFME, 147 and 22 nonaffected individuals (Figure 1, Table S1). For pedigree 9, the family tree was 148 unknown. One of the pedigrees, the family reported by Yasuda, whose BAFME genetic linkage was analyzed by Mikami et al. (10) and Mori et al. (11), included 16 individuals 149 150 with clinically diagnosed BAFME (nine males and seven females) and 11 nonaffected

- 151 family members (six males and five females) (Figure 1, pedigree 1).
- 152

153 **2.4 DNA analysis**

154 The gDNA was extracted from peripheral leukocytes using standard methods. We155 analyzed a total of 143 participants, including 43 familial patients, five BAFME

156 suspected patients, three sporadic non-familial patients, 22 unaffected familial members, and 70 unrelated controls, using PCR, RP-PCR, and fragment analysis. Long-157 158 range PCR targeting SAMD12 was performed for all affected individuals. For PCR, RP-PCR, and long-range PCR to detect the abnormally expanded TTTCA/TTTTA repeats 159 in SAMD12, TNRC6A, RAPGEF2, YEATS2, and MARCH6, and the ATTTC repeats in 160 161 the STARD7 locus, we used the same methodology as employed in previous studies 162 (12–15,17). The fragment analysis was conducted using an ABIPRISM 3130 Avant 163 Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). For three family members from pedigree 5, the long-range PCR for SAMD12 was performed with 5-20 164 165 ng gDNA and primers 5'-CTTGAGCCCCAGACAAGAAT and 5'-166 TGCTACTGTAAAAAGATAAACAAAATG, because the reported primers did not work. After 1 min at 98 °C, DNA samples underwent 30 cycles (98 °C for 10 s, 60 °C 167 for 15 s, and 68 °C for 10 min). Long-range PCR for TNRC6A was performed with 168 169 specific primer pairs (Table S2). All long-range PCR products were separated by

11

170

electrophoresis in a 0.8% agarose gel.

171	The gDNA from some patients was not fragmented, and this was analyzed via
172	Southern blotting analysis as described by Ishiura et al. (12). The probes were detected
173	using LAS-1000 (Fujifilm, Tokyo, Japan) or FUSION-SOLO.7S.WL (Vilber Lourmat,
174	Marne-la-Vallée, France) imaging systems.
175	To detect the single nucleotide polymorphisms (SNPs) showing the founder
176	effect in previous reports (12,17) in 27 representatives of each family and to evaluate
177	the CAG repeat region of TNRC6A for patients with an expanded TTTTA repeat in
178	TNRC6A, PCR was performed using standard methods with specific primers (Table S2).
179	
180	2.5 Statistical analysis
181	A paired <i>t</i> -test was used to compare the abnormally expanded TTTCA/TTTTA repeat
182	lengths of the cases in the parent and offspring generations. We calculated Pearson's
183	correlation coefficient for repeat length and age of onset; of the mother's age at
184	childbirth and the mother-offspring differences in repeat length; of parent-offspring
185	differences in repeat lengths and parent-offspring differences in age of onset; and of

186 parent–offspring differences in age of onset, as well as two-tailed *P* values. Fisher's

187	exact test was used to compare the number of patients with an expanded
188	pentanucleotide repeat allele in TNRC6A between affected and non-affected individuals.
189	P values of < 0.05 were considered to be significant.
190	Analyses of relationships between repeat length and symptoms were performed
191	only on individuals with sufficient information. Individuals without DNA samples but
192	with information on the age of onset were included in the data analysis for age of onset.
193	
194	3 RESULTS
195	3.1 Diagnosis
10.4	
196	A total of 51 individuals were examined, comprising 46 clinically diagnosed with
196 197	A total of 51 individuals were examined, comprising 46 clinically diagnosed with BAFME and five suspected BAFME cases. Typical RP-PCR and Southern blot analysis
196 197 198	A total of 51 individuals were examined, comprising 46 clinically diagnosed with BAFME and five suspected BAFME cases. Typical RP-PCR and Southern blot analysis results are shown in Figure 2.
196 197 198 199	A total of 51 individuals were examined, comprising 46 clinically diagnosed with BAFME and five suspected BAFME cases. Typical RP-PCR and Southern blot analysis results are shown in Figure 2. In <i>SAMD12</i> , the long-range PCR and Southern blot analysis, together with the
196 197 198 199 200	A total of 51 individuals were examined, comprising 46 clinically diagnosed with BAFME and five suspected BAFME cases. Typical RP-PCR and Southern blot analysis results are shown in Figure 2. In <i>SAMD12</i> , the long-range PCR and Southern blot analysis, together with the RP-PCR results, revealed that the abnormally expanded TTTCA/TTTTA alleles were
 196 197 198 199 200 201 	A total of 51 individuals were examined, comprising 46 clinically diagnosed with BAFME and five suspected BAFME cases. Typical RP-PCR and Southern blot analysis results are shown in Figure 2. In <i>SAMD12</i> , the long-range PCR and Southern blot analysis, together with the RP-PCR results, revealed that the abnormally expanded TTTCA/TTTTA alleles were heterozygously or homozygously present in 45 and one, respectively, of the patients

203	BAFME. In addition, in the 90 nonaffected individuals, including 22 nonaffected
204	BAFME family members, no abnormally expanded TTTCA/TTTTA alleles were
205	detected. Four nonaffected subjects carried an expanded TTTTA repeat (> 100) allele,
206	but they had no TTTCA pentanucleotides. Based on these results, the insertion of
207	TTTCA pentanucleotide repeats completely co-segregated with clinically diagnosed
208	BAFME patients. The expansion of pathological pentanucleotide repeats in TNRC6A,
209	RAPGEF2, YEATS2, MARCH6, and STARD7 were not observed in patients with
210	SAMD12 mutations. Three of the five individuals suspected to have BAFME were
211	heterozygous carriers of the abnormally expanded TTTCA/TTTTA allele of SAMD12
212	and the other two (III-11 in pedigree 4 and IV-3 in pedigree 6) did not. Therefore, for
213	these two individuals, the same analysis was performed on TNRC6A, RAPGEF2,
214	YEATS2, MARCH6, and STARD7, but neither individual carried expanded alleles. We
215	confirmed the molecular diagnosis of BAFME in the 16 affected individuals from the
216	Yasuda's family when the clinical definition of BAFME was proposed (Figure 3).
217	

3.2 Repeat length of *SAMD12* **in normal and BAFME subjects**

219	The distribution of expanded TTTCA/TTTTA repeat lengths in SAMD12 is shown in
220	Figure 2C. The abnormally expanded TTTCA/TTTTA alleles gave 47 discrete long-
221	range PCR products with a range of 516 (3.39 kbp) to 2363 (12.63 kbp) repeats and a
222	median of 1146 repeats (6.54 kbp) (mean \pm SD = 1250 \pm 462.2 repeats, 7.09 \pm 2.29
223	kbp). The long-range PCR and RP-PCR revealed that the size of the TTTTA repeats in
224	the 186 alleles from controls ranged from 14 to 1050 repeats. Two individuals were not
225	included in the above analysis: the gDNA from individual III-7 in pedigree 1 was of
226	insufficient quality for long-range PCR, and individual II-6 in pedigree 12 carried
227	homozygous mutations.
228	
229	3.3 Repeat lengths within SAMD12 and age of onset
230	Figure 4 shows the relationship between the abnormally expanded TTTCA/TTTTA
231	repeat length of SAMD12 and patient age at the time of symptom onset (excluding the
232	one patient with homozygous abnormally expanded TTTCA/TTTTA repeat alleles). Our
233	analysis included only patients with this data available. The age of onset of myoclonic
234	tremor was 30.63 ± 11.53 (10–56) and that of epilepsy was 36.16 ± 11.43 (20–58). We

235	found a significant negative correlation between the length of TTTCA/TTTTA repeats
236	and age of onset of myoclonic tremor (n = 27, r = -0.46 , P = 0.017) and of either
237	myoclonic tremor or epilepsy (n = 31, r = -0.52 , P = 0.003). A moderate correlation
238	between the repeat length and age of onset of epilepsy (n = 25, r = -0.39 , P = 0.054)
239	was also found (Figure 4A–C).
240	
241	3.4 Parent–offspring differences in repeat lengths within SAMD12
242	To evaluate the instability of TTTCA/TTTTA repeat lengths in the BAFME alleles by
243	generation, we studied the change in repeat length in 20 parent-offspring pairs. A
244	change in repeat length was found in all pairs, indicating that the TTTCA/TTTTA repeat
245	is remarkably unstable. The 20 parent-offspring transmissions yielded 19 increases in
246	length and one decrease, resulting in an average change of 0.97 kbp (range, -0.88 to
247	3.08 kbp, $t_0 = 4.65$, $P < 0.001$) (Figure 5A). A previous study reported that expansions
248	tended to be larger in maternal transmissions than in paternal transmissions (12), but our
249	study could not form this conclusion due to the small sample size of paternal
250	transmissions (only three pairs).

251	We found a moderate positive correlation between the mother's age at
252	childbirth and mother-offspring differences in abnormally expanded TTTCA/TTTTA
253	repeats (n = 10, r = 0.48, $P = 0.16$) (Figure 4D).
254	
255	3.5 Relationship between parent–offspring differences in repeat lengths within
256	SAMD12 and differences in age of onset
257	To clarify the genetic and clinical anticipation, we analyzed relationship between
258	parent-offspring differences in repeat lengths within SAMD12 and differences in age of
259	onset. Of the 15 parent-offspring pairs with a definite age of onset of myoclonic tremor,
260	the onset of symptoms in the child generation of 14 pairs occurred significantly earlier
261	than in the parent generation (seven paternal and seven maternal transmissions) ($t_0 =$
262	3.6, $P = 0.003$) (Figure 5B). Eight pairs (seven maternal and one paternal) out of these
263	could be genetically analyzed and the results revealed that increased TTTCA/TTTTA
264	repeat lengths in the parent-offspring transmissions were associated with an earlier age
265	of onset in the offspring. Although the offspring in four maternally transmitted cases
266	(III-10 and III-15 in pedigree 1, III-2 in pedigree 2, and III-3 in pedigree 11) who

267	showed increases in TTTCA/TTTTA repeats (increases of 165, 85, 143, and 479
268	repeats, respectively) had no myoclonic tremor at sampling, they had not yet reached
269	their parent's age of onset. Therefore, we could not analyze these four parent-offspring
270	pairs. In addition, because of absence of samples, we could not include three other pairs.
271	All offspring with maternally transmitted BAFME ($n = 7$) had earlier
272	myoclonic tremor onset than did their mothers (average, 19.4 years earlier; range, 3-41
273	years). Moderate correlations between differences in the repeat length and parent-
274	offspring differences in age of onset of myoclonic tremor (n = 8, r = 0.64, $P = 0.089$),
275	epilepsy (n = 6, r = 0.65, $P = 0.16$) and either myoclonic tremor or epilepsy (n = 9, r =
276	0.62, $P = 0.075$) were found. Both the age of onset of epilepsy and the age of onset of
277	either myoclonic tremor or epilepsy was significantly younger in the offspring than in
278	their mothers (n = 10, t_0 = 2.8, P = 0.019, and n = 16, t_0 = 4.1, P < 0.001, respectively)
279	(Figure 5C, D).
280	

3.6 Genetic diagnostic analysis of Yasuda's family

282	We performed a genetic diagnostic analysis of 27 members (16 affected and 11
283	nonaffected) of the family identified by Yasuda for whom gDNA was available
284	(pedigree 1 in Figure 1; Figure 3). Except for individual III-7, long-range PCR or
285	Southern blotting were available for the diagnosis of BAFME. Due to poor quality and
286	small quantities of gDNA, only RP-PCR results were available for the diagnosis of III-
287	7. All patients in the family who were clinically diagnosed as having BAFME carried
288	the abnormally expanded TTTCA/TTTTA repeat allele of SAMD12. In addition, we
289	found longer repeat alleles in all offspring-generation samples than in those from all
290	parent generations (n = 8, average \pm SD = +0.62 \pm 0.18 kbp). The paternal and maternal
291	differences in repeat length were 0.35 and 0.56 kbp ($n = 2$), and 0.43–0.82 kbp ($n = 6$,
292	average \pm SD = +0.67 \pm 0.16), respectively. For the age of onset of myoclonic tremor,
293	clinical anticipation was observed in all parent-offspring transmissions. Regarding the
294	age of onset of epilepsy, except for the II-6-III-4 transmission, clinical anticipation was
295	observed in all parent-offspring transmissions. The paternal and maternal differences in
296	the age of onset were -4 (n = 1) and -27 to -3 years (n = 4, average \pm SD = -14.5 \pm
297	10.62), respectively.

2	O	0
4	9	O

299	3.7 Genetic diagnostic analysis of the homozygous patient
300	We identified one patient, II-6 from pedigree 12, with homozygous expansion alleles.
301	She developed an epileptic seizure at the age of 24 and presented with myoclonic
302	tremor in all four limbs, refractory epilepsy, progressive cognitive decline, and
303	cerebellar ataxia. In addition to the progression of cerebellar ataxia, she developed gait
304	disturbance at 57 years of age because the myoclonic tremor spread throughout her legs.
305	Electrophysiological tests revealed giant somatosensory evoked potential (gSEP) and C-
306	reflex. Although a molecular diagnosis was not performed, other family members,
307	including her parents, showed the typical symptoms of BAFME. Only II-6 showed
308	symptoms as severe as progressive myoclonus epilepsy. The repeat length of II-6 was
309	5.77 kbp (992 repeats), not much different from other patients with heterozygous
310	BAFME mutations. Nevertheless, she had a more severe clinical presentation than
311	patients with heterozygous BAFME mutations.
312	

3.8 Expansion of the TTTTA repeat in *TNRC6A*

314	There was a significant difference in the frequency of TTTTA repeat expansion in the
315	<i>TNRC6A</i> gene between in BAFME patients and in controls ($p = 0.0009$, Fisher's exact
316	test). We found that 15 unrelated affected individuals carried five (16.7%) expanded
317	TTTTA repeat alleles of <i>TNRC6A</i> out of 30 alleles. On the other hand, a total of 107
318	nonaffected individuals, including seven unrelated nonaffected family members and 100
319	healthy controls, showed that only three (1.4%) expanded TTTTA repeat alleles of
320	TNRC6A out of the 214 alleles. However, the TTTTA repeat expansion of TNRC6A and
321	TTTCA repeat expansion of SAMD12 were not completely linked in some parent-
322	offspring pairs (II-4-III-3 and II-24-III-14 in pedigree 1, II-2-III-1 in pedigree 7, and I-
323	8–II-9 and –II-10 in Figure 1). The insertion of a TTTCA repeat was not observed in
324	either group. The expanded TTTTA alleles gave nine discrete long-range PCR products
325	with a range of 53 (0.98 kbp) to 605 (3.74 kbp) repeats and a median of 345 repeats
326	(2.44 kbp) (mean \pm SD = 358 \pm 155.5 repeats, 2.50 \pm 0.78 kbp).

3.9 Founder effect

329	The seven SNPs, rs7464659, rs6994270, rs2515029, rs9643124, rs10086119, rs7832475
330	and rs4876828, in previous reports for genetic founder effect analysis were shared
331	among 25 of 27 subjects and pedigrees of the previous reports (Table S3)(12,17). The
332	other two subjects possibly shared the founder effect, but because they have no other
333	family members, we could not identify heterozygous SNPs. In other words, this
334	indicated a founder effect shared between our pedigrees and pedigrees in previous
335	studies of Japan and China.
336	
337	3.10 CAG triplet repeat in TNRC6A
338	TNRC6A is an abbreviation for Trinucleotide Repeat Containing Adapter 6A, which has
339	a CAG triplet repeat in an exon. We focused on CAG repeat in the TNRC6A as a genetic
340	
010	modifier of the BAFME symptoms. We performed Sanger sequencing to detect
341	modifier of the BAFME symptoms. We performed Sanger sequencing to detect expansion of the triplet repeat for 47 patients with BAFME who carried a
341 342	modifier of the BAFME symptoms. We performed Sanger sequencing to detect expansion of the triplet repeat for 47 patients with BAFME who carried a pentanucleotide repeat expansion in <i>SAMD12</i> . Individuals III-6 in pedigree 1 and II-3 in

patients showed an expansion of the CAG repeat. A correlation in the instability
 between intronic pentanucleotide repeats and exonic triplet repeats could not be shown.

346

347 4 DISCUSSION

Our analysis of a specific TTTCA/TTTTA repeat sequence in the BAFME gene 348 349 revealed that patients in the offspring generation had significantly larger expansions 350 than their parents. In addition, a significant negative correlation was found to exist 351 between repeat length and age of onset. These findings suggest that progressive increases in the TTTCA/TTTTA repeat length in successive generations provide a 352 353 molecular explanation for the anticipation observed in BAFME. Our finding of 354 anticipation corresponds with the results previously reported by Ishiura et al. (12) and 355 others (17-19), and enabled us to make an accurate diagnosis and genetic prediction for many of the family members at risk: two family members (II-9 and II-11 in pedigree 10 356 357 in Figure 1) who were asymptomatic at sampling but were found to carry BAFME 358 alleles do now exhibit BAFME symptoms. Taken together with previous reports, our 359 results both support the hypothesis that the TTTCA/TTTTA repeat expansion is directly

360	involved in the pathogenesis of BAFME, and also indicate that the phenotypic variation
361	of BAFME depends on the TTTCA/TTTTA repeat length in the BAFME loci. Ishiura et
362	al. reported that expansions tended to be larger after maternal transmission than after
363	paternal transmission (12). In this study, however, we found that a moderate correlation
364	existed between the parent-offspring repeat length difference and the mother's age
365	when the child was born (Figure 4D). This indicates that the repeat expansion in
366	maternal transmission includes a more complex mechanism involving the senescence of
367	primary oocytes.
368	In the present study, only the parent-offspring generation in pedigree 7 showed
369	a greater length of the abnormally expanded TTTCA/TTTTA repeat allele in the mother
370	(II-2) than in her daughter (III-1). Strangely, the mother was asymptomatic at the time
371	of sampling, although the daughter had already presented with both epilepsy and
372	myoclonic tremor. In this case, despite the fact that the repeat length had decreased in
373	the course of mother-daughter transmission, there was clinical anticipation. This
374	atypical phenomenon may have been caused by the presence of somatic mosaicism

376	be required in order to address this situation. As for the pathogenesis of BAFME,
377	Ishiura et al. revealed that RNA-mediated toxicity—in particular, expanded UUUCA
378	repeat-mediated toxicity—is the mechanism underlying the pathogenesis of BAFME via
379	nuclear RNA foci that include the UUUCA repeat (12). Furthermore, the TTTCA
380	pentanucleotide was not detected even in some normal samples that had the abnormal
381	expansion of TTTTA repeats in SAMD12, although Cen et al. reported that the TTTCA
382	pentanucleotide was always detected in BAFME patients, even though the range of
383	expanded TTTTA repeat in SAMD12 was 25-44 repeats (17). Therefore, one possible
384	explanation for the atypical relationship between repeat length and phenotype in the
385	mother-daughter pair in pedigree 7 is that the daughter carries a shorter allele with
386	TTTTA repeats but a longer allele with TTTCA repeats, which may result in shorter
387	allele TTTCA/TTTTA repeat lengths than mother.
388	We studied one patient (II-6) from pedigree 12 who carried the abnormally
389	expanded TTTCA/TTTTA repeat alleles homozygously. Other members of pedigree 12
390	who had BAFME showed typical BAFME symptoms, and individual II-6 also showed
391	the typical electrophysiological findings for BAFME (i.e., gSEP and C-reflex).

392	However, she presented with progressive cerebellar ataxia, refractory epilepsy, and
393	progressive cognitive decline, which were resistant to medication. Ishiura et al.
394	previously reported similar patients with homozygous BAFME mutant alleles. These
395	findings suggest that patients with homozygous BAFME mutant alleles present
396	progressive myoclonus epilepsy-like symptoms with a gene dosage effect.
397	We initially tried to perform Southern blotting for all patients to evaluate the
398	length of the repeat alleles. However, because of the small quantities of gDNA available
399	or poor quality due to long-term storage, 27 out of 49 samples from suspected and
400	confirmed BAFME patients could not be included in the Southern blotting analysis.
401	Various other analysis methods were therefore considered, and one combining long-
402	range PCR, RP-PCR, and PCR-Southern blotting was selected because it could be
403	performed with a relatively small amount of gDNA and facilitated detection more
404	effectively than conventional Southern blotting. Whereas the Southern blotting required
405	$5-10 \ \mu g$ of adequate-quality gDNA, long-range PCR in combination with RP-PCR
406	required only 25–50 ng gDNA to determine the length of the abnormally expanded
407	TTTCA/TTTTA repeats. In addition, PCR-Southern blotting was a useful method for

408	confirming the existence of TTTCA repeats in the abnormally expanded alleles. For
409	example, it was difficult to confirm whether the inheritance was heterozygous or
410	compound heterozygous in Case 2 in pedigree 9, because the shorter allele, which was
411	observed in long-range PCR, was also expanded relative to that of typical healthy
412	controls (Figure S4). However, the PCR-Southern blotting method, using only 50 ng
413	gDNA, revealed that the shorter allele had no TTTCA repeat insertions, indicating a
414	heterozygous mode of inheritance in this case.
415	Yasuda originally reported BAFME family (pedigree 1 in Figure 1; Figure 3) in
416	1991 (1). This family has been used for genetic linkage studies of BAFME (10,11). The
417	abnormally expanded TTTCA/TTTTA repeat alleles in SAMD12 were previously
418	identified in three members of Yasuda's family (pedigree 1 in Figure 1; patients II-24,
419	III-14, and III-15 in this study) (12). In the present study, we confirmed that all BAFME
420	patients from this family for whom we obtained gDNA also carried the abnormally
421	expanded TTTCA/TTTTA repeat alleles in SAMD12, and that the mutation completely
422	co-segregated with BAFME. In two parent-offspring pairs (II-9-III-7 and II-24-III-14
423	in pedigree 1), the parents exhibited epilepsy, but epilepsy was not observed in their

424	offspring. However, the ages of onset of epilepsy in the parents were 49 (II-9) and 53
425	(II-24), and the ages of the offspring at the time of investigation were 30 (III-7) and 25
426	(III-14) years old, so we suspect that the offspring had not yet reached the age at which
427	symptoms will appear.
428	Although a significant genetic linkage on chromosome 8 was found in the
429	Yasuda's family in the previous studies (10,11), the other families were possible genetic
430	linkage outside of chromosome 8. In addition, because patients carrying TNRC6A,
431	RAPGEF2, YEATS2, MARCH6 or STARD7 mutations presented BAFME similar
432	symptoms, we screened these mutations for possible symptom modifier. Interestingly,
433	we found that the TTTTA repeat expansion of TNRC6A occurred with a significantly
434	higher frequency in patients with BAFME who carried an abnormal expanded
435	TTTCA/TTTTA repeat allele of SAMD12. This suggests that the Japanese ancestral
436	founder of the affected individuals may have acquired instability in the repeat sequences
437	by some mechanism, leading to simultaneously carrying both expansions. The
438	segregation distortion caused by long repeats of TTTTA in DNA sequences may have
439	led to an uneven distribution of the BAFME mutation and TTTTA repeats, except for in

440	parent-child transmissions where the BAFME mutation did not co-segregate with the
441	expansion of TTTTA in TNRC6A (II-4 with III-3 and II-24 with III-14 in pedigree 1, II-
442	2 with III-1 in pedigree 7, and I-1 with II-1, I-8 with II-9, and I-8 with II-11 in pedigree
443	10 in Fig.1). There were no obvious differences in clinical symptoms between
444	individuals with BAFME with or without the TTTTA repeat expansion in TNRC6A.
445	There were no changes in the repeat sequences within RAPGEF2, YEATS2, MARCH6,
446	and STARD7 or in the CAG triplet repeat of TNRC6A, but there may be abnormalities in
447	other repeat sequences scattered throughout the entire gene. Further research may reveal
448	these mechanisms in the future.
449	In conclusion, the screening of SAMD12 for expanded TTTCA/TTTTA
450	pentanucleotide repeats was performed using molecular diagnostic methods, which
451	correctly diagnosed a total of 51 confirmed or suspected BAFME patients. The results
452	showed anticipation at the molecular and clinical levels in parent-offspring
453	transmissions in accordance with previous studies. In particular, we found that the non-
454	pathogenic TTTTA repeat expansion in TNRC6A was found with significantly higher
455	frequency in patients with BAFME who carried a pathogenic abnormal expanded

456	TTTCA/TTTTA repeat allele of SAMD12. Further analysis is required to clarify the
457	causes of the overlap of the two kinds of pentanucleotide repeat expansions on different
458	chromosomes and its clinical consequences.
459	
460	Acknowledgements
461	The authors thank the BAFME patients, suspected BAFME patients, and the healthy
462	control subjects for their participation. The authors also thank Ms. Kyoko Meguro for
463	her technical assistance.
464	
465	Conflict of Interest Statement
466	The authors declare no conflict of interest.
467	
468	Supplementary information is available at Journal of Human Genetics's website.
469	
470	

References

472	1.	Yasuda T. Benign Adult Familial Myoclonic Epilepsy (BAFME). Kawasaki Med
473		J. 1991;17(1-4):1-13.
474	2.	Inoue S. one pedigree of hereditary tremor with epileptiform seizures. seishin-
475		shinkeigaku zasshi. 1951;53:33–7.
476	3.	Kudo J, Kudo T, Yamauchi T. Seven families of heredofamilial tremor with
477		epilepsy. ClinNeurol. 1984;24:1–8.
478	4.	Ikeda A, Kakigi R, Funai N, Neshige R, Kuroda Y, Shibasaki H. Cortical tremor:
479		a variant of cortical reflex myoclonus. Neurology. 1990;40:1561-5.
480	5.	Inazuki G, Naito H, Ohama E, Kawase Y, Honma Y, Tokiguchi S, et al. A
481		Clinical Study and Neuropathological Findings of a Familial Disease with
482		Myoclonus and Epilepsy -The Nosological Place of Familial Essential
483		Myoclonus and Epilepsy (FEME) seishin-shinkeigaku zasshi. 1990;92(1):1–21.
484	6.	Uyama E, Tokunaga M, Murakami T, Kuwano A, Kondo I, Uchino M. Familial
485		adult myoclonus epilepsy: a new phenotype of autosomal dominant myoclonic
486		epilepsy. Ann Neurol. 1996;40:505.

487	7.	Okino S. Familial benign myoclonus epilepsy of adult onset: A previously
488		unrecognized myoclonic disorder. J Neurol Sci. 1997;145:113-8.
489	8.	Okuma Y, Shimo Y, Shimura H, Hatori K, Hattori T, Tanaka S, et al. Familial
490		cortical tremor with epilepsy: An under-recognized familial tremor. Clin Neurol
491		Neurosurg. 1998;100(1):75–8.
492	9.	Guerrini R, Bonanni P, Patrignani A, Brown P, Parmeggiani L, Grosse P, et al.
493		Autosomal dominant cortical myoclonus and epilepsy (ADCME) with complex
494		partial and generalized seizures: A newly recognized epilepsy syndrome with
495		linkage to chromosome 2p11.1-q12.2. BRAIN. 2001;124:2459-75.
496	10.	Mikami M, Yasuda T, Terao A, Nakamura M, Ueno S, Tanabe H, et al.
497		Localization of a Gene for Benign Adult Familial Myoclonic Epilepsy to
498		Chromosome 8q23.3-q24.1. Am J Hum Genet. 1999;65(3):745–51.
499	11.	Mori S, Nakamura M, Yasuda T, Ueno SI, Kaneko S, Sano A. Remapping and
500		mutation analysis of benign adult familial myoclonic epilepsy in a Japanese
501		pedigree. J Hum Genet [Internet]. 2011;56(10):742-7. Available from:
502		http://dx.doi.org/10.1038/jhg.2011.93

503	12.	Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A, et al.
504		Expansions of intronic TTTCA and TTTTA repeats in benign adult familial
505		myoclonic epilepsy. Nat Genet [Internet]. 2018;50(4):581-90. Available from:
506		http://dx.doi.org/10.1038/s41588-018-0067-2
507	13.	Yeetong P, Pongpanich M, Srichomthong C, Assawapitaksakul A, Shotelersuk
508		V, Tantirukdham N, et al. TTTCA repeat insertions in an intron of YEATS2 in
509		benign adult familial myoclonic epilepsy type 4. Brain. 2019;142(11):3360-6.
510	14.	Florian RT, Kraft F, Leitão E, Kaya S, Klebe S, Magnin E, et al. Unstable
511		TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult
512		Myoclonic Epilepsy type 3. Nat Commun. 2019;10(1):1–14.
513	15.	Corbett MA, Kroes T, Veneziano L, Bennett MF, Florian R, Schneider AL, et al.
514		Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic
515		epilepsy linked to chromosome 2. Nat Commun. 2019;10(1):1-10.
516	16.	Kobayashi K, Hitomi T, Matsumoto R, Watanabe M, Takahashi R, Ikeda A.
517		Nationwide survey in Japan endorsed diagnostic criteria of benign adult familial

518		myoclonus epilepsy. Seizure [Internet]. 2018;61(May):14-22. Available from:
519		https://doi.org/10.1016/j.seizure.2018.07.014
520	17.	Cen Z, Jiang Z, Chen Y, Zheng X, Xie F, Yang X, et al. Intronic pentanucleotide
521		TTTCA repeat insertion in the SAMD12 gene causes familial cortical myoclonic
522		tremor with epilepsy type I. BRAIN. 2018;141(8):2280-8.
523	18.	Lei XX, Liu Q, Lu Q, Huang Y, Zhou XQ, Sun HY, et al. TTTCA repeat
524		expansion causes familial cortical myoclonic tremor with epilepsy. Eur J Neurol.
525		2018;0:1–6.
526	19.	Zeng S, Zhang M, Wang X, Hu Z, Li J, Ki N, et al. Long-read sequencing
527		identified intronic repeat expansions in SAMD12 from Chinese pedigrees
528		affected with familial cortical myoclonic tremor with epilepsy. J Med Genet.
529		2018;0:1–6.
530		

532 TITLES AND LEGENDS TO FIGURES

Figure 1. Pedigrees analyzed in this study. BAFME patients are indicated by filled 533 534 black symbols. Family members with suspected BAFME who showed only EEG abnormalities, transient tremor, fatigue-induced tremor, or a combination of these 535 symptoms are represented by filled gray symbols. Symbols with black dots represent 536 537 individuals whose gDNA samples were available. The familial relationships among the 538 individuals in pedigree 9 are unknown. The number of TTTTA repeat in TNRC6A are 539 shown in red for parent-offspring transmission in which no linkage was observed. 540 541 Figure 2. The results of repeat-primed PCR (RP-PCR) (A) and Southern blotting (B) 542 analyses for patients heterozygous and homozygous for BAFME mutant alleles. The left 543 and right sides of the RP-PCR results show the results of fragment analysis after 544 amplification of the TTTTA repeat and TTTCA repeat, respectively (A). Patients with 545 heterozygous mutant BAFME alleles (top panels) and patients with homozygous mutant 546 alleles (middle panels) showed the abnormally expanded TTTTA repeats and the 547 abnormally expanded TTTCA insertion. The TTTCA insertion was not detected in the

548	controls, and the peak for TTTTA was up to 218 bp (the lowest bands). Southern blot
549	analysis with hybridization probes targeted to TTTTA revealed that there was a normal
550	band and an abnormally expanded band in patients with a heterozygous mutant allele,
551	and that there were abnormally expanded bands but no normal bands in the patient with
552	homozygous mutant alleles (B). Distribution of TTTCA/TTTTA repeat lengths in the
553	abnormal chromosomes of BAFME patients. These numbers of repeats are in the range
554	of 516–2363, forming 3.39–12.63 kbp repeat lengths (C).
555	
556	Figure 3. Molecular diagnosis of BAFME patients from the family in pedigree 1. This
557	family is the largest family with BAFME in the world, and was used by Yasuda to
558	propose the BAFME disease concept. The middle row shows the results of long-range
559	PCR, and the lower row shows the results of Southern blotting analysis. The expansion
560	band lengthens in the process of transmission from parent to offspring. The gDNA from
561	individual III-7 was of extremely poor quality, so Southern blotting and long-range PCR
562	were not possible. Repeat-primed PCR, however, was able to detect the abnormally
563	expanded TTTCA/TTTTA repeats in this patient (data not shown).

565	Figure 4. The correlation between the repeat length and the age of onset of myoclonic
566	tremor (A), epilepsy (B) and either myoclonic tremor or epilepsy (C), and the
567	correlation between parent-offspring differences in repeat length and the mothers' age
568	at childbirth (D). All combinations of factors showed correlations.
569	
570	Figure 5. Differences in repeat length (A), age at onset of myoclonic tremor (B), age at
571	onset of epilepsy (C), and age at onset of either myoclonic tremor or epilepsy (D)
572	between parents and their offspring. The 20 parent-offspring transmissions analyzed
573	here yielded 19 length increases and one decrease, resulting in an average change of
574	0.97 kbp (range, -0.88 to 3.08 kbp, $t_0 = 4.65$, $P < 0.001$) (A). Of the 15 parent–offspring
575	pairs analyzed here, the onset of myoclonic tremor occurred at an earlier age for the
576	offspring than for the parent in 14 pairs (seven paternal and seven maternal
577	transmissions) (n = 15, t_0 = 3.6, P = 0.003) (B). The age at onset of epilepsy in the
578	offspring was significantly earlier than that of their mothers (n = 10, $t_0 = 2.8$, $P = 0.019$)
579	(C). The age at onset of either myoclonic tremor or epilepsy in the offspring was also

significantly earlier than that of their mothers (n= 16, $t_0 = 4.1$, P < 0.001) (D). The black and gray lines indicate paternal and maternal transmissions, respectively. *P < 0.05, **P < 0.01, ***P < 0.001.

583

584	Figure S4. The results of long-range PCR (A) and long-range PCR followed by
585	Southern blotting with a DIG-(TGAAA)9 probe (B). The shorter band of Case 2 from
586	pedigree 9 was clearly longer than the normal bands of the other samples (A). In the
587	long-range PCR followed by Southern blotting, the DIG-(TGAAA)9 probe detected
588	whether the bands included TTTCA (B). Case 2 from pedigree 9 carried TTTCA in the
589	longer band (arrowhead 1) and no TTTCA in the shorter band (arrowhead 2).

 Table 1 Details of TTTTA pentanucleotide repeat expansion in TNRC6A

TTTTA expansion in TNRC6A	Negative	Positive	Total
BAFME with TTTCA insertion in SAMD12	25	5	30
Controls	209	3	212

Controls vs. BAFME with TTTCA insertions in SAMD12; P = 0.0009 (Fisher's exact

test)

Figure 1

С

Figure 3

Pedigree 1 **,**2 ,3 4 5 L ∇ 2 3 4 5 6 8 20 22 Ⅱ卤 4_5 14 15 12 13 1 2 3 6 (kbp) 10 -5 -3 -2 -7 (kbp) 10 -5 -3 -2 -1 1 7:7 6:2 **-**7:7 6:2 = 3.5 2.7 3.5 -2.7 -1.9 -1.5 -1.9 1.5

Figure 4

Table S1 Details of patients diagnosed with BAFME and suspected to be carriers of

BAFME

	age of onset				set								
Ped	Pt	Α	s	MT	Е	SY	EEG	gSEP	CR	others	site of MT	<i>SAMD12</i> †	TNRC6A‡
1	II-4	67	F	27	27	27	PSWC, PES	+	+	VEP; L	U/E, L/E	979	8
	III-3	39	М	24	24	24	PSWC, PMR	+	+		U/E	1160	265
	II-6	65	F	30	30	30	PSWC	+	+	VEP; L	U/E, L/E, abdomen	1018	9
	III-4	41	М	25	31	25	mild S	+	+	VEP; L	U/E	1132	16
	II-9	57	М	30	49	30	S	+	+		U/E	1147	8
	III-7	30	F	26	-	26	PSWC	+	+		U/E	N/A	N/A
	II-13	54	М	38	38	38	PSWC	+	+	VEP; L	U/E, L/E	956	12
	II-18	65	F	45	53	45	PSWC	+	+		U/E	960	11
	III-8	43	М	22	36	22	S	+	+	VEP; L		1107	12
	III-10		М									1125	10
	II-20		М									969	11
	III-12	47	М									1038	11
	III-13	37	М									1080	12
	II-24	53	F	45	53	45	PSWC	+	+		U/E	1060	272
	III-14	25	М	18	-	18	SWC	+	+		U/E, L/E	1176	11
	III-15		F									1145	272
2	II-4	59	F	56	58	56	abnormal					1149	10
	III-1	33	М	15	25	15	abnormal					1292	10
	III-2	30	F	-	23	23	abnormal					1179	10
3	I-2	71	F									968	11
	II-3	41	М									1118	14
4	II-2	61	F	44	51	44	PS (+)	+				560	12
	II-3	62	М	40	41	40	slow, PS (+)	+				582	N/A
	II-6	65	М	40	30	30	slow, PS (+)	+				535	15
	II-10	54	F	41	54	41	PS (+)	+				516	15
	III-9		М	18	29	29	HV (+)	+				598	14
	III-11		F	-	-		abnormal					-	15
5	II-5		F	64	64	64	slow, PS (+)	+				1076	19
	III-2		М	55	64	55	slow, PS (+)	+				1146	11
	III-4		F	38	43	38	slow, PS (+)	+				1221	11
6	III-3	57	F		> 20	> 20						1543	12
	IV-1	37	F	-	20	20	PS (+)	+				1882	8
	IV-3		F	-	-	-	HV (+), PS (+)	-				-	8
	III-4	61	М	45	24	24	S, PS (+)	high		ş		1867	12
7	II-2	53	F	-	-	-	SWC, PS (+)	+				2363	6

	III-1	29	F	-	23	23	S, SWC, PS (+)	+				2188	53
8	I-1	75	М	30	-	-	-	+	+	¶	U/E, L/E, trunk	921	9
9	1		F									1192	10
	2		М									1069	345
	3		М									1777	12
10	I-1	61	М	15	27	15						1522	435
	II-1	34	М	32	34	32	PSWC					2138	500
	I-8		F	30	46	30	S					1756	476
	II-9	23	F	13	< 42	13	slow					2118	8
	II-11	14	F	10						††		2238	7
11	II-6	69	F	25	-	25					U/E, L/E, trunk	738	9
	III-3	39	F	21		21					U/E, L/E	1217	9
12	II-6	60	F	24	24	24	S, SW	+	+		U/E, L/E	992	12
13			F	19	> 19							1774	13
14			М									1215	605
15			М	40	40	40	slow	+				1389	13

Ped: pedigree, Pt: patient, A: age at sampling, S: sex, MT; myoclonic tremor, E:

epilepsy, SY: symptom, EEG: electroencephalogram, gSEP: giant somatosensory evoked potential, CR: enhanced long-loop reflex, PSWC: polyspike and wave complex, PES: photo-evoked spike, PMR: photomyoclonic response, SWC: spikes and wave complex, S: spike, SW: sharp and wave, PS: photic stimulation, HV: hyper ventilation, VEP; L: visual evoked potential large, U/E: upper extremities, L/E: lower extremities, N/A: not available

A blank entry indicates absence of information

Pedigrees 13–15 represent three patients clinically diagnosed with BAFMR but unrelated to the known BAFME families

- †: approximately size of TTTCA/TTTTA repeat in SAMD12
- : approximately size of TTTTA repeat in *TNRC6A*
- §: visual seizure
- ¶: gait disturbance, writing disorder
- ††: temporary tremor at age of elementary school, developed tremor at age of 33

TNRC6A_LF	5'-GCAAGGGCTCAAGAATGCTGGTGGAC-3'
TNRC6A_LR	5'-TGATCCCAGCTGCCACTTCCAACTCA-3'
rs7464659-F	5'-TTCAAGGGGCTCTCTTGCTT-3'
rs7464659-R	5'-TAGCAGAAGTTGTGGCCCAA-3'
rs6994270-F	5'-TGTGGAAGACAGTGTGGCAA-3'
rs6994270-R	5'-CCAGCCCACGTTTTCCTTTA-3'
rs2515029-F	5'-ACAATGTTGCAAGGGCTGAC-3'
rs2515029-R	5'-TGCATTGGGTTAGCTGTGCA-3'
rs9643124-F	5'-TGGCAGGAAGTGAGATTGGA-3'
rs9643124-R	5'-AAGTCAACTGCGGTGAAGCT-3'
rs10086119-F	5'-TGTGACGCATTATGTGTGCC-3'
rs10086119-R	5'-TGGTGGTGCATGCCTGTAAT-3'
rs7832475-F	5'-GTCAGAATTCTGGCCCGTGA-3'
rs7832475-R	5'-AGTAGCTGGGACTATGGGCA-3'
rs4876828-F	5'-TCTGGAAGGAAAAGGCAGCC-3'
rs7832475-R	5'-TGGCCAATGGAATGCTAGCA-3'
TNRC6A_CAG_F	5'-AGTCATTGCGAGTTCCCTGG-3'
TNRC6A_CAG_R	5'-CTTCACGAGGATACCGAGGC-3'
TNRC6A_CAGrepeat_F	5'-TGGCTAATCTTTTCCACCCCT-3'
TNRC6A_CAGrepeat_R	5'-TGATGATAAGGTGTGAGTCTCGT-3'

Table S2 Primers for the PCR and long-range PCR amplifications

Figure S3

