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6 tips for your good health

1. Take it easy (Have a good time to switch off)

2. Chat and laugh with your friends and/or teachers
3. Sleep well

4. Healthy eating and tea break

5. Exercise

6. No drug! No smoking!
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ARTIGLE INFO ABSTRACGCT

Keywords: Hierarchical structures which lie hidden between human complex conditions and reproductivity cannot be

Neurodevelopmental conditions simple, and trends of each population component does not necessarily pertain to evolutionary theories. As an

:uh?m hremi illustration, the fitness of individuals with heritable extreme conditions can be low across continuing generations
clizopirenia

in observational data. Autism and schizophrenia are characterized by such evolutionary paradox of survival and
hypo-reproductivity in the complex human diversity. Theoretical mechanisms for the observational fact were
evaluated using a simple formula which was established to simulate stochastic epistasis-mediated phenotypic
diversity. The survival of the hypo-reproductive extreme tail could be imitated just by the predominant presence
of stochastic epistasis mechanism, suggesting that stochastic epistasis might be a genetic prerequisite for the
evolutionary paradox. As supplemental cofactors of stochastic epistasis, a random link of the exireme tail to both
un- and hyper-reproductivity and group assortative mating were shown to be effective for the paradox. Espe-
cially, the mixed localization of un- and hyper-reproductivity in the tail of a generational population evidently
induced the continuous survival of outliers and extremes. These hypothetical considerations and mathematical
simulations may suggest the significance of stochastic epistasis as the essential genetic background of complex

Stochastic apiztasziz
Human complex trait

human diversity.

1. Introduction

Mathematical modelling and theoretical simulations can improve
our understanding of unknown backgrounds for human conditions
(Antoniou et al., 2004; Enserink and Kupferschmidt, 2020) and consis-
tency between theory and practice (observational data) might denote
the presence of important breakthrough mechanisms associated with the
hypothesis. The functional significance of random or chance (stochastic)
factors for the origin of phenotypic diversity still remains elusive in both
complex traits and monogenic conditions (Kurnit et al., 1987; Bassett
et al, 2001; Charney, 2012; Medici and Weiss, 2017; Riordan and
MNadeau, 2017). In human complex neurodevelopmental conditions
including autism and schizophrenia whose heritability is quite high
(Burmeister et al.,, 2008; Psychiatric GWAS Consortium Coordinating
CommitteeCichon et al.,, 2009) and which are characterized as an

extreme tail of the quantitative behavioral diversity (Ijichi et al., 2013;
Morioka et al., 2013, 2019), genetically transmissible stochastic factors
should have the key role for the high heritability with the predominance
of sporadic cases (Beaudet, 2007; Ijichi et al., 2008; Ansel et al., 2008).
Stochastic epistasis can explain the disparity between monozygotic and
dizygotic concordance rates in twin studies and the genetic involvement
of hundreds of modifier variants (Beaudet, 2007; Ijichi et al., 2008; van
Dongen and Boomsma, 2013). Stochastic non-shared environmental
factors cause phenotypic differences between monozygotic twins, and
the stochastic genetic events can be dichotomized according to the
manner of expression in monozygotic twins (Ijichi et al., 2015). Intrinsic
gene expression noise (Raj and van Oudenaarden, 2008), random
monoallelic expression (Gimelbrant et al.,, 2007), and somatic retro-
transposition events (Erwin et al., 2014) provide discordant phenotypes
between monozygotic twin pairs. Effects of germinal mutations or
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retrotransposition events (Erwin et al., 2014), chromosomal recombi-
nation, random shuffling of parental chromosomes, and stochastic
epistasis are genetically and phenotypically concordant between
monozygotdc twin pairs (Ijichi et al., 2015). In these monozygotic
concordant genetic events, only stochastic epistasis consists of in-
teractions between transmissible modifier variants (I[jichi et al., 2008,
2015). Because the combination of monozygotic concordance and
dizygotic discordance causes high heritability in twin studies, stochastic
epistasis is an attractive candidate for the main genetic background for
the missing (unclarified) heritability (Ijichi et al., 2015), a large gap
between the twin-based heritability of complex traits and the part
explained by genetic markers identified in genome-wide association
studies. Together with the major role of epistasis in phenotypic di-
versities (Shao et al., 2008), the inter-generational robusmess of the
phenotypic mean values in stochastic epistasis models (Ijichi et al.,
2008, 2015) warrants stochastic epistasis as the responsible genetic
structure for the evolutionarily conserved phenotypic diversity in
complex traits. Evolutionary changes such as neck elongation or size
alteraton are usually underpinned by the reladonship between the
phenotypic value and relative survival across the phenotypic diversity
(Johnson et al., 2011; Wilkinson and Ruxton, 2012). If an extreme of a
phenotype is closely associated with hypo-reproductivity, the tail of the
phenotypic values or the quantitative diversity cannot survive following
the same fate as the tail-associated complex genetic factors (Johnson
et al., 2011). However, continuous prevalence of the hypo-reproductive
extreme tail (the evolutionary paradox) is another characteristic of
autism and schizophrenia (Ijichi et al., 2008; van Dongen and Boomsma,
2013; Caspermeyer, 2015). In this article, using a simple formula which
was established to simulate stochastic epistasis (Ijichi et al., 2018),
theoretical mechanisms for the evolutionary paradox in human pheno-
typic diversity were evaluated.

2. Methods

The stochastic effects of the related epistatic modifier variants on the
complex trair and the correlative genetic contribution of the parents
were simulated by a simplified modelling (Ijichi et al., 2018), where
each generational population imitates the human world. Genetic effects
of major variants, environmental contribution, and the other evolu-
tionary events were not included in this model to evaluate the nature of
stochastic epistasis. The phenotypic value of an offspring (Xo) was ob-
tained from the following formula and the mean or median value of the
generation 1 (G1) is close to zero on the y-axis (Ijichi et al., 2018). The
lower phenotypic values are associated with hypo-reproductivity and
the detailed relationships between X values and reproductivity are
configured in each hypothetical model.

Xo=axXpt+bxXmitex EU{'
=1

The phenotypic value of a member of a generational population was
automatically calculated by the spread sheet application (Excel, 2016)
using assigned Visual Basic assembly macro programs. The paternal
phenotypic value (Xp) and the maternal phenotypic value (Xm) are ob-
tained from the parental generation and Xo constitutes the phenotypic
values of the next generation. Detailed and related bases for this
modelling were described in previous reports (Ijichi et al., 2015, 2018),
and a representative example of the Visual Basic macros for mathe-
matical simulations was also provided in the previous report (Ijichi
et al., 2018). Previous simulations have suggested that the contribution
from each stochastic module (L) can be ranged from —1 to 1 and the
module number (m) must be multplied to imitate the Gaussian or
normal distribution of the phenotypic values in a generation (Ijichi et al.,
2015, 201 2). The number of modifier variants in a module was assumed
to be from several to dozens (ljichi et al., 2015), m was substituted by 10,
30, or 50 to imitate the presence of hundreds of related modifier variants
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in the previous report (ljichi et al., 2018). It has been demonstrated that
the more the module number is, the more the phenotypic diversity is
disperse in a generational population and changeable over generations
(Tjichi et al., 2015, 2018). Because this phenotypic changeability in a
selection condition, where the lower 5% individuals in a generational
population cannot leave offspring, was distinct when evenm = 10 (Ijichi
et al, 2018), condidons including population size (n = 1000),
non-reproductive % (5%), and the module number (m = 10) were
employed as the basic configuration of the models. Each model has an
individual combination of coupling and reproductive modalities which
are associated with evolutionary survival of the hypo-reproductive
extreme tail in the complex human diversity. Xp component, Xm
component, and the stochastic sigma component have coefficients for
their contributions (a, b, and ¢, respectively). These coefficients in the
formula were basically configured to stabilize the generational trajec-
tories in the previous simulations where intrinsic distributional robust-
ness of phenotypic diversity can be obtained (@ + b =1 and ¢ # 0) (Ijichi
et al., 2018). In order to imitate observational data {Constantino and
Todd, 2005; Hoekstra et al., 2007), coefficient a was substituted by 5/d
and coefficient b was substituted by 3/d, where the paternal contribu-
tion is more than the maternal contribution. The male to female ratio in
each generation was fixed to 1.0 and the marriage rate was also fixed to
100% in the reproductive individuals. Sex of an individual was deter-
mined in random manner and mating was done only within the gener-
ational population. To maintain the population size in our simulations,
the 5% unreproductive individuals who have no offspring are concom-
itant with 2.5% prolific couples who are blessed with 4 children in a
generational population. The other couples have 2 children in the
generational population. The phenotypic changeability over generations
in the relative selection condition was illustrated as a sloped sequence
(mean values or box plots) of each generational diversity from G1 to
generation 100 (G100) (Ijichi et al., 2018), and inhibitory effects on the
changeability can be demonstrated by slope flattening. Furthermore,
evolutionary survival of the hypo-reproductive extreme tail in the

complex phenotypic diversity can be imitated by the flattening of the
generatonal trajectory and the presence of the G100 lower extreme tail
within negative y-axis region. The relatdonship between G100 pheno-
typic diversity and y-axis was evaluated by the posidon of
box-and-whisker diagrams and G100 histogram. The box-and-whisker
diagram is depicted with outliers (small circles) whose values are be-
tween 1.5 and 3.0 times the box range and extremes (asterisks) whose
values were more than 3.0 times the box range. The generational se-
quences (mean values or box plots), histograms of the value distribution,
and correlation coefficient analyses with two-sided Student’s t-test an-
alyses were all implemented using Excel 2016 and IBM SPSS statistics,
version 26. Father-offspring (n = 1000), mother-offspring (n = 1000),
and inter-fraternal (n = 500) correlations were calculated in each
generational population, and the mean values of correlation coefficients
from G1 te G100 (n = 100) were evaluated in a variety of conditions. To
ensure data accuracy and repeatability, simulations were repeated 3
times for each preliminary condition (Ijichi et al., 201&). In this ardcle,
simulations were repeated 3 times for the confirmation of repeatability
and a representative simulation was shown only when the repeatability
was confirmed. The distributional normality of a generational popula-
tion was evaluated by histogram morphology (bin — 1) and descriptive
statistics. In the descriptive statistics, a generational population with an
absolute value for skewness and/or kurtosis that exceeded 2.0 was not
considered to be normally distributed.

2.1. Model 1 (4-2-0 model)

The relationship between phenotypic values (X) and reproductivity
is semi-linear in model 1. The lower extreme tail of the phenotypic
values is unreproductive (5%). In randomly mated 475 couples, 25
couples whose couple averages of the phenotypic values are relatively
high (the higher extreme tail) have 4 children. Remaining 450 couples
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whose couple averages are intermediate between both extreme tails in
the phenotypic diversity have 2 children. The number of children iz 4, 2,
and O for parents in the higher extreme tail, intermediate majority, and
the lower extreme tail, respectively. Therefore, model 1 can be encoded
as 4-2-0 model and this encoding rule is urilized for each model as
described below.

2.2, Model 2 (2or4-0 model)}

The extremely low tail of the phenotypic values is unreproductive
(5%). In randomly mated 475 couples, parents of 2 children (450 cou-
ples) and of 4 children (25 couples) are randomly determined inde-
pendently of X walues. This meodel has been employed as the
changeability simulations in our previous report (ljichi et al., 2018).

2.3. Model 2 (2-4-0 model or hyper-reproductive border model)

The unreproductive tail (5%) and mating manner is same as model 1
and 2. In randomly mated 475 couples, parents of 4 children (25 cou-
ples) adjoin the unreproductive extreme tail in the phenotypic diversity
(couple averages) of the generational population. Remaining couples
whose couple averages are relatively high as compared with 4 kids
parents have 2 children (450 couples). Although the phenotypic low
values are associated with both un- and hyper-reproductivity, unre-
productive individuals and hyper-reproductive couples can be distin-
guished by the X values (couple averages).

2.4. Model 4 (2-4-0 model with ‘type A’ assortative mating)

Positive assortative mating was employed as a mating modality. As
‘type A’ assortative mating, following the exclusion of the unre-
productive tail (5%), 475 males and 475 females are mated according to
the ranking of the phenotypic value X with the result that the individual
ranking is the same as the partner. In the 475 couples, 25 couples whose
couple averages of X values are relatively low have 4 children.
Remaining 450 couples have 2 children. Except for the ‘type A" assor-
tative mating, conditions are same as model 3 (2-4-0 model).

2.5. Model 5 (2-4-0 model with ‘type B" assortative mating)

As‘type B’ positive assortative mating, following the exclusion of the
unreproductive tail (5%), remaining 475 males and 475 females are
divided into two groups, high-value 450 and low-value 25 according to
the X values. The high-value males (450) are randomly mated with the
high-value females (450). The low-value males (25) are randomly mated
with the low-value females (25). In the 475 couples, 25 couples whose
couple averages of X values are relatively low have 4 children.
Remaining 450 couples have 2 children. Except for the ‘type B’ assor-
tative mating, conditions are same as model 3 (2-4-0 model). In ‘type B’
positive assortative mating, the mating preference is somewhat wide-
ranged and people mate with approximately like partners in the same
X-value group as themselves.

2.6. Model 6 (2-0or4 model with type A assortative mating)

In the last additional condition, the phenotypic low values are also
associated with both un- and hyper-reproductivity like 2-4-0 model.
However, unrepreductive individuals and hyper-reproductive couples
cannot be distinguished by the X values (couple averages), where in-
dividuals with extremely low X values are not necessarily unre-
productive and randomly mixed localization of un- and hyper-
reproductivity is available. From 50 males and 50 females with
extremely low X values, 25 males and 25 females are randomly selected
as unreproductve pairs. The other 25 males and 25 females in the
extreme individuals can be involved in the assortative mating together
with remaining 900 individuals. As ‘type A" assortative mating, the 475
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males and 475 females are mated according to the ranking of the
phenotypic value X with the result that the individual ranking is the
same between partmers. In the 475 couples, 25 couples whose couple
averages of X values are relatively low have 4 children. Remaining 450
couples have 2 children.

2.7. Model 7 (2-0or4 model with type B assortative mating)

As the randomly mixed localization of un- and hyper-reproductivity,
from 50 males and 50 females with extremely low X values, 25 males
and 25 females are randomly selected as unreproductive pairs. The other
25 males and 25 females in the extreme individuals can be involved in
assortative mating together with remaining 900 individuals. As ‘type B
positive assortative mating, the 475 males and 475 females are divided
into two groups, high-value 450 and low-value 25 according to the X
values. The high-value males (450) are randomly mated with the high-
value females (450). The low-value males (25) are randomly mated with
the low-value females (25). In the 475 couples, 25 couples whose couple
average of X values are relatively low have 4 children. Remaining 450
couples have 2 children.

3. Results

Data accuracy and repeatability were confirmed by 3-time imple-
mentation in all simulations described below. In comparative studies
whose multiple generational sequences (from G1 to G100) are closely
adjacent or overlapped to each other, the representative simulations
were delineated as sequences of mean values (+a standard deviation:
5SD) with a G100 box plot and histogram to distinguish each sequence
(Figs. 1 and 3).

3.1. Parental contribution and generational changeability

Under the conditions (a + b = 1 and ¢ # 0) where stabilization of the
generational trajectories are obtained (Ijichi et al., 201 8), the parental
contribution was evaluated using model 1 (Fig. 1). This study is one of
the preliminary analyses to decide unified conditions in comparative
studies of hypothetical models. The prototype simulation (model 1)
should exhibit moderate increasing slope of the generadonal trajectory

under the unified conditions. Because the smaller the d values are, the
bigger parental contribution is, the results revealed that bigger parental
contribution makes generational sequences more changeable. In simu-
larions where the d value is 9 or more, the generational sequences were
closely overlapped and almost flattened from G1 to G100. Therefore,
slope-fattening effects by models (model 2-7) should be evaluated in the
conditions around d = 8.0 or d = 8.3. Normal distributional shapes of all
histograms were obtained in each simulation (data not shown) and the
normally distributed G100 histograms were shown in Fig. 1. The abso-
lute values for both skewness and kurtosis of G100 populations did not
exceed 2.0, suggesting distributional normality of the G100 populations
in these simulations (data not shown). Involvement of the lower outliers
(small circles in the G100 box plot) or the lower extreme tail of the G100
histogram within the negative y-axis region was demonstrated in sim-
ulations with d = 9 or more.

3.2, Parental contribution and correlation coefficients in each model

Father-offspring, mother-offspring, and inter-fraternal correlation
coefficients were compared as a sequence of the mean values (+8D) of
each parental contribution condition (Fig. 2). These comparative sim-
ulations were repeated with different module numbers (m = 10, 30, and
50), and there was no apparent variance between the results (data not
shown). Therefore, m = 10 was employed as the representative condi-
tion. As an imitadon of observational findings which revealed a bias
between paternal and maternal contribution (Constantino and Todd,
2005; Hoekstra et al., 2007), the contribution ratio (5:3) between a and b
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Fig. 1. Parental contribution and generational changeability. The phenotypic values (X) were calculated using the formula in the figure. Each simulation from G1 to
G100 was repeated 3 times using model 1 and a representative generational trajectory (means -+ 5D) was shown with the G100 box plot and histogram (bin = 1), as
described in Methods. The horizontal broken line indicates the zero level of X value.
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Fig. 2. Parental contribution and familial correlation coefficients. The phenotypic values (X) were calculated using the formula in the figure. The results of m = 10
simulations are representatively shown. Correlation analyses was performed in all generational populations (from G1 to G100) and the mean values of familial
correlation coefficients in each simulation were calculated as described in Methods (n = 100). Open squares are the mean values of father-offspring correlation
coefficients. Open circles are the mean values of mother-offspring correlation coefficients. Open triangles are the mean values of inter-fraternal correlation co-
efficients. Error bars mean a SD. Asterisks indicate statistically significant differences (mean values) between mother-offspring and inter-fraternal correlation co-

efficients (p < 0.01).

in the formula was intentionally configured as described above. In these
situadons, the condition where the mother-offspring sequence and the
inter-fraternal sequence intersect was approximately d = 10 in models 1,
2, and 3 and d = 9 in models 5 and 7 (Fig. 2). These findings were sta-
tistically confirmed using two-sided Student’s t-test analyses and there
was no significant difference of mean values between mother-offspring
and inter-fraternal correlation coefficients at these intersection points
(significance was set at p < 0.01). Because the X value is almost same as
the partmer in the strict rule of ‘type A’ assortative mating, the
parent-offspring correlations of each parental contribution condition are
overlapped in model 4 and 6 (Fig. 2). Therefore, observational data of
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familial correlation coefficients (Constantino and Todd, 2005; Hoekstra
et al., 2007) could not be imitated in model 4 and &.

3.3. Contribution of the stochastic epistasis component

Previous studies have revealed that, in condition of @ + b > |c|, the
phenotypic diversity of G1 could not be maintained and distribution
range of the generational population was gradually attenuated during
the first several generations (Ijichi et al., 2018). In the same conditions
(a + b > [c|), the previous finding was confirmed in Fig. 3 (c = 0.1 and
0.5). Under the condidons (2 + b = 1 and ¢ # 0) where stabilization of
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Fig. 3. Contribution of the epistatic component. The phenotypic values (X) were calculated using the formula in the figure. Each simulation from G1 to G100 was
repeated 3 times using model 1 and a representative generational trajectory (means + SD) was shown with the G100 box plot and histogram (bin = 1), as described

in Methods.

the generational trajectories are obtained ([jichi et al., 2018), contri-
bution of the stochastic epistasis component was evaluared using model
1 (Fig. 3). This study is another preliminary analysis to decide the uni-
fied conditions in comparative studies of hypothetical models. The re-
sults revealed that bigger stochastic contribution makes generational
sequences more changeable in these conditions. Because the prototype
simulation (model 1) should have a moderate slope of the generational
trajectory and robust variation of each generational populaton for the
comparative studies of 7 models, the sequences were too flattened and
the variance was too small when ¢ = 0.1 and 0.5. Normal distributional
shapes of histograms were obtained when ¢ = 1.0 and 1.5, and the ab-
solute values for both skewness and kurtosis of G100 populations did not
exceed 2.0, suggesting distributional normality of the G100 populations
in these simulations (data not shown). The condition of ¢ = 1.0 was
adopted for the comparative studies of 7 models.

3.4. survival of the hypo-reproductive extreme tail and hypothetical
models

Adopted unified conditions for the comparative analysis include ¢ =
1.0, d = 8.0 or 8.3, and m = 10. Under these conditions, the prototype
model (model 1) exhibited a modest slope of the generational trajectory
and robust generational variation as shown in Fig. 1 (d = 8.0 and 8.3)
and Fig. 3 (¢ = 1.0). The repeatability of simulations was confirmed by
three-time implementation. The inhibitory effects on the phenotypic
changeability were evaluated by slope flattening effects in the other
models (models 2-7), and survival of the hypo-reproductive extreme tail
in the complex phenotypic diversity was confirmed by the presence of
the G100 extreme tail within negative y-axis region, as described in
Methods. The relationship between G100 phenotypic diversity and y-
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axis was visualized by the position of box-and-whisker diagrams and
G100 histogram on the y-axis. The flattening effects on the slope in
maodel 2 and 3 were relatively incomplete, thereby the lower extreme
tail of G100 cannot be included in the negative y-axis region (data not
shown). Although there were case-by-case differences, survival of the
hypo-reproductive extreme tail could be imitated in model 4, 5, 6, and 7
(Fig. 4). The most sriking difference between these models was in the
numbers of outliers (small circles) and extremes (asterisks). The higher
outliers were generationally maintained in meodel 4 and the lower out-
liers and extremes were survived through generations in model 7.
Although both extreme tails could be modestly maintained in model 5
and 6, the medians were gradually increasing through generations in
model 5. Biased distribution of histograms was obtained in model 7,
where the absolute maximal value for kurtosis was 2.61 (d = 8.0) and it
was not considered to be normally distributed. These findings suggest
that the combination of the mating manner and coupling modality in
model 6 and 7 can contribute most effectively for the hypo-reproductive
extreme tail to survive through generations. Especially, the survival of
the lower outliers and extremes through generations was too exagger-
ated for the populational diversity to maintain normal distribution in
model 7 (Fig. 4).

4. Discussion

Mechanisms which allow the survival of hypo-reproductive quanti-
tative extremes through generations have been believed to be exist in an
evolutionary landscape (van Dongen and Boomsma, 2013; Huxley et al.,
1964; Nesse and Williams, 1994; Keller and Miller, 2006; Agnad et al.,
2012; van den Heuvel et al., 2019). In such considerations, the extreme
behavioral deviations are sometimes recognized as disadvantageous
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Fig. 4. Survival of the hypo-reproductive extreme tail and hypothetical models. The phenotypic values (X} were calculated using the formula (y-axis title). Each
simulation from G1 to G100 was repeated 3 times and a representative generational trajectory of box plots was shown with the G100 histogram (bin = 1), as
described in Methods. In the unified conditions, medel 1 exhibits a modest slope of the generational trajectory and robust generational variation as shown in Fig. 1 (d
= 8.0 and 8.3) and Fig. 3 (¢ = 1.0). Because the flattening effects on the slope in model 2 and 3 were relatively incomplete (data not shown), almost flattened 4
models (model 4-7) were shown to compare the positions of the lower extreme tails.

by-products or in association with advantageous or neutral concomi-
tants. In other words, the genetic factors which underpin the extremes
may be associated with both reproductive costs and cryptic evolutionary
benefits. These evolutionary explanations can be classified to 5 frame-
works according to who gets the benefits (Morioka et al., 2019). In the

14

first view, the benefit-enjoying individuals may be hyper-reproductive
carriers of the same genetic factors as the hypo-reproductive extreme
tail. The carriers (border cases) are placed in the reproductive majority
adjacent to the flanking behavioral extremes in the population (the
extreme male brain theory/hyper-systemizing theory) (Baron-Cohen,
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2002). The extreme imprinted brain theory was proposed as a genetc
basis of the extreme male brain theory (Badcock and Crespi, 2006). The
second is the possibility of the ubiquitous load of the genetic factors in
the population and no one enjoys the benefits. In the mutation-selection
balance theory, everyone alive has minor brain deviadons associated
with the mutation load, and the reproductive majority of the population
is also a little bit abnormal in behavioral and cognitive functions (Keller
and Miller, 2006). In the third explanation, it is speculated that the se-
lection of the deviation-related genetic factors has had a profound
impact on the reproductive success, adaptability, and evolution of
ancesiral hominid populations (Crow, 2008; Xu et al., 2015; Srinivasan
et al., 2016, 2017; Polimanti and Gelemnter, 2017; Marques-Bonet et al.,
2009). The fimess-value of the genetic factors in the ancestral environ-
ment can actually be either beneficial or neutral (Reser, 2011; Dudley
etal., 2012). In the fourth framework, a group selection theory has been
introduced to bring sense into the link between affected extremes and
exceptional creativity (Fitzgerald, 2004). In this population benefit
theory, the creativity, which can be sometimes concomitant with
affected individuals, benefits all members of the human community and
the community can survive. The fifth is the possibility that the in-
dividuals carrying the genetic mechanism can randomly or stochast-
cally develop either the extreme behaviors or reproductive benefits
(Ljichi et al., 2008, 2015, 2018). In this fifth framework, the genetic
architecture is surviving evolutionarily with the phenotypic quantitative
diversity and critical for the phenotypic changeability and robustness
(Ljichi et al., 2018). In addition to the ubiquitous invelvement of epis-
tasis in these frameworks, mating manners and localized disoribution of
reproductivity in a generational population cannot be excluded from the
backgrounds of the evolutionary landscape. To assess functions and the
significance of these supplementary factors (mating manners and
reproductive modalities), 7 models were employed in this article. Model
1 is the prototype of changeability simulations whose relationship be-
tween phenotypic value and reproductivity is semi-linear (4-2-0 model).
The reproductive couples in model 2 have 2 or 4 children independently
of the phenotypic values (2or4-0 model). In model 3,
hyper-reproductive (4 kids) parents are the border individuals (2-4-0
model). Model 4 and 5 are also 2-4-0 models with positive assortative
mating. In all reproductive pairs of model 4, the individual phenotypic
ranking is the same as the partmer (‘type A’ assortative mating). The
positive assortative mating in model 5 (*type B assortative mating) has a
group assortative manner, where mating is randomized between in-
dividuals in the same X value group (high or low). The unreproductive

individuals in model 6 and 7 are not necessarily exclusively involved in
the lower X value tail. From 50 males and 50 females with extremely low
X wvalues, 25 males and 25 females were randomly selected as unre-
productive pairs (2-Oor4 model). Model & is subject to ‘type A’ assor-
tative mating and model 7 follows ‘type B’ assortative mating.
Adopted conditions which were proposed in preliminary analyses
(Figs. 1-3) for comparative studies of the hypothetical models include ¢
=1.0,d = 8.0 or 8.3, and m = 10. Under the conditions of a + b =1, a +
b £ |c|, and ¢ # 0, where the generarional trajectories are stabilized and
changeable (Ijichi et al., 2018), the changeability depended on both
parental contributdon and contmribution of the stochastic epistasis
component (Figs. 1 and 3). The parental contribution to changeability
was provided under the condition of d < 9 and might be virtual or
extrinsic because of the minimal requirement of parental contribution
for another imitation (d > 9, Fig. 2) as described below. Whena + b > |
c|, phenotypic diversity of generational populations was undermined
and survival of the hypo-reproductive extreme tail was impossible
because of the disappearance of the tail (Fig. 3). Because observational
data of familial correlations including the similarity between
mother-offspring and inter-fratemal correlation coefficients could be
imitated under the condition of d — 9-11 (Fig. 2), the combination be-
tween essential contribution of stochastic epistasis and the minimal
parental contribution might be the necessary and sufficient condition for
the observational survival of the hypo-reproductive extreme tail through
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generatdons. Consequently, the final comparative studies to evaluate the
role of mating manners and biased distribution of reproductivity in the
generadonal population were to be accomplished under artificial (un-
real) conditions (d = 8.0 or 8.3), where flattening effects on the sloped
generatdonal sequences by the supplemental cofactors can be visualized.
In addition to the unreality of “type A’ assortative mating (model 4 and
6), whose strict mating rules made simulated familial correlation co-
efficients far from observational data, a powerful potential of the com-
bination between a random link of phenotypic low extremes to both un-
and hyper-reproductivity and group assortative mating (‘type B’) was
demonstrated for the hypo-reproductive extreme tail to survive through
generatons (Fiz. 4), suggesting the presence of supplemental roles of
these modalities in real world. Especially, the mixed localization of un-
and hyper-reproductivity in a generatonal populaton effectively
induced the generational survival of outliers and extremes (Fig. 4). This
evident function may have a cofactor role for stochastic epistasis. The
complex link between the phenotypic values and reproductivity may be
underpinned by hierarchical structures including these dimensions.

As an inevitable limitation in our mathematical simulations, the final
comparative studies to evaluate the role of mating manners and biased
distribution of reproductivity in the generational population were to be
accomplished under ardficial (unreal) conditions, where flattening ef-
fects on the sloped generational sequences can be visualized, as
described above. Evident findings under this limitation were recognized
as cofactor-associated supplemental effects. Although unreproductive
individuals in each generational population were determined according
to the relative phenotypic values in each model, survival of the hypo-
reproductive extreme tail in the complex phenotypic diversity was
judged when the G100 extreme tail resides within the negative y-axis
region in our simulations. If the presence of relative unreproductive
individuals in G100 could be recognized as the survival of the hypo-
reproductive tail, it was not necessary for the tail of normally distrib-
uted G100 to be involved in the absolute negative region. Coupling,
mating, and longevity usually depend on relative phenotypic values in
nature and absolute phenotypic values sometimes do not predict
evolutionary outcomes (Saino et al.,, 2012). Because each generational
population could keep the bell-shaped normal disaribution with the
unreproductive extreme tail in the previous changeability simulations
(Ljichi et al., 2018), the ultimate judgment of the survival of the
hypo-reproductive tail was arbitrarily achieved using absolute scale as
the most stringent evaluations.

5. Conclusions

Heritable stochasticity had been introduced to explain evolutionary
survival of the hypo-reproductive extreme tail of a complex human
behavioral diversity (Ijichi et al., 2008). The survival of highly heritable
and mainly sporadic behavioral conditions (autism and schizophrenia)
dictates an epistasis-associated stochastic fitness oscillation across gen-
eradons (phenotypic trade-offs) and unpredictability of genetic effects
(Ljichi et al., 2008). As well as the intrinsic compadbility between
distributional robusmess and phenotypic changeability (Ijichi et al.,
2018), we revealed that evolutionary survival of the hypo-reproductive
extreme tail of the dimensional continuous diversity can be mathemat-
ically imitated using stochastic epistasis. These hypothetical consider-
ations and mathematical simulations suggest the significance of
stochastic epistasis as the essential genetic background of complex
human diversity. For evolutionary survival of the hypo-reproductive
extreme tail, group assortative mating and a random link of the
phenotypic extremes to both un- and hyper-reproductivity may be
important supplemental cofactors of stochastic epistasis.
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