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Abstract: This note introduces a notion of upper continuity of relations and provides 5 equivalent conditions with
the upper continuity. As the case of continuous functions, each condition characterlises upper continuous relations by
respectively using open sets, neighbourhoods, interiors, closures, and closed sets. A notion of sequential continuity
is also studied. We show a relevance between upper continuous relations and sequentially upper continuous relations
which is, again, analogous to the case of functions.
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1. Introduction
This note introduces a notion of upper continuity of relations and provides quite fundamental results on the upper
continuity. There are various definitions of continuous relations. For example, Brattka and Hertling [2] investigated
relevance between computability and the following continuity of relations:

a relation is continuous iff preimage of each open set under the relation is open in the domain of it.

Generalising well-known characterisations of continuous functions, [3] has provided equivalent conditions with
the continuity. Berge [1] introduced lower and upper semi-continuity of relations:

• a relation is lower semi-continuous iff preimage of each open set under it is open;
• a relation is upper semi-continuous iff upper preimage of each open set under it is open and image

of each singleton set is compact.

Then, in [1], both lower and upper semi-continuous relations are called continuous. The continuity plays a key
rôle in a branch of mathematical economics [4]. In this note we introduce a generalisation of Berge’s upper
semi-continuity. The generalisation does not require compactness but concerns about the domain of relations like
the notion adopted by Brattka and Hertling.

Notion and properties of continuous functions are very fundamental and studied very well. Everyone learns the
following facts in math classes.

Fact 1. Let f : X → Y be a function. Then the following 6 conditions are equivalent.

1. f is continuous.
2. For each open set V ⊆ Y the set f−1(V ) is open in X .
3. For each point x ∈ X the set f−1(N(f(x))) is a neighbourhood of x for each neighbourhood N(f(x)) of

f(x).
4. f−1(B◦) ⊆ (f−1(B))◦ for each subset B ⊆ Y .
5. f−1(B) ⊆ f−1(B) for each subset B ⊆ Y .
6. For each closed set F ⊆ Y the set f−1(F ) is closed in X .

Fact 2. Let f : X → Y be a function.

1. If f is continuous, then it is sequentially continuous.
2. If X is a first-countable space and f is sequentially continuous, then it is continuous.

This note provides analogous properties of the above facts based on the generalisation of Berge’s upper semi-
continuity.
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2. Images and preimages of relations
This section recalls images and preimages of relations which will be used later.

Let R ⊆ X × Y be a relation from a set X to a set Y . For x ∈ X , A ⊆ X , y ∈ Y and B ⊆ Y we define

[x]R = {y ∈ Y | (x, y) ∈ R} [A]R =
∪

a∈A[a]R
R[y] = {x ∈ X | (x, y) ∈ R} R[B] =

∪
b∈B R[b],

and respectively call [A]R and R[B] image of A and preimage (or, equivalently, inverse image) of B under R. The
domain of R is denoted by dom(R), that is, dom(R) = R[Y ]. For a subset B ⊆ Y upper preimage R[[B]] of B
under R is defined by

R[[B]] = {x ∈ X | [x]R ⊆ B}.

A relation R ⊆ X × Y is called univalent (or a partial function in other words) if (x, y) ∈ R and (x, y′) ∈ R
implies y = y′ for all x ∈ X and y, y′ ∈ Y . If a relation R satisfies dom(R) = X , we call it total. If a relation
R is univalent and total, we call it a function (or a map in other words) and is written by R : X → Y . For a
function f : X → Y , f(x) and f(A) denote the value at x of f and the image of A under f , respectively. Of
course, {f(x)} = [x]f and f(A) = [A]f . Notations f−1(y) and f−1(B) for preimages f [y] and f [B] of y ∈ Y
and B ⊆ Y under a function f are also used. Note that f [B] = f−1(B) = f [[B]] for any B ⊆ Y since

x ∈ f [B] ⇐⇒ x ∈ f−1(B) ⇐⇒ f(x) ∈ B ⇐⇒ [x]f ⊆ B ⇐⇒ x ∈ f [[B]].

The next lemma will be used only in Appendix.

Lemma 2.1. Let R ⊆ X × Y be a relation. Then the following two inclusions hold for any subsets A ⊆ X and
B ⊆ Y .

A ⊆ R[[[A]R]] [R[[B]]]R ⊆ B

Proof. A ⊆ R[[[A]R]] holds by

a ∈ A =⇒ [a]R ⊆ [A]R ⇐⇒ a ∈ R[[[A]R]].

Also [R[[B]]]R ⊆ B holds by

y ∈ [R[[B]]]R ⇐⇒ ∃x ∈ X.x ∈ R[[B]] and y ∈ [x]R
⇐⇒ ∃x ∈ X. [x]R ⊆ B and y ∈ [x]R
=⇒ y ∈ B.

The next lemma connects preimages and upper preimages, and will be used to prove Proposition 3.5, 3.7 and
also in Appendix. For a set S we denote the complement of S by SC.

Lemma 2.2. Let R ⊆ X × Y be a relation. Then the following two equations hold for each subset B ⊆ Y .

R[B] = (R[[BC]])C R[[B]] = (R[BC])C

Proof. R[B] = (R[[BC]])C holds by

x ∈ R[B] ⇐⇒ ∃y ∈ Y. y ∈ B and y ∈ [x]R
⇐⇒ ∃y ∈ Y. y ̸∈ BC and y ∈ [x]R
⇐⇒ [x]R ̸⊆ BC

⇐⇒ x ̸∈ R[[BC]]
⇐⇒ x ∈ (R[[BC]])C

Also R[[B]] = (R[BC])C holds by R[[B]] = ((R[[(BC)C]])C)C = (R[BC])C.
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The interior and closure of a subset S of a topological space are respectively denoted by S◦ and S. Lemma 2.2
and well-known one-to-one correspondences

S◦ = SC
C

S = ((SC)◦)C

between interiors and closures induce the following property. It will be used to prove Proposition 3.5 and also in
Appendix.

Lemma 2.3. Let X and Y be topological spaces and R ⊆ X × Y a relation. Then the following four equations
hold for each B ⊆ Y .

R[B◦] = (R[[BC]])C R[[B◦]] = (R[BC])C R[B] = (R[[(BC)◦]])C R[[B]] = (R[(BC)◦])C

3. Point-wise upper continuity and its equivalent conditions
Point-wise upper continuity of relations is defined as follows. Throughout of the section we assume X and Y to be
topological spaces.

Definition 3.1. Let R ⊆ X × Y be a relation.

1. Given a point (x, y) ∈ R,R is upper continuous at (x, y) if for each open neighbourhoodN(y) of y satisfying
[x]R ⊆ N(y) there exists a neighbourhood N(x) of x such that [x′]R ⊆ N(y) for all x′ in N(x).

2. R is (point-wise) upper continuous if R is upper continuous at all points (x, y) in R.

A function f : X → Y is continuous at x ∈ X iff f is upper continuous at (x, f(x)) since dom(f) = X and
(x, y) ∈ f is equivalent to y = f(x) for any x ∈ X . Thus the upper continuity of relations is a generalisation of
the (point-wise) continuity of functions.

In the rest of this section we provide generalisations of the items 2–5 from Fact 1.

Proposition 3.2. A relation R ⊆ X × Y is upper continuous iff for each open set V ⊆ Y the set R[[V ]]∩ dom(R)
is open in dom(R).

Proof. Let x ∈ R[[V ]] ∩ dom(R). Then, by x ∈ dom(R) there exists y0 ∈ Y such that (x, y0) ∈ R. Also by
x ∈ R[[V ]] V is an open neighbourhood of y0 satisfying [x]R ⊆ V . Thus there exists a neighbourhood N(x) of
x such that [x′]R ⊆ V for all x′ ∈ N(x) since R is upper continuous. So N(x) ∩ dom(R) is a neighbourhood
of x with respect to dom(R) satisfying N(x) ∩ dom(R) ⊆ R[[V ]] ∩ dom(R). Therefore R[[V ]] ∩ dom(R) is
open in dom(R). Next, let (x, y) ∈ R and N(y) an open neighbourhood of y satisfying [x]R ⊆ N(y). Then,
R[[N(y)]] ∩ dom(R) is an open neighbourhood of x with respect to dom(R). Thus there exists a neighbourhood
N(x) of x such that N(x) ∩ dom(R) = R[[N(y)]] ∩ dom(R). Therefore [x′]R ⊆ N(y) for all x′ ∈ N(x) since
x′ ∈ R[[N(y)]] if x′ ∈ dom(R), and [x′]R = ∅ iff x′ ̸∈ dom(R).

Recalling the definition of neighbourhoods, we have the following property. Its consequence is a generalisation
of the third item of Fact 1.

Proposition 3.3. Let R ⊆ X ×Y be a relation such that for each open set V ⊆ Y the set R[[V ]]∩ dom(R) is open
in dom(R). Then for each point (x, y) ∈ R the set R[[N(y)]] is a neighbourhood of x for each neighbourhood
N(y) of y satisfying [x]R ⊆ N(y).

Proof. Let (x, y) ∈ R and N(y) be a neighbourhood of y satisfying [x]R ⊆ N(y). Then there exists an open set
V ⊆ Y such that V ⊆ N(y). So, there exists an open set O ⊆ X such that O ∩ dom(R) = R[[V ]]∩ dom(R) since
R[[V ]]∩dom(R) is open in dom(R). This open setO is contained byR[[N(y)]] since x′ ∈ O implies x′ ∈ R[[N(y)]]
if x′ ∈ dom(R) and [x′]R = ∅ iff x′ ̸∈ dom(R). Also, [x]R ⊆ N(y) iff x ∈ R[[N(y)]]. Therefore R[[N(y)]] is a
neighbourhood of x.

Recalling the definition of interiors, we have the following property. Its consequence is a generalisation of the
fourth item of Fact 1.
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Proposition 3.4. Let R ⊆ X × Y be a relation such that for each point (x, y) ∈ R the set R[[N(y)]] is a
neighbourhood of x for each neighbourhood N(y) of y satisfying [x]R ⊆ N(y). Then R[[B◦]] ∩ dom(R) ⊆
(R[[B]])◦ ∩ dom(R) holds for each subset B ⊆ Y .

Proof. Let x ∈ R[[B◦]] ∩ dom(R). Then there exists y0 ∈ Y such that (x, y0) ∈ R since x ∈ dom(R).
Also y0 ∈ B◦ since x ∈ R[[B◦]]. Thus there exists a neighbourhood N(y0) such that N(y0) ⊆ B. Now set
V = N(y0)∪ [x]R. Then V is a neighbourhood of y0 satisfying [x]R ⊆ V . Hence R[[V ]] is a neighbourhood of x.
V also satisfies V ⊆ B since N(y0) ⊆ B and [x]R ⊆ B◦ ⊆ B. Hence R[[V ]] ⊆ R[[B]] holds. So x ∈ (R[[B]])◦.
Therefore x ∈ (R[[B]])◦ ∩ dom(R).

The consequence of the following proposition is a generalisation of the fifth item of Fact 1.

Proposition 3.5. Let R ⊆ X×Y be a relation satisfying R[[B◦]]∩dom(R) ⊆ (R[[B]])◦∩dom(R) for each subset
B ⊆ Y . Then R also satisfies R[B] ∩ dom(R) ⊆ R[B] for each B ⊆ Y .

Proof. Assume that R[[B◦]] ∩ dom(R) ⊆ (R[[B]])◦ ∩ dom(R) for each subset B ⊆ Y . Then we have

R[B] ∩ dom(R) = (R[[BC]])C ∩ dom(R) by Lemma 2.2
= ((R[[BC]])◦)C ∩ dom(R)
⊆ ((R[[BC]])◦ ∩ dom(R))C ∩ dom(R)
⊆ (R[[(BC)◦]] ∩ dom(R))C ∩ dom(R) by assumption
= ((R[[(BC)◦]])C ∪ dom(R)C) ∩ dom(R)
= (R[[(BC)◦]])C ∩ dom(R)
= R[B] ∩ dom(R) by Lemma 2.3
= R[B].

The consequence of the following proposition is a generalisation of the sixth item of Fact 1.

Proposition 3.6. Let R ⊆ X × Y be a relation satisfying R[B] ∩ dom(R) ⊆ R[B] for each B ⊆ Y . Then for
each closed set F ⊆ Y the set R[F ] is closed in dom(R).

Proof. For each closed set F we have R[F ] ∩ dom(R) = R[F ] by R[F ] = R[F ] ∩ dom(R) ⊆ R[F ] ∩ dom(R)
and R[F ] ∩ dom(R) ⊆ R[F ] = R[F ]. Thus R[F ] is closed in dom(R).

Proposition 3.7. Let R ⊆ X × Y be a relation. Then the following two conditions are equivalent:

1. For each closed set F ⊆ Y the set R[F ] is closed in dom(R).
2. For each open set V ⊆ Y the set R[[V ]] ∩ dom(R) is open in dom(R).

Proof. 1 implies 2 since
R[[V ]] ∩ dom(R) = R[V C]C ∩ dom(R)

by Lemma 2.2 and R[V C] is closed in dom(R). Also 2 implies 1 since

R[F ] = (R[[FC]])C by Lemma 2.2
= (R[[FC]] ∩ (dom(R) ∪ dom(R)C))C

= ((R[[FC]] ∩ dom(R)) ∪ (R[[FC]] ∩ dom(R)C))C

= ((R[[FC]] ∩ dom(R)) ∪ dom(R)C)C by dom(R)C ⊆ R[[FC]]
= (R[[FC]] ∩ dom(R))C ∩ dom(R)

and R[[FC]] ∩ dom(R) is open in dom(R).

Summing up the discussion above, we have the following theorem.

Theorem 3.8. Let R ⊆ X × Y be a relation. Then the following conditions are equivalent:
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1. R is upper continuous.
2. For each open set V ⊆ Y the set R[[V ]] ∩ dom(R) is open in dom(R).
3. For each point (x, y) ∈ R the set R[[N(y)]] is a neighbourhood of x for each neighbourhood N(y) of y

satisfying [x]R ⊆ N(y).
4. R[[B◦]] ∩ dom(R) ⊆ (R[[B]])◦ ∩ dom(R) for each subset B ⊆ Y .
5. R[B] ∩ dom(R) ⊆ R[B] for each B ⊆ Y .
6. For each closed set F ⊆ Y the set R[F ] is closed in dom(R).

Proof.
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Now Fact 1 is a corollary of Theorem 3.8.

Corollary 3.9. Let f : X → Y be a function. Then the following conditions are equivalent:

1. f is continuous.
2. For each open set V ⊆ Y the set f−1(V ) is open in X .
3. For each point x ∈ X the set f−1(N(f(x))) is a neighbourhood of x for each neighbourhood N(f(x)) of

f(x).
4. f−1(B◦) ⊆ (f−1(B))◦ for each subset B ⊆ Y .
5. f−1(B) ⊆ f−1(B) for each subset B ⊆ Y .
6. For each closed set F ⊆ Y the set f−1(F ) is closed in X .

4. Sequential upper continuity and point-wise upper continuity
In this section, we study sequential upper continuity of relations. Again, throughout of the section we assume X
and Y to be topological spaces.

Definition 4.1. Let R ⊆ X × Y be a relation.

1. Given a point (x, y) ∈ R, R is sequentially upper continuous at (x, y) if for each sequence {xn}, whenever
{xn} converges to x, then, for each open neighbourhood N(y) of y satisfying [x]R ⊆ N(y), there exists
M ∈ N such that [xm]R ⊆ N(y) for any m ≥ M .

2. R is sequentially upper continuous if R is sequentially upper continuous at all points (x, y) in R.

As the case of point-wise continuity, a function f : X → Y is sequentially continuous at x ∈ X iff f is
sequentially upper continuous at (x, f(x)) since dom(f) = X and (x, y) ∈ f is equivalent to y = f(x) for any
x ∈ X .

The upper continuity of relations implies sequential upper continuity of them.

Proposition 4.2. If a relation R ⊆ X × Y is upper continuous, then it is sequentially upper continuous.

Proof. Let (x, y) ∈ R, {xn} be a sequence conversing to x in X , and N(y) an open neighbourhood of y satisfying
[x]R ⊆ N(y). Since R is upper continuous, there is a neighbourhood N(x) of x such that [x′]R ⊆ N(y) for all
x′ in N(x). Also, since {xn} converges to x, there exists M ∈ N such that xm ∈ N(x) for any m ≥ M . Thus
[xm]R ⊆ N(y) holds for m ≥ M .

Obviously, the converse of Proposition 4.2 does not holds since it is known that there exists a sequentially
continuous function which is not continuous. However, the following holds as the case of functions.
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Proposition 4.3. A sequentially upper continuous relationR ⊆ X×Y is upper continuous if X is a first-countable
space.

Proof. We prove contraposition. Suppose that R is not upper continuous. Then, by Theorem 3.8, for some
point (x0, y0) ∈ R there exists a neighbourhood N(y0) of y0 such that [x0]R ⊆ N(y0) and R[[N(y0)]] is not
a neighbourhood in dom(R). Also, since X is a first-countable space, there exists a countable fundamental
neighbourhood system {Nn(x0)} of x0 such that Nk(x0) ⊇ Nk+1(x0) for each k ∈ N. Now, since R[[N(y0)]]
is not a neighbourhood, Nk(x0) ̸⊆ R[N(y0)] for each k ∈ N. Thus it is able to take a sequence {xn} such
that xk ∈ Nk(x0) and xk ̸∈ R[[N(y0)]] for each k ∈ N. Then, though the sequence {xn} converges to x0,
[xk]R ̸⊆ N(y0) for each k ∈ N. Therefore R is not sequentially upper continuous.

Now the 2 items of Fact 2 are corollaries of Proposition 4.2 and 4.3.

Corollary 4.4. Let f : X → Y be a function.

1. If f is continuous, then it is sequentially continuous.
2. If X is a first-countable space and f is sequentially continuous, then it is continuous.

5. Concluding remarks
In this note we have generalised well-known properties Fact 1 and 2 of continuous functions to ones of upper
continuous relations. It is also well-known that the following condition is equivalent to a function f : X → Y
being continuous, but we have not yet found its generalisation to upper continuous relations:

f(A) ⊆ f(A) for each subset A ⊆ X .

We are still looking for it.
Though in [3] we obtained similar results of continuous relations in the sense of [2], we did not consider

analogous conditions of the fourth and fifth item of Fact 1. See Appendix for them.
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Appendix
Let X and Y be topological spaces and R ⊆ X × Y . We consider the following 3 conditions.

1. R[B◦] ⊆ (R[B] ∪ dom(R)C)◦ for each B ⊆ Y .
2. R[[B]] ∩ dom(R) ⊆ R[[B]] for each B ⊆ Y .
3. [A]R ⊆ [A]R for each A ⊆ dom(R).
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Note that [3] has shown that R is continuous in the sense of [2] iff R satisfies 3. Showing these 3 conditions are
equivalent, we ensure that 1 and 2 are respectively generalisations of the fourth and fifth item of Fact 1 for the
continuity of relations.

Suppose that R satisfies 1. Then we have

R[[B]] ∩ dom(R) = (((R[[B]] ∩ dom(R))C)◦)C

= (((R[[B]])C ∪ dom(R)C)◦)C

= ((R[BC] ∪ don(R)C)◦)C by Lemma 2.2
⊆ R[(BC)◦]C by 1
= R[[B]]. by Lemma 2.3

Conversely, suppose that R satisfies 2. Then we have

R[B◦] = (R[[BC]])C by Lemma 2.3
⊆ R[[BC]] ∩ dom(R)

C
by 2

= (R[[BC]] ∩ dom(R)
C
)◦

= ((R[[BC]])C ∪ dom(R)C)◦

= (R[B] ∪ dom(R)C)◦ by Lemma 2.2

Thus 1 and 2 are equivalent. Again, suppose that R satisfies 2. Then we have

[A]R ⊆ [R[[[A]R]] ∩ dom(R)]R by Lemma 2.1 and A ⊆ dom(R)

⊆ [R[[[A]R]]]R by 2
⊆ [A]R. by Lemma 2.1

Conversely, suppose that R satisfies 3. Then we have

R[[B]] ∩ dom(R) ⊆ R[[[R[[B]] ∩ dom(R)]R]] by Lemma 2.1
⊆ R[[[R[[B]] ∩ dom(R)]R]] by 3
⊆ R[[[R[[B]]]R]]
⊆ R[[B]]. by Lemma 2.1

Thus 2 and 3 are equivalent. Therefore these 3 conditions are equivalent.
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